Performance Analysis of Mesh Interconnection
Networks with Deterministic Routing

Vikram Adve
Mary K. Vernon

Technical Report #1001b

July 1993

Performance Analysis of Mesh Interconnection Networks
with Deterministic Routing

Vikram S. Adve
Mary K. Vernon

Computer Sciences Technical Report #1001b f
July 1993

+ Revised version of Computer Sciences Technical Reports #1001 (February 1991) and #1001a (June 1992).
This version is to appear in IEEE Transactions on Parallel and Distributed Systems.

Performance Analysis of Mesh Interconnection Networks
with Deterministic Routing

Vikram S. Adve
Mary K. Vernon

University of Wisconsin-Madison
Computer Sciences Department
1210 West Dayton Street
Madison W1 53706.

{adve,vernon}@cs.wisc.edu

ABSTRACT

This paper develops detailed analytical performance models for k-ary n-cube networks with single-flit or
infinite buffers, wormhole routing, and the non-adaptive deadlock-free routing scheme proposed by Dally and
Seitz. In contrast to previous performance studies of such networks, the system is modeled as a closed queueing
network that (1) includes the effects of blocking and pipelining of messages in the network, (2) allows for arbi-
trary source-destination probability distributions, and (3) explicitly models the virtual channels used in the
deadlock-free routing algorithm.

The models are used to examine several performance issues for 2-dimensional networks with shared-
memory traffic. Some results obtained are: (1) when processors are allowed to have multiple outstanding requests,
system performance is bandwidth-limited and hence network performance does not scale well with increasing sys-
tem size, (2) communication locality improves system efficiency, but a very high level of locality is needed for
system performance to scale well, (3) in contrast to previous hot-spot studies for indirect networks that assume
non-blocking processors, this study finds that significant tree-saturation does not occur even in the presence of
severe hot-spots in systems with up to four outstanding requests per processor, and (4) at some plausible system
operating points there is a perceptible difference in the efficiencies of processors at different locations in the mesh
due to asymmetric loads on the virtual channels by the deadlock avoidance algorithm. These results should prove
useful for engineering high-performance systems based on low-dimensional k-ary n-cube networks.

Index terms — Approximate Mean Value Analysis, closed queueing networks, finite buffers, hot-spots, mul-
tiprocessor interconnection networks, k-ary n-cube networks, mesh networks, near-neighbor communication, per-
formance analysis, wormhole routing.

This research was supported by the National Science Foundation under grant number DCR-8451405, and by an IBM Graduate Fel-
lowship.

1. Introduction

Multiprocessor mesh interconnection networks are 2-dimensional networks, with the processors arranged at
the nodes of a grid, and point-to-point links connecting each node to its neighbors. Mesh interconnection networks
are a special case of k-ary n-cube networks in which the number of dimensions, n, is two. Recent studies of k-ary
n-cubes with wormhole routing (a low-latency pipelined routing scheme [9]) have shown that under reasonable
assumptions, the optimal value for n is two or three [2,8,10]. Many existing and emerging multiprocessor sys-
tems use such low-dimensional direct networks to interconnect the processors, including the Intel Paragon, Cray

T3D, Stanford Dash [14], M.LT. Alewife [1], M.LT. J-Machine [16] and CMU-Intel iWarp [5].

In this paper, we develop performance models to study k-ary n-cube networks with wormhole routing, with
either single-flit or infinite network buffers. Our model for the single-flit buffer case includes the deadlock free
routing algorithm of Dally and Seitz [9]. In contrast to previous analyses of these networks [2, 10, 11], the models
we derive are closed queueing network models. Also in contrast to previous work, (i) we include the effects of
blocking and pipelining of messages in the network, (ii) we allow for arbitrary source-destination probability dis-
tributions, and (iii) we explicitly model the virtual channels used in the deadlock avoidance algorithm. In the
single-flit buffer model, the representation of message pipelining and blocking and the asymmetric virtual channel
loadings of the deadlock avoidance algorithm require an approximate Mean Value Analysis solution that is rather
complex. These features, however, have a significant impact on system performance and are thus important to
model. The model provides a further example that approximate Mean Value Analysis can be used for accurate

performance prediction of highly complex systems with non-product-form queueing behavior.

We use the models to examine several performance issues for two-dimensional networks. We study net-
work performance and scalability with processors that must block after each request, as well as with processors
that can make multiple requests before blocking for responses. We compare the performance of three mesh net-
work topologies: the unidirectional and bidirectional tori (meshes with end-around links connecting corresponding
nodes on opposite edges) and the bidirectional mesh without end-around links. We first study the above issues
under a uniform traffic pattern. We then examine the impact of communication locality on network performance
and scalability, and discuss how the other conclusions obtained under uniform communication change in the pres-
ence of varying degrees of locality. We also study network performance when a communication hot-spot occurs,
including the effect of a hot-spot on other traffic in the network. Finally, we analyze and explain a potentially
important performance implication of the deadlock avoidance algorithm. Specifically, this algorithm produces
asymmetric loads on the virtual channels sharing each physical network link. The performance analysis shows that
this asymmetry can lead to a perceptible difference between the efficiencies of processors at different locations in

the mesh.

