An Overview of the CAPITL Software
Development Environment

Paul Adams
Marvin Solomon

Technical Report #1143

April 1993

An Overview of the CAPITL Software Development Environment™

Paul Adams
adams@cs.wisc.edu
and
Marvin Solomon
solomon@cs.wisc.edu

The CAPITL programming environment is comprised of a shared, object-oriented, versioned database, an embedded
logic-based data-manipulation language, and a graphical user interface. With each software object the database stores a
rich set of attributes that describe its syntax, intended semantics, and relationship to other objects. CAPITL is imple-
mented in POL, a data model and deductive query language with elements of persistent, object-oriented and logic-
based programming languages. POL is implemented in and tightly coupled with C++.

A request for a derived object consists of a partial description of its attributes. A planner written in POL searches the
database for tools and sources that can be combined to create an object meeting the description. Since tools are stored
in the database like other objects, plans that create tools as well as intermediate inputs are possible. A builder, also
written in POL, executes plans to materialize software products. The builder verifies that existing objects are current,
minimally re-applying tools as sources, tools, or system descriptions change.

Afier an overview of the database and the POL programming system, we outline CAPITL’s logic-based approach to
system modelling, illustrating it with two examples. We conclude with a status report and an outline of future direc-
tions.

1. Introduction

Large software systems are hard to build and maintain. The sheer number of components involved
make the management, coordination, and storage of the components difficult. Because of the malleable
nature of software, components are constantly changing. Change is not limited to source text; attributes of
the source files, relationships among them, tools used to process them, and even architectures of whole sub-
systems change as bugs are fixed, new functionality is added, and components are re-organized. Maintain-
ing invariants in an evolving system is a critical task for any support system [22,27,30].

The CAPITL! project at the University of Wisconsin has been investigating a logic-based approach
to software configuration management [21]. The basic thesis of our approach is that if all objects in the

*This work was supported in part by the Defense Advanced Research Projects Agency under ARPA Order No. 8856 (monitored
by the Office of Naval Research under contract N00014-92-J-1937).

To appear in the Proceedings of the Fourth International Workshop on Software Configuration Management.
Authors’ address: Computer Sciences Department,.Universily of Wisconsin—Madison, 1210 W. Dayton St., Madison, W1 53706.
!Computer Aided Programming In The Large

Adams and Solomon CAPITL Page 2

environment carry with them sufficiently detailed descriptions, desired software products can be described
declaratively and the system can infer the process necessary to build them. To tes; these ideas, we have
constructed a environment that tightly integrates a logic-based language with a versioned, object-oriented
database. By tightly coupling the database with both an imperative object-oriented language and a declara-
tive language, CAPITL gets the best of both worlds: declarative queries and specifications, and object-
oriented extensibility and state encapsulation. This paper describes the main components of the environ-
ment and outlines how they support maintenance of large software systems.

CAPITL was designed with four principles in mind.

o Uniformity. All objects are represented and described in a common language.

o Locality. The information that describes an object and its relationships with other objects is directly
associated with that object.

o Extensibility. New types of objects, new descriptive properties, and new relationships can be added
easily.

o Flexibility. Policies for access control and modification to objects can be specified rather than such
policies being “wired in.”

CAPITL consists of three main components: a shared, versioned database, a graphical user interface,
and a fully embedded logic-based data-manipulation language. The CAPITL database records all aspects
of software construction: source files, documentation, sub-systems, system descriptions, tools, executables,
and configurations. The form and function of each database object, as well as its refation to other objects,
is described in detail by attributes stored with it. Support for efficient maintenance of multiple versions of
the database is built in. A compatibility feature allows existing Unix tools to manipulate CAPITL objects
as if they were Unix files.

The database is accessible via an interactive browser/editor based on the X Window System [25] and
the InterViews graphical toolkit [17]. CAPITL’s browser can navigate the version history of the database
and the links between objects. It also provides facilities for the display and manual update of objects.

Most of the features of CAPITL are implemented in POL [2], a data model and deductive query
language synthesized from elements of persistent, object-oriented, and logic-based programming
languages. POL is tightly integrated with the database (all database objects are POL terms) and with a
general-purpose host language (C++). The database uses the Exodus toolkit [3] to provide low-level con-
currency control, error recovery, and network access. POL includes a logic-based programming language
called Congress, which also servers as a query and update language.

CAPITL uses Congress as the basis for a tool that automatically builds and maintains derived
objects. An architect of a software system describes tools and policies using Congress as a specification
language. A program written in Congress accepts declarative specifications of desired products and
deduces plans to locate or construct them. CAPITL thus provides a platform supporting application-
specific notions of consistency and correctness.

The remainder of this paper is organized as follows. Section 2 describes the POL data model, the
embedded language Congress, and the interface between Congress, C++, and the daiabase. The use of the
database to store software objects is explored in Section 3. Section 4 explains how CAPITL is used for
software configuration management (SCM). Section 5 illustrates these ideas with two concrete examples.
Section 6 discusses related work. We close with a status report and future plans.

Adams and Solomon CAPITL Page 3

2. POL

POL (Persistent Objects with Logic) is a mixture of three styles of programming language: object-
oriented, logic-based, and persistent. Each style has features that make solving certain problems easier:
Object-oriented languages encapsulate state and behavior and support extension by inheritance; logic pro-
gramming languages allow programmers to concentrate on describing what a solution is rather than how to
find it; persistent programming languages relieve the programmer of the burden of saving and restoring
data. By combining features from all three domains, POL provides an environment in which application
programmers can take advantage of the particular style that best suits the problem at hand.

POL derives its object-oriented features from C++ (§2.2), persistence from the Exodus database
toolkit (§2.3), and logic-based features from Congress—a derivative of Prolog (82.4). POL integrates these
components with a shared data model and a two-way embedding of Congress in C++ and C++ in Congress.
The remainder of this section describes the data model, the three components, and the interfaces between
them.

2.1. Term Space

As in Prolog and LISP, POL uses one data structure for both programs and data. A term space is a

directed graph with labelled nodes and arcs. The label associated with a node is called its functor® and the
label associated with an arc is called its selector. No two arcs leaving the same node may have the same
selector. A term is the subgraph of the term space reachable from a node, called the root of the term. We
occasionally identify a term with its root node, when the meaning is clear from context. For example, the
“functor of a term” means the functor of its root node.

POL is “identity-based”: Two nodes with identical contents are nonetheless considered to be distinct.
Nodes are explicitly created, and updates to a node do not change the node’s identity. In this way POL
differs from “value-based” Prolog and relational databases, and more closely resembles so-called “object-
oriented” databases.

POL supports multiple versions of the term space called worlds, and uses an algorithm devised by
Driscol et. al. [5] that supports efficient “checkpointing” of the entire term space. POL has operations to
save the current term space as a world, and to reset its state to any previously saved world. A checkpoint
operation does not copy the entire term space, but only an amount of data proportional to the changes made
since the previous checkpoint.

2.2. C++

C++ is a strongly typed object-oriented language derived from C. C++ classes encapsulate both data
and operations on that data. C++ allows multiple inheritance and supports information hiding via explicit
public/private declarations. Subclasses can override methods of their super-class as well as add new data
fields and operations.

C++ classes are used in POL to provide a concrete realization of term space nodes and arcs. Data
structures used to represent nodes come in a variety of flavors. Leaf nodes (nodes with no outgoing arcs)
are classified according to the data types of their functors: integers, real numbers, printable strings, byte
strings (arbitrary binary data) or “variables.” (Variables are explained in Section 2.4.) An internal node
contains a functor (which must be a printable string) and a table of references to other nodes indexed by

This unfortunate choice of terminology is inherited from Prolog.

