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Abstract

What real-time, qualitative viewpoint-control behaviors are important for performing
global visual exploration tasks such as searching for specific surface markings, building a
global model of an arbitrary object, or recognizing an object? In this paper we consider
the task of purposefully controlling the motion of an active, monocular observer in order to
recover a global description of a smooth, arbitrarily-shaped object.

We formulate global surface reconstruction as the qualitative task of controlling the
motion of the observer so that the visible rim slides over the maximal, connected, recon-
structible surface regions intersecting the visible rim at the initial viewpoint. We show that
these regions are bounded by a subset of the visual event curves defined on the surface.

By studying the epipolar parameterization, we develop four basic behaviors that allow
reconstruction of a surface patch around any point in a reconstructible surface region. These
behaviors control viewpoint to achieve and maintain a well-defined geometric relationship
with the object’s surface, rely only on information extracted directly from images (e.g.,
tangents to the occluding contour), and are simple enough to be executed in real time. We
then show how global surface reconstruction can be provably achieved by (1) appropriately
integrating these behaviors to iteratively “grow” the reconstructed regions, and (2) obeying
four simple rules.

The support of the National Science Foundation under Grant Nos. IRI-9022608 and TRI-9220782 is gratefully
acknowledged.
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1 Introduction

Psychologists have long advocated the importance of simple behaviors in humans and biological
organisms in general, whose purpose is the active acquisition of specific information about the
environment (e.g., getting closer to an object if it is too far away, or picking up an object to de-
termine its weight) [1-4]. In the context of visual information processing, this view suggests that
the observer should be active, operating with a purpose within the environment and interacting
with it in real time, in order to perform a specific task. It further suggests that visual informa-
tion should be actively obtained rather than imposed [5], e.g., through an a priors determined
collection of images.

Computer vision research has only recently started to investigate this approach to visual
processing. However, it is becoming increasingly evident that a behavior-based [6], animate
[7], and purposive (8] approach to visual processing holds great promise for developing abilities
comparable to those of biological organisms; numerous recent results have shown that by using
and combining simple behaviors that control the camera, parameters (e.g., the direction of gaze),
real-time and robust solutions to navigation, reconstruction and tracking tasks, for example, can
be found [8-16].

To date, a behavior-based approach for visually exploring an unknown, arbitrarily-shaped
object has not been reported, although the significance of such an ability is clear [2,6]. In
this paper we present an approach that fills this gap. We ask the following question: What
behaviors are important for performing global, geometric tasks such as searching for specific
surface markings (e.g., manufacturer’s identification), building a global model of an object, or
recognizing an object?

A general approach to any of these tasks requires the ability to control the point of observation
based on the appearance of the viewed object. Behaviors implementing viewpoint control will
correspond to object manipulations [4,17,18], where an observer purposefully rotates a hand-
held object based on its appearance, or to observer motions, where the observer moves around
an object. The development of viewpoint-control behaviors for performing the above tasks is the

subject of this paper.



Before attempting to answer the question of what behaviors are important for solving these
visual exploration tasks, it is important to first ask how we are going to evaluate the behaviors
used. There are two issues here: Efficiency, i.e., how efficiently the viewing parameters can be
controlled to solve the task, and correctness, i.e., whether the task can always be accomplished
by an appropriate combination of behaviors. |

Like many others (e.g., [8]), we are only interested in behaviors that can be executed in
real time and that tightly couple sensing and action. This is because our purpose is to develop
behaviors that exploit the ability to quickly interact with the environment to achieve simple
and real-time solutions for a given task, rather than rely on the availability of large amounts of
computational power [19].

Unfortunately, the correctness of a behavior or a collection of behaviors for performing a
given task is much harder to evaluate. One way is to conduct an experimental validation, ie.,
implement them and see how they perform under various conditions [20]. Instead, before building
and testing an experimental system, we take a theoretical approach to this problem. We prove
that the behaviors used will always perform the task. In this respect, we believe that a major
contribution of our approach is a methodological one; although the behaviors we present are
qualitative, fairly intuitive, and implementable in real time, they have provable properties and
their success can always be evaluated in terms of the geometry of the surfaces being explored.
When trying to perform tasks that depend on the appearance of an object, the use of such
provably-correct behaviors is critical: The appearance of objects can drastically change depending
on the observer’s viewpoint, making ad hoc behaviors unpredictable, incomplete, and even non-
terminating.

So how can one guarantee that a collection of behaviors will always perform a given task?
The answer is to first isolate each behavior and study its effects (e.g., how each behavior controls
a viewing parameter) and then, even more importantly, to study their interactions [14,21-25].
We believe that it is in this long-range interaction and cooperation between the component
behaviors that the solution to global geometric tasks lies. We put particular emphasis on this
point, studying how each one of the developed behaviors affects each other, and how in unison

they solve the task.




Based on the above general principles, in this paper we develop a collection of behaviors for
deriving a global, three-dimensional description of an object. We assume the object is stationary
and the observer is able to freely move on a sphere around the object. The behaviors we describe
solve the following problem: How should the motion of the observer be controlled in order to
generate a dense sequence of images that maximizes the area of the reconstructed regions on the
object? We call this the global surface reconstruction task. We use a shape-from-motion module
for extracting surface shape information [26,27]. We consider this task for smooth surfaces of
arbitrary shape; the viewed object is unknown, can be non-convex, and can self-occlude.

Our goal is to identify a collection of general behaviors that are important not only for
performing this reconstruction task, but also for performing other more qualitative tasks requiring
visual inspection of an object’s surface (e.g., searching for surface markings) that do not require
surface reconstruction. The connection of the global surface reconstruction task with these
qualitative tasks is strong because an important underlying issue in all these tasks is how to
control viewpoint so that previously-occluded points on the object’s surface become visible.

In order to ensure that the developed behaviors are applicable to tasks in which surface
reconstruction is not required, we pay particular attention to the kind of visual information used
to control the motion of the observer. Our viewpoint-control behaviors rely on qualitative surface
shape information that can be directly extracted from image features (specifically, the occluding
contour) and do not rely on the quantitative three-dimensional information provided by the
shape-from-motion module. Consequently, we believe that the behaviors developed here are of
interest for performing visual exploration tasks that do not presuppose the ability to reconstruct
the object’s surface.

Very little work has been published on the use of real-time viewpoint-control behaviors for
reconstruction, exploration or recognition tasks. However, the few recent approaches taking ad-
vantage of viewpoint-control behaviors demonstrate their importance and generality. We showed
in an earlier paper [28] that the shape recovery problem for smooth surfaces becomes consid-
erably simplified if the observer uses a simple viewpoint-control behavior to move to a special
viewpoint, which for the case of surfaces of revolution corresponds to their side view. The work of

Wilkes and Tsotsos [29] illustrates how the ability to purposefully change viewpoint can simplify



the task of object recognition in a simple world of Origami objects. Grosso and Ballard [30]
are currently designing a head-eye system for implementing viewpoint-control behaviors. Recent
work by Blake et al. [31] showed that shorter paths can be achieved in robotic navigation tasks
if the shape of the obstacles is taken into account during navigation.

Apart from the above approaches, viewpoint control for performing various tasks has been
treated as a complex and computationally-intensive optimization problem (i.e., “where to look
next”), where the best next viewpoint is searched for within the space of all possible viewpoints
[32]. In tasks involving surface reconstruction, the viewpoint-control mechanisms assumed that
o three-dimensional representation of the visible surfaces can be recovered independently from
each viewpoint [33-35], ruling out the applicability of these mechanisms in more qualitative visual
exploration tasks. Another disadvantage of these approaches to surface reconstruction is that
they do not consider how the global geometry of the surface (e.g., self-occlusions) affects the
correctness of their reconstruction algorithms, relying instead on heuristic optimization criteria
for selecting the observer’s next viewpoint. This makes the surface regions that are reconstructed
unpredictable. Moreover, in the context of animate and purposive vision, their major drawback
is their inability to exploit the real-time control of the observer’s viewpoint to simplify the
procedure for solving the task (e.g., by utilizing shape-from-motion approaches, which have been
shown to considerably simplify shape recovery computations [26,27,36]), as well as to simplify

the viewpoint control process itself.

1.1 Global Reconstruction from the Occluding Contour

The behaviors we develop in this paper control the observer’s motion so that surface shape
information can be recovered from a dense sequence of images using a shape-from-motion module.
We assume that the shape-from-motion module uses the occluding contour for recovering this
information. The occluding contour is the projection of the visible rim, the one-dimensional
set of visible points at which the line of sight is tangent to the surface (Figure 1). It is well
known that the occluding contour is a rich source of shape information [37-46]. Furthermore,
contrary to approaches that use sophisticated sensing mechanisms to reconstruct the scene from

a single viewpoint or a small number of viewpoints [22, 33, 34], recent results demonstrate that
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the occluding contour can be reliably detected in edge images [27,47-49], and that quantitative
shape information (e.g., curvature) can be efficiently and accurately recovered from the occluding
contour [27,31].

An important property of both the occluding contour and the visible rim is that they depend
on the viewpoint of the observer and the shape of the surface: Under continuous observer motion
the visible rim slides over the surface and may change its connectivity, affecting the geometry
and topology of the occluding contour (Figures 1(b),(c)), and revealing shape information for the
parts of the surface over which the visible rim slides. The deformations of the occluding contour
have been studied by Giblin and Weiss [50], Cipolla and Blake [27], Vaillant and Faugeras [47],
and Koenderink [51,52], while the contour’s topological changes have been an active research
topic for more than a decade (e.g., [52-54]). Much of the analysis we present in this paper builds
on this work.

The assumption that the deforming occluding contour is used for recovering surface shape
information allows us to perform global surface reconstruction by answering the question: How
should the observer’s motion be controlled so that the area of the surface regions over which the
visible rim slides is maximized?

This formulation of the global surface reconstruction task is particularly important because
it allows us to separate the issuc of controlling the viewpoint of the observer from the issue of
reconstructing the surface, i.e., processing the images produced during the observer’s motion. It
does not presuppose the ability to reconstruct the surface, and allows us to develop qualitative
viewpoint-control behaviors that do not require measuring distances to points on the viewed
surface or recovering the surface shape at such points. This allows the behaviors described in
this paper to be used for other visual exploration tasks.

To illustrate the qualitative nature of the behaviors we use, consider the following simple
example. Suppose an observer is level with a point on a hill top; then this point will belong to
the visible rim, which separates the visible points on the hill from the occluded points. By moving
up or down, the observer will see just over the hill or not quite to the top, respectively. These
motions cause the visible rim to slide over a neighborhood of that point, allowing reconstruction

of the surface in its neighborhood. Clearly, this behavior is qualitative in the sense that it does
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(b) (c)

Figure 1: (a) Because of its geometry, part of the teapot’s surface is not reconstructible. (b)
The occluding contour corresponding to the view of the teapot in (a). (c) The occluding contour
corresponding to a side view of the teapot. Note that the topology (i.e., connectivity) of the
occluding contour is different from that in (b).

not require any knowledge of the observer’s distance to the hill or of the curvature of the surface
near the hill top. However, after processing the images obtained during the observer’s motions
these quantities can be computed.

Before we begin our analysis of the global surface reconstruction task and the behaviors we
use to solve it, it is important to understand the kinds of results we expect. Suppose we want

to reconstruct the surface of the teapot shown in Figure 1(a) by moving on a large sphere that




encloses it. Clearly, the interior surface of the spout cannot be completely reconstructed because
a portion of that surface will never be visible. This visibility constraint puts an upper limit
on the set of reconstructible points, i.e., it tells us what is the most we can expect from any
behavior that controls the observer’s motion on a sphere around the teapot. Depending on what
surface features are used for recovering surface shape information, geometric constraints other
than simple point visibility may render additional regions of the surface unreconstructible, and
the reconstructible points may form disconnected sets. For example, when the occluding contour
is used (as we do), the shape of concave tegions on a surface cannot be reconstructed because
the visible rim will never slide over such regions. Given these geometric constraints, the global
surface reconstruction task requires controlling the observer’s motion, starting from some initial
position, so that the visible rim slides over all reconstructible regions on the object’s surface that
intersect the visible rim at the initial position. We study this specific formulation of the global
surface reconstruction task in the rest of the paper.

Despite these constraints, a substantial fraction of the surface of common objects is recon-
structible. For example, the surface of a torus and the exterior surface of the teapot in Figure
1(a) are both completely reconstructible. In general, the constraints imposed by surface self-
occlusions and the use of the occluding contour define a collection of surface curves that bound
the unreconstructible regions on the surface. Examples of such regions are surface concavities,
which are bounded by parabolic curves on the surface. These curves belong to a special class of
surface curves, the visual event curves [53], which we discuss in detail later.