The remainder of this paper is organized as follows. Section 2 describes the mesh network and key perfor-
mance issues in more detail, and states the assumptions about the system workload. Section 3 presents an over-
view of the models, and gives the details for the new techniques developed. The models also use several previ-
ously developed Mean Value Analysis approximations; the complete set of equations is given in Appendix B. Sec-
tion 4 first presents the results of the model validations we performed using simulation, and then presents the per-

formance analysis using the analytical models. Section 5 contains the conclusions of our study.

2. System Description

We describe the system and workload assumptions made in this study in Sections 2.1 through 2.5. In Sec-

tion 2.6, we discuss several performance issues related to mesh networks that will be studied using the model.

2.1. Mesh Network Topologies

The basic topology of multiprocessor mesh interconnection networks is illustrated in Figure 2.1. There are a
number of variations on this basic topology. The connection between each pair of adjacent nodes may be unidirec-
tional or bidirectional, with the latter usually being implemented as two unidirectional links. With the unidirec-
tional topology, end-around connections that connect a node at one edge to the corresponding node at the opposite
edge (as shown in Figure 2.1) are necessary. A mesh with end-around connections is often called a torus. End-
around connections may also be included in the bidirectional case to reduce the average number of hops a mes-
sage must travel in the network. A torus can be organized so that all links are of equal length, with each link being

about twice as long as in the case without end-around connections [8].

2.2. Organization of a Node

A node in the system typically consists of one or more processors, some associated local memory, and a
hardware switch that controls the routing of messages through the node (Figure 2.2). When the node needs to send
a message to another node, it queues the message in a local buffer (not shown in the figure). The message waits
until the node-to-switch link (connecting the processor and memory to the local switch) becomes free, and then
until space becomes available in the outgoing virtual channel buffer. (The message must compete for the channel
buffer with messages from neighboring nodes that request the same buffer; we assume that the switch chooses
among competing requests in first-come-first-serve order.) Thereafter, the message is forwarded down the link
into the channel buffer in the pipelined manner of wormhole routing, which we describe next. We assume that the
processor is not involved in transferring the message from the local buffer into the outgoing channel in the local

switch.

PNIAS —
\H k/ k Virtual
Channel
Buffer
O $ OO0
/L Switch \
I [4
-0 Y Q’) \Pd
Memory|
Node
OO0~
/ _/ /
Figure 2.1. Basic mesh topology Figure 2.2. A node in a unidirectional net-

work

2.3. Wormhole Routing

In wormhole routing a switch begins forwarding a message as soon as the header is received and the
required channel buffer in the next switch can accept one or more flits of this message. Thus, the flits of a message
are transmitted from one switch to the next in a pipelined fashion and may occupy several channels along the path
from source to destination. Only the header flit of a message contains routing information. If the header flit of a
message is blocked because the required buffer in the next switch along its path is full all the flits in the message
are blocked and, therefore, so are the channels they occupy. If more than one flit can be buffered at a node, flits
behind the header can “catch up” until the available buffer space is filled. At this point they block and can con-

tinue only after the header is unblocked. We assume this method of routing throughout the paper.

2.4. Deadlock Avoidance for Finite Buffers

In the ideal case, when buffer capacity is unlimited, deadlock cannot occur in the network and the
wormhole routing scheme is equivalent to an optimized form! of the virtual cut-through routing algorithm defined
for data communication networks [12]. In practice, buffer capacity in a node is limited and deadlock can occur in

the networks with end-around connections because all the buffers in a cycle could be filled, with no message able

1. The virtual cut-through algorithm specifies that, if the header flit is blocked at a switch, the entire message has to be received
before the message is forwarded. Instead, wormhole routing allows a partially received message to be forwarded as soon as its out-
going channel becomes available.

N N W

high g 1007
T 901 low
00 01 02 03 Iy channel
f 801
f
H
high ¢ 704
e N e Wen R e 2 w0
ﬁj &j ¥/é % Vo o5l
r
L 401
low fow a
—Qo —(294— 22 —Q.a I 304
7 C
b b 20-
/L a
low n
n 101
- e
30\~ /31\” 32 K /33 Ly v
\Tf o 1 2 3 4 5 6 7
u U u u Row Number
Figure 2.3. Example for deadlock-free Figure 2.4. % Traffic on the high and low
routing algorithm virtual channels along a column
Unidirectional 4x4 torus Unidirectional 8x8 torus
Channels on path from S=12 to D=20 Uniform traffic distribution.

to make progress along that cycle.

