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Abstract

With the advent of real-time and goal-oriented database systems, priority scheduling is likely to be an important
feature in future database management systems. A consequence of priority scheduling is that a transaction may lose its
buffers to higher-priority transactions, and may be given additional memory when higher-priority transactions leave the
system. Due to their heavy reliance on main memory, hash joins are especially vulnerable to fluctuations in memory
availability. Previous studies have proposed modifications to the hash join algorithm to cope with these fluctuations,
but the proposed algorithms have not been extensively evaluated or compared with each other. This paper contains a
performance study of these algorithms. In addition, we introduce a family of memory-z Japtive hash join algorithms
that turns out to offer even better solutions to the memory fluctuation problem that hash joins experience.
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1. Introduction

Database management systems (DBMS) are faced with increasingly demanding performance objectives. Thesc
objectives could be time constraint requirements, as in real-time database systems [SIGMS83, Abbo88, Huang9, Hari%0,
Kort90, Kim91, REAL92], or administration defined performance goals as in goal-oriented database systems [Ferg93].
Traditional first-come-first-serve or round-robin scheduling policies are no longer adequate to meet such objectives; a
DBMS has to prioritize transactions that are competing for system resources according to the system objectives and the

resource requirements of the transactions.

With priority scheduling, the DBMS may preempt a transaction that is currently allocated a resource when that
resource is requested by a higher-priority transaction. To avoid severe performance degradation, e.g. due to convoys
that arise when transactions holding critical resources are suspended [Blas77], it is desireble to preempt a transaction
only at a preemption-safe point, where the transaction is not holding any critical resources and the preemption cost is
minimal [Ston81]. Scans and updates, which acquire and release resources repeatedly throughout their lifetimes, have
frequent preemption-safe points. In contrast, large joins, especially hash joins, hold on to :heir buffers for an extended
period each time. The DBMS therefore cannot wait for these joins to reach their przemption-safe points before
preempting them. When a join has to be preempted prematurely, measures have to be taken to minimize the perfor-

mance penalty of preemption.

To execute efficiently, a hash join requires a significant amount of main memory to hold its hash table. Depend-
ing on the specific algorithm used, the number of buffers that a hash join utilizes ranges apywhere from the square root
of the size of the inner relation to the inner relation size [DeWi84, Shap86], which can be a substantial portion of the
system memory. Moreover, this hash table has to be kept in memory for a long period of time. Consequently, during
the lifetime of a large hash join, the DBMS may have to appropriate some of the join’s mrmory to satisfy the memor)
requirements of higher-priority transactions; the buffers that are taken away may subsequently be returned after thosc
transactions leave the system. Given the prospect of continually having memory taken away and given back during its
lifetime, a hash join has to adapt its buffer usage to minimize any detrimental effect that might result from the changes

in its allocated memory. To simplify our discussion, we shall henceforth refer to these changes as memory fluctuations.

One way to deal with memory fluctuations would be for the DBMS to employ virtuzl memory techniques to page
the hash table of an affected hash join into and out of a smaller region of allocated memcry, without having to inform

the join operator. If the DBMS detects that this is causing too many page faults, it coul? suspend the join altogether.
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An advantage of this approach is that it shields the hash join algorithm from the complexity involved in adapting to
memory fluctuations. However, there may be severe performance drawbacks associated with this approach. On one
hand, suspending hash joins that are affected by memory fluctuations reduces the number of active transactions, which
may lead to under-utilization of system resources. Paging the hash table of a join, on the other hand, is likely to result
in thrashing; a hash join accesses its hash table pages randomly, and any page that is replaced will likely be needed

before long.

In this study, we investigate a different approach, namely, to involve the affected hash joins in adapting to the
fluctuations. These algorithms range from relatively simple ones, which require few extensions to the original hash join
algorithm, to sophisticated algorithms that dynamically adjust the buffer usage of hash joins to reduce the performance
penalty that results from memory fluctuations. The second group of algorithms includes 2 family of hash join variants
called Partially Preemptible Hash Join (PPHI). All the PPHJ variants are capable of dynamically adjusting the buffer
usage of a join in reaction to a drop in the amount of memory allocated to it (hence partially preemptible), or an
increase in the allocated memory. They differ from one another in the way that they prepare for the event of memory
shortage, and in the way that they utilize excess memory. Together, these algorithms cover a wide range of choices in
dealing with fluctuations in memory availability. To understand the performance trade-offs of each algorithm and to
identify those algorithms that adapt well to changes in system buffer usage, we have constructed a detailed simulation
model of a database system. This model enables us to study the behavior of the hash join algorithms over a wide range

of system resource configurations.

The remainder of this paper is organized as follows. Section 2 reviews the GRACE and Hybrid Hash J oin algo-
rithms, two hash join algorithms that we will use, and discusses existing work that is related to our study. The family of
PPHJ algorithms is introduced in Section 3. Also included in Section 3 is a description of the algorithms that will be
studied along with PPHJ. A detailed simulator of a database system, intended for studying the performance of the vari-
ous algorithms, is described in Section 4. Section 5 presents the results of a series of simulation experiments showing
that, over a wide range of system conditions, PPHJ offers effective solutions to the problem of memory fluctuations.

Finally, our conclusions are presented in Section 6.



2. Related Work

In this section, we describe the studies reported in the literature that are related to our work. Before doing so,

however, we first introduce some notation that will be used throughout the paper.

A hash join involves an inner relation R, and an outer relation S. Relation R has ||R]| pages and |R] tuples. Simi-
larly, relation S has ||S|| pages and |S| tuples. We assume that S is the larger relation, i.e. ||[R|I < [IS]. We also use a
"fudge factor”, F, to represent the overhead for a hash table. For example, a hash table for R is assumed to require

F|IR)| pages. This notation is summarized in Table 1.

Some of the earliest work on joins using hashing is reported in [Kits83]. The GRACE Hash Join algorithm was
introduced in that study. In GRACE Hash Join, a join is processed in three phases. First, the inner relation R is split
into \fﬁlﬁll- disk-resident partitions that are approximately equal in size. In the second phase, the outer relation S is par-
titioned using the same split function. Finally, the R and S tuples of each disk-resident partition are joined in memory.
In the variation of the GRACE algorithm that is presented in [Shap86], a join requires only ﬂlﬂf output buffers

throughout its lifetime. Excess buffers are used to hold subsets of R and/or S so they need 1ot be written to disk.

A shortcoming of the GRACE Hash Join algorithm is that it does not effectively utilize memory that is in excess
of the minimum requirement of ‘/FW buffers. In [DeWi84], DeWitt et al proposed the Hybrid Hash Join algorithm,
which follows the same three phases that GRACE goes through but uses excess memory more effectively. The Hybrid
Hash Join algorithm divides the source relations into only as many disk-resident partitiors as are necessary 1o split R
into sets that can fit in memory. Each of these partitions is assigned an output buffer. Instead of using the rest of the
memory to hold subsets of R and/or S as in GRACE, this memory is used to hold the hash table for the first partition, sc:
that the R and S tuples that belong to this partition can be joined in memory directly as S is being scanned. The Hybrid

Hash Join algorithm was shown to have superior performance over GRACE.