How easy is it to develop viewpoint-control behaviors that can provably perform the global
surface reconstruction task? One would hope that the simple behavior used for reconstructing
the surface around a hill top could be easily extended to globally reconstruct surfaces of arbitrary
shape. Unfortunately, this is not the case. Intuitively, the reason for this is that although the
observer has some control over the motion of the visible rim over the surface, this control is not
complete; the motion of the visible rim also depends on the shape of the surface itself. In addi-
tion, the topology of the visible rim may change, further complicating this global reconstruction

process.

To illustrate the difficulties involved in global surface reconstruction, consider the surface in



Figure 2(a), an ovoid with a dent. Suppose the observer wants to reconstruct the surface in the
vicinity of the visible rim segment §. This is similar to the previous example of the hill top.
Now suppose the observer wants to use the same behavior for reconstructing the whole surface.
This means that the surface shape for all points along the dark line drawn on the surface must
be recovered. As the observer continues to move upward, however, the visible rim slides on the
surface to the right and eventually stops overlapping the dark line (Figure 2(c)). This means
that the surface shape for points on the dark line will no longer be reconstructed if the observer
continues to move upwards. A different viewpoint-control behavior is now required to continue
the reconstruction of the surface along the dark line. A similar difficulty also occurs when the
torus in Figures 2(d)-(e) is reconstructed, although in this case the difficulty arises from changes
in the topology of the occluding contour.

The difficulties illustrated in these examples show that a number of different behaviors are
needed for performing global surface reconstruction, and the observer must, under certain cir-
cumstances, switch between these behaviors. It is therefore necessary to ask how many such
behaviors are required, how many times these behaviors will be executed, and even whether the
global reconstruction process will always terminate. These questions are precisely the reason why
provable correctness of the developed behaviors is necessary: Since the answers to these ques-
tions are not evident even for the geometrically simple surfaces in the examples above, provable
correctness of the developed behaviors is required if one hopes to apply them for reconstructing
a real object.

In order to guarantee the correctness of the behaviors we develop in this paper, we require
that the reconstruction process is non-terminating only if the shape of the surface does not permit
global reconstruction in a finite number of steps. Furthermore, we require that the behaviors
are convergent and complete, i.e., the set of reconstructed points on the surface converges to
a well-defined set when the reconstruction process does not terminate, and it is equal to the

reconstructible surface regions intersecting the visible rim at the initial viewpoint.




(a) (b) (c)

(d) (e) (f)

Figure 2: Difficulties involved in globally-reconstructing a dimple-shaped surface and a torus.
(a)-(c) The observer is moving in an upward direction in order to reconstruct the surface in the
vicinity of the tracked visible rim segment [3. (d)-(f) The observer is moving in a downward
direction in order to reconstruct the surface in the vicinity of the tracked segment (. This
segment has already disappeared when the observer reaches the viewpoint corresponding to (f);
further downward motion cannot be used to reconstruct the surface in the vicinity of the dark
line drawn on the surface (the dark line corresponds to a parallel [55] of the torus).

1.2 Paper Overview

We study global surface reconstruction by first developing a collection of behaviors that perform
simpler tasks, and then generalizing them to address the complete task (Table 1). Using this

paradigm, we develop our behaviors in the context of three increasingly more general reconstruc-



tion tasks: The local surface reconstruction task, where the observer must control viewpoint to
reconstruct a patch around a selected surface point; the incremental surface reconstruction task,
where the observer must control viewpoint to iteratively “grow” a reconstructed region on the
surface; and the global surface reconstruction task, where an entire reconstructible region on the
surface must be reconstructed.

Section 2 reviews basic terminology and discusses the constraints imposed on the shape-
recovery capabilities of the observer when the occluding contour is used for reconstruction and
when the observer’s motion cannot be controlled. These constraints are captured in four Epipolar
Reconstructibility Constraints defined in Section 2.1, and lie at the heart of our analysis. Section
3 considers the local surface reconstruction task. We show how the Epipolar Reconstructibility
Constraints give rise to four instances of the local surface reconstruction task, and then we
describe four behaviors to perform this task, each of which applies to one specific instance of the
task. These behaviors are considered in isolation, by temporarily ignoring the ways in which the
behaviors can interact. The behaviors are discussed at a fairly high level, purposefully omitting
steps that are not pertinent to the local task of reconstructing a small patch on the surface.

The local analysis of Section 3 provides us with a characterization of the maximal recon-
structible regions on the surface. This characterization is considered in Section 4. It tells us what
is the most we can expect from any approach that uses the occluding contour for reconstruction,
and makes precise the goal we wish to achieve in performing global surface reconstruction. Having
characterized the reconstructible regions, Section 5 analyzes how the four behaviors performing
the local surface reconstruction task should be integrated. We consider this issue in the context
of the incremental surface reconstruction task.

Finally, we consider the global surface reconstruction task in Section 6. We show that in
order to use the behaviors developed in the previous sections to perform global surface recon-
struction, the observer must obey a number of “rules” when executing these behaviors. We
specify these rules with the help of three increasingly more general global reconstruction tasks:
The semi-global curve reconstruction task and the global curve reconstruction task, which require
the reconstruction of a curve drawn on the surface, and the global surface reconstruction task.

The main result of the paper is Theorem 7, presented in Section 6.3, which shows that global
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Reconstruction Task | Section considered Behaviors used Rules obeyed
Local surface 3 Patch Reconstruction —
reconstruction task (4 behaviors)

Incremental surface ) Incremental Reconstruction —
reconstruction task Patch Reconstruction

Semi-global curve 6.1 Incremental Reconstruction | Rules 1-3
reconstruction task Patch Reconstruction

Global curve 6.2 Tncremental Reconstruction | Rules 1-4
reconstruction task Patch Reconstruction

Global surface 6.3 Tncremental Reconstruction | Rules 1-4
reconstruction task Patch Reconstruction (generalized)

surface reconstruction (i.e., all reconstructible re

Table 1: The tasks considered in the paper.

gions intersecting the visible rim at the initial

viewpoint are reconstructed) is always achieved when the observer uses the developed behaviors

and obeys the associated

rules.
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2 Surface Shape from Occluding Contour

We begin by specifying the class of surfaces considered in this paper. We assume the viewed
surface S is smooth, opaque, oriented, and bounds an open volume V' in R3. Since our ultimate
goal is global reconstruction of the surface, we constrain V to be finite and S to be finitely
complicated (e.g., S has a finite number of undulations), a notion to be made more precise later
(Sections 3.4 and 6.3). Finally, to simplify our exposition we will assume that the viewed surface
is generic. Informally, generic surfaces exemplify the notion of non-degeneracy: They are surfaces
whose topological and geometrical characteristics (e.g., parabolic curves, the Gauss map) are not
affected by infinitesimal perturbations of the surface. Generic surfaces have been the subject of
active research in singularity theory [56]; their precise definition is rather technical and beyond
the scope of this paper. Although in this paper we focus on the global reconstruction of generic
surfaces, our results generalize directly to non-generic surfaces.

We assume that S is viewed under spherical projection, and that the observer moves on a
motion sphere surrounding the surface. In this case, the space of viewpoints is identical to the
observer’s motion sphere.! Visible points on S project to a spherical image that can be modeled
as the unit sphere centered at the observer’s position (Figure 3). Since S is opaque, only a subset
of § will be visible from any given viewpoint: A point p € S is visible from viewpoint ¢ if and
only if the line segment connecting p and ¢ does not intersect V' otherwise p is occluded.

Suppose x(s,t) is a local parameterization of S in the neighborhood of p. The partial deriva-
tives x,(p), X:(p) of x with respect to s and ¢ define T,(S), the plane tangent to S at p. The
rim of S at viewpoint c is the set of surface points for which T,(S) contains the line segment
connecting p and c. For these points the projection mapping is singular. The visible rim consists
of the rim points that are visible. The occluding contour of S is the projection of the visible rim
on the image (Figure 3).

The occluding contour is a collection of open and closed smooth curves for almost all positions
of the observer. The endpoints of open occluding contour curves are either cusps or T-junctions

[51]. The shape and topology of this collection of curves depends on S and the observer’s position.

1n the following we use the terms “viewpoint” and “observer position” interchangeably.
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Image of
T,(8)

Visible im

cusp

Figure 3: Viewing geometry. The projection, pecc, of a point p on the spherical image can be
thought of either as a point on the unit sphere or as a unit vector in the direction of the ray
passing through p and the observer’s viewpoint, ¢. The visible rim and the occluding contour
corresponding to the projection of a bean-shaped surface are shown (adapted from [50]). The
occluding contour consists of a single curve whose endpoints are a T-junction and a cusp. For
simplicity, we show the visible rim projected to a planar image perpendicular to poce-

Giblin [50] and Cipolla [27] showed that under continuous observer motion along a curve c(t),
the changes in the geometry of the occluding contour can be used to completely describe the
local shape of the surface (i.e., curvature) at points on the visible rim.

Specifically, suppose the observer is moving along a smooth curve c(t) and p is a point lying
on the visible rim when the observer is at position c(fo). The local shape of the surface at p can
be described by finding a suitable parameterization X for the surface in a neighborhood IT of p
and calculating the first and second fundamental forms of S with respect to x [52]. Furthermore,
if such a parameterization can be found, the first and second fundamental forms for all points in
TI can be computed. This allows the recovery of the local shape of S for a whole patch of points
containing p. A suitable parameterization that relates the deformation of the occluding contour
with the local shape of the surface at p is the epipolar parameterization [27,50, 57], discussed

below.
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2.1 The Epipolar Parameterization

Intuitively, the epipolar parameterization captures the idea that under continuous motion of the
observer (and when the topology of the occluding contour does not change), the set of points
comprising the visible rim consists of smooth curves that “slide” over the surface. This allows
the non-concave parts of the surface to be considered as a collection of patches, each of which is
a family of visible rim curves.

In particular, suppose that the observer changes viewpoint in a continuous fashion by tracing
a smooth curve ¢(t),t € [t;,t,] and that point p belongs to the visible rim when the observer is
at some intermediate position c(to). The epipolar parameterization is a local parameterization
describing a surface patch I in the neighborhood of p in terms of the visible rim and the instan-
taneous direction of motion v(t) = ¢/(t) of the observer. This patch is defined by a region R of
R2 with R = {(s,8)|t € [ti, tu], s € (s1(t), su(t))}, and a mapping x : R +— II such that (Figure
4):

@ X(S()a t()) =D,
e x(s,1o+ At) is a smooth visible rim curve® at viewpoint c(to + At), and

o x(so+8s,1t) is a smooth curve® whose tangent at ¢ is along the vector x(so+6s,1) — c(t) and
whose normal belongs to the epipolar plane defined by the vector product [x(so + és,t) —
¢(t)] Av(t). This curve defines a correspondence between a visible rim point at c(t) and at

c(t + At).

See [27, 50] for details on how the epipolar parameterization can be used to recover the first and
second fundamental forms of the surface for all points in II.

The crucial point in the definition of the epipolar parameterization is that the epipolar param-
eterization imposes strong constraints on the observer’s shape-recovery capabilities. We outline

the four constraints that a surface point p must satisfy below.

2For At fixed and s such that (s,to + At) € R.
3For s fixed and t such that (s + s,t) € R.
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epipolar
plane

X(S| (t)vt)

Figure 4: Epipolar parameterization for a surface patch IT around point p. The parameterization
% defines a mapping from R to IL. Curves x(s,tp) and x(s,to + At) are curves on the visible
rim of the surface corresponding to positions c(tp) and c(ty + At), respectively. The tangent to
the curve x(so,t) for t = to is along the line through c(to) and p. The curve’s normal is in the
epipolar plane defined by the direction of motion, v(t), and the line connecting ¢(to) and p.

Epipolar Reconstructibility Constraints

CO0: p must be visible from some viewpoints on its tangent plane. Otherwise, p will never belong

to the visible rim.

C1: If c(t) is the observer’s viewpoint and p is on the visible rim, p must not be the endpoint of

a visible rim curve. This is because it was assumed that x~(p) € R.

C2: If ¢(t) and v(t) are the observer’s viewpoint and velocity, respectively, and p is on the visible
rim, T,(S) must not contain v(t). This is because in that case x; = 0 (i.e., point p remains
on the visible rim under an infinitesimal viewpoint change [28,57]) and consequently Xs AX;

does not define the tangent plane of S at p.

C3: The line segment connecting p and the observer’s position must not be a ruling of the surfaces
bounding the volume of viewpoints where the topology of the occluding contour and the
visible rim (i.e., their connectivity) is constant. This is because the topology of the visible
rim curve containing p must not change in the neighborhood of p under an infinitesimal

motion of the observer. Ounly a finite collection of curves on the surface cannot satisfy this
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constraint. These curves bound the surface points not satisfying constraint CO. They are

a subset of the visual event curves, which are discussed in Section 2.2.