Dally and Seitz have proposed a deterministic routing scheme that uses the concept of virtual channels to
break cycles and prevent deadlock in the networks with end-around connections [9]. In this scheme, each physi-
cal link is shared by two virtual channels that are fed by separate buffers. As long as both virtual channels have
messages to send, they alternate their flits on the physical link. If one of the buffers is empty or blocked, the other
channel can transmit continuously, using the entire link bandwidth. When a message is blocked, all the virtual

channels occupied by the flits of that message are also blocked, and no other messages can use those channels.

The algorithm is illustrated in Figure 2.3, and operates as follows. Each node in the k-ary n-cube is assigned
an n-digit, base-k number, which specifies the position of the node in the cube. Dimensions are numbered and
messages are always routed in decreasing order of dimension. (For example, in Figure 2.3, d=1 for the columns,
d=0 for the rows, and routing is column first.) In each dimension d, d=n~1, - - - ,0, a message is routed in that
dimension until it reaches a node whose dth digit agrees with the dth digit of the destination node. The message is
routed along the “high” virtual channel if the dth digit of the destination address is greater than the dth digit of the
present node’s address. Otherwise, it is routed along the “low” virtual channel. For example, in a unidirectional
mesh network (as in Figure 2.3), a message to a node with a higher row number is routed on the high virtual chan-

nel along the column until it crosses the link out of node on row 0 (shown at the edge of the network in the figure),

and thereafter uses the low virtual channel on the column until it reaches the destination row.

The algorithm imposes a total order on the virtual channels that are used in each direction along any dimen-
sion of the network. Furthermore, the requirement that messages are routed in decreasing order of dimension
implies that no cycles exist across dimensions. The algorithm is thus deadlock-free because it imposes a partial

order on all virtual channels in the network.

The above deadlock-free routing scheme generates asymmetric loads on the virtual channels in the network
even when all processors have a uniform message destination probability distribution (i.e., even when the loads
on the physical links are balanced). Figure 2.4 shows the fraction of total link traffic that uses each virtual channel
for the links on a single column in a unidirectional 8x8 torus, assuming uniform message distribution. Note that all
traffic on the link leaving the processor on row 0 uses the high virtual channel, and thus the buffer space of the
Jow virtual channel is completely unused. In general, on a physical link near the “edge” row or column (after
which traffic crosses over from the high to low channel or vice versa), the traffic tends to be concentrated on one
of the two virtual channels. For links far away from the terminal row or column, the traffic is more evenly bal-
anced on the two virtual channels. In parallel work, Bolding has recently observed the same phenomenon [4] and
gives similar data as in Figure 2.4, showing the buffer utilizations on the high and low channels for bidirectional

and unidirectional topologies.

2.5. Workload Assumptions

We assume that all the processors in the system execute subtasks of large MIMD parallel programs.2 Most
previous studies of mesh networks, the hypercube and other k-ary n-cubes, have assumed a message-passing
workload [8, 10, 11], but a number of recent shared-memory systems have also been based on mesh networks

(Alewife [1], Dash [14], Cray T3D). Our model of the network is applicable to both types of workloads.

We allow a processor to have a maximum of N, requests outstanding before it is required to block for a
reply. (N, is a parameter of the model.) For the model and results described in this paper, we assume that the rate
of generation of requests is independent of how many requests are outstanding, until the maximum of N, is
reached. This assumption can accurately capture the behavior of systems in which each processor can switch
between multiple contexts [1,21], and should also be a reasonable model for many message-passing workloads.
The assumption may be somewhat more approximate for processors that permit non-blocking memory operations
(e.g, as with buffered writes, non-blocking caches or prefetching), where the intervals between successive

requests may depend in complex ways on the number of outstanding requests. Finally, as explained in Section 3, a

2. We do not explicitly model synchronization events. Instead, we assume that these are reflected in the rate at which processors
generate messages.

simple modification would allow the model to capture the behavior of hierarchical multiprocessors [14] containing
multiple processors per node (by allowing the rate at which a node generates requests be proportional to the

number of additional requests it can make before blocking).

Our model does not restrict the communication patterns in the system. Each processor sends a message to
each other processor with a specified probability, and these arbitrary probability distributions are inputs to the

model. This permits us to study the effect of non-uniform traffic patterns on system efficiency.

The workload and system parameters used in the study are defined in Section 3.