Adams and Solomon CAPITL Page 4

distinct printable strings. Internal nodes are similar to C structs, Pascal records, SNOBOL tables, and
AWK associative arrays. Unlike structs or records, the number and names of “fields” may vary dynami-
cally, and their contents are restricted to be non-null pointers to nodes. C++ subclass derivation is used to
add additional behavior and restrictions to classes of internal nodes. We shall return to this point in Section
3.

2.3. Exodus

Exodus [3] is a toolkit for creating custom database systems. POL uses two c'omponents of Exodus,
a low-level storage subsystem and a persistent programming language. The Exodus Storage Manager pro-
vides efficient access to an arbitrary-sized persistent chunk of uninterpreted data called a “storage object”
through a unique identifier called an “OID.” The Storage Manager supports concurrency control through
two-phase locking, and a simple transaction facility with full recovery from hardware and software
failures. The E programming language [23] is an extension of C++ that supports persistent data—data that
retains its state between runs of a program. E syntax extends C++ with a “db” version of each primitive
type and type constructor (e.g. dbint, dbclass { ... }, etc.). Instances of a db type can be allo-
cated from a persistent heap. The E runtime support library ensures that persistent data structures are
securely stored on disk at the end of a transaction, and are fetched on demand (whenever a pointer to one is
dereferenced). POL implements the term space with persistent data structures.

Throughout this paper, all references to the C++ programming language should be understood as
referring to the E dialect of C++.

2.4. Congress

Congress may be described as a logic programming language, a deductive database query language,
an embedded query language, or a library of classes for convenient database access, depending on one’s
point of view. Since Congress is implemented as a library of classes, any C++ program can use Congress
as a “higher level” alternative to or enhancement of the raw C++ term interface.

As a logic-programming language, Congress is a dialect of LOGIN [1], an extension of Prolog that
supports cyclic terms. It provides transparent persistence, and has an identity-based rather than value-
based semantics. The following paragraphs briefly describe the syntax and semantics of Congress. The
reader who is familiar with logic programming may skim this section.

Congress programs are built from terms in the POL term space. A program is a set of procedures, a
procedure is a sequence of clauses, and a clause is a sequence of terms. In particular, a clause consists of a
single term called its head and a sequence of zero or more additional terms called its body. The predicate
of a clause is the functor of the root node of its head term. A procedure is a sequence of clauses with a
common predicate, referred to as the name of the procedure. A program is a set of procedures with distinct
names.

The operational behavior of Congress is defined by the same recursive backiracking search as in Pro-
log. A goal (or “query”) consists of a term. It is “called” (“evaluated,” “proved”) by searching the pro-
cedure named by its functor for a clause whose head “matches” the goal. If a maiching clause is found,
each term in its body is called in tum. If no matching clause can be found, the interpreter backs up by
undoing all of its actions since the last “choice point” (the point at which a clause was chosen to maich
against a goal) and attempts another match. The process continues either until all goals and subgoals have
been proven, in which case the original call “succeeds,” or until all alternatives have been exhausted, in
which case it “fails”.

Adams and Solomon CAPITL Page §

The heart of this process is the definition of “matching” between terms, called unification.> Congress
uses a variant of unification that supports cyclic terms [1]. The goal of unification is to determine if two
terms are isomorphic, or can be made isomorphic by substituting terms for variables. Two terms unify if
their roots match (have the same functor) and corresponding successors (recursively) unify. That is, if both
roots have arcs with the same selector leaving them, the nodes reached by these arcs must also unify. As
mentioned in §2.2, some nodes are designated as variables; a variable matches any node. A side effect of a
successful unification is an equivalence relation that records which nodes were matched. The evaluation of
a call adds a copy of a clause to the term space and identifies nodes matched as a result of unifying its head
with the query. The terms of the body are called in this extended term space.

Congress has a character-string expression language that may be used to enter or print programs or
fragments of programs, or to enter queries from the keyboard. A term ¢ may be denoted
£(8;=>t;, ***,8,=>t,), where £ isitsfunctor, s; -, s, are the selectors of the arcs with £ as
their tail, and t; ---,t, are textual representations of the terms at the heads of the corresponding arcs.
A variable is denoted “@.” A tag (an alphanumeric string starting with a capital letter) is used to indicate
shared subtrees or cycles. For example, the term

person guardian
age
name father

child

person
29 Elizabeth
hame
George
may be denoted*
F:person (
name=> "Elizabeth",
age=> 29,

father=> G:person{ name => "George", child => F),
guardian=> G
).

The expression language denotes a clause with head t, and body t;, ..., t, as
“to:i—ty, ..., tn.” The expression language also includes “syntactic sugar” for representing common
infix operators such as +, *, -, /,and for Prolog style lists. For example, the expression [a, b |
Tail] denotes the same term as the expression cons(car => a, cdr => cons{car => b,
cdr => Tail)). A missing selector implies an edge labelled with an integer and occurrences of @ can
be omitted in most cases. For example, f (a,X) isthesameas f (1=>a, 2=>X:@).

3Background material on unification can be found in many logic programming texts and in an excellent survey by
Knight {13].

4A functor that contains non-alphanumeric characters or starts with an upper-case letter must be quoted.

Adams and Solomon CAPITL Page 6

With these abbreviations, the Congress expression language becomes a strict superset of Prolog. It
extends Prolog in two important ways. First, the successors of a node are indicated by keyword rather than

positional notation. This extension helps avoid programming errors.’ For example, the Congress expres-
sion employee (age=>25, salary=>30) is less confusing than the corresponding Prolog expression
employee (25,30). Second, while Prolog terms are trees (except for identification of multiple
occurrences of the same variable), Congress allows arbitrary graphs, including cycles. Variables serve two
purposes in Prolog: They represent “wild cards” for pattern matching and they indicate sharing. The
expression language of Congress uses the functor “@" for the first purpose and tags for the second.

2.5. Embedding

The coupling between C++ and Congress is a two-way embedding: Each language appears to be an
embedded sub-language [20] of the other. Each language retains its own style. The embedding does not
alter the syntax or semantics of either language. Since Congress programs are C++ data structures, a C++
program can construct or modify a program and call the Congress interpreter (o execute it, capturing all
output as C++ structures. The embedding is bidirectional: C++ procedures can be declared as external
predicates in Congress. When the interpreter encounters a goal whose functor is an external predicate, it
calls the corresponding C++ procedure, passing it the goal and a description of the current state of the com-
putation (added nodes and bindings). The procedure may make any modifications to the environment it
deems appropriate (for example, adding bindings) and return either a success or failure indication. During
backtracking, the interpreter may call the procedure again, asking whether it can succeed in other ways. In
short, an external predicate is any C++ procedure that follows the protocol of a Congress procedure.

External predicates have proven extremely useful. They are used to implement all of the built-in
predicates usually found in Prolog implementations, such as arithmetic operations, as well as other func-
tions that are awkward or impossible to implement directly in Congress, such as file system access or invo-
cation of other programs. The Congress interpreter is itself an external predicate so Congress programs can
invoke the interpreter recursively.

3. CAPITL Object-base

CAPITL uses the persistent term space of POL to build an object-oriented database (or object-base
for short). All the entities used during the process of software development—source files, derived binaries,
documentation, executable tools, and descriptions of subsystems—-reside in the object-base. Properties
attached to each object describe it and its relationship to other objects. The object-base is organized into a
tree-structured naming hierarchy similar to a Unix file system (§3.1). The object-base can be accessed
interactively, from programs written in C++ or Congress, or through a Unix compatibility feature (§3.3.2).
In the last case, an extension to Unix path-name syntax provides access to versions of the term space.

3.1. Objects

The fundamental entity in the CAPITL database is the object. An object is a “heavier weight” term
that is guaranteed to have certain selectors with built-in semantics. Viewed from the Congress language,
the term space is simply a labelled directed graph. Viewed from C++, the nodes of the graph are further
classified into an inheritance hierarchy. As explained in §2.2, the first level of the hierarchy separates
nodes into leaf nodes (which are further classified as integers, byte strings, etc.) and internal nodes, which

5Tt also has a rather subtle effect on the definition of unification. See the LOGIN paper [1} for details.