Notation Meaning
R Inner relation
S Outer relation
IRl Number of pages in R (similarly for S)
IR| Number of tuples in R (similarly for S)
F Fudge factor

Table 1: Notation



The Hybrid Hash Join algorithm is designed to make full use of the memory that a join has available when it first
starts execution. During the course of execution, however, there may be a misfit between the amount of memory tha
the DBMS can allocate to the join and the size of its R partitions. One possible cause of this discrepancy is due to
incorrect estimation of the hash attribute distribution. This results in a situation where some R partitions are larger than
the allocated memory, while other R partitions are under-sized. In [Naka88], a modification of Hybrid Hash Join was
proposed to deal with this memory misfit problem. Instead of deciding on the number of partitions at the beginning, the
proposed modification splits the inner relation into smaller subsets, called buckets, which will later be grouped into par-
titions. The number of buckets is a parameter of the algorithm. Each bucket is assigned 2 memory-resident hash table
that is initially empty. As R is scanned, the buckets gradually grow in size. Each time the memory requirement for the
join tries to exceed the available memory, a bucket is written out to disk and all but one of its pages are released. The
remaining page is then used as an output buffer for that bucket. After the inner relation R has been scanned, there will
be as many memory-resident buckets as is possible to fit into the available memory. These buckets are then combined
into a single R partition that is equivalent to the first partition in Hybrid Hash Join. The ¢isk-resident buckets are also
grouped into partitions that will fit snugly in memory when they are brought back in. The next two phases proceed
exactly as in the Hybrid (or GRACE) Hash Join algorithm. Through a series of experiments, this modified algorithm
was shown to outperform Hybrid Hash Join when the hash attribute distribution cannot be accurately determinee

[Kits89].

Another factor that can cause a discrepancy between the memory requirement of a join and the memory that is
available to it is memory contention due to other transactions or queries (as discussed in the introduction), or by other
processes that are running in the system concurrently with the DBMS. Zeller and Gray first addressed this situation in
[Zel190]. Like the algorithm in [Naka88], the algorithm that they proposed divides the inn=r relation into many buckets.
Unlike the Nakayama et al algorithm, the Zeller and Gray algorithm immediately groups these buckets into tentative
partitions. The total number of buckets and the number of buckets per partition are both parameters of the algorithm.
Initially, these partitions are each given a memory-resident hash table. As R is scanned and the partitions grow in size,
the join may attempt to acquire more memory than what is allocated to it. When this happens, a partition will be written
out to disk, and the memory that is used for its hash table will be deallocated. This partition now becomes disk-
resident, and it is given only an output buffer. Should a partition ultimately turn out to be too big for the allocated

memory, the buckets that make up this partition will be regrouped into two smaller partitions. After R has been



!

scanned, there will be one or more memory-resident R partitions, plus zero or more R partitions that reside on disk.
Moreover, each R partition will be small enough to fit into the allocated memory. The remaining portion of the join
proceeds as in phases 2 and 3 of the Hybrid (or GRACE) Hash Join algorithm. The drawback of this algorithm is that
when a disk-resident partition gets split (during phase 1), its existing disk pages will contain tuples from the two new
partitions. These disk pages will have to be fetched repeatedly during the third phase of the join when disk-resident
partitions are processed. The proposed algorithm was prototyped in NonStop SQL, and a preliminary evaluation

showed the algorithm to be superior to sort-merge join.

3. Memory-Adaptive Hash Join Algorithms

This section gives a detailed description of the memory-adaptive hash join algorithms that will be examined in
this study. First, Partially Preemptible Hash Join (PPHJ), a new family of hash join algorithms that dynamically alter
the memory usage of joins according to buffer availability, is introduced. We then relate the algorithms proposed in
[Naka88] and [Zel190] to PPHJ. Finally, we describe how our implementations of the basic GRACE and Hybrid Hash

Join algorithms cope with memory fluctuations.

3.1. Partially Preemptible Hash Join

In order to adapt effectively to memory fluctuations, a join has to respond quickly ard work with a smaller buffer
space when memory is taken away; it must also utilize any additional memory that it is given while executing. These

are the main design considerations of PPHJ.

Like the GRACE and Hybrid Hash Join algorithms, PPHJ executes a join in three phases. Phases 1 and 2 parti-
tion the inner relation R and the outer relation S, respectively. During these two phases, the tuples of some R partitions
are held entirely in memory-resident hash tables, while the tuples of other R partitions are stored partly or entirely on
disk. To simplify our discussion, we shall henceforth refer to the memory-resident partitions as expanded partitions
and the disk-resident partitions as contracted partitions. Finally, in the third phase, S tuples that reside on disk are

fetched and joined with the corresponding R tuples. The details of these three phases will become clear shortly.

With PPHJ, the choice of the number of partitions has a significant performance implication. On one hand, we
could minimize the number of partitions, as in the Hybrid Hash Join algorithm, by making each contracted partition as
large as the initial amount of memory. This would enable the join to make full use of the memory that it starts off with,

but would also expose the join to memory fluctuations during phase 3; this is because phase 3 of the join will still
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require all of the initially allocated memory to build a hash table for each contracted partition. On the other hand, hav-
ing many small partitions would make the join less vulnerable in phase 3, but would inm‘)duce other problems: Since
each partition requires at least one page of memory, having more partitions leaves less spéce in which to expand parti-
tions. To balance the benefit of smaller partitions against the penalty of a larger number of partitions, PPHJ attempts to
minimize both the number of partitions and the average partition size. The desired minimum is achieved when the
number of partitions is \ffm , making the partition size also about ‘/ﬁl_ﬂ . PPHIJ therefore divides the source relations

into VF||R|| partitions, the same number of partitions that GRACE Hash Join uses.

Besides rendering joins less vulnerable to fluctuations in memory availability during phase 3, having \/FW?I_I par-
titions rather than the minimum number of partitions has another advantage in that it enables PPHJ to reduce the buffer
usage of a join easily during phases 1 and 2 when the need arises. Instead of one big expanded partition, PPHJ main-
tains several smaller expanded partitions, and each expanded partition has its own hash table. To reduce buffer usage,

PPHJ simply contracts one of these partitions by flushing its hash table and freeing all but one page of its memory.

3.1.1. PPHJ : The Basics

Having given an overview of PPHJ, we now present the algorithm in detail. The }PHJ algorithm involves five
steps. Step (1) initializes the join. Phases 1 and 2 of the join are implemented by steps (2) and (3), respectively
Finally, in phase 3, the join iterates over steps (4) and (5) until all the partitions have been fully processed. Note that
the detailed algorithm entails ordering the YFIRI partitions. The purpose of this ordering will become clear shortly

(once we introduce the variants of PPHJ).

(1) Choose a hash function  and a partition of its hash values that will split R into Ry, .., RFjry and S into Sy, ..,
S JFiry» S0 that each R partition will have approximately ‘/FW pages. An R partition can either be "expanded”
or "contracted”, with the restriction that partition i cannot be contracted before pertition i+1. In other words,
when needed, we always contract the expanded partition that has the highest index. Each expanded partition
requires VFIRI pages for its hash table, and each contracted partition needs one output buffer. Expand as many
partitions as the allocated memory allows. Any leftover buffers are used as a spool area for pages that are being

flushed to disk. The spool area is managed by the LRU policy. In order to reduce cisk seeks, spooled pages are



flushed out in blocks of several pages each time!.

(2) Scan R. Hash each tuple with /. If the tuple belongs to an expanded partition, insert the tuple in the hash table of
that partition; otherwise the tuple belongs to a contracted partition, so copy it to the corresponding output buffer.
In the event that an output buffer becomes full, flush it. After R has been completely scanned, flush all output
buffers. During this step, memory may be taken away from the join, and this may necessitate contracting more
partitions. To contract a partition, flush its hash pages and give away all but one of its allocated pages. The
remaining page is then used as an output buffer. When this step is finished, we have a hash table in memory for

each expanded partition, and all the contracted partitions are either on disk or in the spool area.

(3) Scan S, hashing each tuple with h. If the tuple hashes to a partition of R that is currently expanded, probe the
corresponding hash table for a match. If there is a match, output the result tuple; otherwise drop the tuple. If the
tuple belongs to a contracted partition of R, copy the tuple to the corresponding S partition’s output buffer. When
an output buffer fills, it is flushed. After S has been completely scanned, flush all output buffers. (Note that addi-
tional partitions of R can be contracted during this step in response to changes in the amount of memory available

to the join.)

Repeat steps (4) and (5) for each partition i that has a nonempty S;, i =1, ., VF||R||. Partition S; will be nonempty if

partition i of R was contracted at the start of or at some point during step (3).
(4)  If the hash table of R; is not already in memory, read in R; and build a hash table for it.