2.6. Performance Issues for Mesh Networks

In Section 4, we use the model to study the performance as well as the scalability of mesh networks in vary-
ing configurations (various system sizes, buffer sizes, network topologies) and under different workloads (varying
communication rates, single/multiple outstanding requests per processor, uniform/non-uniform communication
patterns). We begin by examing the performance and scalability of a baseline system: a bidirectional torus with a
uniform communication workload and processors that must block after each request (N,=1). We then study a
number of variations on this system, to evaluate several issues that arise in the design of mesh networks. The

issues we examine are as follows.

Channel Buffer Size: The buffer size per network link or channel is a design parameter that has significant
cost and performance implications. In studying various network design issues, we compare network performance
with single-flit buffers per virtual channel against the performance with infinite switch buffers. These are extreme
cases that bound the performance of any particular finite buffer size, and show how much can be gained by

increasing switch buffer sizes.

Multiple outstanding requests: Allowing a node to have more than one request outstanding has the potential
to at least partially hide the latency of remote communication, but there is also potential for higher congestion in
the network. We investigate how much improvement in absolute system efficiency is possible with multiple out-
standing requests (due to overlapping communication with execution) and whether at some point network conges-
tion cancels this gain. We also investigate how system scalability is affected by allowing multiple outstanding

requests per processor.

Mesh Topology: There are performance and cost tradeoffs between the three network topologies mentioned
in Section 1. In a k-ary n-cube network, the mean number of links that a message must traverse assuming all other

nodes are equally likely to be the destination is approximately Zlfn'k’ -13—n,k and —;-n.k for the bidirectional torus,

the bidirectional mesh without end-around connections, and the unidirectional torus respectively.

The extra links in the bidirectional networks imply a higher cost, however, and this must be accounted for to
allow a fair comparison between the various topologies. When comparing these networks, we assume that the
number of input and output wires per switch is fixed, which implies that the channels of the unidirectional network
can be twice as wide as those in either of the bidirectional networks, offsetting the larger mean number of hops
required. Furthermore, the bidirectional mesh without end-around connections, unlike the torus networks, does not
require the deadlock-prevention algorithm of Dally and Seitz since the fixed-dimension-first routing is sufficient to
prevent cyclical dependencies between links in the network. To allow a fair comparison, we compare the torus
networks with single-flit buffers per virtual channel to non-torus mesh networks with two-flit buffers per physical

link. This ensures that the buffer capacity per switch is equal for all three topologies.

Locality of Communication: A large class of scientific algorithms, called continuum models [19], involve a
grid structure where a particular variable depends only on its nearest neighbors. Such problems can be mapped to
the mesh network so that any processor requires mostly values calculated by its four neighboring nodes (or some
set of nodes situated within at most a few hops). This would reduce network latency and contention compared
with uniform communication. We investigate how near-neighbor communication locality affects system perfor-
mance and scalability, and re-evaluate the design issues discussed above under workloads exhibiting varying

degrees of near-neighbor locality.

Communication hot-spots: Tt has been shown that communication hot-spots can seriously degrade the
overall performance of indirect (eg., multistage) interconnection networks with non-blocking processors. Further-
more, in such systems, hot-spots can cause buffers to fill up in large portions of the network, severely increasing
the latency of unrelated (non-hot) network traffic as well, a phenomenon called tree-saturation [17]. We use our
model to study the effect of communication hot-spots in mesh networks, with processors that block after a limited
number of outstanding requests. We study the degradation in overall system performance due to a hot-spot, as

well as the effect of a hot-spot on the latency of other traffic in the network.

Performance imbalance caused by the deadlock-avoidance algorithm: In Section 2.4 we pointed out that the
deadlock-free routing algorithm of Dally and Seitz generates asymmetric loads on the virtual channels in the net-
work. The asymmetry does not necessarily imply that the processors near the edge are more adversely affected
than the processors near the center of the mesh. The actual effect is complicated and requires careful reasoning
about the pipelining effects of wormhole routing. A more detailed explanation of the asymmetry, and a quantita-

tive analysis of its potential impact on performance, are given in Section 4.7.

Table 3.1. Model input parameters.