Adams and Solomon CAPITL Page 7

contain pointers to other nodes. Among internal nodes, CAPITL further designates some as object nodes,
which are guaranteed to have certain selectors. If o is an object and s is one of its selectors, the s attribute
of o is the term referenced by selector s in 0. Although attributes of objects behave just like other selectors
from the Congress interface, they are generally implemented by special-case code. All objects have integer
attributes owner, group, permissions, mtime, atime, and ctime, interpreted as in Unix.
They also have three other attributes, contents, name,and directory described below.

Sometimes descriptive information about an object is not static, but rather is a function of other attri-
butes of the object. For example, a text document may have an attribute, imports, that lists any figures
that it imports. Given a tool that scans the text of a document and computes the list of figures, the value of
the imports attribute could be specified as a function of the tool applied to the contents atiribute. In
CAPITL such attributes are called derived attributes. The value of a derived attribute is not represented
directly as a term, but as a function application, so that CAPITL can recompute the value when necessary.
The only derived attribute currently supported is the contents attribute of an object with a non-empty
provenance attribute (see §4 for more detail on these attributes). We are investigating a more general
mechanism to declare derived attributes and the functions that compute them.

Objects are further classified as directories, files, and symbolic links. A directory object is similar to
a Unix file-system directory. Its contents attribute is a list (constructed of cons nodes) of references
to other objects. The directories create a tree-structured name space similar to the Unix file system.

File objects are further classified as plain, delta, term, and composite. The contents of a plain
file object is a byte-string atom. It has exactly the same semantics as a Unix “plain” file (see §3.3.2). Delta
files have additional operations to “compress” and “uncompress” their contents. Delta files represent con-
secutive versions of their contents as delta lists using an algorithm similar to RCS [29]. The contents
of a term file is an arbitrary Congress term. A composite file, like a directory, contains a list of references
to other objects, but it does not emulate all the behavior of a Unix directory, nor is it constrained to be part
of a strict tree structure.

Finally, a symbolic link object’s contents is a printable-string atom. It is singled out as a special
kind of object to support the Unix compatibility interface (§3.3.2).

3.2. Versions

CAPITL uses the world mechanism of POL to maintain multiple snapshots of the database. Each
operation accessing the CAPITL database is done in the context of a designated current world, and any
changes made by an operation affect only this world. A world is either modifiabie or committed (read-
only). There are mechanisms to choose a current world, commit a world, and spawn a new world as a child
of an existing committed world. The last operation behaves as if it were making a complete copy of the
parent database state, but is much more efficient. A world can also be unfrozen if it has no children. A
modifiable (leaf) world of the database may be thought of as a “workspace.” A person who wishes to
modify the database generally selects an existing committed world, creates a modifiable world derived
from it, and makes the modifications in the new world. When the changes have reached a stable state, the
new world may be committed. Policies and mechanisms for mediating shared access to modifiable worlds
are still under study.

Each world has a unique version ID, which is a non-empty sequence of positive integers. The root
world has ID “0”. The ID of the first child of a world W is formed by incrementing the final component of
W’s id. Sibling worlds are formed by appending zeros to W’s ID. For example, the children of world 1.3.2
would be labeled 1.3.3, 1.3.2.0, 1.3.2.0.0, etc. This numbering is similar to the scheme used by RCS and
SCCS, and seems more natural than “Dewey decimal” numbering in the common case of long sequences of

Adams and Solomon CAPITL - Page 8

single-child worlds. For example, a sequence of consecutive derivations from 1.3.2 would yield 1.3.3,
1.3.4, 1.3.5, etc. This numbering scheme can, however, become quite confusing when multiple worlds are
derived from the same parent. We expect that worlds will normally be selected by symbolic name or other
attributes stored in an index structure (itself stored in the database) rather than by version ID. (This part of
the database is still under development.) ‘

In general no changes are permitted in a committed world. However, the value of a derived attribute
may be safely deleted and replaced by the special atom “not available.” Switching the state of a derived
attribute between available and not available is considered a “benign™ modification of the database and is
permitted in committed worlds.

3.3. Accessing a CAPITL database
A CAPITL database can be accessed and manipulated in several ways:

e Directly, through programs written in C++ or Congress.
o Through an interactive X-based browser.
¢ Through a Unix-compatible interface called EFS.

CAPITL is written in POL, so all of its structures can be accessed as data structures in C++. For example,
nodes are all instances of the class Term, which exports such methods (member functions) as

boolean IsLeaf();
which enquires whether the term is a leaf, and
Term *Edge (char *selector);

which returns the term referenced by a particular selector (if one exists). Class Integer is a subclass of
Term with an IntVal () method that returns its integer value, and so on. Documentation for this inter-
face is currently being written [2].

3.3.1. Browser

An interactive browsing interface has been written on top of the X Window System using the Inter-
Views [17] toolkit. The browser supports visiting any object or directory in the object-base and uses type-
sensitive displays to depict the contents attribute of an object; other attributes are displayed using the
Congress expression language (§2.4). For example, the contents attribute of a source file object is
displayed using a text viewer in the Viewing box and any other attributes in the Term View box (see Figure
1). The current focus can be moved to a neighboring object in the naming hierarchy by double clicking an
object named in the Object Path or Object Siblings box. The focus can also be changed by typing a path
name in the Location Selector box. “Time travel” is accomplished by typing a version ID in the Current
World box. Menus exist for creating and destroying objects, invoking the Congress interpreter, and for
creating and committing worlds. Multiple simultaneous windows on a database are kept consistent with
changes made from any of them.

3.3.2. EFS

The CAPITL object-base can be considered an enhanced version of the Unix file system: More types
of objects are supported, the set of attributes of an object is extensible, complex relationships among
objects can be represented directly, and versioning of the entire database is efficiently supported. How-
ever, the differences between the CAPITL object base and the Unix file system interfere with using exist-
ing tools. Consider, for example, the problem of compiling a C source file stored in CAPITL. One
approach is to copy the contents of the source object into an ordinary Unix file, invoke the compiler,

Adams and Solomon CAPITL Page 9

File

R
Directory Plain Composite Term World Misc

Canvent World - Cemmitled

[] <2
Location Selector
lmu/exampl«fpuw_comlem:t_dmeu |
Object Versions Li
> 2] object Siblings
compller_main.c .QH
> ast_driver.c
pascal_parsery
pascal_scanner)
common.h
cedegen.c ||
regalioc.c
5 I pa_aca!__co_mpﬂ.er_spcc '-3-
Viewing: ast_driverc
[Finclude "common.h® 2
Jtkiokk okl Rkl il ok oobiook Rk ik kil
¥ sst_driver.c - main program for testing the front end to the pascal cowpiler

.
* irput: pascal source file name and output file name
)

* output; abstract syntax tree produced by parser stored in output file
itk ko icickiok ik tioiolakskekbiokoioiok ok kskdokiololololiok pRtoosiciorok ok dclolickok

gain(int argc, char %argvlD)
ast ¥ tree;

tree = parse(argvill):
dump_ast{tree,argv(2]};

/! ook oksiokRo okl bk oRioliciol ko okl kRl golloliokio kR ik

® dump an abstract sytax tree to a file :
SRR OO R R SRR oo RR R KRRk Rk ook

dump_ast{ tree, name)}

Term View

componemt_of = “[]°

name = ‘“ast_drverc”

directory = dir (pame=>"pascal_compiler”, ..)
mtime => 726682044

cdime = 726682044

alime = 726682044

form = c_3src

func => ast driver

Figure 1
CAPITL Browser

and copy the resulting object module back into CAPITL. A second approach is to store in CAPITL “stub”
objects that contain pointers (path names) to Unix files. A third approach is to modify the compiler
(perhaps by linking it with alternative versions of the Unix library functions open, read, seek, eic.)
so that it can read and modify CAPITL objects. None of these approaches is entirely satisfactory.