(5) Scan S;, hashing each tuple and probing the hash table for R;. If there is a match, output the result tuple, other-

wise toss the S tuple away. (Note that some pages of R; and S; may be in the spool area, thus avoiding 1/Os.)

3.1.2. PPH] : Variations on a Theme

When memory is taken away from a join, the basic PPHJ algorithm adapts by contracting partitions; the DBMS
suspends the join if fewer than VF|IR|| pages remain. Any additional memory that is given to the join is assigned to @

spool area. The following (optional) mechanisms are designed to make more effective use of a join’s extra memory.

! In the experiments that are reported in this paper, spooled pages are flushed out in blocks of 6 pages if the size of the spool is greater than 6; if
the spool size is smaller than 6, the entire spool is written out to disk. We selected a block size of 6 pages becauze, for our system configuration, this
choice gives a good compromise between reducing the number of random 1/Os, and keeping pages around in the hope that these pages will be fetched
again while they are still in memory, thus eliminating some I/O operations. It should be noted that, in [Pang93;, spooled pages are written out one
page at a time. This accounts for the different performance figures reported there. However, the relative performance between different
algorithms/mechanisms remains the same.



1.  Contraction. In step (1) of PPHI, instead of assigning all Wﬁ pages to every expanded partition at once, we
could let each partition start off with only 1 page, and allocate additional pages to a {artition only when the pages
that it currently owns are full; all the pages that a partition owns are linked to form a hash chain, as in [Zel190].
This allows all partitions to be "expanded” initially. Under this variation, contracticn occurs when an expanded
partition requires an additional page and none is available. To distinguish between the original approach of con-
tracting partitions at the start and this variation, we call the former approach early contraction and this variation
late contraction. An advantage of late contraction is that memory may be added after a join has begun execution,

thus eliminating the need to contract some partitions.

2. Expansion. Throughout step (3), whenever a join has enough free memory to expand the contracted partition that
has the lowest index, seize the opportunity and do so. (This is in contrast to just using the additional memory for
the spool area.) Expanding a partition involves fetching those of its R tuples that hae previously been written to
disk, so that future S tuples that hash to this partition can be joined directly. By arranging to have as many parti-
tions expanded as possible during step (3), this mechanism seeks to minimize the number of S pages that ever

have to be written to disk.

3. Prioritized Spooling. Steps (2) and (3) of PPHJ flush filled output buffers of contracted partitions to disk. These
pages can be recalled either in step (3), to re-expand partitions, or in steps (4) and (5), when contracted partitions
are processed. Since partitions with lower index numbers are expanded (in step (3)) und scanned (in steps (4) and
(5)) before partitions with higher index numbers, we can prioritize the pages in a join’s spool area to ensure that
pages will be protected from replacement until there is no page belonging to a higher-index partition in the spool
area. Moreover, to complement the expansion mechanism, R pages are preferred over S pages in step (3), so that
the spool retains as many R pages as possible to facilitate partition expansion. This is expected to improve the

effectiveness of spooling as compared to the LRU spooling strategy.

Each of the above mechanisms can be used by itself or can be combined with the other two mechanisms, giving
rise to eight PPHJ variants. To differentiate between the variants, we shall postfix a string of the form XX ,X; to
PPHJ, where X is either late or early (late contraction or early contraction), X, is either exp or noexp (expansion or no
expansion), and X 5 is either prio or Iru (priority spooling or LRU spooling). Thus, PPHI(early,noexp,iru) denotes the
basic PPHJ, which uses early contraction, no expansion and LRU spooling; PPHJ(late,exp prio) denotes the fully

enhanced PPHJ, with late contraction, expansion and prioritized spooling, and so on.



3.2. Other Algorithms

3.2.1. Nakayama et al

The algorithm proposed in [Naka88], which we will call NKT from here on, delays the decision to contract buck-
ets as long as possible. When a bucket has to be contracted, all of its memory-resident pages are flushed to disk without
going through the spool area. After contraction, filled output pages of this bucket are spooled if space permits. There-
fore, except for its failure to spool pages of contracting buckets, NKT combines late contraction, no expansion, and
LRU spooling, using the terminologies of PPHJ. Our context, where the number of buffers allocated to a join may be
reduced at any point during its lifetime, necessitates two adaptations to NKT. First, the criginal NKT algorithm con-
tracts buckets only during phase one of a join. This is inadequate for our purposes, so we a'low contractions all through
phases 1 and 2. The next adaptation is motivated by the need to keep the size of the R partitions as small as possible, so
as to minimize the join’s vulnerability to memory fluctuations when the R partitions are held in memory-resident hash
tables. Therefore, instead of grouping several buckets into bigger partitions, we let each bucket form a partition by
itself. Finally, the total number of buckets, a parameter of NKT, is set to \flj’ITRﬂ . This parameter value is chosen 1o
minimize the number of buckets and the average bucket size (as discussed in the beginning of this section), as well as to
provide a consistent comparison between NKT and PPHJ. We shall refer to our impleracntation as NKT' to differen

tiate it from the original NKT algorithm.

3.2.2. Zeller and Gray

Like the Nakayama et al algorithm, the algorithm of Zeller and Gray (which we wil! refer to as ZG) allows con-
tractions to occur only during the first phase of a join [Zell90]. Our implementation relaxes this restriction so that con-
tractions may occur in both phase 1 and phase 2. The total number of buckets, a parameter of the algorithm, is set to
\/ﬂﬂ for the same reason as in NKT . The number of buckets that make up each partition, another algorithm parame-
ter, is chosen to be one. This choice is motivated by the need to keep the size of the R partitions as small as possible, as

in the case of NKT. The resulting algorithm, which we denote as ZG', is equivalent to PPHI(late,noexp,lrit).

3.2.3. GRACE and Hybrid

Besides PPHJ, NKT and ZG', we also include the GRACE and Hybrid Hash Join algorithms in this study. Our

implementation of GRACE uses VF|IR|| pages for the output buffer of the partitions, and excess buffers are used as an



LRU spool area. In the event that less than \ff‘]—lﬁll_ pages can be allocated to a join, the DBMS suspends the join alto-
gether. For Hybrid Hash Join, we have implemented two different versions. In the first version, the DBMS suspends a
join if it loses any of the buffers that it starts off with; therefore, this version is not partially preemptible. In contrast,
the second version resorts to LRU paging whenever the memory available to the join is insufficient to hold its entire
hash table. In this case, the join remains executable, so the second hybrid hash join version is partially preemptible.
These two versions are denoted by Hybrid(Suspend) and Hybrid(Paging), respectively. With Hybrid(Suspend), all the
pages of a join that are written to disk while the join is suspended will be fetched together when the join resumes. This
results in sequential I/Os, as opposed to random I/Os which would occur if the disk-resident pages were to be paged in
on demand. Hybrid(Paging) does the following for each page that is read in while partitioning/processing relation S:
Tuples in this S page which hash to contracted partitions are copied to the output buffers, while tuples that belong to the
(single) expanded partition are joined with tuples in the R partition’s hash table in two stages. Stage 1 processes those
tuples in the current S page that hash to pages in the memory-resident portion of the hash table and then discards these
processed S tuples. S tuples that hash to hash table pages that have been paged out to disk are not processed in stage 1.
In the second stage of processing an S page, all of the disk-resident hash table pages that are required are fetched in
order to process the remaining tuples in the current S page. During this stage, hash table pages that are replaced are no
longer useful to the current S page, as the S tuples that need these pages of the hash tablc have already been processed.
This two-stage strategy requires knowledge about which hash table pages have been swapped out, and which pages stili
remain in memory. However, this strategy is superior to a simple strategy that fetches a missing hash table page each
time it is demanded by an S tuple, as the simple strategy may repeatedly swap out hash pages that will be used by sub-

sequent S tuples. This would lead surely to unacceptable performance.