The Epipolar Reconstructibility Constraints show that the epipolar parameterization cannot
be used to describe the surface in the neighborhood of any visible rim point. Consider, for
example, the situation shown in Figure 3. If the view of the bean-shaped surface from a position
along the observer’s path is the one shown in the figure, the epipolar parameterization cannot be
used to define a surface patch that surrounds the endpoints of the visible rim curve; the points
projecting to the cusp and the T-junction can only be contained in the boundary of such a patch.
Hence, the local shape of the surface in a neighborhood of those points cannot be recovered.

The above constraints also show that the surface patch II depends on how the visible rim curve
x(s, to + At) slides over the surface when At varies continuously. Consequently, the dynamics
of the visible rim curves determine the patches reconstructed. These dynamics depend on the
local and global shape of the surface as well as the motion of the observer. Therefore, if the
observer’s motion cannot be controlled, the parts of the surface that are reconstructed from the
deformation of the occluding contour cannot be controlled.

The Epipolar Reconstructibility Constraints allow us to characterize the surface regions that
are reconstructible on the surface, i.e., they tell us what is the most we can expect from any
viewpoint-control behavior that uses the epipolar parameterization for surface reconstruction. In

particular, we have the following characterization of the reconstructible points on the surface:

Reconstructible surface regions: The reconstructible regions on a surface are the
maximal connected sets of surface points for which all four Epipolar Reconstructibility

Constraints can be simultaneously satisfied.

We will see that the reconstructible surface regions are bounded by surface points that can
satisfy constraint CO but not constraint C3. Constraint C3 applies only to surface points that
belong to visual event curves. In the next section we briefly describe these curves and their

relationship to the topological changes of the occluding contour and the visible rim.
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2.2 Visual Events and their Associated Visual Event Curves

The topology of the occluding contour of a smooth surface is stable for almost all viewpoints of
the observer. That is, for almost all viewpoints, the contour’s topology does not change when
these viewpoints are infinitesimally perturbed (e.g., see [52,58]). Results from singularity theory
show that the space of viewpoints can be partitioned into a collection of maximal connected
cells within which the topology of the occluding contour remains constant. Visual events occur
when the observer’s viewpoint belongs to the boundaries of these maximal cells. An infinitesimal
perturbation of such a viewpoint results in changes in the topology of the occluding contour. A
catalog of the visual events was given by Kergosien [56] for the case where a surface is smooth,
generic and transparent (i.e., the occluding contour is considered to be the projection of all rim
points, not just the points on the visible rim), and is observed under orthographic projection.

In the spherical projection model and when the observer is able to freely move in R3, the
cells for which the occluding contour’s topology is constant occupy volumes in three-dimensional
space. When the observer is constrained to move on a sphere, the viewpoints of constant contour
topology correspond to the intersections of the motion sphere with these three-dimensional cells.
The boundaries of these cells are manifolds of codimension one, two and three, i.e., they are sur-
faces, curves and points, respectively. Visual events of codimension one occur when the observer’s
viewpoint belongs to a surface bounding a cell of constant contour topology. Higher Codlmensmn
visual events occur at the intersections of surfaces associated with events of codimension one.
In the following we only use results from the analysis of codimension one events for transparent
generic surfaces; see [54] for a detailed discussion of visual events of higher codimension and
the geometry of viewpoint space partitioning in the neighborhood of such viewpoints both for
transparent and opaque surfaces.

The cell boundaries corresponding to codimension one events are ruled surfaces, i.e., they can
be represented as a l-parameter family of lines called rulings. Each visual event is associated with
such a ruled surface. The surface rulings are lines that contact the surface at multiple points, or

have a high order contact with the surface at one or more points.* These lines touch the surface

4 A line is said to have n-th order contact with a surface at a point p when all directional derivatives at p along
the line up to (but not including) order n are zero.
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at points on certain characteristic curves associated with the visual event [51,53]. When a visual
event occurs, the observer’s viewpoint is contained in a line [ of the ruling and there is a point
on the rim for which the line [ connecting it to the observer’s viewpoint has a high order contact
with the viewed surface or touches the surface at multiple points.

Visual events are classified into local and multilocal events, depending on whether the line {
touches the surface at one or more points. Local events occur when [ has high order contact with
the surface at exactly one point. In this case the observer’s viewpoint is contained in a ruled
surface that touches the surface along a single curve characterizing the event. Multilocal events
occur when the line [ contacts the surface at at least two points. The observer’s viewpoint in this
case belongs to a ruled surface that touches the surface along two or more curves. Figure 5 shows
the topological changes corresponding to all possible local and multilocal events of codimension
one.

The local events are the swallowtail, beak-to-beak and lip events (Figure 5(a)). These events
occur when there is a visible rim point p for which the line [ connecting it to the observer’s
viewpoint has fourth order contact with the surface. The swallowtail event occurs when p is on
a flecnodal curve [51], while the lip and the beak-to-beak events occur when p is on a parabolic
curve.

The multilocal events of codimension one are the triple-point, tangent-crossing and cusp-
crossing events [53] (Figure 5(b)). Triple-point events occur at viewpoints where there is a
triplet of collinear rim points whose supporting line [ passes through the observer’s viewpoint.
These three points project to a single point on the occluding contour. The line / has second
order contact with each of the points. The ruled surface associated with a triple-point event
contains rulings that touch the surface at three distinct points; it is formed by sweeping [ while
maintaining three-point contact with the surface. These points trace three curves on the surface,
71(t), 72(t), Tmia(t) (0 < ¢ < T), such that for all ¢ < T' the line through 71(t), T2(t), Tmaa(t) is
tangent to the surface at the three points and 7m4(t) corresponds to the middle point of contact.

A tangent-crossing event occurs at viewpoints where there is a pair of rim points with a
common tangent plane whose supporting line [ passes through the observer’s viewpoint. The ruled

surface associated with this event touches the surface along two curves, 71 (t), y2(t) (0 <t < T),
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Figure 5: Visual events (adapted from [59]). Intermediate views of the occluding contour cor-
respond to viewpoints on the boundaries of regions of constant contour topology. For these
viewpoints, the line [ through the observer’s viewpoint and the rim point(s) projecting to P has
a high order contact with the surface, or touches the surface at multiple points. The visible
rim point projecting to P farthest away from the observer’s viewpoint is a point for which the
Epipolar Reconstructibility Constraint C3 is not satisfied. The events represent changes in the
topology of the occluding contour of a transparent surface. Also shown are examples of how
these events appear when the viewed surface is opaque. (a) Local events. In a swallowtail event
the occluding contour develops a singularity and then it breaks off into three segments forming
two cusps and a T-junction. In a beak-to-beak event two occluding contour curves (of which
only one is the projection of a visible rim curve) meet at a point and then split off, generating
two cusped contours. In a lip event a cusped contour appears out of nowhere. (b) Multilocal
events. In a triple-point event, points on three occluding contour segments project to a single
point. In a tangent-crossing event two contours meet creating a pair of T-junctions. Finally, in
a cusp-crossing event three occluding contour segments connected by two T-junctions split off
with one of the segments ending with a cusp.

such that for all ¢t < T, the line through 7 (¢) and ~,(t) is tangent to the surface at those points.
Finally, a cusp-crossing event occurs at viewpoints where there is a rim point projecting to a
cusp of the occluding contour and another rim point whose supporting line ! passes through
the observer’s viewpoint. In this case, [ has third order contact with the rim point projecting

to the cusp and second order contact with the other one. Again, the ruled surface associated

19



with a cusp-crossing event is created by sweeping ! while maintaining one second-order and one
third-order contact with the surface. It touches the surface along two curves, o(t) and eusp(t)
(0 <t < T), such that for all ¢ < T the line through o(t) and ocysp(t) is tangent to the surface
at o(t) and has third-order contact at veysp(?)-

From the description of the visual events given above, it follows that each visual event is
associated with a collection of curves on the surface, called the visual event curves. In particular,

we can define the following visual event curves on the surface:
e the parabolic curves of the surface
e the flecnodal curves of the surface
o the curves 7(t), To(t), Tmia(t), associated with triple-point events
e the curves v;(t), v2(t), associated with tangent-crossing events
o the curves o(t), ocusp(t), associated with cusp-crossing events

The analysis of the visual events associated with generic surfaces generalizes to non-generic
surfaces in the following sense. Visual events for non-generic surfaces also occur when the line
connecting the observer’s viewpoint and a point on the surface has high order of contact with the
surface, or when that line touches the surface at multiple points. Consequently, the same catalog
of visual events is still valid. However, degeneracies may also occur: The visual event “curves”
defined above may in fact become two-dimensional regions on the surface (e.g., all points on a
cylinder are parabolic). See [59] for a discussion of this issue in the case of algebraic surfaces
(which are not generic), and the computation of visual event curves for these surfaces.

A subset of the visual event curves defined above bounds the maximal region on the surface

that can be reconstructed by any viewpoint-control behavior. We characterize this boundary

precisely in Section 4.
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3 Behavior-based Reconstruction of Local Surface Patches

In this section we consider the local surface reconstruction task: Suppose the observer is at
position ¢, and let p be a visible rim point on the object’s surface that is identified by its
projection, Pecc, on the occluding contour. The task of the observer is to continuously control
viewpoint, starting from point ¢, in order to recover the local shape of the surface for all points
in some neighborhood II of p using the epipolar parameterization. To perform this task we pay
closer attention to the four Epipolar Reconstructibility Constraints that the point p must satisfy
so that the epipolar parameterization can be used to describe a neighborhood of that peoint. In

particular, we use the following three observations:

e If p is not the endpoint of a visible rim curve and the visible rim’s topology does not
change in a neighborhood IT of p if the observer’s viewpoint is infinitesimally perturbed,
the observer’s motion can be controlled so that the surface in IT can be described by the
epipolar parameterization. This observation allows us to control the observer’s motion so

that Epipolar Reconstructibility Constraint C?2 is satisfied for p.

e If p is the endpoint of a visible rim curve, the epipolar parameterization cannot describe
the surface in the neighborhood of p. However, there are other viewpoints on p’s tangent
plane at which p is not the endpoint of a visible rim curve. This observation allows us to

control the observer’s motion so that Epipolar Reconstructibility Constraint C1 is satisfied

for p.

e The point p and the observer’s viewpoint may be such that the occluding contour’s topology
changes in the neighborhood of p under an infinitesimal viewpoint perturbation. For all
points p except those lying on a subset of the visual event curves, the observer can move to
other viewpoints on p’s tangent plane at which the contour’s topology does not change
in the neighborhood of p if these viewpoints are infinitesimally perturbed. Points for
which Epipolar Reconstructibility Constraint C3 cannot be satisfied cannot have their

neighborhood reconstructed by any viewpoint-control behavior.
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Based on these observations, for any given viewpoint we distinguish four types of visible rim
points that indicate the position of those points within the visible rim curve containing them and
the Epipolar Reconstructibility Constraints that need to be satisfied: Ordinary points, which are
not endpoints of a visible rim curve and that satisfy constraint C3; cusp points, which are visible
rim endpoints projecting to a cusp on the occluding contour and that satisfy constraint C3;
T-junction points, which are visible rim endpoints projecting to a T-junction on the occluding
contour and that satisfy constraint C3; and degenerate points, which are visible rim points not
satisfying constraint C3. These four classes of visible rim points are exhaustive and define four
instances of the local surface reconstruction task.

To perform the local surface reconstruction task we use a basic behavior that controls the
motion of the observer in order to deal with the case where p is an ordinary visible rim point.
This behavior is a generalization of the example behavior discussed in the Introduction for recon-
structing a surface patch around a hill top. The other three cases are treated by (1) controlling
the position of the observer in order to reach a viewpoint where p is an ordinary visible rim point,
and (2) using the basic behavior in order to recover the shape of the surface in a neighborhood

of that point. Table 2 summarizes these behaviors.

Visible rim | Constraints that need Behavior used to Section
point type to be satisfied satisfy constraints presented
Ordinary C2 Ordinary Patch Reconstruction Behavior 3.1
Cusp C1,C2 Cusp Patch Reconstruction Behavior 3.2
T-junction C1,C2 T-junction Patch Reconstruction Behavior 3.3
Degenerate C1,C2,C3 Degenerate Patch Reconstruction Behavior 3.4

Table 2: Behaviors used for performing the local surface reconstruction task.