Parameter Description
N Number of processors in the system
Nour Maximum number of requests a processor can have outstanding before it must block for a reply
T Mean time between messages when less than N,,, requests are outstanding
Fj; Fraction of messages by processor { that are directed to processor j, YFi=1i=1,.,N
J#
P,,P, Probability that a message is type 1 (msg 1) or type 2 (msg 2) respectively
L; Length of message of type i € {msg 1,msg2,resp 1, resp2}
Dpiem.rs Demw | Time to respectively read and write one word from a memory module

3. The Model

In order to study the design trade-offs outlined at the end of the previous section, we have created closed
queueing network models of the k-ary n-cube network for each of two buffer sizes: finite buffers of size one flit,
and infinite buffers. The parameters of the models are defined in Table 3.1. N, denotes the number of outstand-
ing requests that each processor can have before it blocks. For the model and analyses in this paper, we assume
that when a processor has less than N, requests outstanding, it generates request messages with a mean interval
of T cycles between requests. A request message generated by processor i is directed to processor j, j#i with pro-
bability F;;. We allow two sizes of messages to be generated: Ly, and Lyg,», with respective probabilities P
and P, (these probabilities are the same for all processors). The sizes of the respective responses are L.y, and
Lyesp2- For a shared-memory workload the two request message types could represent memory read and write
requests, and the reply types could represent data and acknowledgement responses respectively. The network is
assumed to operate synchronously. The values of T, Dyyem.r» and Dy, are assumed to be in units of switch

cycles.

In our models, each processor forms a class of customers with its own destination probability distribution
and with population equal to N,,. In other words, each possible message a processor can have outstanding is
modeled as a separate customer in the system. When there are n < N, requests outstanding, the remaining No,,—1
customers are served in FCES order at the process.or,3 as in [22]. Thus, each customer in the system repeatedly
performs the following actions:

— execute for an amount of time measured in switch cycles that is geometrically distributed with mean 7,

3. FCFS service at the processor is appropriate for systems such as those that maintain multiple contexts at each processor since
only one context executes at any time. An infinite server would be more accurate for hierarchical systems. The equations for queue-
ing at the processor can easily be modified for this case.

— visit a remote node and return to the processor (representing a remote memory access, or sending a message
and receiving an acknowledgement),

— gueue at the processor to resume execution.

We develop the equations assuming that a remote processor is not interrupted when it receives an incoming mes-
sage, which would be true for a shared memory system. In this case, an incoming message only requires a
memory access at the remote node. (The equations can easily be modified to reflect message processing by the

node processor or message-handling co-processors.)

We choose to develop approximate Mean Value Analysis models because of the previous success of this
technique for analyzing other interconnection networks with features that violate separable model assumptions
[20,22]. Approximate Mean Value Analysis is based on estimating the mean round-trip time, or cycle time, for
each class of customers in the queueing network, relative to some reference point. The processor serves as the
reference point for the residence time equations in our model. The mean round-trip time for a customer of class i
is the sum of its mean residence times (queueing and service) in the local processor, in the network, and at the

remote node:
R[i]= rpmc[i] + FuerworklE 1+ Fremore i1, i=1---N. (1)

Each processor in the system has a distinct mean round-trip time because of non-uniform virtual channel loads as

well as possibly non-uniform communication patterns.

The mean round-trip time in the network is the weighted sum of the mean times for the message and the

response, for each type of request:

Foetwork [S] = Z F.s'd(Pl(rmsg1,.&'(1'*'"1"051) l,(ls) + PZ(rms‘g 2,,\‘d+"rexp 2,(1.&'))$ S=1, e ,N, (2)
d#s

where r; i is the mean time for a message of type j from node s to node d.

To calculate r; o4, we need to model the routing, pipelining, and blocking of messages in the network. These
features require an approximate model solution. Our model for systems with infinite channel buffers is similar to
the model developed for Banyan networks in [22]. Their equations assume that processor cycles are required to
transfer a message into the network; we do not make this assumption. The only other difference is that we use a
somewhat more accurate technique to estimate residence times at the processor for N, >1. This technique is also
employed in our finite buffer model, and is discussed in Section 3.3 below. Otherwise, we do not give the model

equations for the infinite buffer case.

For our model of wormhole routing with single-flit channel buffers, we have developed new approximations
to estimate (i) the channel waiting and blocking times, (ii) the customer queueing time at the processor, and (iii)
the mean queue length seen at the first outgoing link when multiple channels connect the processor to its switch.

Below we present an overview of the model for networks with single-flit buffers, and then describe each of the

-10-

three new approximations. Our notation is summarized in Appendix A and the full set of model equations for the
model with single-flit channel buffers is given in Appendix B. In Section 4 we discuss the results of validating the
model and the results of analyses using the model. The validation studies show that the model is accurate over a

wide range of input parameter values.