4. Database System Simulation Model

To aid in our on-going research on real-time database systems, we have constructed a simulation model of a cen-
tralized database system. The portion of our simulation model that is relevant to this study is shown in Figure 1. There
are five components: a Source that generates transactions one after another, and also collects statistics on completed
transactions; a Transaction Manager that models the execution of transactions, including joins; a Buffer Manager that
implements the buffer management policy; and a CPU Manager and a Disk Manager that are responsible for managing
the system’s CPU and disks, respectively. In this section, we describe how the simulation model captures the details of

the database, workload, and various physical resources of a database system. The simulator is written in the DeNet
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Figure 1: Database System Model

simulation language [Livn90].

4.1. Database and Workload Model

Table 2 summarizes the database and workload model parameters that are relevant to this study. Our objective is
to simulate a stream of binary hash joins on different source relations. To facilitate this, the database consists of two
groups of relations. There are NumRel; relations in the first group, and NumRel, relations in the second. Each relation
ij (i =1,2; 1 <j<NumRel;), in turn, has a size of RelSize; ; MBytes and occupies contiguous pages on disk. If there
are multiple disks, all relations are declustered (horizontally partitioned) [Ries78, Livn87) across all of the disks. To
minimize disk head movement, the relations are allotted the middle cylinders of the disks; wemporary files occupy either

the inner cylinders or the outer cylinders.

DB Model Parameters Meaning

NumRel; Number of relations in group i

RelSize; ; Size of relation j of group i

TupleSize; ; Average tuple size of relation i/ in bytes

Workload Parameters Meaning

Durationyempeq Mean duration of memory requests

MemReqThreshold Maximum % buffer demand of a "small" memory request
Prob(SmallMemReq) Probability of "small" memory request

Table 2: Database and Workload Model Parameters
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In this study, the workload is made up of a series of joins; a new join is submitted to the database system only
when the previous join has been completed. Each join involves an inner relation R, which is uniformly selected from
the relations in the first group, and an outer relation S which is uniformly selected from the second group. We assume
that each tuple in S joins with exactly one tuple in R, i.e. the join selectivity is 1/IR]. This is intended to model joins that

involve the primary key of one relation and the foreign key of another relation.

To investigate how different join algorithms adapt to fluctuations in the amount of available memory, we simulate
an environment where joins have to contend for memory with other "transactions” that have small memory require-
ments and, occasionally, with "transactions” that have large buffer demands. The memory contention experienced by
the active joins is modelled here by a simple stream of competing memory requests. The duration of the memory
requests follows an exponential distribution with a mean of Durationyemgeq- With a probability of
Prob (SmallMemReq), a memory request takes up a small number of memory pages; otherwise a large portion of
memory is demanded. The proportion of the total memory that a small request takes up varies uniformly between 0%

and MemReqThreshold. In the case of a large request, between 0% to 100% of the total memory is taken up.

4.2. Physical Resource Model

The parameters that specify the physical resources of our model, which consist of one CPU, multiple disks, and
main memory, are listed in Table 3. There is a single queue for the CPU, and a first-coms:-first-serve (FCFS) schedul-
ing discipline is used. The MIPS rating of the CPU is given by CPUSpeed. Table 4 gives the cost of various CPU
operations that are involved in the execution of a join. These CPU costs are based on instraction counts taken from the

Gamma database machine [DeWi90j.

Turning to the disk model, NumDisks specifies the number of disks attached to the system. Each disk has its own
queue and disk requests are serviced according to the elevator algorithm. The characteristics of the disks are also given

in Table 3. Using the parameters in this table, the total time required to complete a disk access is computed as:
Disk Access Time = Seek Time + Rotational Delay + Transfer Time
As in [Bitt88], the time required to seek across n tracks is given by:

Seek Time (n) = SeekFactor X n
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Parameter Meaning Parameter Meaning
CPUSpeed MIPS rating of CPU CylinderSize Number of pages per cylinder
NumbDisks Number of disks PageSize Number of bytes per page
SeekFactor Seek factor of disk M Total system memory
RotationTime Time for one disk rotation SleepTime Time between memory write activations
NumCylinders Number of cylinders per disk FlushThreshold Threshold for memory writes

Table 3: Physical Resource Model Parameters

Operation # Instructions Operation # Instructions
Initiate a join 40,000 Insert a tuple into hash table 100
Terminate a join 10,000 Probe hash table 200
Read a tuple from a memory page 300 Start an 1/0 operation 1000
Hash a tuple 500 Read a page from disk 10,000
Copy a tuple to output buffer 100 Write a page to disk 10,000

Table 4: Number of CPU Instructions Per Operation

Finally, the system has a total memory size of M MBytes. A memory reservation mechanism is provided to
allow operators, including joins, to reserve buffers. Buffers that are reserved are managed by the operators themselves.
Page replacement for non-reserved pages is handled as follows: The DBMS first attempts to find the least recently used
clean page for replacement, avoiding the dirty pages initially. If there is no clean page, then the least recently used dirty
page is selected. Before a dirty page can be replaced, however, its contents need to be written to disk. This lengthens
the time that is needed to satisfy the waiting buffer request, and should be avoided if possible. For this reason, an asyn-
chronous memory write process is provided to flush dirty pages to disk periodically [Teng84]. The write process is
activated every SleepTime seconds. Upon activation, the process flushes all of the dirfy pages that are older than
FlushThreshold. The reason for flushing only the "old" dirty pages is to prevent unnecessary writes of pages that arc

frequently updated.

5. Experiments and Results

In this section, the database system simulator described in Section 4 is used to evaluate the performance of the
alternative memory-adaptive hash join algorithms. We begin with a baseline model, and further experiments are carried
out by varying a few parameters each time. The performance metric of interest here is the average join response time.

For ease of reference, the indicator for the algorithms are summarized in Table 5.

To ensure the statistical validity of our results, we verified that the 90% confidence intervals for join response

times (computed using the batch means approach [Sarg76]) were sufficiently tight. The size of these confidence inter-
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Indicator Algorithm

PPHJ Partially Preemptible Hash Join

early vs late Early vs Late Contraction

noexp vs exp No Expansion vs Expansion

Iru vs prio LRU vs Priority Spooling
G Zeller and Gray algorithm, same as PPHI(late,ncexp,lru)
NKT Nakayama et al algorithm
GRACE GRACE Hash Join algorithm
Hybrid(Suspend) Hybrid Hash Join with Suspension
Hybrid(Paging) Hybrid Hash Join with Paging

Table 5: Algorithm Indicators
vals was within a few percent of the mean in almost all cases, which is more than sufficient for our purposes.

Throughout the paper we discuss only statistically significant performance differences.

5.1. Baseline Experiment

In our first experiment, we simulate an environment where, except for occasional shortages, there is abundant
memory for joins to execute. This environment is simulated by a steady stream of small memory requests and some
occasional large memory requests. To achieve this, the mean duration of memory requests is set to 1 second, and Mem-
ReqThreshold and Prob(SmallMemReq) are set to 20% and 0.8, respectively. In other words, 80% of the time a
memory request takes up 0-20% of the total memory, and the other 20% of the time the request takes up between 0%
and 100% of the total buffer space. Moreover, to model primary key-foreign key joins, we let ||R|| and ||S|| be 2 MBytes
and 20 MBytes, respectively, and M be 3.2 MBytes. (These parameter values were chosen by scaling the combination
[IR]] = 10 MBytes, |IS]| = 100 MBytes, and M = 16 MBytes down by a factor of 5, so as to keep the simulation cost
down.) Finally, the memory write process is activated every second. Upon activation, the process flushes all of the
dirty pages. Therefore SleepTime and FlushThreshold are 1 second and 0 seconds, respectively. The parameter settings

for this experiment are summarized in Table 6.