Adams and Solomon CAPITL Page 10

The Emulated File System (EFS) allows programs to access CAPITL objects as if they were Unix
files. It is based on the Network File System (NFS) facility [24], which is included in most versions of
Unix. NFS was originally designed to support transparent access to remote files. A version of the mount
command associates a remote file system with a name, called a mount point in the local file system. Sys-
tem calls that request operations on files below this mount point are forwarded to an NFS server. Nor-
mally, the server is the Unix kernel on the remote system, which executes the requests on its local disk.
The remote file system thus appears to be grafted into the local name space as a subtree of the mount point.
It is possible, however, to designate a user-level process as an NFS server (Figure 2).

The EFS daemon efsd emulates a Unix file system on a CAPITL database. Once a CAPITL database
is mounted, its objects can be manipulated by standard system calls (open, read, write, seek,
link, stat,etc.) as if they were actual Unix files, directories, and symbolic links. Neither client pro-
grams nor the Unix kernel need be modified in any way.

Not all features of the CAPITL database are accessible through EFS. For example, a composite or
term object appears to be an empty file from EFS (it behaves like /dev/null). However, EFS does
allow access to alternative worlds through an extension of Unix path name syntax. A version ID followed
by a colon is interpreted as a request to resolve a path name in a designated world of the database. Path
names without version ID’s are resolved in a current world analogous to the current working directory.
For example,

diff 3.3:prog.c prog.c
compares version 3.3 of prog.c with the current version, and

(echo -n "updates done "; date) >> 3.5:log
adds a line to version 3.5 of log.

As in Unix, a path name that does not start with */” is interpreted relative to the current directory
(and world). Since the Unix kernel uses the same mechanism to resolve chdir requests as open, the
shell’s cd command can be used to navigate among worlds. For example,

cd 3.2.1:

sets 3.2.1 as the default world for subsequent file-system requests. The path name supplied in a mount
request is interpreted in the same way, so a default world can be specified at mount time, as in

efs mount /3.4:@hostname project.old
efs _mount /3.5:@hostname project.new.
cd project.new/include

vi defs.h

Although EFS was created for CAPITL, it can be used by any C++ system that needs to provide a
Unix-compatible interface. It is packaged as a driver program and a set of abstract C++ classes that encap-
sulate that NFS model. Application-specific classes inherit from these classes. For example, the CAPITL
Directory class is derived from both Term and EFSdir. Class EFSdir declares methods to add,
delete, and lookup directory entries, but supplies no implementation (they are “pure virtual member func-
tions” in C++ terminology). The CAPITL Directory class implements these functions by manipulating
the list stored in the contents attribute of the term. More details about the EFS package will be con-
tained in a forthcoming report [26].

Adams and Solomon CAPITL Page 11

Exodus client library

(-]

NFS protocal
system calls —————
\ File System
NFS Local \
. \ Disk Driver
Unix Kemel

Figure 2
CAPITL Process Architecture

4. Software Configuration Management in CAPITL

CAPITL provides assistance for constructing and maintaining software products. A product is the
output of a series of tools applied t a set of objects. The goal is to produce a “correct” version of a pro-
duct as efficiently as possible. Correctness is a fuzzy concept that has possibly different meanings in dif-
ferent situations. Therefore, CAPITL supports a powerful constraint language (POL) allowing system
designers to describe attributes and integrity constraints as appropriate to each application. CAPITL
guarantees that all derived objects are correctly created by applying tools to inputs in accordance with these
specifications. In addition, CAPITL ensures that all products are current (ie none of the objects used to

Adams and Solomon CAPITL Page 12

create the product has changed since the product was constructed). When building (or rebuilding) a pro-
duct CAPITL speeds up the process by reusing previous work when possible.

CAPITL software objects are classified as source or derived. A source object is created by a human
being or by some other process outside the control of CAPITL. A derived object is created by applying a
tool object to an input object. Each tool has exactly one input, which can be a set cr list of other objects.
(Construction of such composite objects is described more fully below.) The tools as well as inputs can be
either source or derived. Each derived object can be viewed as the value of a derivation—an expression
tree whose leaves are source objects and whose interior nodes represent occurrences of a built-in apply
operator. Objects are all represented in CAPITL as POL terms, and thus can have a variety of attributes.
Some of these attributes constrain the set of well-formed derivation expressions (§4.1). In particular, each
tool object has an in atiribute that must match the object to which it is applied, and an out attribute that
constrains the attributes of the result. Since the attributes are terms that can contain variables, an object
can be partially specified. An incomplete object can be more fully specified by replacing occurrences of

variables with other terms.® An object with an unspecified contents is called an abstract object.

A user requests the derivation of a new object by constructing an abstract goal object and invoking
the planner (§4.4) and the builder (§4.5) which are Congress programs supplied with CAPITL. The
planner determines how to create objects and supplies them with code attributes, while the builder
creates the contents of planned objects by evaluating expressions in their code attribute. The code
attribute of an object is a list of alternative build expressions, each of which contains references to a tool
object and an input object. When asked to plan an object withouta code attribute, the planner searches
the database for tools and matching inputs such that the result of applying the tool 2o the input yields the
desired goal. It then recursively plans the tool and the input.

The planner can infer the need to construct new derived objects. If it finds a tool capable of creating
a desired goal object but no comresponding input, it tentatively creates an abstract object representing the
input and plans it. If the input is a composite object (for example, a list of inputs to the linkage editor), the
planner searches for a template (§4.2) that describes potential collections. “The planner can also create new
tool objects. A tool description (§4.3) contains an input/output description of a potential tool. If the
planner fails to find a tool that can create a goal object but discovers an appropriate tool description, it will
instantiate the description as a new tool object and attempt to plan it. For example, the planner may fail to
find a cross-compiler capable of building an object module for a particular machine architecture, but a tool
description may suggest that such a compiler can be built from existing sources.

The builder completes the process of making an abstract goal concrete by executing one of the build
expressions in its code attribute. If the build is successful, the result is placed in the contents, and a
record of the specific tool and input used to create it is placed in the provenance attribute of the derived
object. If it is unsuccessful (for example, if the tool is a compiler that discovers an error in its input), the
build expression is marked as “failed,” the planner is invoked to find other alternatives, and another build
expression is tried.

A consequence of the definition of unification in §2.4 is that the absence of an attribute is equivalent to an attribute whose
value is a variable.

Adams and Solomon CAPITL Page 13

4.1. Object Descriptions

The attributes code, contents, provenance, form, functionality, and refer-
ences are used by CAPITL for the purpose of planning and building. The first three of these have been
briefly described above. The attributes form and functionality jointly describe the “type” of an
object. These attributes control the matching of tools to inputs and outputs. The references attribute
is used to record extra dependencies among objects.

4.1.1. Form The form of an object is its type when used as an argument to a tool. In the simplest case
the form attribute is a simple atom with an application-defined meaning, such as c_source or
object_code. More detailed information can be specified by more complicatec terms. For example,
the form attribute of an object module might be specified as

object_code(opt => no, debug_symbols => yes)

Since forms are terms, the partial order induced by unification can be used to express subtype relationships.
For example, object_code (opt => no, debug_symbols => yes) is compatible with (unifies
with) object code. The planner interprets two values for the form attribute as having special mean-
ing: The value bag(T) is interpreted as a homogeneous multi-set of type T, and the value
record(T,, *** ,T,) as a heterogeneous collection of types T, through T,. All other values are
interpreted as non-structured (atomic) types.