3.1 Behavior-based Reconstruction Around Ordinary Points

In this section we assume that the observer is initially positioned at point ¢ and has selected an
ordinary visible rim point p. The task of the observer is to move in a way that allows the surface
shape for all points in a neighborhood of p to be recovered.

Since p lies on the visible rim, any neighborhood of p will contain three types of points, namely
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points that are occluded, points that lie on the visible rim, and points that are visible but do not
lie on the visible rim. Consequently, in order to recover the shape of the surface for all points
in a neighborhood of p, the observer must control its motion so that neighboring points that are
either occluded or visible from position ¢ become part of the visible rim. Intuitively, this means
that the task of recovering the shape of the surface for all points in a neighborhood of p using
the epipolar parameterization is equivalent to the task of controlling the motion of the observer
so that the smooth visible rim curve containing p “slides” over all points in that neighborhood.

The task of forcing the rim to slide over all points in a neighborhood of p can be cast as
the task of inducing the visibility or the occlusion of all points in this neighborhood. Under
continuous motion the observer traces a path that is a continuous curve. From any viewpoint
along this path, the points belonging to the visible rim are in a transitional visibility state. Some
visible rim points will become occluded under an infinitesimal change of viewpoint along the
path, and some will remain visible but leave the rim. Hence, the task of forcing all points in a
neighborhood of p to lie on the visible rim for some position along the observer’s path cbrresponds
to the tasks of (1) inducing the visibility of all points in a neighborhood of p that are occluded
when the surface is viewed from the observer’s initial position, and (2) inducing the occlusion of
all points in a neighborhood of p that are visible from the initial position.

Suppose the observer changes viewpoint by tracing a smooth curve c(t) with ¢(0) = ¢, and
let v(t) = ¢/(t) be the instantaneous direction of motion. Given a segment ((¢) of the visible
rim at viewpoint c¢(t), the epipolar parameterization allows us to define the segment B(t + 6t)
of the visible rim at c(t + 6t) that corresponds to B(t). Theorem 1 shows that we can get a
qualitative characterization of the motion of the visible rim over the surface by looking at the

surface normal:

Theorem 1 (Visibility transition dynamics) Suppose n(q) is the outward surface normal at
q and that the observer’s position is c(t). If BE®), ..., B 1) and By (), .. ,Bn(t) are the (open)
smooth segments of the visible rim that contain ordinary points q satisfying n(q) - v(t) > 0 and

n(q) - v(t) < 0, respectively, then

1. all points B (t+6t), i=1,...,n, are occluded from position c(t).
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2. all points B (t+6t), i =1,... ,m, are visible from position c(t).

3. All ordinary visible rim points satisfying n(g) - v(t) = 0 will be contained in the visible Tim

at (t+6t).

The proof of Theorem 1 can be found in Appendix A.

When the observer continuously changes viewpoint along a smooth curve c(t) (tstart < T <
tena), the visible rim segments will slide over the surface. If B;(t) is the segment containing the
selected point p, B;(t) will trace a patch II on the surface around p that can be described using the
epipolar parameterization. The boundary of this patch consists of the segments B;(tstart), Oi(tend)
contained in the visible rim at viewpoints c(tsirt), C(tend), respectively, and the traces of the
endpoints of f§;(¢). The endpoints of f;(t) will either be points satisfying n(p) - v(t) = 0, or
will be the endpoints of a visible rim curve. The following simple, qualitative viewpoint-control

behavior can now be used to solve the local reconstruction task around p (Figure 6):

Ordinary Patch Reconstruction Behavior

Step 1: Select a point p on the visible rim that is not the endpoint of a visible rim curve. This
selection is done indirectly by selecting p’s projection, poce, on the occluding contour. Point

Doce Must not be the endpoint of an occluding contour curve.

Step 2: Compute the surface normal at p. The normal is given by T A poc, where T is the

tangent to the occluding contour at poc. [51]-

Step 3: (Reconstructing the occluded points near p.) Select a direction v; for moving on the
motion sphere that satisfies the inequality n(p) - vi > 0. Change viewpoints along vi
while continuously monitoring the deformation of the occluding contour curve that initially

contains Poce-

Step 4: (Reconstructing the visible points near p.) Move back to the initial viewpoint and
reapply Step 3 by selecting another direction of motion v, that satisfies the inequality

n(p) - vy < 0.
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Figure 6: Reconstructing a patch around an ordinary visible rim point on a torus. The leftmost
image shows the edges detected in the initial view, ¢ = 0. The small triangle in the middle of the
torus points toward the direction of the line connecting the initial viewpoint of the observer and
the center of the torus. The point selected is point p, shown in the rightmost figure, in which
the torus is viewed from below. The point is selected by selecting its projection, pocc, on the
occluding contour from the initial viewpoint, ¢(0). The figure shows the views of the surface as
the observer executes Step 3 of the Ordinary Patch Reconstruction Behavior. The tangent to
the occluding contour at Pocc 18 horizontal and, hence, the projection of the surface normal at p
in the image is a vertical line. The observer changes viewpoint by moving vertically downward.
B is the projection of the visible rim segment B(0) that contains p. The endpoints of B(t) are
T-junction points. Since B(t) disappears during the observer’'s motion, after the execution of
Step 3 the patch reconstructed on the surface is bounded by the curves traced by the endpoints
of A(t) and by B(0) (i.e., a triangle-like patch). The patch is shown as the lightly-shaded area on
the rightmost figure. Step 4 completes the reconstruction process around p by reconstructing a
patch on the other side of 3(0) (shown as the darkly-shaded area on the rightmost figure).

It should be noted that two components of the above behavior are purposely left unspecified.
In particular, the choice of directions v, and v, in Steps 3 and 4 is required to satisfy a particular
inequality, but no exact value is given. Furthermore, no precise stopping condition is provided
for terminating the observer’s motion in these two steps. This leaves considerable freedom for
the observer to make a choice that satisfies additional requirements [60,61] (e.g., distance to the
surface). In Section 6, where we consider the global surface reconstruction task, we show that
when executing the Ordinary Patch Reconstruction Behavior the observer must obey a number

of rules that “ground” these steps.
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Figure 7: (a) Moving on the tangent plane of a cusp point p. The bold curve on the surface is the
visible rim curve containing p. c is the initial position of the observer. v is a motion direction
on T,(S) satisfying the conditions of Theorem 2: p is an ordinary visible rim point when viewed
from viewpoint ¢;. (b) A top view of the tangent plane at p is shown. e; is the first principal
direction of the surface at p. D is the Dupin indicatrix at p. The line segment [ connecting c
and p is along an asymptote of D. p is occluded when !/ lies in the shaded areas.

3.2 Behavior-based Reconstruction Around Cusp Points

In this section we consider the local reconstruction task around cusp visible rim points by studying
the geometrical changes on the occluding contour as the observer moves on the selected point’s
tangent plane. The main idea is similar to the one used in [28]: If the observer moves along
specific directions on the tangent plane of the selected point p, p will remain on the visible rim
but will cease to be the endpoint of the visible rim curve containing it. Hence, after the observer
performs such a change in viewpoint, the local reconstruction task around p is transformed to
the reconstruction task around an ordinary visible rim point.

In particular, let o be the projection of p and let C(s) be the occluding contour curve
containing Poce, With poec = C(80). The following result characterizes the special directions for

changing the observer’s viewpoint that force p to become an ordinary point (Figure 7 (a)):

Theorem 2 Let poce be the projection of a cusp point p, and let T be the tangent to the occlud-
ing contour at Poce defined as the limit lim,_,s, C'(s). If the observer performs an infinitesimal

viewpoint change along a direction v in Tp(S) such that v - T > 0, p will be an ordinary wvisible
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rim point at the new viewpoint.

The proof of Theorem 2 can be found in Appendix A.

Theorem 2 immediately suggests a qualitative behavior for changing viewpoint in order to
recover the shape in a neighborhood of p. We only need to answer two additional questions
to completely specify such a behavior: how to move and when to stop. The only computation
necessary for selecting the direction of motion is determining the tangent to the occluding contour
at Poce- This decision is particularly simple since the observer is constrained to move on a
sphere. In this case, the motion decision corresponds to deciding whether to move clockwise or
counterclockwise on the unit circle centered at p. Although p will become an ordinary point after
an infinitesimal viewpoint change, such a change can leave p arbitrarily close to the visible rim’s
endpoint. We temporarily leave the stopping condition of this behavior unspecified; as in the case
of the Ordinary Patch Reconstruction Behavior, this step will be grounded in Section 6 where
the observer must obey a number of rules when executing the Cusp Reconstruction Behavior.

This analysis results in the following simple viewpoint-control behavior (Figure 8):

Cusp Patch Reconstruction Behavior

Step 1: Compute the tangent T to the occluding contour at the selected occluding contour cusp

point pacc-5
Step 2: Compute the normal n(p) of the surface at the corresponding visible rim point p.

Step 3: Determine whether a clockwise or counterclockwise direction of motion v on Tp(S5)

satisfies the inequality v - T > 0.

Step 4: Perform a small viewpoint change on T,(S) in the direction selected at Step 3 while

fixating at p.

Step 5: Use the Ordinary Patch Reconstruction Behavior to reconstruct a surface patch around

Pp.

5Tt should be noted that an accurate calculation of T is not always necessary. Inaccuracies in this calculation
will result in choosing a motion plane that is not the tangent plane at p. However, since the behavior allows
a neighborhood of the selected point to be reconstructed, small errors in the observer’s motion will not have an
adverse effect if the patch reconstructed during Step 5 of the behavior is large.
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Figure 8: Forcing a cusp point on the visible rim of a torus to become a ordinary point. The
upper-left view corresponds to the initial position of the observer. The lower-left view was derived
by applying an edge detector to the image above it. The tangent to the selected cusp point p is
horizontal. The observer moves on the tangent plane of the selected point, which in this case is
a horizontal plane perpendicular to the plane of the page. The sequence of images shows views
of the surface from consecutive positions along the observer’s path. The rightmost image shows
a top view of the tangent plane at p (i.e., “looking down” on the torus), and the five viewpoints
where the observer is moving, from left to right. Point p remains on the rim throughout the
motion and can be tracked by tracking the occluding contour point whose tangent is horizontal
(middle view). The sequence clearly shows that p becomes an ordinary visible rim point after
the viewpoint adjustments.

3.3 Behavior-based Reconstruction Around T-junction Points

The behavior for reconstructing the surface in the neighborhood of a T-junction point is similar
to the one used for cusp points. The observer changes viewpoint on the tangent plane of the
selected point p in order to force p to become an ordinary visible rim point.

In particular, let C; be the projection of the visible rim curve ending at p, and let pocc be
the projection of p (Figure 9). Furthermore, let § be the visible rim curve whose projection,
Cs, intersects C) at Poce. Since a T-junction is formed at poc, there is a point ¢ on 4 that also
projects to poe.. The viewpoint-control behavior is based on the following theorem, which relates

the motion of the observer to the motion of the T-junction in the image during the observer’s

motion:
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Theorem 3 Let p be a T-junction visible rim point and let g be the wvisible rim point whose
projection coincides with the projection of p. Let n(q) be the outward surface normal at q. If
the observer performs an infinitesimal viewpoint change along o direction v in T,(S) such that

v -n(g) > 0, p will be an ordinary visible rim point at the new viewpoint.

The proof of this theorem is omitted for brevity. The idea behind the proof is to apply
Theorem 1 to control the motion on T,(S): By moving on T,(S) the observer ensures that p
will Temain on the visible rim; by choosing the direction of motion to satisfy v - n(g) > 0, the
observer ensures that if C lies to the left of pocc in the neighborhood of pocc, the projection of the
T-junction moves to the right of Poce (Figure 9). Following a similar analysis as the one presented
at the end of Section 3.2, a simple viewpoint-control behavior for recoverﬁr"l;g the shape at points

in a neighborhood of a T-junction point can be formulated:

T-junction Patch Reconstruction Behavior

Step 1: Let C;,C; be the occluding contour segments creating the T-junction corresponding
to the selected point p, where C} is the projection of the visible rim curve ending at p.

Compute the tangent T to C; at the projection, Poce, of p.

Step 2: Let g be the second visible rim point projecting t0 Poce- Compute the surface normal,

n(g), at ¢.

Step 3: Determine whether a clockwise or counterclockwise motion v on T,(S) satisfies the

inequality v - n(g) > 0.

Step 4: Perform a small viewpoint change on T,(S) in the direction determined in Step 3 while

fixating at p.