Figure 2 gives the response time of the various algorithms for this experiment. In the figure, the four PPHJ vari-
ants with expansion, i.e. early,exp.lru, early,exp prio, late.exp,lru, and late,exp,prio, deliver the best performance, fol-
lowed by the two hybrid hash join algorithms. The response time of the remaining four PPHJ variants, i.e.
early,noexp,lru, early,noexp prio, late,noexp lru, and late,noexp,prio, are roughly twice as long as those of the first four
PPHJ variants. Finally, the GRACE Hash Join algorithm produces unacceptably long response times — its average

response time is more than three times those of the best PPHJ variant. We also collected statistics on the average
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DB Model Resource

Parameter Value Parameter Value

NumRel, 5 CPUSpeed 20 MIPS

NumRel, 5 NumDisks 1

RelSize 2 MBytes SeekFactor 0.000617

RelSize ; 20 MBytes RotationTime 16.7 msec

TupleSize; ; 256 Bytes NumCylinders 1500
CylinderSize 90 pages

Workload PageSize 8 KBytes

Parameter Value M 3.2 MBytes
SleepTime 1 second

Durationyempeq 1 second FlushThreshold 0 second

MemReqThreshold 20%

Prob(SmaliMemReq) 0.8

Table 6: Parameter Settings for the Baseline Experiment

memory that a join gets upon startup, and found this to be roughly the same for all the algorithms. Hence the behaviors
observed here are due to the mechanism(s) of the join algorithms, and not because of a systematic bias in memory allo-
cation. To understand the reason behind these behaviors, we shall analyze each algorithm in turn. In the case of the
eight PPHJ variants and ZG', which is equivalent to PPHI(late,noexp,lru), since their respense times are determined by
three different mechanisms, we shall exan;ine the impact of each of these mechanisms instead. Before doing so, how-

ever, we shall first introduce a few terms that will be used to characterize the detailed behavior of the algorithms.

60 -
GRACE
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Figure 2: ||R|| = 2 MBytes, |IS]| = 20 MBytes, M = 3.2 MBytes
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We denote the number of I/Os that a join incurs, excluding those I/Os for reading in the source relations and writ-
ing out the results, as "Overhead-I/Os". Overhead-I/Os consist of two components — those associated with R partition

pages, which we denote as R-I/Os, and those associated with S partition pages, which are denoted as S-1/0s.

Let us first evaluate the expansion mechanism (noexp vs. exp). Recall that expansion attempts to expand as many
partitions as possible during the second phase of a join so as to maximize the number of S tuples that are joined directly
during this phase. The detailed performance results are listed in Table 7, which highlights the performance trade-offs
associated with expansion. These results show that expansion is clearly beneficial under the baseline’s set of experi-
mental conditions. The reason is as follows: Comparing each set of performance results for no expansion with those for
expansion in the same row, we observe that expansion results in slightly more R-I/Os. For example, with late contrac-
tion and priority spooling, the last row of Table 7 shows that PPHJ requires 275 R-I/Os when there is no expansion and
304 R-1/Os when expansion is activated. This increase is expected because expansion bripgs in disk-resident pages of
R partitions during the second phase of a join. These R pages may subsequently be swapped out due to another
memory shortage, and thus have to be refetched later. Consequently, some R partition pages are fetched more than
once, resulting in the observed increase in R-1/Os. However, by arranging to expand as many partitions as possible dur-
ing phase 2 of a join, few S pages need to be written out to disk and then processed in phase 3. As an example, refer to
the last row of Table 7 again. With expansion, the number of S-1/Os is only 75, compared to the 1675 S-I/Os in the
case where there is no expansion. This large reduction in S-I/Os more than offsets the drawback in increased R-1/Os,

reducing the join response time by more than 40%!

We now examine the priority spooling strategy (Iru vs. prio). To facilitate interpretation of the results, we reor-
ganize Table 7 into Table 8 to highlight the relative contributions of LRU spooling versus priority spooling. Table 8
shows that priority spooling produces some performance improvement over LRU spooling. However, for the two better

combinations involving expansion, i.e. earlyexp and late,exp, the performance difference between the two spooling

No Expansion (noexp) Expansion (exp)
R-1/O | S-I/O | Overhead-I/'O | Resp. R-I/Q0 | S-I/O [ Overhead-l/O | Resp.
early,lru 310 2001 2311 324 322 77 399 16.8
early,prio 290 1724 2014 254 302 77 379 159
late,lru 304 1790 2094 28.8 310 72 382 16.5
late prio 275 1675 1950 24.9 304 75 379 15.9

Table 7: Expansion Mechanism
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strategies is marginal. The ineffectiveness of priority spooling, when expansion is in effect, is explained as follows: In
an environment where there is ample memory and memory shortages are rare, most of the spooled R pages are recalled
for expansion before they are forced out by occasional memory shortages. Moreover, sirice expansion keeps most of
the R tuples in memory-resident hash tables, few S tuples need to be written out. The strategy that is used to manage

the spool area thus has little impact on performance.

Next, we evaluate the relative merits of early versus late contractions (early vs. late). Table 9 focuses on the
impact of the timing of contraction. Late contraction consistently produces lower R-1/Os and S-I/Os than early contrac-
tion, leading late contraction to have lower response times than early contraction. The superior performance of late
contraction is explained by the following: By keeping the partitions of a join expanded as long as possible, it may turn
out that some partitions need not be contracted after all because additional memory is allocated to the join. Moreover,
in the worse case, late contraction will contract only as many partitions as early contraction does. Late contraction thus
outperforms early contraction. However, the difference in performance between the two contraction strategies is not
substantial, especially when there is expansion. The reason for this is as follows. In phase 1 of a join, early contraction
may result in more partitions being contracted than is necessitated by the subsequently available memory. If this hap-
pens, however, the excess memory is used to spool the pages of the contracted R partitiors. Once phase 2 begins, thesc.
spooled pages are then recalled to expand partitions so, shortly after the beginning of phase 2, the join is operating with
just as many expanded partitions as it would have been with late contraction. As a result, ¢xpansion enables early con-

traction to stay competitive with late contraction.

LRU Spooling (iru) Priority Spooling (prio)
R-1/0 S-1/O | Overhead-I/O | Resp. R-1/0 | S-I/O | Overhead-I'O | Resp.
early,noexp 310 2001 2311 32.4 290 1724 2014 254
early.exp 322 77 399 16.8 302 77 379 15.9
late noexp 304 1790 2094 28.8 275 1675 1950 249
late.exp 310 72 382 16.5 304 75 379 15.9
Table 8: LRU vs Priority Spooling
Early Contraction (early) Late Contraction (Jate)
R-I/O | S-I/0 | Overhead-1/O | Resp. R-1/O | S-I/O | Overhead-I/O | Resp.
noexp,lru 310 2001 2311 324 304 1790 2094 28.8
noexp.prio 290 1724 2014 254 275 1675 1950 24.9
exp,lru 322 77 399 16.8 310 72 382 16.5
exp,prio 302 77 379 15.9 304 75 379 15.9

Table 9: Early vs Late Contraction
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Turning to NKT in Figure 2, we note that it is similar to PPHI(late,noexp,lru), except that NKT' writes pages of
contracting buckets directly to disk. Thus NKT' loses some of the benefits of spooling if excess memory is not fully
utilized. This explains the slightly longer response time of NKT " compared to PPHJ(late,noexp,lru). Clearly, neither

PPHI(late ,noexp lru) nor NK T’ is the method of choice for this experiment.

As expected, GRACE Hash Join has the largest response time. Although its small buffer requirement makes
GRACE the least vulnerable to memory variability, it fails to exploit the available memory effectively. Instead of join-
ing most of the partitions directly in phases 1 and 2 as in the other algorithms, GRACE simply partitions the source
relations during these two phases, and it starts joining the partitions only in phase 3. This approach results in many

extra I/Os, of course, which accounts for the relatively poor performance of GRACE.