4.1.2. Functionality The functionality attribute of an object is a description of what the object
does. For tool objects, the functionality attribute is the type signature of the tool and describes its
behavior via an in/out pattern. For example, the functionality of a C compiler might be specified by
the term

func(in => obj(form => c_source, functionality => F),
out => obj(form => object_code, functionality => F)),

which states that the input must be C source code, the output will be object code, and the functionality
(semantics) of the module is preserved.

4.1.3. Contents, Provenance, and Code For atomic objects the contents attribute is uninterpreted by
CAPITL. For composite objects the contents is the set of sub-objects that comprise the object. The
provenance of a derived object specifies the tool and input used to create the contents. Since the
provenance names specific objects (by their OID), it is completely synonymous with the contents,
in the sense that the same contents could be recreated by rerunning the same 0ol on the same input.
The code attribute is a set of expressions, each of which is type-compatible with the object and is thus a
potential recipe for generating the contents; it represents a non-deterministic program for creating the
contents. The code, provenance, and contents are in some sense all manifestations of the
same value where the code is the least specific and the contents the most specific.

4.1.4. References The references attribute identifies objects that are referred to inside an atomic
object’s contents. It can be an assertion from the specification writer or the output of some language-
specific tool. For example, suppose a C source file has many “#include” preprocessor directives. If the C
compiler and preprocessor are being modelled as one tool, the references attibute would represent
the set of include files required to run the compiler/preprocessor tool. These dependencies are needed for
maintaining consistency after changes. References are used in checking whether derived objects are up-
to-date. They are also useful for browsing source objects.

Adams and Solomon CAPITL Page 14

When describing an object, a specification writer has two ways to refer to other objects. A generic
reference is a pattern that matches other objects in the object-base. For example, the term

obj (functionality =>
func (
in => obj(form => c_source, functionality => F),
out => obj(form => object_code, functiopality => F))
)

represents a generic reference to any C compiler. If the environment contained two C compilers, such as
“cc” and “gec”, either could match. A specific reference defines a unique object. A specific reference can
be created from a generic reference by adding enough other attributes to make the reference unique or by
using the object’s identity. Because it is difficult to guarantee that a set of attributes always identifies
exactly one object, the identity of an object is preferred for specific references. For example, the prove-
nance of an object module might contain tool => Gcc where Gec is a tag for a specific compiler
object.

4.2. Templates

A system is a collection of objects that when combined form a meaningful “chunk”. Systems are
described in CAPITL by specially formed objects called templates. (Such descriptions are often referred to
as system models.) A template consists of a set of generic references, specifying (at least) the functionality
of each sub-object, and a set of constraints. The constraints are used to specialize the generic references
prior to instantiating the template. Templates are instantiated by making a copy of the template, calling all
the predicates listed in the constraints, and then resolving each generic reference via a database lookup.
The result is an object that unifies with the template, but has all the generic references in its contents
resolved into specific references. Because template instantiations are objects, they can be used as the sub-
parts of other template instantiations. Thus, system descriptions in CAPITL can be composed.

4.3. Tool Descriptions

CAPITL uses separate tool descriptions to specify the available set of tools. Tool behavior (as
opposed to tool objects) is described via specially formed Congress rules stored in a separate rule-base that
can be imported into a Congress program. Tool descriptions serve two purposes. First, the presence of a
tool description alerts the planner that it is possible to build a tool with a particular functionality. Hence
tool generators can be modelled in CAPITL. Second, tool descriptions allow more complicated descrip-
tions of tool behavior than is possible with simple input/output signature patterns. Section 5.2 contains an
example that illustrates this feature.

4.4, Planning

Planning is the process of finding a set of source objects and tool applications needed to satisfy a
request. The planner makes use of three kinds of data: existing planned objects, template objects, and tool
descriptions. The planner searches the space of all possible “well formed” tool and object combinations for
expressions whose results match the goal and that only contain references to atomic objects or fully
specified composite objects. These expressions are stored in the code attribute of an object and represent
a potential recipe for constructing the contents of that object—the planner does not guarantee that an
expression will succeed when evaluated. During planning, templates are instantiated and any constraints
attached to objects are checked ensuring that all objects used to build a system conform to the constraints
specified in the description of the system. Such constraints can easily encode certain kinds of semantic

Adams and Solomon CAPITL Page 15

correctness such as “use all debugging versions”, by forcing the appropriate sub-types to be used for
derived objects (and hence forcing the use of tools that produce debugging information).

The planner avoids repeating work by keeping track of the current state of an object’s plan with an
additional plan_state attribute. When the planner creates a new object to represent an intermediate
result, its state is attempted. If a build expression is found, the state changes to successful, otherwise it
changes to failed. Using this attribute the planner can avoid attempting to plan an object that has already
failed and avoid derivation loops, which occur if an object is needed in order to derive its own con-
tents.

Planning may be computationally expensive because it exhaustively searches a potentially exponen-
tial space. To speed the planning process we are experimenting with lazy generation of expressions and
better search strategies. Instead of deriving all equivalent expressions, our prototype stops as soon as a sin-
gle expression is found. (A “replan” request is available to search for additional expressions.) Currently,
the planner uses a blind depth-first search. By ranking choices, perhaps by using approximate tool costs, a
branch-and-bound strategy could be used to improve performance.

4.5. Building

Given a reference to a derived object, the job of the builder is to make the contents, prove-
nance, and code attributes consistent. They are consistent if the provenance is one of the expres-
sions in the code and it evaluates to the contents.

The builder traverses the expression graph defined by the code and provenance attributes.
Depending on the state of an object there are three cases that arise:

(1) The object does not have a provenance or contents attribute. The builder evaluates the
first untried expression in the code. If the expression is successful, the builder stores that expres-
sion as the provenance of the object. If the expression fails (perhaps due to a syntax error in a
source program), the builder annotates that expression as unsuccessful and invokes the planner,
which attempts to find a different expression for the object. If the planner is successful, the build
continues.

(2) The object has a contents (and hence a provenance). In this case the builder must deter-
mine if the contents is still valid. In a committed world, the contents must be the value of
the expression stored in the provenance, so no reconstruction is necessary. In a mutable world,
objects referenced by the provenance may have changed since it was last evaluated. To deter-
mine if the contents is still up to date, the builder uses timestamps. The mtime attribute of an
object records the time its contents was last modified. Associated with the provenance of
a derived object is a provenance_timestamp that records the timestamps of the tool and
argument. If the timestamps match, the contents is still valid. Otherwise, the provenance
is re-evaluated. A more precise notion of validity that relies on semantic properties of the objects
involved could be used, potentially allowing fewer expressions to be evaluated [28].

(3) The object has a provenance but no contents, indicating that a user conserved space by
deleting the contents. The contents can be regenerated by simply evaluating the prove-
nance. '

4.6. Discussion

Separating the planning and building phases has several advantages. The decomposition of a system
into sub-systems tends to change slowly, allowing the output of the planner to be used many times. Hence

Adams and Solomon CAPITL Page 16

the cost of planning is amortized over many builds. Moreover, the separation simplifies the builder: It is
only concemed with equivalence between a functional expression and a “cached” copy of the result of that
expression; the planner does all the work of selecting objects and tools.

One can view the planner as a code generator and the builder as a code evaluator. To increase the
speed of building a separate optimize phase could be used after planning to perform traditional compiler
optimizations such as strength reduction and elimination of intermediate values. These optimized expres-
sions would then be saved in the provenance for future use. For example, the expressions produced by
the planner uses an object o hold the result of every tool application. A linear sequence of tool applica-
tions in which the intermediate results were not specifically requested could be compressed into a single
pipeline invocation.

CAPITL worlds provide a means to group objects with similar semantic properties. This version
mechanism assists planning by limiting the search needed to construct a product. Because only one version
of an object is visible in a given world, the planner does not need to choose among the (potentially large)
set of versions of each source object. Hence the combinatorial explosion associated with combining com-
ponents represented as version sets is avoided during planning.