Step 5: Apply the Ordinary Patch Reconstruction Behavior to reconstruct a surface patch

around p.
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View 1
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Figure 9: Forcing a T-junction point to become ordinary. In this example a sphere partially
occludes another sphere. View 1 corresponds to the initial viewpoint. View 2 corresponds to
the view of the spheres after changing viewpoint on the tangent plane of the selected point.
Here, this plane is horizontal and perpendicular to the plane of the page. The rightmost view
corresponds to a top view of this plane, i.e., “looking down” at the two spheres. N(p), N(q) are
the projections of the surface normals n(p), n(q) at points p and ¢ projecting to pocc, respectively.
Theorem 3 requires the viewpoint to move left, causing the T-junction to move right. py is the
projection of p on the occluding contour corresponding to View 2. The tangent to the occluding
contour at p),, is horizontal.

3.4 Behavior-based Reconstruction Around Degenerate Points

The viewpoint-control behavior for reconstructing a surface patch in the neighborhood of de-
generate visible rim points is similar to the behaviors used for reconstructing patches around
cusp and T-junction points. The observer again changes viewpoint on the tangent plane of the
selected point p in order to force p to become ordinary.

In particular, suppose that the observer is moving along a curve c(t), and that the topology
of the visible rim changes in the vicinity of the visible rim point p at viewpoint ¢ = c(to). As

discussed in Section 2.2, this can happen only if the line connecting ¢ and p has a high order
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Figure 10: Reconstructing a patch around a degenerate point p. A top view of the tangent plane
of p is shown. Shaded regions correspond to the intersections of T,(S) with the object. In this
example, p belongs to a visual event curve associated with a triple-point event: the line through
p and the observer’s viewpoint, c, touches the surface at three points. (a) A small viewpoint
change on T,(S) makes p ordinary. (b) The geometry of the intersection T,(S) N S forces p to
become occluded when small viewpoint changes are performed. However, there are viewpoints
on T,(9) at which p is ordinary. (c) The geometry of the intersection T,(S) N S forces p to be
occluded at all viewpoints except c.

contact with the surface or if it contacts the surface at multiple points. Furthermore, if the
observer makes an infinitesimal viewpoint change to a new viewpoint, ¢, on T,(S), the line
connecting ¢’ and p will either have lower order contact with the surface or will touch the surface
at fewer points. Hence, if p is visible from the new viewpoint, p will become an ordinary visible
rim point (Figure 10(a)). Unfortunately, p may no longer be visible (Figure 10(b)). In this case,
in order to make p ordinary the observer must move to distant viewpoints on T,(S) from which
p is visible. We therefore need to specify how the observer should move and when to stop. Asin
the reconstruction of cusp and T-junction patches, the first question can be answered by moving
either clockwise or counterclockwise on a circle in T,(S) around p. The direction of motion on
this circle is not important.

The observer should stop when p becomes ordinary. It is easy to see that if there is an open
arc of viewpoints on the observer’s motion circle from which p is visible, any viewpoint on that
arc guarantees that p is an ordinary visible rim point at that viewpoint. To completely specify
the observer’s motion it remains to give a way of detecting when p becomes visible again. A

quantitative approach to this problem is to first determine the three-dimensional coordinates
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Figure 11: Reconstructing a patch around a degenerate point on the torus. Top row: The observer
moves downward until the visible rim segment pointed by the triangle shrinks to a point p and
disappears. The tangent plane at p is horizontal and perpendicular to the plane of the page.
The visual event corresponding to the disappearance of that segment is a tangent-crossing event.
Due to this event, the surface in the neighborhood of p cannot be reconstructed by performing
a small viewpoint change. Bottom row: Moving on Tp(S) in order to make p ordinary. The
black horizontal line is the projection of T,(S) in the image. The observer performs a clockwise
viewpoint change on Tp(S) until an ordinary visible rim point with tangent plane identical to
T,(S) is detected. After performing a 180° rotation, such a visible rim point is found; in this
case the point is p. The observer can now use the Ordinary Patch Reconstruction Behavior to
reconstruct a surface patch around p.

of p, and then continuously check, during the observer’s motion, if any visible rim point with
tangent plane coincident to T,(S) matches those coordinates. Instead, in order to keep the
observer’s behavior qﬁalita,tive, we simply assume that all visible rim points with tangent planes
coincident to T,(S) are identical to p. The above considerations lead to the following qualitative

viewpoint-control behavior for reconstructing the surface around p (Figure 11):

Degenerate Patch Reconstruction Behavior

Step 1: Let p(to — 6t) be the visible rim point at position c(to — 6t) that is matched to p by the

epipolar parameterization. Compute the tangent plane at p as the limit limg;.o Tp(to—ot)(S)-

Step 2: Perform a small counterclockwise motion on Tp(S). If p remains visible, stop. Otherwise,

return to the initial viewpoint, c.
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Step 3: Perform a small clockwise motion on Tp(S). If p remains visible, stop. Otherwise, return

to the initial viewpoint, c.

Step 4: Move clockwise on a circle around p on T,(S) while continuously monitoring the oc-
cluding contour, until either ¢ is reached or there is an ordinary visible rim point g whose

tangent plane coincides with Tp(5).

Step 5: If the initial viewpoint is reached, stop. Otherwise, apply the Ordinary Patch Recon-

struction Behavior to reconstruct a patch around g, and continue with Step 4.

The Degenerate Patch Reconstruction Behavior can be thought as a generallzatlon of the
Cusp and T-junction Patch Reconstruction Behaviors. Instead of moving to a single v1ewpomt
on p’s tangent plane and then executing the Ordinary Patch Reconstruction Behavior just once,
as in the case of those two behaviors, the observer moves to multiple viewpoints on p’s tangent
plane and executes the Ordinary Patch Reconstruction Behaviors at each of them.

The repetitive nature of the Degenerate Patch Reconstruction Behavior brings us to the first
“finiteness” restriction we impose on the surface S: The connected sets of viewpoints on p’s
tangent plane from which p is visible must be finite. Given this restriction, the Degenerate
Patch Reconstruction Behavior will not permit reconstruction of a patch around p if and only
if p is occluded from all but a finite set of viewpoints on its tangent plane. Such points never
become ordinary during the observer’s motion on T,(S) and, consequently, the surface around
these points cannot be reconstructed (Figure 10(c)). This is not a limitation of the Degenerate
Patch Reconstruction Behavior; Epipolar Reconstructibility Constraint C3 cannot be satisfied,
and there are simply no observer motions that force the visible rim to slide over a neighborhood

of such a point to allow reconstruction.
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4 The Reconstructible Surface Regions

The analysis of the local surface reconstruction task gives us a way to characterize the recon-
structible regions on the surface by characterizing their boundaries. In particular, the Patch
Reconstruction Behaviors allow us to reconstruct a surface patch around all surface points ex-
cept for (1) points that are never visible from viewpoints on their tangent plane, and (2) points
on visual event curves that are visible only from a finite number of viewpoints on their tangent
plane. For these points, there is no path the observer can follow that forces the visible rim
to slide over their neighborhood. This leads directly to the following characterization of the

reconstructible regions on the surface:

Reconstructible surface regions: The reconstructible regions on the surface are
the maximal connected sets of surface points that are visible from a one-dimensional

set of viewpoints on their tangent plane.

Unless the surface is entirely reconstructible, each connected reconstructible surface region
R forms an open set on the surface. Its boundary contains the segments of visual event curves
whose points are visible only from a finite number of viewpoints on their tangent plane.f By

checking which visual event curves can contain such segments, it is easy to show the following:

Theorem 4 (Reconstructible region boundaries) A point p is on the boundary of a recon-

structible surface region if and only if it belongs to either
e a parabolic curve bounding a surface concavity,
e a curve Ti(t) or To(t) associated with a triple-point event,
o a curve 11(t) or y2(t) associated with a tangent-crossing event, or
® 4 curve acusp(t) associated with a cusp-crossing event,

and is visible from only a finite number of viewpoints on its tangent plane.

8To keep things simple, we slightly abuse terminology here: These segments comprise the set of limit points of
R; in addition to R’s boundary, this set may contain one-dimensional “spines” that protrude from R’s boundary.
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Figure 12: The visibility arcs of a point p. A top view of the tangent plane of p is shown. Shaded
areas correspond to the intersections of T,(S) with the object. (a)-(c) Approaching a visual event
curve 7, associated with a triple-point event. Point p has two visibility arcs. As p approaches
71, one of the visibility arcs of p degenerates to a point. In this case, the point p in (c) belongs
to 1, but is not contained in the boundary of a reconstructible surface region; the neighborhood
around p can be reconstructed by moving to a viewpoint in the remaining visibility arc of p.
(d)-(f) Approaching a visual event curve 7y associated with a triple-point event. Point p now has
one visibility arc. As p approaches 71, the visibility arc of p degenerates to a point. In this case,
p asymptotically approaches the boundary of a reconstructible surface region.

An intuitive description of Theorem 4 can be given as follows. To each point p in a recon-
structible surface region we can associate a collection of visibility arcs. These arcs are simply
the connected one-dimensional sets of viewpoints on p’s tangent plane from which p is visible
(Figure 12). When p asymptotically approaches one of the above visual event curves, the length
of at least one of its visibility arcs decreases, diminishing to zero (Figure 12(a)-(c)); this can
only happen for the visual event curves listed above. Now, if the length of all visibility arcs of
p diminishes to zero, the visual event curve approached by p belongs to the boundary of the
reconstructible regions on the surface (Figure 12(d)-(f)).

The visual event curves listed in Theorem 4 are therefore potential boundaries of a recon-
structible surface region. They bound such regions only if they contain points with no visibility

arcs. Figure 13 shows the reconstructible regions for two objects.
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Figure 13: Applying Theorem 4 to some surfaces studied by Petitjean et al. [63] and Koenderink
[52]. The figures are taken from [53]. The squash-shaped surface in (a) and (b) is completely
reconstructible: No cusp-crossing or triple-point visual events can occur, and the surfaces do not
have concavities. Furthermore, for each point on the two visual event curves corresponding to a
tangent-crossing event (shown in (b)), we can associate at least one visibility arc. The dimple-
shaped surface in (c) has one reconstructible region. This region is bounded by the parabolic
curve bounding the concavity on the surface.

36




5 Integrating Behaviors for Incremental Reconstruction

The goal of the global surface reconstruction task is to reconstruct the reconstructible surface
regions that intersect the visible rim at the initial viewpoint. To achieve this, we integrate the four
Patch Reconstruction Behaviors. We consider the integration of these behaviors in this section
in the context of the incremental surface reconstruction task: The observer must integrate these
behaviors so that the resulting motion of the observer allows an incremental expansion of the set
of reconstructed points on the surface. We consider the composite behavior that a;:hieves this

task below.

5.1 The Incremental Reconstruction Behavior

An incremental reconstruction behavior must control viewpoint so that new patches on the surface
are successively reconstructed. In order to achieve this we need to answer two questions: (1)
How can the observer force points on the boundary of the already-reconstructed patches to lie
on the visible rim, and (2) how can the observer control viewpoint so that new patches around
those points can be recovered?

The first question can be answered by considering the fact that the boundaries of the already-
reconstructed patches were points on the visible rim from previous viewpoints. Hence, it suffices
for the observer to move back to the viewpoint where a given boundary point belongs to the
visible rim. This can be achieved by saving, along with each occluding contour image, the view-
point corresponding to that image during the application of the Ordinary Patch Reconstruction
Behavior. Since there is a correspondence between the points on the reconstructed patch bound-
aries and the images they project to, this information is sufficient to guide the observer to the
position where a particular boundary point was on the visible rim. Furthermore, since any patch
boundary point in a reconstructible surface region can be forced to become a visible rim point,
and the behaviors developed in Section 3 can be used to reconstruct a surface patch around any
visible rim point for which this is possible, the second question is easily answered by the behaviors

already presented. These considerations lead to the following composite behavior (Figure 14):
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Figure 14: Incremental reconstruction of the surface of a torus. The point selected initially is
point p, which is an ordinary visible rim point. The small triangle in the middle of the torus
points toward the direction of the line connecting the initial viewpoint of the observer and the
center of the torus. Rows 1 & 2: The first row of images shows consecutive views of the torus as
the observer executes Step 3 of the Ordinary Patch Reconstruction Behavior for p. The second
row of images shows the views of the torus as Step 4 of the behavior is executed. There are four
visible rim segments sliding on the torus as the observer moves. Two of the segments, whose
projections are B; and B, slide over previously-occluded parts of the surface during Step 3.
The other two segments, whose projections are Bj, By, slide over previously-visible parts of the
surface. Points ey, e, are the endpoints of both By and B;. The figures to the right of these views
show the patches traced by these segments. Lightly-shaded patches correspond to the patches
reconstructed during Step 3. Darkly-shaded patches correspond to the patches reconstructed
during Step 4. Row 3: The observer selects a point ¢ on the boundary of the reconstructed strip.
The point is a cusp point corresponding to the viewpoint, ¢/, of the surface in the first row, second
image from the left. The observer executes Steps 1-4 of the Cusp Patch Reconstruction Behavior
to force ¢ to become ordinary. Row 4: The observer executes the Ordinary Patch Reconstruction
Behavior to reconstruct a patch for the visible portion of the neighborhood of ¢, as seen from c'.
The figure on the right shows the patch traced by the visible rim segment projecting to Bs.
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Incremental Reconstruction Behavior

Step 1: If there exists a portion of the surface that has not been reconstructed, select a point p

on its boundary and let ¢ be the viewpoint at which p projected to the occluding contour.