Finally, we analyze the behavior of Hybrid(Suspend) and Hybrid(Paging). Recall that when a join loses any of
the memory that it starts off with, Hybrid(Suspend) allows the DBMS to suspend the join until the lost memory is
returned; Hybrid(Paging) pages the hash table of the join within the remaining memory. Since there is ample memory
in this experiment, the memory that a join loses is quickly returned. Thus, both versions of the Hybrid Hash Join algo-
rithm perform much better than NKT',ZG" and the PPHJ variants without expansion, as these algorithms contract parti-
tions in response to occasional memory shortages and do not recover from these contractions. However, since a hybrid
hash join is not able to utilize extra memory that is allocated during its execution except for spooling, a join that arrives
when there is a memory shortage will run with a sub-optimal allocation throughout its lifetime. This is why both

Hybrid(Suspend) and Hybrid(Paging) are worse than the PPHJ variants that allow expansion.

To summarize the results of this experiment, we can derive the following conclusions about environments where
memory is abundant and the inner and the outer relations differ in size. First, expansion is clearly beneficial, as it pro-
duces a considerable reduction in response time by avoiding many 1/Os for the larger relation. Second, early contrac-
tion and LRU spooling perform only slightly worse than late contraction and priority spooling, respectively, when the
expansion mechanism is in effect. Therefore, while Partially Preemptible Hash Join with late contraction, expansion,
and priority spooling clearly yields the best performance, all the PPHJ variants with expansion provide feasible alterna-

tives to deal with memory fluctuations.
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5.2. Memory Contention

In the next experiment, we investigate how the trade-offs between the different algorithms change when we move
from an environment where there is ample memory to a situation where memory contention is a severe problem. The
total memory size is reduced here to only 40% of ||R||, while the rest of the parameters are set as in Table 6. Figure 3
gives the performance results. We will focus only on behaviors that differ significantly from those observed in the pre-

vious experiment.

First, we observe that expansion (noexp vs. exp) now produces only a slight reduction in response time, compared
to the 40% performance gain that we obtained in the baseline experiment. To understand this change, we examine the
detailed performance results that are presented in Table 10. Due to severe memory contention, many of the R partition
pages that expansion brings in during phase 2 have to be removed when memory availability falls again. These pages
will have to be refetched subsequently, which leads to a large increase in R-I/Os with expansion. In fact, expansion
roughly doubles the number of R-I/Os. In addition, since the buffer space that is available to expand partitions is lim-
ited here, expansion is unable to obtain its previous large increase in the number of S tuples that can be directly joined

in phase 2. Still, the decrease in S-1/0s more than compensates for the increased R-1/Os.

Turning our attention to spooling (Iru vs. prio) in Figure 3, we again see that priority spooling produces only a

slight performance improvement over LRU spooling. In this experiment, where memory shortages occur frequently,
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No Expansion (noexp) Expansion (exp)
R-1/O S-1/0 | Overhead-1/O | Resp. R-I/O | S-I/O | Overhead-I/O | Resp.
early,lru 473 4571 5044 337 897 3367 4264 49.0
early,prio 472 4570 5042 484 816 3360 4176 474
late lru 472 4549 5021 53.3 887 3306 4193 48.7
late prio 471 4522 4993 484 796 3310 4106 47.1

Table 10: Expansion Mechanism
few pages are able to remain in the spool area until they are recalled by the joins. This is evident from the large R-I/O
and S-I/O values here. For example, with late contraction, no expansion, and priority spooling (late ,noexp,prio), each
join requires an average of 471 R-I/Os. This indicates that about 236 R partition pages are written to disk (since each
written page involves two I/Os — one to write the page to disk, and another to fetch the wage in later for processing);

this is more than 90% of the R pages. As a result, the spooling policy does not impact perfrrmance significantly.

Next, we compare early contraction and late contraction (early vs. late). As in the previous experiment, late con-
traction leads to only a small performance gain over early contraction here, but for a different reason. In this experi-
ment, due to the more severe memory contention, few joins are able to retain any large amount of memory for very
long. Thus, early contraction and late contraction result in about the same number of expanded partitions, which

accounts for their similar response times.

Whereas PPHI(late,noexp,lru) outperformed NKT’ in the previous experiment, in this experiment NK' T’ has ¢
slightly lower response time than PPHI(late,noexp,lru). Since NKT loses the opportunities to spool pages from con-
tracting partitions, this outcome surprised us initially. A closer examination, however, reveals that this is precisely why
NKT’ performs better. The reason for this is because, in a memory-constrained situation, most of the spooled pages are
eventually written to disk. Instead of writing a few pages out at a time, as in PPHI(late ,ncexp,lru), NKT " writes out the

entire partition that is being contracted, thus resulting in fewer random 1/Os than PPHI(late ,noexp,lru).

A comparison of GRACE with the other algorithms in Figure 3 shows that it is w1y 15% worse than the best
PPHJ variant. Since the main shortcoming of GRACE is its ineffective utilization of excess memory, and the level of
memory contention here leaves little excess memory for the active joins, GRACE’s congervative use of buffer space
yields satisfactory performance. In contrast, Hybrid(Suspend) and Hybrid(Paging) both produce very long response
times. In the case of Hybrid(Suspend), joins have long response times because they are often suspended for long;r
periods of time due to memory contention. To understand the poor performance of Hybrid(Paging), consider the fol-

lowing scenario: Suppose an active join just lost some of its memory and, as a result, part of its hash table has been
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flushed out. The join then fetches the next page of S tuples and proceeds to probe the part of the hash table that is in
memory. After this, the missing hash table pages have to be fetched in to process this S page completely. Before the
fetch can be carried out, however, some dirty hash table pages that are currently residing in memory must be paged out
to make space for the pages that are about to be fetched in. This at least doubles the number of hash table pages that are

written out to disk.

The results of this experiment confirm our previous conclusions that expansion should definitely be attempted
when the two source relations differ in size. Moreover, late contraction and priority spooling again produce only slight

performance gains over early contraction and LRU spooling.

5.3. M to ||R|| Ratio and [|S|| to ||R]| Ratio

The first two experiments lead us to conclude that expanding partitions during the second phase of a join pro-
duces a considerable reduction in its response time, and that late contraction and priority spooling lead to some addi-
tional savings. We now verify these conclusions by examining the sensitivity of the expansion mechanism to buffer
availability and the size of the outer relation. This is achieved by varying M, the total number of buffers, while keeping
the other parameters constant. The value of those parameters, except for ||S|| which wil! be specified later, are those
:listed in Table 6. For this experiment, we will present only NKT', PPHI(late,noexp,lru)/ZG’, PPHI(early,exp,iru),
PPHI(late,noexp.prio) and PPHI(late,exp.prio). The other PPHJ variants will not be excmined further because their
performance was found to be consistently inferior to that of the last three PPHJ algorithms that we have selected to
show. GRACE, Hybrid(Suspend) and Hybrid(Paging) are also excluded because they consistently provide unaccept-

able response times.

In the first part of this experiment, [|S]| is set to 2 MBytes, the same size as ||R|]. This is intended as a worst case
scenario for expansion since a smaller ||S]| (relative to |[R][) lowers the number of S partition page 1/Os that expansion
can save. Figure 4 plots the response time of the five algorithms against M. This figure shows that no algorithm clearly
dominates the others in this case. Since the inner relation and the outer relation have the same size, the reduction in S-
I/Os that expansion produces just about balances out against the extra R-I/Os that are incurred in expanding partitions,
thus explaining the similar response times of PPHI(late,exp prio) and PPHJ(late,noexp prio). The response times of
NKT’ and PPHI(late,noexp,lru)/ZG" are almost the same as those of PPHI(late,noexp,pris) in this experiment because,

as we have seen in the previous experiments, the choice of LRU versus priority spooling nas little influence on perfor-
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mance. Finally, PPHI(early,exp,lru) is comparable to PPHI(late,exp,prio) because there is little difference in perfor-

mance due to early versus late contraction when expansion is in effect.