5. Examples

To illustrate the concepts of the previous section, we present two examples of simple subsystems.
The first example illustrates how an executable program is built from sources in a variety of languages.
The second example is drawn from the domain of document processing.

5.1. A Pascal Program Analyzer

The first example is a simple program analyzer that translates Pascal source fi'es into abstract syntax
trees (AST’s). Such an analyzer might be a component of a compiler or other larger system. We assume
that four source objects are available: a Lex [16] specification of tokens, a YACC [9] specification of a
grammar, a driver program written in C, and a common file of declarations included by all three sources.
These objects are shown in Figure 3. Common is the file of common declarations. It has only two attri-
butes, a format (source for the C preprocessor) and the actual text contents. Main is the main program.
Its format is C source, it depends on Common, and its functionality (semantics) is described by the atom
“ast_driver.” The Lex and YACC source objects are similar. The references attributes might be
supplied manually by the author of the program or it might be deduced by a tool such as the Unix mak-
edepend utility. The functionality attributes would be supplied manually by the designer of the
analyzer package.

Pascal Analyzer describes the functionality of the desired tool: It should translate a Pascal
source object into an abstract syntax tree preserving its functionality. Analyzer Spec is a template
that specifies how the component functionalities ast_driver, pascal_parser, and
pascal_scanner can be assembled to produce a tool that translaies Pascal source into abstract syntax
trees. Analyzer Spec may be thought of as a “tool” that produces a composite object (a package of
objects) from components. This specification conveys three pieces of information: First, that the func-
tionality Pascal_Analyzer is the sum of the functionalities ast_driver, pascal parser, and
pascal scanner; second, that resulting object has form bag (T), where T is'the form of each com-
ponent; and third, that all the components should have a property called debug level. For example, if
it desired that all object files have the debugging property, the debug_level predicate would be
defined as

Adams and Solomon CAPITL Page 17

Cormmon: obj {

form => cpp_include,

contents => "#include <stdio.h>; ... *
).

Main:obj(
functionality => ast_driver,
form => c_source,
contents => "main(int argc, char *argv[]) ...",
references => [Common]
).

Scanner:obj(
functionality => pascal_scanner,
form => lex source,
contents => ",.,."%,
references => [Common]
).
Grammar:obj(
functionality => pascal_parser,
form => yacc_source,
contents => ", . .",
references => [Common]

).

Pascal_Analyzer:func(
in => obj(form => pascal_source, functionality => F),
out => obj(form => ast, functionality => F))
).
Analyzer Spec:obj(
functionality => Pascal_Analyzer,
form => bag(type => T),
contents => [
Cl:obj(functionality => ast_driver, form => T)],
C2:obj(functionality => pascal_scanner, form => T),
C3:o0bj(functionality => pascal_parser, form => T),
constraints => [debug_level (Cl), debug level (C2), debug level(C3)]

Figure 3
Source Objects

debug_level (obj(form => F:object_code)) :-

!, F = object_code(debug_symbols => yes).

% object modules must have debugging information
debug_level (obj). % all other objects pass the test vacuously

Figure 4 shows a variety of tool specifications. The tool specification Lex_Spec describes the
functionality of a Lex processor—it transforms a lex_source input into c¢_source preserving
semantics. The object Lex is an executable program that conforms to this specification. Similarly, each
of other t00ls would have a corresponding tool description. Since each tool description is identical to the
input/output signature of the corresponding tool, we omit the remaining descriptions. We have chosen to

Adams and Solomon CAPITL Page 18

model the debugging and optimizing versions of the C compiler as two distinct tools.
Calling the planner with the goal
obj(form => executable, functionality => Pascal_Analyzer)

will create a partial object with the desired functionality and form. If planning is successful, the object will
contain a build expression in its code attribute that can be used to create its contents. The planner
will also create partial objects for intermediate objects as shown in Figure 5.

At this point, the builder may be invoked on the object Goal. Assuming there were no errors, the
builder would fill in the contents and provenance attributes of each object in Figure 5.

Suppose the state of the system is frozen by committing the current world and a new one is created.
Consider two different kinds of modifications to the system:

(1) The only action in the new world is to modify the contents of Scanner. In this scenario, the
same plan can be reused (in fact calling the planner will result in no changes), and the builder will
reuse ParserObjand MainOb3j, rebuilding only ScannerC, ScannerObj,and Goal.

(2) No sources are modified, but an optimized version of the analyzer is desired. The definition of the
Congress predicate debug_level is changed to

debug_level (obj(form => F:object_code)) :-
!, F = object_code(opt => yes).
debug_level (obj) .

There are two choices for where to store the new version: in a new object distinct from the existing
debugging version or in the existing analyzer object (replacing the debugging version in this
world). In the latter case, the code attribute would need to be cleared before planning (if not, the
object would fail the current set of constraints and would fail to be-used). In either case the planner
would be re-invoked on the appropriate goal object. The existing objec: Object_ Modules
would not be used because its constraints fail with the current definition of debug_level.
Instead, the planner would create a new composite object from the Analyzer Spec template
that uses the output of Cc_opt rather than Cc_debug. The derived objects ParserC and
ScannerC from the previous world would be used without modification.

5.2. Document Processing

The Unix troff document processing system includes a variety of special-purpose preprocessors. If a
document does not use a particular feature, the corresponding preprocessor need not be applied. For exam-
ple, eqn only needs to be run on documents that contain mathematical equations, while ¢bl is only required
for documents containing tables. We could model these tools by defining a variety of types as in the previ-
ous example, defining egn to be a translator from troff with_eqn to troff, etc. However, this
approach would require a different type for each subset of the features. A better approach defines one
form, troff, with subtypes for different sets of required features. For example a document with equa-
tions and tables would have form troff (features => [eqgn, tbl]). The tool description for
eqn would then be

tool (functionality => func/(
in => obj{(form => troff (features => Ll1), functiomality => F),
out => obj(form => troff (features => L2), functionality => F)))
:- delete feature(feature => egn, in => Ll, out => L2),

where the predicate delete feature searches list L1 for an occurrence of eqn and removes it. If a

Adams and Solomon CAPITL - Page 19

Lex_ Spec:tool(
functionality => Lex_Func: .
func(in => obj(form => lex_source, functionality => F),
out=> obj(form => c_source, functionality => E))
).

Lex:obj(
form => executable,
functionality => Lex_Func,
contents => ",.,." % the actual executable code

).

Yacc:obj(
form => executable,
functionality =>
func(in => obj(form => yacc_source, functionality => F),
out=> obj(form => c_source, functionality => F)),
contents => ", . "
).

Cc_debug:obj(
form => executable,
functionality =>
func(in => obj(form => c_source, functionality => F),
out=> obj(form => object_code (debug_symbols => yes, opt => no),
functionality => F)),
contents => ", ,."

).

Cc_opt:obj(
form => executable,
functionality =>
func (in => obj(form => c_source, functionality => F),
out=> obj(form => object_code (debug_symbols => no, opt => yes),
functionality => F)),
contents => ", ,."
).
Ld:obj(
form => executable,
functionality =>
func (in => obj(form => bag(type => object_code), functionality => F),
out=> obj(form => executable, functionality => F)),
contents => ",.."

Figure 4
Tool Objects

document does not use egn the body of this rule will fail and the planner will not consider it applicable. A
more sophisticated version of delete feature can encode the requirement that some processors have
to be run before others. As with the references attribute, the features of a troff document could
be added manually or by a processor that analyzes a document.

Adams and Solomon CAPITL : Page 20

Goal:obj(

functionality => Pascal_ Analyzer,

form => executable,

code => [build_expr(expr => apply (Ld, Object_Modules, Goal))]
).