Step 2: Move to c.

Step 3: Apply one of the four behaviors for reconstructing a patch around p according to Table

2, and continue with Step 1.

The specific algorithm for selecting the points p on the boundary of the already-reconstructed
surface region is not important for guaranteeing its successive expansion. However, in order to
perform the global surface reconstruction task the observer must obey an additional rule when

doing this selection; we discuss this rule in Section 6.
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6 Global Surface Reconstruction

What kinds of behaviors can perform global surface reconstruction? In the Introduction we

motivated the need for behaviors that have three properties:

e Finite termination: The reconstruction process does not terminate (i.e., at least one of the
component behaviors is executed an infinite number of times) if and only if there is no
finite-length path the observer can follow that allows reconstruction of all reconstructible

regions on the surface that intersect the visible rim at the initial viewpoint.

o Convergence: If the reconstruction process does not terminate, the set of points recon-

structed on the surface must converge to a well-defined limit as the number of times the

basic behaviors are executed goes to infinity.

e Completeness: If the reconstruction process terminates, the reconstructed points must be
the union of the reconstructible surface regions intersecting the visible rim at the initial
viewpoint. On the other hand, if the reconstruction process does not terminate, the recon-

structed points must asymptotically approach that set.

In this section we show that global surface reconstruction can be achieved by (1) using the
Incremental Reconstruction Behavior and the four Patch Reconstruction Behaviors, while (2)
obeying a number of simple rules that constrain how these behaviors are executed. Motivated by
our characterization of the reconstructible regions and the difficulties involved in the reconstruc-
tion of surfaces such as those shown in Figures 2 and 15, we develop these rules by considering

the following three increasingly more general global reconstruction tasks:

o Semi-global curve reconstruction task: Suppose a curve is drawn on the surface so that it
intersects the visible rim at the initial viewpoint (Figure 15(a)). The task of the observer is
to reconstruct the segments of this curve that are connected, reconstructible, intersect the
visible rim at the initial viewpoint, and terminate on one of the visual event curves listed in

Theorem 4 (i.e., visual event curves that potentially bound a reconstructible surface region,

as in Figure 12(c)).
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(a) (b) (c)

Figure 15: Difficulties involved in globally reconstructing a dimple-shaped surface and a torus.
(a)-(c) In the n-th iteration of the Incremental Reconstruction Behavior the observer is moving
in an upward direction in order to reconstruct points in the neighborhood of the point a(t7)
on a, which lies on the visible rim. The visible rim eventually slides to the right, making the
observer’s upward motion ineffective for reconstructing the surface in the vicinity of a(t3).

o Global curve reconstruction task: Suppose a curve is drawn on the surface so that it inter-
sects the visible rim at the initial viewpoint. The task of the observer is to reconstruct the
segments of this curve that are connected, reconstructible, intersect the visible rim at the
initial viewpoint, and terminate on the boundary of a reconstructible surface region (i.e.,

on precisely those visual event curves listed in Theorem 4 that bound a reconstructible

surface region, as in Figure 12(f)).

o Global surface reconstruction task: Global surface reconstruction can be considered a gen-
eralization of the global curve reconstruction task in the following sense. It is equivalent
to the task of reconstructing for every surface curve that intersects the visible rim at the
initial viewpoint, a connected, reconstructible segment that terminates on a visual event

curve bounding a reconstructible surface region.
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By obeying the rules we develop in this section, the observer can “ground” the steps in
the Incremental Reconstruction Behavior and the Patch Reconstruction Behaviors that we left
unspecified in their earlier presentation (Figure 16). In the following we keep our analysis at a
fairly intuitive level, working through specific examples to motivate the rules used. The interested

reader can find formal proofs of correctness in Appendix B.

6.1 Semi-Global Curve Reconstruction

The question we ask in this section is: How can we use the Incremental Reconstruction Behavior
to provably perform the semi-global curve reconstruction task? Recall that during the execution
of the Incremental Reconstruction Behavior the observer selects a point p on the boundary
of the already-reconstructed regions and applies one of the Patch Reconstruction Behaviors to
reconstruct a new patch around p (Figure 16). To achieve semi-global curve reconstruction,
the length of the curve segment reconstructed at each iteration must diminish if and only if it
asymptotically approaches a visual event curve potentially bounding a reconstructible surface
region. The following theorem gives the three rules the observer must obey in order to perform

the semi-global curve reconstruction task. See Appendix B for the proof.

Theorem 5 (Semi-global curve reconstruction rules) Let a be a finite-length curve drawn
on the surface. If a intersects the visual event curves associated with tangent-crossing events
at most a finite number of times, and the following three Tules are obeyed by the observer, the

observer will provably perform the semi-global curve reconstruction task:

Rule 1: When choosing the point p on which to apply the Patch Reconstruction Behaviors,

always select a point of intersection of o with the vistble rim.

Rule 2: Always ezecute the Ordinary Patch Reconstruction Behavior after first moving to a

viewpoint ¢ corresponding to the middle of a visibility arc of p.

Rule 3: When ezecuting the Ordinary Patch Reconstruction Behavior to reconstruct a patch

around p starting from an initial viewpoint ¢, move around the surface on the normal plane
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at p and stop only if ¢ is reached again, or if the endpoint of the segment of o being

reconstructed coincides with a cusp, T-junction or degenerate visible rim point.

Rules 1 and 3 are obvious. For example, consider the semi-global curve reconstruction task
for the surface in Figure 15(a). The n-th iteration of the Incremental Reconstruction Behavior
requires selecting a point on the visible rim in order to reconstruct a patch in its neighborhood.
Rule 1 simply states that the point selected should be o(t?); the utility of this rule is obvious.
Now suppose that the observer starts moving in an upward direction according to the Ordinary
Patch Reconstruction Behavior in order to reconstruct a patch around o(t}). Rule 3 states that
the observer should move upward until the cusp endpoint of the visible rim coincides with the
dark curve at «(t?), as shown in Figure 15(c). Again, there is no reason for the observer to stop
before reaching that viewpoint, and there certainly is no reason for continuing its upward motion
since reconstruction of a larger piece of the dark curve will not be possible.

The utility of the “finiteness” condition in Theorem 5 and of Rule 2 is not as obvious, although
they are crucial for achieving the semi-global curve reconstruction task. Rule 2 constrains the
long-range behavior of the observer. The finiteness condition simply states that in order to
reconstruct the curve drawn on the surface in a finite number of steps, both the curve and
the surface cannot be infinitely complicated (e.g., the curve cannot have an infinite number of
inflections and the surface cannot have an infinite number of undulations). In Appendix B we
show that this condition ensures the visibility arcs of a(t}) are well-defined in the limit.

To see why Rule 2 is necessary for the semi-global reconstruction of o, suppose the viewpoints
corresponding to Figures 15(a)-(c) are c(¢}), c(t3) and c(t3), respectively, and the line through
c(t) and «(t) is I(t). To achieve semi-global curve reconstruction, the length of the segment
between a(¢?) and o(t2) must diminish if and only if a(t7) asymptotically approaches a visual
event curve that potentially bounds a reconstructible surface region. Now consider Figure 17.
Since a(t?) is a cusp point, the line [(¢3) is along an asymptote at o(t?). Therefore, if 9(t) is the
angle between [(t) and the corresponding asymptote at a(t), we can conclude that a necessary
and sufficient condition for the curve point a(t%) to become a cusp visible rim point is that P(t)

goes to zero as t approaches 3.
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Figure 17: Geometry of the reconstruction of a segment of curve « in Figure 1. Viewpoints
c(t?), c(t3) correspond to Figures 15(a) and (c), respectively. The tangent plane and Dupin’s
indicatrix of points a(t}) and «(#3) is also shown.

Clearly, if ¢ () is large, the length of the segment between a(t?) and a(t7) will also be large.
It is therefore necessary to require 1(t}) to be large. But how large can we make Y(t1)? If P(tT)
is too large, the line {(¢7) may approach the other asymptote at a(t}); the best we can do is to
ensure that c(t?) is in the middle of the visibility arc, which in this case is bounded by the two
asymptotes at a({7). At that viewpoint, (&) will form equal angles with both asymptotes at
a(t).

Obeying Rule 2 is quite easy: The observer determines the extent of the visibility arc con-
taining c(7), and then moves to the middle of that arc. To measure the extent of the visibility
arc, the observer can simply move on Tor)(S) first in a clockwise and then in a counterclockwise
direction, terminating its motions when a cusp or T-junction is formed at the projection of a(t?).

By following the above rules, the observer is now able to perform the semi-global curve
reconstruction task: The finiteness condition ensures that the visibility arcs of a(t}) are well-
defined as n goes to infinity, and that the distance between a(t?) and «(t) will diminish if and
only if the visibility arc at c/(¢]) degenerates to a point. This occurs only when c(t7) approaches

one of the visual event curves listed in Theorem 4.
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6.2 Global Curve Reconstruction

In the global curve reconstruction task the observer must reconstruct the whole curve drawn
on the surface if this is possible, or a segment of that curve whose endpoints either lie on or
asymptotically approach the boundary of a reconstructible surface region. This task is harder to
perform than semi-global curve reconstruction because if the whole curve cannot be reconstructed,
the endpoints of the reconstructed segment must lie on visual event curves that are actual, not
just potential, boundaries of a reconstructible surface region. To achieve this task the observer
must obey the three rules guaranteeing semi-global reconstruction of a curve. The following
theorem shows that in addition to these rules, a fourth rule must also be obeyed. Its proof

follows from the proof of Theorem 5 and is omitted.

Theorem 6 (Global curve reconstruction rules) Let a be a finite-length curve drawn on
the surface. If o intersects the visual event curves associated with tangent-crossing events at most
a finite number of times, and the following four rules are obeyed by the observer, the observer

will provably perform the global curve reconstruction task:

Rule 1: When choosing the point p on which to apply the Paich Reconstruction Behauviors,

always select a point of intersection of o with the wisible Tim.

Rule 2: Always ezecute the Ordinary Patch Reconstruction Behavior after first moving to a

viewpoint ¢ corresponding to the middle of a visibility arc of p.

Rule 3: When executing the Ordinary Patch Reconstruction Behavior starting from an initial
viewpoint ¢, move on a great circle around the surface and stop only if ¢ is reached again,
or if the endpoint of the segment of « being reconstructed coincides with a cusp, T-junction

or degenerate visible rim point.

Rule 4: In order to reconstruct a patch around the selected point p, always apply the Degenerate
Patch Reconstruction Behavior independently of whether p is an ordinary, cusp, T-junction

or degenerate visible rim point.

Rules 1-3 are identical to those used for performing the semi-global reconstruction task. To see

why the fourth rule is necessary for achieving global curve reconstruction, suppose the observer
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obeys only the first three rules to perform the task for the curve in Figure 15. Then, the length
of the segment reconstructed at the n-th iteration of the Incremental Reconstruction Behavior
may diminish even when these endpoints asymptotically approach a point on a visual event curve
that does not bound a reconstructible surface region (Figure 12(c)). These points have at least
one visibility arc.

Rule 4 requires the observer to reconstruct several patches around the selected point p, by
moving to the middle viewpoints of all the visibility arcs of p and then executing the Ordinary
Patch Reconstruction Behavior starting at each one of those viewpoints. By obeying this rule,
the length of the reconstructed segment can diminish only if all visibility arcs at p diminish. Since
this occurs only when p approaches a point bounding a reconstructible surface region, Rules 1-4
guarantee that global curve reconstruction is always achieved.

Enforcing Rule 4 implies that the whole surface reconstruction process is simplified: The
observer needs to use only two of the four Patch Reconstruction Behaviors (i.e., the Ordinary
Patch Reconstruction Behavior and the Degenerate Patch Reconstruction Behavior) to perform
global curve reconstruction. The disadvantage of this rule, however, is that by executing the
Degenerate Patch Reconstruction Behavior the observer will perform larger motions than those

dictated in the Cusp and T-junction Patch Reconstruction Behaviors.