For the second part of this experiment, we increase ||S]| to 20 MBytes to simulate a condition that is more favor-
able to expansion (and arguably more typical as well). Figure 5 shows the algorithms’ response times as a function of
M. In this case, expansion starts to pay off even for small M values. This is because every R page that is read in to
expand a partition produces, on the average, a ten-fold reduction in S-I/O. Expansion is therefore worthwhile so long as
the average number of times that an R page has to be refetched due to memory fluctuations is less than the reduction
produced for S. This is supported by the results for PPHI(late,exp pric) and PPHI(early,exp lru), which clearly outper-
form all of the other algorithms in Figure 5. Moreover, the curves for PPHI(late,exp prio) and PPHI(early,exp,iru) are
almost the same, which lends further support to our previous conclusions that late contraction and priority spooling pro-
duce only a slight performance improvement when the expansion mechanism is employed. As for the remaining three
algorithms, PPHI(late,noexp, prio) dominates NKT' and PPHI(late,noexp,lru)/ZG" because of the gains from priority

spooling, while NKT' is slightly better than PPHI(late,noexp lru)/ZG" due to the NKT s use of sequential 1/Os.

To summarize, the results of this experiment show that PPHJ with late contraction, expansion, and priority spool-
ing has the best performance over a wide range of M to |IR]| and |IS|] to |IR]] ratios. When the |IS|| to [[R]] ratio is at its

minimum, i.e. [IR|| = |IS|l, PPHI(late,exp,prio) performs as well as any other algorithm that we have examined. As the
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IISI] to |IR]} ratio increases, the performance difference between PPHI(late.exp,prio) and the other algorithms starts t0
widen. The only exception to this is PPHJ with early contraction, expansion, and LRU spooling, which emerged as a

close second to PPHJ(late,exp prio) here. Therefore expansion should definitely be attemy:t2d.

5.4. Magnitude of Memory Fluctuations

Our next experiment is designed to explore the sensitivity of the memory-adaptive algorithms to different
memory fluctuation magnitudes. Instead of an environment where most of the contenders for system memory are smali
memory requests, as in previous experiments, here we examine a situation where most of the memory requests are
large. We set the parameter Prob(SmallMemReq) to 0.2, and keep all the other parameter values as in the previous
experiment. In other words, now 80% of the time a memory request takes up 0-100% of the total memory, and the
remaining 20% of the time the request takes up between 0% and 20% of the total buffer space. Figure 6 gives the
resulting response times for |IS|| = 2 MBytes, while Figure 7 presents the performance results for the case where ||S|| =

20 MBytes.

Turning our attention first to the case where R and S have the same size, we obssrve that, as in the previous
experiment, no algorithm dominates the others. The most significant difference betweer: Figure 6 and the responsc
times obtained in the previous experiment (Figure 4) is that here the response time rises more steeply as M goes below
0.8 MBytes. This is because the increased frequency of large memory requests reduces the number of buffers that are
available to the hash joins. As M is reduced, the average available memory gradually approaches the minimum VFIRI
buffers that the hash joins require until, at M = 0.2 MBytes, the average number of available buffers (15 pages)
becomes smaller than VF||R|| (about 18 buffers). As a result, the hash joins get suspended more frequently, leading to
the sharp rise in response time. Another difference between the results obtained from this experiment and the previous

experiment is that here the response times are consistently longer, due to the smaller number of available buffers.

Next, we examine the performance results for ||S]| = 20 MBytes, and compare the. cesults in Figure 7 with tha'
obtained in the previous experiment (Figure 5). Here again the two expansion-based algorithms, PPHI(early,exp.lru)
and PPHI(late,exp,prio), are the clear winners. Other than the steeper increase in response time for M < (0.8 MBytes
and the generally longer response times, the only feature in Figure 7 that has not been observed previously is that herc
the performance gain from priority spooling over LRU spooling is much more pronounced when expansion is no.

employed, as evident from the curve that cormesponds to PPHJ(late,noexpprio) and the curves for
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PPHI(late,noexp,lru)/ZG’ and NKT . This behavior can be explained as follows: In this experiment, where the
increased frequency of large memory requests results in a smaller memory for the hash joins, there is less space to
expand partitions. Hence fewer R and S tuples can be joined directly in phase 2. This leads to an increase in the
number of R and S pages that have to be written out to disk during phases 1 and 2, and also to a larger number of disk
reads during phase 3. The resulting increase in disk I/Os magnifies the performance difference between priority and
LRU spooling. Since priority spooling flushes spooled pages by partition, and pages from the same partition reside on
contiguous disk pages, priority spooling produces fewer random I/Os than LRU spooling, which accounts for the per-
formance difference observed here. The reason why this difference was not more apparent in Figure 6 is because there

IS}l is only 2 MBytes, so the total number of I/Os is smaller.

The most important conclusion that we can derive from the results of this experiment is that algorithms based on
the expansion mechanism are the clear performance winners. Moreover, the expansion;mechanism is robust towards
different memory fluctuation sizes. Finally, we also noted that when expansion is not employed, priority spooling out-
performs LRU spooling in situations where the contenders for system memory are predominantly large memory

requests.



5.5. Rate of Memory Fluctuations

The expansion mechanism attempts to expand as many partitions as memory permits while the outer relation S iv
being scanned. In expanding a partition, the DBMS may have to incur some R-I/Os to bring in disk-resident pages of
the partition. If the partition remains expanded for a while, the reduction in S-1/Os that result from expanding the parti-
tion will gradually offset the cost of expansion. If a memory shortage forces out a partition soon after it is expanded,
however, the expansion would not be worthwhile. There is therefore a minimum value for Durationy,mp.q, the average
time between consecutive memory fluctuations, in order for expansion to be worthwhile. This section examines the
relationship between the cost-effectiveness of expansion and the value of Durationy,mg.,. For the experiments here, M
is set to 0.8 MBytes to simulate an environment where memory requests have a pronounced effect on the number of
buffers that are available for executing joins. Moreover, Durationyemg.q is varied between 0.1 second and 10.0 seconds
to generate a wide range of memory request interarrival times. The value of the other parameters, except for ||S]| (dis

cussed later), are those listed in Table 6.

For the first experiment, ||S]| is set to 2 MBytes, the same size as |[R||. Figure 8 presents the response times of the
different algorithms. This figure shows that all five algorithms deliver similar performance when Durationy,mpeq i$
greater than 1 second, for the same reasons as in previous experiments. When Duration,s.,z.q g0es below 1 second,
however, expansion has a detrimental effect on system performance, as evident from the curves in Figure 8 tha*
correspond to PPHI(late,noexp prio) and PPHI(late,exp,prio). Hence the minimum Durationy,,g., for expansion to be

worthwhile is about one second for this experiment.

Next, we increase S to 20 MBytes while keeping the other parameters constant. The resulting performance
results are given in Figure 9. This figure shows that the two expansion-based algorithms, namely PPHI(early.exp,iru)
and PPHI(late,exp prio), outperform the non expansion-based algorithms when Duraticny,,g., is greater than 0.6
second, whereas the reverse is true when Durationy,mg., is less than 0.6 second. This, together with the first experi-
ment, confirm that there is a minimum value for Durationy.mr., in order for expansion 0 be worthwhile. To under-
stand why the minimum Durationy.mg., for expansion to be worthwhile occur in the region of 0.5 second to 1 second

for both experiments, we shall analyze the detailed I/O costs of partition expansion.

PPH]J splits each relation into VF|IR)l partitions. Hence each R partition has an average of VF|IR]| pages. Denot-

ing the average seek time plus rotational delay by Seek, the time to transfer one disk page by Transfer, and assuming
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that the pages of each partition are stored on consecutive disk pages, the cost of expanding one R partition is®

expandCost = Seek + ‘IITH_R-I_I_ Transfer
Suppose a reduction of n S pages of this partition is necessary to offset the cost of expansion; # is the quantity we
wish to estimate. This reduction results in a saving of n random 1/Os, which would otherwise be needed to write out
these n S partition pages, plus n sequential I/Os to read these pages back from disk when joining the R and S partitions.