Object_Modules:obj(

functionality => Pascal_Analyzer,

form => bag(type => object_code),

contents => [ScannerObj, ParserObj, MainObj]
).

ScannerObj:obj(

functionality => pascal_scanner,

form => object_code (debug_symbols => yes, opt => no),

code => [build expr(expr => apply (Cc_ debug, ScannerC, ScannerObj))]
).

ScannerC:obj(
functionality => pascal_scanner,
form => c_source,
code => [build_expr (expr => apply (Lex, Scanner, ScannerC))]

).

ParserObj:obj(

functionality => pascal_parser,

form => object_code (debug_symbols => yes, opt => no),

code => [build_expr(expr => apply (Cc_ debug, ParserC, ParserObj)) |
).

ParserC:obj(

functionality => pascal_parser,

form => c_source,

code => [“build |_expr (expr => apply (Yacc, Grammar, ParserC))]
).
MainObj:obj(

functionality => ast_driver,

form => object_code (debug_symbols => yes, opt => noj,

code => [build expr(expr => apply (Cc_ debug, Main, MainObj))]

Figure 5
Derived Objects After Planning

6. Related Work

Many of the ideas in the design of CAPITL are present in other systems. CAPITL’s main distin-
guishing feature is tight integration of a process programming language (Congress) with an underlying ver-
sioned, object-oriented database. A software object is not just described by a Congress expression, it is a
Congress expression. Congress is declarative rather than procedural; it allows system designers to concen-
trate on the properties of objects and subsystems rather than on procedures to manipulate them.

All of the following systems provide good support for building; they differ primarily in how systems
are specified, how version selection is accomplished, and what kinds of consistency are guaranteed.

Adams and Solomon CAPITL Page 21

DSEE. DSEE [14,15] is a commercial environment that manages software in a network of distributed
(Apollo) workstations. It supports a notion of “time travel” by compactly storing versions of source files
and providing a tool, the History Manager, that associates symbolic attributes with particular versions. A
separate tool, the Release Manager, maintains groups of consistent files. DSEE configurations start with a
user-supplied dependency relation called the system model. Version selection rules are used to bind object
references in the system model to specific versions in the file system. DSEE supports many other features
needed in a distributed environment and is one of the most advanced systems available commercially.

Shape. Shape [18, 19] integrates Make with a version control system similar to RCS. Shape is backwards
compatible with Make and adds version selection rules comparable to those in DSEE. These rules use reg-
ular expressions to specify an ordered list of version preferences, such as “use the newest version of all
components I am working on”, and “use the newest stable version of all other components.” The default
selection rule is to use the most recent version of all components as in Make. Shape stores source objects
in an attributed file system and can distinguish different versions of objects by using “version attributes.”
The ability to use existing Makefiles is convenient, but such files contain a static description of the system,
and maintaining that description becomes more and more difficult as the system grows larger. Like DSEE,
Shape relies on an external tool for checking that a configuration is consistent.

Odin. Odin [4] is a system for integrating existing tools into a single environment. Tools are described
declaratively and then linked into a derivation graph that summarizes all the “type correct” derivations
possible given the current set of tools. The derivation graph is then used to infer build steps given a request
for a particular object. As with Make, the programmer must specify all the dependencies of a
configuration. Version selection and consistency are not integrated into the system. From a practical point
of view, Odin’s ability to use existing tools is appealing; our use of EFS achieves the same functionality.

Jason. Jason is a generic software configuration system [31] that constructs a software environment from
a given set of parameters. These parameters include class definitions (object schemas), consistency con-
straints, and build plans (dependency relations). Created environments can later be extended, but because
of the “compiled” nature of generated environments, such extensions are limited to additions and
refinements. This limitation prevents Jason from supporting certain kinds of evolution (such as re-
organizing a two-component system into a three-component system). Jason uses a powerful constraint
language (full first-order predicate calculus) and compiles the given constraints into procedures that check
the consistency of configurations. A rigorous algebraic model provides Jason with a strong theoretical
foundation not present in most other systems.

Adele/Nomade. Adele [6-8] (and its successor Nomade [8]) is a constraint-based environment for SCM.
Constraints are quantifier-free boolean expressions and are used to infer consistent configurations, includ-
ing the dependency relation between components. The advantage of this approach is that programmers
specify what they want and the system figures out how to produce it. Our system also contains this general
concept, but our use of Congress allows more powerful constraints.

SMILE/Marvel. SMILE and Marvel [10-12] are two rule based environments that emphasize support for
the edit/debug/build cycle. Their goal is to provide a “fileless” environment for programmers by making
the environment responsible for invisibly maintaining derived objects. Their rules use Hoare-style pre and
post conditions to trigger actions and can be used for either forward-chaining or backward-chaining infer-
ences. Forward-chaining corresponds to opportunistic computation and backward-chaining corresponds o
the method employed by traditional build tools such as Make.

Adams and Solomon CAPITL Page 22

7. Status and Future Plans

A prototype of CAPITL has been implemented that includes all the basic components: object-base,
worlds, EFS, Congress compiler, POL interpreter, browser, planner and builder. The planner and builder
subsume the functionality of Make. We have tested them on small examples with atout 10 source objects,
20 tool descriptions and 50 objects total. The planner correctly generates plans, the builder constructs exe-
cutable binaries (running tools such as the C compiler with the aid of EFS), and the resulting programs can
be invoked through the interactive user interface. After changes, the builder is able to rebuild targets tak-
ing advantage of unchanged sources and intermediate objects.

Our next goal is to use CAPITL to control its own development. Although POL and CAPITL cannot
be considered “large” (they consist of about 32,000 lines of C++ code and 3000 lines of Congress code),
the experience should provide feedback on whether the ideas in CAPITL scale to larger systems. Most of
the required functionality is in place. The principle obstacles are performance limitations, and some rough
spots in the user interface.

7.1. Performance

The planner and builder are currently an order of magnitude slower than Make. The main thrust of
our current work is to identify and eliminate performance bottlenecks. Two modifications mentioned ear-
lier should help: an optimizer for build expressions and a better search strategy for the planner. Indexes
can be used to improve database searches, and critical parts of the POL interpreter can be hand tuned. EFS
is considerably slower than native or NFS file system access, particularly for writing, so tool invocations
(such as compiling) are severely degraded. The main source of the problem appears to be inappropriate
timeouts and buffering strategies in the NFS client code in the Unix kemel. A successor to Exodus, called
Shore, is being developed by a separate project; one of the goals of Shore is to provide a facility similar to
EFS with higher performance.

7.2. User Interface

Several enhancements to the user interface are needed to make CAPITL usable by system architects
and developers.

Syntactic Sugar. Currently, source objects, tool descriptions, templates and goals are all created “by
hand” as Congress expressions. Forms-based interfaces would help to streamline this process and elim-
inate the need for developers to learn about logic programming. The browser understands a few attributes
and has special displays for them (for example, the contents of a plain file object is displayed in a text
window), but most attributes are simply unparsed into the Congress expression language and minimally
pretty-printed. More special-case displays would help.

Idioms. Common terms such as frequently used forms and functionalities (such as the subterm
Lex_Func in Figure 4) could be collected in libraries and displayed by the graphical interface as icons for
pasting into new descriptions. They can also serve as the basis for creating new types through subtyping.

Worlds. Currently a user must set the default world either by navigating the tree of worlds, or by expli-
citly typing version ID’s as sequences of integers. We intend to introduce “world objects” so that
mnemonic names and other attributes can be associated with worlds.

Adams and Solomon CAPITL Page 23

7.3. Additional Functionality

The user interface enhancements suggested above are all fairly straightforward. Other usability
enhancements require more fundamental research.