3.1. Overview of the Model with Single-Flit Buffers

Since messages in the mesh network can occupy several channels simultaneously, the mean message

residence time, r; 4, is the sum of the following three terms:
(i) the mean waiting time for the link from the node to its switch, (Waoge,sd 1>
(ii) the mean residence time for the header flit on each virtual channel ¢ between s and d (r; ., o[1]), and

(iii) the mean delay until the remaining flits of the message reach d (Tearchup):
Tisd = Whode,sd | j + er,c,.\'d[l] + Tcarclmp’ jE {mSgL mng’ reSPla TeSPZ}, (3)
c

where the summation is over virtual channels, ¢, on the path from s to d, including the channels out of the proces-
sor at s and into the processor at d.* Note that the above equation is similar in form to the equation used in [2] and
[22]. One difference between our equation and the corresponding one in [2] is that we include the waiting time for
the link that connects the processor to the switch, not just for the first switch buffer. A difference between our
model and both [2,22] is that Ty, is not deterministic, since at each link the flits may or may not have to alter-
nate with flits on the link’s other virtual channel. To compute Ty, We assume that the probability a flit must
share a link is approximately equal to the utilization of the link by messages on the other virtual channel mapped

to the link. Appendix B contains the details.

Further development of the model equations requires new techniques for estimating ;. sa[11; 7proc, and the
waiting time for the first network virtual channel when there are multiple channels from processor to switch.
These approximations are motivated and outlined in Sections 3.2 - 3.4 respectively. Section 3.5 concludes with a

discussion of the model complexity.

3.2. Mean Channel Residence Time (r; ; 4[k])

Let r; . [k] denote the average residence time of the k™ flit of a type j message from s to d on channel c.

The mean residence time for a header flit (k=1) on channel c is itself the sum of three terms:

(i) the average waiting time for the next channel on the path from s to d (we denote this channel by (¢ +1)54),

4. Henceforth, we use variables to denote the number of a virtual channel, and ensure that the appropriate number or set of
numbers in a summation is clear from the context.

-11-

(ii) the average waiting time for a flit on the virtual channel that is multiplexed onto the same physical link as ¢;
we denote this channel by ¢, and approximate this term by u,, 7, the mean utilization of the link by messages
on ¢ (i.e., the fraction of time the link is actually transmitting flits from), and

(i) the one cycle for transferring the flit to the next queue:

rj,c,s(l[l] =Wt I T Winks + 1, 6]

where a message from s to d enters (c+1),, via input port /. The possible input ports to a virtual channel are the
virtual channels from neighboring switches or the channel from the processor at the current node. The waiting
time for (¢c+1),, is a function of the input port because the traffic on (c+1),, coming from the various input ports
is asymmetric, in general.

For flits numbered &, k>1, if d is k or more steps away from c, the mean residence time on c is estimated by
the mean residence time of the header flit on channel (c+k—1) (the channel k-1 steps ahead on the path to d),
plus waiting for a flit that might be on ¢. Otherwise the header flit has already reached the destination and the

residence time of the k™ flit is one plus the mean waiting time for a flit on c:

re+e-1y, 1]+ Uik dis k or more steps away from channel ¢

Fje,sd [k]= Vg 7 otherwise (k>1) (5)

The key question for the model is how to calculate w |;, the waiting time for virtual channel ¢ experienced

by a header flit of a message that enters ¢ via input port /. This waiting time is the sum of three terms:”
(i) the mean residual residence time of a message in service at ¢ that arrived via some other input port i/, if any,
(i) the mean residual residence time for the last flit of a message in service at ¢ from port I, if any, and

(iii) the mean time to serve messages waiting to use ¢ from other input ports (at most one per port):

L;
Wepy = ZZZ”],Ll[k [’/cl[k] + Z I](l[l]]

il j k=1 I=k+1

i ',C,I[L‘] r',c,l[L']
+ Z ij_l J % J >] (6)

T 1= upeill]

i =1

+ ZZ[”/ c-n, 1] 21161[1]1

il j

The calculation of each of these terms is explained below.

5. To denote a summation over all four types J we write Z instead of
j je(msgl,msg2,respl,resp2)

-12-

(i) The total residence time of a message at ¢ is random with an unknown distribution. Rather than assume
knowledge of this distribution to calculate the mean residual life of a message in service, we assume that the
residence time of each flit of a message is deterministic, i.e. its mean residual life is r; . ;[k] /2. We expect that
this assumption will be good for low to moderate network traffic, and will introduce only small error at higher
loads since a flit residence time is small compared with total message residence time. Thus, the mean residual
residence time of an entire message (seen by an arrival on input port) can be calculated by conditioning on the
event that the arrival finds the k™ flit of a type j message that arrived from input port i in service at channel c¢. The

probability of this event is approximated by the average utilization of ¢ by such a flit: u; . ;[k]. The mean residual
L

life of the message in this case is (%:rj,c,i[k] + X Feill]1) Summing over all flits 1 £k < L; for all message
I=k+1
types j, and all possible input ports i # I, gives the first term in the above equation.
(ii) Because of the pipelined routing scheme, if the tagged message arriving at ¢ via input port / finds
another message at ¢ that also arrived via J, then it can only find the tail flit of that message occupying ¢, and can-

not find any other flit of the message. Therefore, we approximate the second term by the ratio of time that channel