Therefore,

costReduction = (n + 1) Seek + 2n Transfer

In order for the cost reduction to offset the expansion cost,

costReduction 2 expandCost

N F Rl Transfer

= " Seek + 2 Transfer

Since each S page that is scanned may hash to any of the VFIR|| partitions, the DBMS needs to scan nVF||R|| S
pages to realize a reduction of n pages from expanding one particular partition. We now attempt to quantify the time
required to scan nVF|R| S pages. The cost of reading nVF|IR|| pages is one Seek plus nVF|IR|| Transfer. Assuming

half of the partitions are expanded and the rest are contracted, n\F||R}|/2 of these S pages would hash to contracted par-

2 To simplify the analysis, we will ignore the effect of spooling here.
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titions and have to be written out. Each page that has to be written out while processing S incurs one Seek to move the
disk head from the cylinder that the current S page resides on to the cylinder that holds the contracted S partition, one
Transfer to write out the page, and another Seek to move the disk head back so that the next S page can be read. The

time to scan nVF [IR]l S pages is therefore

scanCost = 1 Seek + n NF||R|| Transfer + %\/F [IR|l (2 Seek + 1 Transfer)

=(n \/i’TIEIT + 1) Seek + 1.5n \/fl—lf(—ll— Transfer
Thus the minimum time needed to expand a partition and then realize enough savings to offset the cost of expan-
sion is
minTime = expandCost + scanCost = (n \/FW +2) Seek + \/-IZ“TII_?—II— (1.5n + 1) Transfer
Hence, for expansion to pay off, memory shortages should not occur more frequently than minTime. Since a memory
fluctuation is equally likely to be a decrease or an increase in memory allocation, Durationymg., has to be at least half

of minTime.

With our resource parameter settings, reasonable values for Seek and Transfer are 16 msec and 6 msec, respec-
tively. With an R of 2 MBytes and a page size of 8 KBytes, \[IW works out to be 16. Substituting these values into
the above equations, minTime is about 1.5 seconds. Thus, Durationy,mg., has to be at least 0.75 second for expansion
to be worthwhile. This explains why, in the above experiments, expansion becomes harmful when Durationy,,g., £0€s

below this value.

To summarize, this section demonstrates that expansion is almost always beneficial; the exception is when
memory availability fluctuates very rapidly. Given that typical transactions take on the order of a second to complete
and that sorts and joins requiring significant amounts of memory take much longer, it seer1s unlikely for buffer availa-
bility to change so fast as to cause expansion to perform badly in practice. Thus expansion appears to be a generally

useful mechanism.

5.6. Discussion of Other Alternatives

As described in Section 3, we have extended the algorithms in [Naka88] and [Zel190] to allow partition contrac-
tions during the second phase of a join. An alternative would have been to restrict contractions to only the first phase of
a join and, if additional memory is lost during phase two, to suspend the join or to page iis hash tables into and out of

the remaining memory. We have shown that Hybrid(Suspend) and Hybrid(Paging) both result in long response times,
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s0 it is clear that doing suspension or paging with NKT, the Nakayama et al algorithm, and ZG, the Zeller and Gray

algorithm, would only worsen their performance. We therefore did not include those alternatives in this study.

In the algorithms studied here, a join is always cognizant of which of its pages are 1‘.'» memory. Another possible
approach to dealing with memory fluctuations, as mentioned in the introduction, would! be to let the DBMS (or the
operating system) page the hash table of an affected hash join without informing the join operator. Since a replaced
Ipage could be allocated a different memory address space when it is subsequently read in, this approach precludes the
possibility of using memory pointers for the hash tables. Instead, logical addresses have to be used, thus resulting in
extra overheads for pointer dereferencing. Moreover, using this simple approach, the system could appropriate any of
the join’s buffers. Since the join operator would have no knowledge of which buffers are paged out, it would access its
buffers without attempting to first make use of those buffers that are in memory. This approach would result in even
longer response times than Hybrid(Paging), and was therefore not considered. Similarly, the DBMS could simply
suspend a join without informing it. This simple approach would be worse than Hybrid(Svspend), which fetches all the
pages that have been swapped out when a join resumes execution, as fetching these pages together results in sequential

I/Os and lower overheads. This alternative was therefore ruled out too.

6. Conclusion

In this paper, we have address\ed the issue of join execution in situations where the amount of memory availabl(;,
to a query may be reduced or increased during its lifetime. These situations will arise in real-time or goal-oriented data-
base systems, where memory may be appropriated from a join to meet the buffer requests of higher-priority queries, and
where additional memory may be made available when other queries complete and free their buffers. In particular, we
considered the specific problem of scheduling hash joins, which require large numbers of buffers to execute efficiently
and are thus especially susceptible to fluctuations in memory availability. Our study demonstrated that simple
approaches that react to a reduction in a join’s allocated memory by suspending the joip altogether or by paging the
hash table of the join into and out of the remaining memory will not produce acceptable performance. There is there-

fore a need for more sophisticated approaches that enable the join to adapt itself to these memory fluctuations.

To investigate the effectiveness of adapting the buffer usage of hash joins to memory fluctuations, we proposed a
family of memory-adaptive hash join algorithms, called Partially Preemptible Hash Join (PPHJ). All the PPHJ algo-

rithms split the source relations of a join into a number of partitions that are initially expanded, i.e. held in memory-



resident hash tables. When the allocated buffers are insufficient to hold all the partitions, ¥ °HJ responds by contracting
one of the expanded partitions, i.e. by flushing its hash table to disk and by deallocating all but one of its buffer pages.
The remaining page is used as an output buffer for the contracted partition. Each of the PPHJ variants utilizes addi-
tional memory through a (fixed) combination of three mechanisms: late contraction, expaasion, and priority spooling.
Late contraction keeps the partitions of a join expanded as long as possible, i.e. until the buffer usage of the join actu-
ally exceeds the allocated memory. In contrast, early contraction starts a join by expanding only as many partitions as
it estimates will fit into the available memory; the rest of the partitions are immediately contracted. The advantage of
late contraction is that additional buffers may be given while the join is executing, thus avoiding the need to contract
some partitions altogether. If memory permits, expansion fetches contracted partitions of the inner relation R into
memory-resident hash tables while the outer relation S is being partitioned, thereby increasing the number of S tuples
that can be joined directly without further I/Os. The last mechanism, priority spooling, cov:zerns how excess memory is
utilized. PPHJ utilizes excess buffers to spool pages that are being flushed to disk, in the hope that these pages will be
fetched again while they are still in memory, thus eliminating some I/O operations. By default, the LRU policy is used
to manage this spool area. If priority spooling is activated, pages in the spool area are pricritized according to the page
access pattern of the join so that pages that are likely to be needed first are kept in the speol area. Each of these three
mechanisms can be used independently or in conjunction with the other two mechanisms, thus resulting in eight dif-

ferent PPHJ variants.

To understand the performance trade-offs of different hash join algorithms, we constructed a detailed DBMS
simulation model. Through a series of experiments, we confirmed that hybrid hash join with suspension or paging is
not satisfactory. Our experiments also revealed that, with one exception, expansion produces a substantial reduction in
the response time of a join over a wide range of memory availability and outer versus inn=r relation sizes. The excep-
tion was when memory availability fluctuates extremely rapidly. Moreover, further savings can be achieved by laie
contraction and priority spooling, though the savings are not nearly as significant. These findings are important in two
ways. First, previous studies [Naka88, Zell90] have proposed algorithms that rely on late contraction. Our study
showed that expanding partitions while the outer relation S is being scanned leads to more éffective utilization of excess
memory, and hence to lower response times. Second, PPHJ with early contraction, expansion, and LRU spooling was
shown to produce response times that were at most 10% longer than that of the best PPHJ variant. Thus for practical

reasons it might be desirable to adopt this alternative; this would avoid complicating further the code for the hash join

.29.



algorithm by incorporating late contraction and priority spooling. In short, we have identified a simple and yet effective

way to deal with memory fluctuations — namely, PPHJ with expansion.
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