6.3 Global Surface Reconstruction

In this section we consider the global surface reconstruction task. The observer must now recon-
struct not only points lying on a single curve drawn on the surface that intersects the visible rim
at the initial viewpoint, but must also reconstruct points lying on every such curve that can be
drawn on the surface. The following theorem shows how this task can be performed using the

Incremental Reconstruction Behavior and the Patch Reconstruction Behaviors (Figure 18).

Theorem 7 (Global surface reconstruction rules) If the surface is such that only a finite
number of visual event curves associated with tangent-crossing events intersect at a single point,
and the following four rules are obeyed by the observer, the observer will provably perform the

global surface reconstruction task:
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Rule 1: Always choose the point p on which to apply the Patch Reconstruction Behaviors so

that the boundary of the already-reconstructed surface region ezpands uniformly.

t

Rule 2: Always erecute the Ordinary Patch Reconstruction Behauvior after first moving to a

viewpoint ¢ corresponding to the middle of a visibility arc of p.

Rule 3: When ezecuting the Ordinary Patch Reconstruction Behavior starting from an initial
viewpoint ¢, move on a great circle around the surface and stop only if ¢ is reached again
or the visible rim segment initially containing p (and all visible rim segments splitting from

or merging with it) disappears.

Rule 4: In order to reconstruct a patch around the selected point p, always apply the Degenerate
Patch Reconstruction Behavior independently of whether p is an ordinary, cusp, T-junction,

or degenerate visible Tim point.

See Appendix B for the proof. The “finiteness” condition in the theorem simply states that
global surface reconstruction can only be achieved if the surface is not infinitely complicated.
Rules 2 and 4 are identical to those used to perform the global curve reconstruction task. Rule
3 is a generalization of the corresponding rule used in the global curve reconstruction task in
the following sense. When performing the global curve reconstruction task, as in the example
in Figure 15(a)-(c), the observer was required to stop only after an endpoint of the visible rim
“slid over” the curve drawn on the surface. In the global surface reconstruction task, the same
rule must hold for every curve that we can draw on the surface. This would require the observer
to move upward until the visible rim segment in Figure 15(a) containing a(t}) disappears or,
equivalently, the two segments 8, §2 in Figure 15(c) disappear), or until the initial viewpoint is
reached again.

Rule 1 is also a generalization of the corresponding rule used in the global curve reconstruction
task. It requires the observer to reconstruct a patch in the neighborhood of every curve that
can be drawn on the surface, intersects the visible rim at the initial viewpoint, and intersects
the boundary of the reconstructed points after a finite number of iterations of the Incremental

Reconstruction Behavior. The need for such a rule should be clear since if the reconstruction
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Incremental Reconstruction Behavior
Rules that must be obeyed
Rule 1: Select points uniformly on the
boundary of the reconstructed region
Rule 4: Always execute the Degenerate
Patch Reconstruction Behavior
independently of the type of p

|

Degenerate Patch Reconstruction Behavior
Rule that must be obeyed
Rule 2: Always move to the middle of a visibility arc

|

Ordinary Patch Reconstruction Behavior
Rule that must be obeyed
Rule 3: Move on a great circle around the surface
and stop when either the initial position is
reached again, or the visible rim segment
initially containing p (and all segments
splitting from it or merging with it) disappear

Figure 18: Behaviors used to perform the global surface reconstruction task. By obeying Rule
4 of Theorem 7, the observer only needs to use two of the four Patch Reconstruction Behaviors
resulting in a simpler control structure and larger observer motions than those implied by Figure
16. Also shown are the rules that must be obeyed when each of the behaviors are executed.
These rules “ground” the steps summarized in Figure 16.

process does not terminate and the reconstructed region is expanded in only one direction, some

pieces of the boundary of the already-reconstructed points will never be expanded.”

7To obey Rule 1, the Incremental Reconstruction Behavior is executed in cycles. At the beginning of cycle N,
the observer selects enough points on the boundary of the reconstructed points so that their distance is less than
e/ 2N where € > 0 is an a priori defined constant.
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By obeying Rules 1-4, the observer is able to guarantee global surface reconstruction. The
Incremental Reconstruction Behavior terminates after a finite number of steps precisely when the
whole surface is reconstructible. Otherwise, the set of points reconstructed will converge to the
reconstructible surface regions intersecting the visible rim at the initial viewpoint. Furthermore,
in this case, it is easy to show that no behavior allows global surface reconstruction to be achieved
in a finite number of steps: When the visible rim touches a visual event curve on the boundary
of a reconstructible surface region, it touches it at exactly one point, making it impossible to

reconstruct the surface in every neighborhood of such a curve in a finite number of steps.
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7 Concluding Remarks

We have demonstrated that an active, monocular observer can use a collection of simple viewpoint-
control behaviors to recover a global description of a smooth, non-convex object from the oc-
cluding contour. The regions that are reconstructed on the object’s surface can be accurately
characterized, and depend only on qualitative, global shape properties of the surface.

The use of an active observer produces a qualitative change in the way vision algorithms are
designed and analyzed. The observer’s ability to purposefully control viewpoint enables the use
of a set of local, visually-guided behaviors that are simple enough to be executed in real time and
permit global reconstruction when they are appropriately combined. The reason is that viewpoint
control is not used merely to change the shape of the occluding contour in an arbitrary manner
(as in existing approaches), but it is used to change it in a well-defined way. This allows precise
statements to be made about the progress of the global surface reconstruction process, and allows
its outcome to be accurately controlled.

The current limitations of our approach come from (1) the use of an observer that moves
on a sphere around the object, and (2) the lack of optimizations in controlling the observer’s
motion. By controlling distance to the object it might be possible to reconstruct larger regions
on the surface. On the other hand, given the minimal surface shape information on which our
behaviors rely, any performance improvements (e.g., minimizing the observer motion required to
reconstruct a specific local patch on the surface) would only have a local effect. Generalizing
these behaviors to control distance to the object and to take into account efficiency considerations
is an important future direction of research. We are also in the process of implementing these
viewpoint-control behaviors using a camera mounted on a Hitachi 3100 robot arm.

We believe that our active approach of moving toward viewpoints that are closely related
to the geometry of the object is a very important and general one. For example, the ability to
“draw” on the object’s surface the visual event curves listed in Theorem 4 and determine their
type is a simple by-product of the execution of the behaviors we developed (e.g., by keeping
track of the extent of the visibility arcs of the points selected by the Incremental Reconstruction

Behavior). Another by-product of this process is the discovery of the supporting planes of the
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object, a piece of information that can be very useful for either directly matching the viewed
surface with a stored model, or for doing so after first moving to a “standard viewpoint” related
to the discovered supporting planes.

How can the behaviors we developed generalize to perform more qualitative tasks? We are
currently investigating the task of visually exploring the surface of an object in order to find a
specific surface feature (e.g., your cup does not have a blue handle but mine does [62]). This
task is not as constrained as the surface reconstruction task; what is needed is a way to control
the motion of the occlusion boundary (i.e., the boundary of the visible points on the surface),
which is a superset of the visible rim. The four local Patch Reconstruction Behaviors developed
in this paper are a step in this direction: They control the motion of the visible rim and do not
rely on any three-dimensional information. The crucial issue that needs to be addressed is their
integration. For this, it is necessary to find ways of representing the boundary of the surface
already made visible so that patches around points on this boundary can be made visible by an
appropriate viewpoint-control behavior. Although this, in general, requires the recovery of some
three-dimensional information, a simple and qualitative representation of this boundary can be
derived for surfaces with non-uniform texture by representing the texture of the surface in the

boundary’s vicinity.
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Appendix A: Proofs for Section 3 Theorems

A.1 Proof of Theorem 1

Let p be an ordinary visible rim point. Consider the epipolar plane, A, defined by the vector
v(t) and the line segment connecting p and c(t), and the intersection a of S with A in the
neighborhood of p.

Suppose that the observer does not move on the tangent plane of the surface at p, ie.,
n(p) - v(t) # 0. In this case, A # T,(S) and « is a regular curve in the neighborhood of p
[51]. Since p is an ordinary point, p must be a convex point of a, and the open line segment
connecting p and c(t) does not intersect the surface (Figure 19). This implies that p does not
become occluded by a distant point of S under an infinitesimal viewpoint change on A.

The visibility of p (and of points on « close to p) in this case is determined by the sign of
n(p) - [p — c(t)] [51]. Therefore, changes in the visibility state of p under infinitesimal observer
motion occur due to changes in the sign of this dot product. Since p is a visible rim point, this
dot product is zero at position c(t). Therefore, the visibility of p under an infinitesimal viewpoint
change depends on the sign of the derivative {n(p) - [p — c(t)]}. We have:

Liup)- o~ ey = np) 2l — (0] + [n] - b~ )] = —n()-v()

If the observer moves on p’s tangent plane, p may become occluded by points in the neigh-
borhood of p but will always remain on the rim. It will remain visible unless p is hyperbolic and
the line connecting c(t) and p is along an asymptotic direction of the surface at p [28]. This,

however, cannot occur since p is ordinary.

A.2 Proof of Theorem 2

First note that point p must be hyperbolic [64]. Furthermore, since p projects to a cusp point
on the occluding contour, the line segment [ connecting p and ¢ does not intersect the surface

elsewhere. [ is contained in T,(S) and runs along an asymptotic direction of S at p.
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Figure 19: Inducing the visibility of points in a neighborhood of a hyperbolic point p. (a) The
curve o is the curve of intersection of S with the epipolar plane A. If v(t) - n(p) > 0, p will be
matched to a currently-occluded point on o under an infinitesimal viewpoint change along v ().
(b) A face-on view of the plane A. The outward normal n;(p) of a at p is the projection of n(p)
on the plane A. The geometry of the intersection of S with the epipolar planes corresponding to
visible rim points close to p is also similar to the one shown.

Figure 20: Visibility-preserving motions on T,(S). For readability, the surface in the neighbor-
hood of p is not shown. A is the normal plane at p in the direction of I. The hyperbola on T,(S5)
is Dupin’s indicatrix at p. The plane A separates the surface points around p that are above
T,(S) into two sets: When the surface is viewed along , all points to the right of A (i.e., in the
direction of T) are visible from p; there are both visible and occluded points to the left of A. The
line segment [ is an asymptote of the component of Dupin’s indicatrix that lies to the left of A.
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In [28] we showed that if [ is along an asymptotic direction, infinitesimal viewpoint changes
on T,(S) that move the observer away from [ can be classified into two categories depending on
whether or not they force p to become occluded. From the analysis in [28], it follows that if p
remains visible at the new viewpoint, the curvature of the occluding contour at p becomes finite,
and p remains on the visible rim after the change in viewpoint (i.e., p becomes an ordinary visible
rim point at the new viewpoint). Figure 20 shows why the directions v ensuring the visibility of

p after the viewpoint change satisfy v-T > 0.
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Appendix B: Proofs for Section 6 Theorems

B.1 Proof of Theorem 5

Let (t") be the point on a selected at the n-th iteration of the Incremental Reconstruction
Behavior. First, note that if o is not reconstructed in a finite number of steps, the limit, a(t*),
exists: Since the points a(t") belong to a curve of finite length, and the length of the reconstructed
portion of the curve is an increasing function, the sequence (a(t™)), has a limit point.

To prove the proposition we study how the visibility arcs of (t") change as n goes to infinity.
The finiteness assumption of Theorem 5 ensures that the visibility arcs of «(t") for large n are

well-defined:

Lemma 1 If o intersects the visual event curves associated with tangent-crossing events a finite
number of times, and if N is sufficiently large, the topology of the intersection SN Toy(S) does

not change forn > N.

Proof: Consider the intersection SN Taw(S), for 0 <t < T. Its topology will change only if the
number of contact points of S with Ty (S) changes. It suffices to consider the case in which the
number of contact points of To)(S) with S for ¢ < i, and t > t, is one less than those for ¢ = 2.
Then, the plane Tu,)(S) touches the surface at two distinct points, a(t.), and another point, p.
Consequently, a(t.) belongs to a visual event curve, 71 or 72, associated with a tangent-crossing
event. Now note that a(t £ €) (¢ > 0 small) does not belong to these curves since Togt+e)(S)
contacts the surface at exactly one point. Hence, a(t.) is a point of intersection of o with either
71 or 7. Since there is only a finite number of such intersection points, all a(t") will fall in a
single interval between these points, if n > N and N is sufficiently large. [J

The boundaries of the visibility arcs of a(¢") belong to two types of lines on Tor)(S): Bi-
tangent lines through a(t"), i.e., lines that touch the surface at at least two distinct points, one
of which is a(t"), and asymptotes of a(t"). To show that the semi-global curve reconstruction
task is achieved for o, we consider the angles formed by the bitangent lines and asymptotes at
(™) as n goes to infinity. The main idea of the proof is to observe that we can determine these

angles from the observer’s motions during the n-th iteration of the Incremental Reconstruction
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Behavior.