¢ is occupied by a tail flit from I (u; . ;[L;]) to the total time that channel c is not occupied by any other flits from /

L~1

7
(1-% % w4 [l1). The residual residence time in this case is just r;.;[L;] /2. Summing over j gives the
=1
second term.
(iii) The third term is the average waiting time for messages that are waiting on input ports other than i
when a message arrives at input port / (we assume that these will be transmitted by channel ¢ before the arriving
message). For each input port i#I, the probability that a type j message is waiting to use c¢ is approximated by the

utilization of channel (c—1); by header flits of type j messages that will next use ¢ : u; ;) [1]. Multiplying by the

total residence time of such a message and summing over i/ and all message types j gives the third term.

The remaining unknowns in the above equations (i . ;[k], w;y.z) are calculated using previously developed

MVA techniques [20, 22], as described in Appendix B.

3.3. Processor Residence Times (r,,,.[i])

The processor is modeled as an FCFS queueing center, where the service time is geometrically distributed
with a mean value of T cycles. In early model validation experiments, we found that the widely-used Schweitzer
approximation for product-form networks [18] is not sufficiently accurate for the processor queues since the cus-
tomer population for each processor, N, can be small. Furthermore, previously developed approximations such
as Linearizer [6], which achieve greater accuracy by solving the equations at a few neighboring populations, intro-

duce too much additional complexity into the model. Below we develop a new approximation for r,,,.[i] that is

- 13-

empirically accurate and yet requires very little additional computation when N,,,, is not large. The key idea is that
we solve for r,,,.[i] recursively (i.e., similar to exact Mean Value Analysis) without recursively solving for the
residence times at other queues in the system for each customer population. Empirically, we found the new
approximation to be considerably more accurate than the Schweitzer approximation. Furthermore, we note that
the approximation is applicable to any multiclass queueing network where all the demand at some queue comes
from a small fraction of the customers in the network. As far as we are aware, this approach has not been previ-

ously reported in the literature.

Consider some processor i. Define r,,,,.(i,n) to be the steady-state average residence time at processor i if
there are n customers in its class. Thus, 7yoc[i]= Tproc (6 Nour)- Similarly, let g, (i,n) and w4, (i,n) denote the
mean queue length and the mean processor utilization at processor i with n customers in its class. 1, (i,n) is the
sum of the mean service time (T), the mean waiting time for customers found waiting in the queue, and the mean
residual service time (res,,,) for the customer in service, if any. We estimate the mean queue length and proces-
sor utilization seen by an arriving customer by qp,oc(i,n—1) and Uproc(i,1—1) respectively (just as in exact MVA),
producing a recursion over =1, =+, Ny The key to the approximation is that g, (i,n—1) and Uproc(i,n—1) are
calculated using the same values Of Fuengork[i] and Fremore[]5 foralln =1, ,N,,. (These values are available

from the previous iteration in the numerical solution of the overall model.) Thus,

Tproc(,n) =T+ [Gproc(in—1) = Uproc(isnt “DIXT + Uppoe(in—1) X resppe, 1> 1, (14)
B X Fypoc(E,1)
. proci\ts
q”()c(l’n): N ;) . —, n>1, (15)
! ’]JI”OC([’”) + ’NC’IW()Y’\’ [l] + rremote [l]
. nxX1t
Wppoe (B, 11) = - - —, n=21, and (16)
pre r])l”()C (l’n) + rll(.’lW()I'k [l] + "I'{.’l)ll)lc’ [l]
. . T
ql)roc(lv D= uproc(lv 1= (17)

T+ Fuerwork [l] + Fremote [l]

(The equations are numbered to correspond to Appendix B.) The mean residual service time of a customer found
in service, res,., has to be calculated as seen by the tail flit, not the header flit, since the customer is queued up at
the processor only when its tail flit arrives. Conditioned on finding a customer in service, the mean residual ser-
vice time seen by the head is T, by the memoryless property of the geometric distribution. A returning message is
of length L,,,, with probability P, and L,,,,, with probability P. In one cycle, the probability that the customer
in service at the processor does not complete service is y=1 - (1/7). Therefore, the average residual service time

seen by the tail flit is approximated by:

reSyroc = (T'l) x(Pl 'YL'HN-I + P2¢wm:-l) (18)

S 14 -

Equations 14-18 are solved for each processor i separately, in order to calculate all the r,,,,.[i].