Version Management. Versioned worlds are simple to understand, but policies for managing them need
to be explored. CAPITL contains no provisions for mediating access to mutable worlds except that pro-
vided by Exodus, which only serializes simple updates; more sophisticated kinds of long-term locks are
needed. Mechanisms for selecting worlds and maintaining their internal consistency need to be developed.
Tools are needed to support an “algebra” of modifications that allow modifications to be added and sub-
tracted. An example of “addition” is reconciling and merging concurrent updates that created sibling
worlds. An example of “subtraction” arises when two updates were applied in sequence, and it is desirable
to generate the world that would have arisen if the second update were applied but not the first.

Cache Management. A derived attribute is one whose value is an immutable function of other attributes.
Derived attributes can be elided or recomputed even in a committed world. Currently, only the con-
tent s attribute is a derived attribute (as a function of the provenance), and it is implemented in an ad
hoc fashion in the builder. We would like to extend the idea in a uniform way to other attributes. The
contents of a derived object must currently be deleted by hand. A cache management tool that selec-
tively flushes cached attributes based on their size, time since last use, and cost of reconstruction, would be
useful. More generally, all derived objects may be thought of as a residing in a cache. In some cases there
may be more than one equivalent way to build a product. For example, an executeble program might be
rebuilt from its sources or reconstituted from a compressed version. Thus cache maintenance is intimately
tied to the larger issue of planning.

8. Acknowledgements

Many people have helped to bring CAPITL to its current state. S. T. S. Prasad was the first to
explore the application of Prolog to configuration management. Tony Rich carried this work forward. His
thesis is the basis for many of the ideas in Section 4 of this paper, and the current planner and builder owe
much of their content to his work. Odysseas Tsatalos, Theoharis Hadjiioannou, and Trip Lazarus have
made substantial contributions to the X-based interactive interface. Lazarus also implemented the worlds
mechanism and integrated EFS into CAPITL. Delta files were implemented by Tsatalos. Tom Ball and
Sam Bates offered many helpful comments on earlier drafts of this paper.

9. References

(1] H. Ait-Kaci and R. Nasr, LOGIN: A Logic Programming Language with Built-In Inheritance,
Journal of Logic Programming, Mar. 1986, 181-215,

[2] P. Adams and M. Solomon, POL: Persistent Objects with Logic, Submitted for publication.

{31 M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita and S. Van-

denberg, The EXODUS Extensible DBMS Project: An Overview, in Readings in Object-
Oriented Databases, S. Zdonik and D. Maier (ed.), Morgan-Kaufman, 1990.

4] G. Clemm and L. Osterweil, A Mechanism for Environment Integration, ACM Trans. Prog.
Lang. and Systems 12, 1 (Jan. 1990), 1-25.
{5] J. R. Driscol, N. Sarnak, D. D. Sleator and Targan, Making Data Structures Persistent, Journal

of Computer and System Sciences 38, 1 (Feb. 1989), 86-124.

Adams and Solomon CAPITL Page 24

(6]

(7

(8]

(9]

(10

[11]

[12]

[13]

(14]

[15]

[16]

(17

(18]

[19]

[20]

[21]

J. Estublier, S. Ghoul and S. Krakowiak, Preliminary Experience with a Configuration Control
System, Proceedings of the Software Eng. Notes/SIGPLAN Notices Software Eng. Symposium
on Practical Software Development Environments, Apr. 1984, 149-156.

J. Estublier, A Configuration Manager: The ADELE Database of Programs, Proceedings of
the Workshop on Software Engineering Environments for Programming-in-the-Large,
Harwichport, MA, June 1985, 140-147. :

J. Estublier, Configuration Management: The Notion and the Tools, Proceedings of the Inter-
national Workshop on Software Version and Configuration Control, Grassau, W. Germany,
Jan. 27-29, 1988, 38-61. "

S. C. Johnson, YACC—Yet Another Compiler Compiler, C. S. Technical Report #32, Bell
Laboratories, Murray Hill, NJ, 1975.

G. Kaiser and P. H. Feiler, SMILE/MARVEL: Two Approaches to Knowledge-Based Pro-
gramming Environments, Tech. Report CU-CS-227-86, Department of Computer Science,
Columbia University, New York, NY 10027, Oct. 1986.

G. Kaiser and P. H. Feiler, Granularity Issues in a Knowledge-Based Programming Environ-
ment, 2nd Kansas Conference on Knowledge-Based Saoftware Development, Manhattan, KA,
Oct. 1986.

G. Kaiser and P. H. Feiler, An Architecture for Intelligent Assistance in Software Develop-
ment, Proceedings of the Ninth International Conference on Software Engineering, Monterey,
CA, Mar. 1987, 80-88 .

K. Knight, Unification: A Multidisciplinary Survey, ACM Computing Surveys 21, 1 (Mar.
1989), 93-124.

D. B. Leblang and R. P. Chase, Jr., Computer-Aided Software Engineering in a Distributed
Workstation Environment, SIGPLAN Notices Notices 19, 5 (Apr. 1984), 104-112 .

D. B. Leblang and G. D. McLean, Jr., Configuration Management for Large-Scale Software
Development Efforts, Proceedings of the Workshop on Software Engineering Environments
for Programming-in-the-Large, Harwichport, MA, June 1985, 122-127.

M. E. Lesk, Lex — A lexical analyzer generator, C. S. Technical Report #39, Bell Laboratories,
Murray Hill, NJ, October 1975.

M. A. Linton, J. M. Vlissides and P. R. Calder, Composing User Interfaces with InterViews,
IEEE Computer, February 1989, 8-24.

A. Mahler and A. Lampen, Shape-- A Software Configuration Management Tool, Proceedings
of the International Workshop on Software Version and Configuration Control, Grassau, W.
Germany , Jan. 1988.

A. Mahler and A. Lampen, An Integrated Toolset for Engineering Software Configurations,
Proceedings of the ACM Software Eng. Notes/ISIGPLAN Notices Software Engineering Sympo-
sium on Practical Software Development Environments in SIGPLAN Notices Notices 24, 2
(Feb. 1989), 191-200.

J. K. Ousterhout, Tcl: An Embeddable Command Language, 1990 Winter USENIX Conference
Proceedings, 1990,

A. Rich and M. Solomon, A Logic-Based Approach to System Mecdelling, Workshop on
Software Configuration Management, Trondheim, Norway, June 1991, §4-93,

Adams and Solomon CAPITL Page 25

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

311

A. Rich, Logic-Based System Modelling, PhD Thesis, University of Wisconsin-Madison, Aug.
1991.

J. Richardson, M. Carey and D. Schuh, The Design of the E Programming Language, ACM
Trans. Prog. Lang. and Systems , to appear.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, Design and implementation of
the Sun Network filesystem, Proceedings of the Summer 1985 USENIX Conference, Portland,
OR, June 1985, 119-130.

R. W. Scheifler and J. Gettys, The X Window System, ACM Transactions on Graphics 16, 8
(Aug. 1983), 57-69.

M. Solomon, EFS: The Extensible File System, University of Wisconsin Technical Report, In
preparation.
S. M. Sutton, Jr., D. Heimbigner and L. J. Osterweil, Managing Change in Software Develop-

ment through Process Programing, University of Colorado at Boulder tech report #CU-CS-
531-91, June 1991. .

W. F. Tichy and M. C. Baker, Smart Recompilation, 12th Annual ACM Symposium on Princi-
ples of Programming Languages, New Orleans, Louisiana, Jan. 14-16, 1985, 236-244.

W. F. Tichy, RCS: A System for Version Control, Software—Practice and Experience 15,7
(July 1985), 637-654.

W. F. Tichy, Tools for Software configuration Management, Proceedings of the First Interna-
tional Workshop on Software Version and Configuration Control, Grassau, FRG, Jan. 1988, 1-
20.

D. Wiebe, Generic Software Configuration Management: Theory and Design, (Thesis) Univer-
sity of Washington Tech Report #90-07-03, 1990.