In particular, after the observer selects point (t"), the following steps are then taken: (1)
The observer moves to a previously-visited viewpoint, ¢%;, from which o(t™) was on the visible
rim. (2) Since the observer obeys Rule 3, we can assume without loss of generality that a(t") is a
cusp, T-junction or degenerate visible rim point at ¢j;;. In either case, Rule 2 forces the observer
to move to the middle, ¢*,;, of a visibility arc of a(t"). (3) The observer executes the Ordinary
Patch Reconstruction Behavior to reconstruct a new segment of «, ending at a(t" + 6t"). The
Ordinary Patch Reconstruction Behavior terminates when a(2" + 6t™) belongs to the visible rim,
and Rule 3 allows us to assume without loss of generality that if cf,,, is the observer’s viewpoint
when this occurs, a(t® + 6t*) is either a cusp, T-junction or degenerate point.

We now use the following two observations:

1. The visibility arc containing ¢, can be of three types: Type AA, whose endpoints lie on
the two asymptotes at a(t"); type AB, whose endpoints lie on one asymptote of a(t™) and
one bitangent line through « (") on Tuu=)(S); and type BB, whose endpoints lie on two

bitangent lines through a(t") on Tan)(S)-
2. The line through c7,,, and «(t" + 6¢*) is either a bitangent line (B) through a(t™ + 6t") on
Togin+67)(S), or an asymptote (A) at a(t" + ot").

In all, there are six different combinations of the above cases, which we represent by the
string X-Y where X = {AA, AB, BB}, and Y = {4, B}. Without loss of generality we prove
the proposition for each of the above cases separately. Only three of the six cases are considered

below. The remaining three cases can be treated in an identical manner.

B.1.1 Case AA-A

This case is shown in Figure 21(a).
The line c,,0(" +6t") is an asymptote at a(t®+6t"). Without loss of generality assume that
o(t") is also hyperbolic, and let I" be the corresponding asymptote at a(t™). Since limp oo a(t") =

limp o0 (™ + 6t™), we get
(1) Jim L™, Chppae(t™ + 6") =0
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Figure 21: Representing the configurations of the asymptotes and bitangent lines through a(t")
and a(t" + 6¢"). For each of the three cases, the left figure corresponds to a “top” view of the
plane Ty(ny(S) while the right figure corresponds to a “top” view of the plane Tpntom)(S)- (2)
Case AA-A. (b) Case AB-A. (c) Case BB-B.

Because the motion of the visible rim during the execution of the Ordinary Patch Recon-

struction Behavior between cl;; and cf,, describes S in the neighborhood of a(t™), it follows

that®

(2) Jim Cotop = ML Crnid
From Egs. (1) and (2) we conclude that

(3) lim Z(I™, c}q0(t™)) =0

n—o

Since ¢, is the midpoint of a visibility arc of a(t") of type AA, we have

(4) L(I", cpaaee(t7)) = 9" /2

8To see this, note that the observer’s motion from c,;; to cgy,p is along a smooth curve, ¢. Since the segment
a(t), (t* < t < "+ 6t™) can be described by the epipolar parameterization, the observer’s motion can be described
by the curve c(t),t” < t < t™ + 6t such that c(t) is the observer’s position when a(t) is on the visible rim. The
mapping m : a — ¢ is smooth, and consequently ||}y, — Cpigll — 0 if and only if |t + 6t™) — a(t™)|| — 0.

63



where ¢, is the angle between the two asymptotes at «(t"). Hence, from Egs. (3) and (4) it
follows that

(5) lim ¢" =0

00
This implies that the direction of the asymptotes tends toward the first principal direction, e3°,

of the surface at a(t>) (Figure 21(a)).

The angle 1" between the asymptotes and the first principal direction, e, of the surface at
a(t™) is given by
K
(6) tan Y" = ——E% = tan(¢"/2)
2

where k7, k3 are the first and second principal curvatures of the surface at a(t"), respectively.
Since the surface is smooth, k¥ is always bounded. Hence, from Eqgs. (5) and (6) it follows
that lim,_,c k7 = 0. For generic surfaces, this implies that c(¢™) is on a parabolic curve bounding

a surface concavity.

B.1.2 Case AB-A

This case is shown in Figure 21(b).
The line ¢, ,a(t"” +6t") is an asymptote at a(t"+6t"). Without loss of generality assume that
a(t") is also hyperbolic, and let I be the corresponding asymptote at a(t"). Since limp,_o0 a(t") =

limp oo (t™ + 6t7), we get

(7) nh_{%o £(I", c?topa(t" +6t") =0
As in Case AA-A, we have

(8) lim Z(I", cppiga(t")) = 0

Since the visibility arc containing ¢, is of type AB, the following equations hold:

(9) Z(I", ciae(t")) 2 8"/2
(10) L(I3, Cpac(t")) = ¢°/2
(11) £(13, ciaee(t")) = ¢"/2
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where [T and [7 are the asymptote and bitangent line, respectively, bounding the visibility arc

containing ¢4, and ¢" is the angle they form. From Egs. (8) and (9) it follows that

(12) lim ¢" =0

=60

Since I is a bitangent line, it contacts the surface at an additional point, ¢". Lemma 1 tells
us that we can choose N large enough so that the topology of the intersection To@)(S)N S does
not, change for n > N. We can therefore assume without loss of generality that for n > N, the
points ¢" belong to a single curve.’ Consequently, the limit lim,_,, ¢" exists and is equal to some

point ¢®. We now distinguish two cases:

o ¢ # a(t®). Then the line ¢®a(t*) touches the surface at two distinct points. Fur-
thermore, from Egs. (10)-(12) we can conclude that the line q®a(t*®) coincides with the
line lim,_, [}, which is an asymptote at a(t®). Hence, o(t™) belongs to the curve ocusp
associated with a cusp-crossing visual event. Furthermore, the visibility arc containing
¢ ., diminishes as a(t") approaches a(t") (i.e., it approaches a visual event curve that is a

potential boundary of a reconstructible surface region).

e ¢ = a(t®). Since I and I3 bound the region on To@)(S) from which a(t") is visible,
and their angle, ¢, tends to zero, it follows that (1) the limit lim, oI5 exists and is an
asymptote at a(t*), and (2) the angle between a(t")’s asymptotes tends to zero. From the
analysis of Case AA-A it now follows that a(t") belongs to a parabolic curve bounding a

surface concavity.

B.1.3 Case BB-B

This case is shown in Figure 21(c).
The line cfy,, (" 4 6t*) is a bitangent line at a(t™ + 6t™). Without loss of generality assume
that the topology of the intersection, Ty (S) NS, does not change for t* < t < t™ + 6t", and let

9Gince the topology of the intersection Ty (n)(S) NS does not change for n > N, the number of bitangent lines
in To(en)(S) will be equal to some fixed constant k. Furthermore, these lines can be grouped into k continuous
families of lines whose contacts with the surface trace continuous curves. The line {Z will belong to one of those
L families. We can therefore partition the sequence (a(t"))» into k subsequences in which 7 always belongs to
the same family. For each such subsequence, {7 contacts the surface at an additional point g™ that belongs to the
continuous trace of contacts of a single family of bitangent lines.
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I* be the corresponding bitangent line at a(¢"). Since limy e o(t?) = limp_,oo (™ + 617), we

get

(13) lim Z(1", Crop(t™ + 6t")) = 0
As in Case AA-A, we have

(14 T £, golt) =0

Since the visibility arc containing ¢, is of type BB, the following equations hold:

(15) £(I", caae(t)) 2 ¢"/2
(16) L(17, ciac(t")) = 9" /2
(17) £(13, ciaee(t™)) = ¢"/2

where I? and I3 are the two bitangent lines bounding the visibility arc containing cjy;4, and ¢" is

the angle they form. From Eqgs. (14) and (15) it follows that

(18) lim ¢, =0

nN—>00

Since [7 and lj are bitangent lines through a(t"), they contact the surface at points gy and
@2, respectively, distinct from (¢"). Asin Case AB-A, we assume without loss of generality that
the points ¢7 and ¢§ belong to the trace of two continuous curves on the surface. Hence, the
limits ¢§° = limp—00 g7 and ¢5° = limye0 gy exist.

We now distinguish four cases:

o at®), ¢, ¢5° are distinct. In this case the lines a(t®)g$° and «(t*)gs° are bitangent lines.
From Egs. (16)-(18) we conclude that the two lines are identical, and hence a(t*®)gf° is
tangent to the surface at three distinct points. Furthermore, «(t*) is not between points
¢ and ¢5°. Consequently, o(t*®) belongs to a visual event curve 7y Or T2 associated with
some triple-point visual event. Furthermore, the visibility arc containing c};,; diminishes
as a(t") approaches that point (i.e., it approaches a visual event curve that is a potential

boundary of a reconstructible surface region).
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o ¢ = ¢ # a(t*). This implies that the topology of the intersection Tory(S) NS in the
neighborhood of ¢f° is different from that of To(ny(S) N S for any large n. This occurs only
when Ty)(S) is tangent to the surface at point ¢i° [65], and ¢$° is hyperbolic. Hence,
To@e)(S) is tangent to the surface at two distinct points and, consequently, a(t*) belongs
to a visual event curve y; or 7, associated with a tangent-crossing event. Furthermore, the
visibility arc containing c?,, diminishes as a(t") approaches that point (i.e., it approaches

a visual event curve that is a potential boundary of a reconstructible surface region).

e a(t®) € {¢°,¢°} and ¢ # ¢5°. Suppose (t™) = ¢f°. Since the lines I7, I3 bound a region
in which a(t") is visible and ¢§° = a(t*), it follows that I§° is an asymptote at a(t*). But
Eq. (18) implies that I§° also touches the surface at g5°. Hence, a(¢*°) belongs to a visual
event curve oeusp associated with a cusp-crossing visual event. Furthermore, the visibility
arc containing ¢?;, diminishes as a(t") approaches that point (i.e., it approaches a visual

event curve that is a potential boundary of a reconstructible surface region).

e at®) = ¢&° = ¢5°. Since the lines I7,13 bound a region in which a(t™) is visible, it follows
that [$°,1° are the two asymptotes at a(t*). Eq. (18) and our analysis in Case AA-A

imply that o(t*) is on a parabolic curve bounding a surface concavity.

B.2 Proof of Theorem 7

Suppose I'™ is the set of surface points reconstructed after n iterations of the Incremental Re-
construction Behavior. Furthermore, suppose the reconstruction process never terminates. Let
[ = U,_oI", and take ¢ to be a limit point of I'®. We show that ¢ is a limit point of a
reconstructible surface region.

Let 3 be a curve lying in the open set [ — ' connecting ¢ to the visible rim at the initial
viewpoint. By definition, any point on S except its endpoint, g, will be reconstructed after a
finite number of iterations of the Incremental Reconstruction Behavior. We distinguish two cases,
depending on whether or not g belongs to a curve v, or 72 corresponding to a tangent-crossing

visual event.

First, suppose ¢ does not belong to such a curve. In this case, we can find for any € > 0, a
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neighborhood IT of ¢ of radius less than e, such that II does not intersect any visual event curves
v1,72. Since the observer obeys Rule 1 of Theorem 7 and § always intersects the boundary
of reconstructed points, it follows that after a finite number of iterations of the Incremental
Reconstruction Behavior, a point p will be selected that is contained in II. After selecting p,
the observer executes the Degenerate Patch Reconstruction Behavior to reconstruct the surface
around p.

Now, we can define a smooth curve y(t) (0 <t < ¢), such that 7(0) = p, y(€) = ¢, and () is
contained in II for all t. By its definition, ¢ will not be contained in the patch reconstructed by
the observer. Let r be the first point on v intersecting the boundary of this patch. If r = y(t.),
the topology of the intersection Ty (S)N S is the same for all 0 < t < t,. Hence, we can use the
arguments in Theorem 5 to conclude that ¢ is a limit point of a reconstructible surface region.

Now suppose ¢ belongs to some curve, 7; 0T 72, corresponding to a tangent-crossing visual
event, and let € > 0. Only a finite number, X, of such curves can intersect at g. These curves
partition every neighborhood IT of ¢ of radius less than € into K regions, in a star-shaped fashion.
After a finite number of iterations of the Incremental Reconstruction Behavior, a point p will
be selected that is contained in one of those K regions. Without loss of generality, we may
assume that p does not belong to the boundaries of these regions. We can now define a curve v
connecting p to g such that its trace is contained in I1, and intersecting a visual event curve, 71

or 7y, only at g. This reduces the theorem’s proof to the previous case.
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