3.4. Waiting Time for First Virtual Channel With Multiple Processor-to-Switch Channels

In our mesh network analysis, we found the physical link that connects each processor to its associated
switch to be a bottleneck under high loads, in the network with single-flit channel buffers. Therefore, we investi-
gated the use of multiple physical links connecting the processor to the switch, one for each outgoing virtual chan-
nel from the switch to neighboring nodes. (In practice, only two to three physical processor-to-switch links should
provide about the same performance since almost all the messages out of a processor are concentrated on a few
outgoing virtual channels.) With this organization, when a message from the processor finds its link to the switch
busy and later reaches the head of the queue for this link (where it is has to wait for the outgoing virtual channel
buffer), it cannot find a message from any other input port occupying the channel; it can find only the tail flit from
the preceding message. Furthermore, such an arriving message is more likely to find waiting messages at other
input ports (which were blocked by the preceding message). These observations lead to a somewhat different
expression for the waiting time for the outgoing channel (i.e., the first virtual channel along the path of the mes-

sage) in the case of multiple processor-to-switch links.

Consider a tagged customer of class g, and let ¢ denote the first virtual channel along its path. Define Welq
to be the average time this message has to wait before entering channel ¢. As in Equation (6), w’; |, is the sum of

three terms:

e the mean waiting time for messages in service at ¢ that arrived from input ports i#PROC, if the tagged mes-
sage found the processor-to-switch link idle (PROC denotes the input port used by messages arriving to ¢
from the processor),

e the mean waiting time for the tail flit of previous message from PROC, if the tagged message found the
processor-to-switch link busy, and

e the mean waiting time for messages blocked at input ports i#PROC that are waiting to use channel c:

L,

1

’ ’ rj,c,i[k] L
Welg 32) %OC 2 bjcinglk]) + 3 el
154
b

j k= I=k+1

1
L/
+ Z node, j,c]z][k] (Tie IPROC[Lj] -1) (24)
k=1

L]
2 [q’j,c,,-,q Z"j.c,;[k]] }
i#PROC b= .

The form of the first term for w’. |, is the same as the first term in equation (6), with u; . ;[k] replaced by
b’jciqlk]. Here, b’ ¢.i1qlk] is the probability that a message of class ¢ finds channel ¢ busy serving the k™ fiit of
a type j message that arrived via input port i#PROC, j € {msg1,msg2,resp 1,resp 2}. This is estimated as fol-

lows:

-15 -

1 — Pr{processor-to-switch link is busy}
fraction of time ¢ not serving message coming from node

bjciglk]= Xt i [k]

LJ'
1~ ZE bn()de,j,c [q[k]
j k=1

L’i
1-% % #jcrroclk]

j k=l

X Ltjvc,,'[k], (25)

where bypqe ¢ 141k] denotes the probability that a class g message finds the processor-to-switch link corresponding

to outgoing channel ¢ busy serving the k™ flit of a type j message.

The second term in w’y |, is straightforward because the probability that the processor-to-switch link for

channel ¢ is found busy with a message of type j is merely Y Duode,jc 1q[k] and the tagged message must see all
k

but one cycle of the residence time of the last flit of the message ahead of it.

For the third term, q’;), is defined as the average number of messages of type j from i#PROC found
waiting to use ¢ by the arriving class g message. The calculation of g’; . ; |, requires another observation about the
blocking phenomena in the mesh. A message following another message out of the node and into ¢ is more likely
than a random arrival at ¢ to find a message on input port i already waiting for channel ¢. To account for this, we
calculate the probability that a random message using ¢ via / =PROC blocks a type j message on incoming virtual
channel i. (The latter message will then be waiting to use ¢ when the following message from /=PROC reaches
the head of its queue for c.) Similarly, we consider messages from each i’#PROC (and i’#i) blocking messages

from i to c. Therefore, q; ;i |4 1s as follows:

Lj
Qjeilg = {ZZ Dyode,j,c 1qlk]} x Pr{ message from I=PROC blocks a type j message from i } +
j k=1
LJ'
Y <3S bciiglk]y x Pr{message from i’ blocks a type j message from i } . (26)
i#PROC | j k=1

i'#i

We illustrate the calculation of one of these terms here. A key observation we make is that Pr{a message from
1=PROC blocks a type j message from i} is proportional to the relative number of messages to ¢ that arrive from i
and I respectively (counting only type j messages from 7). But this relative number is exactly the ratio of the visit
ratio of type j messages from i to ¢ to the visit ratio of all message types from I=PROC to c. This ratio of visit
ratios, multiplied by the probability that a random message from i is blocked by a message from /=PROC then
gives us the probability that a random message from I to ¢ blocks a message on i. Thus, define V; . ; to be the sum
of the visit ratios of customers of all classes as type j messages to channel ¢ via input port i. Then,

V. L;
Pr{ message from I=PROC blocks a type j message from i } = 2 NG y { ZZ e k1 + 2w -1, (1] }
he J k=1 j ,

- 16 -

where the summations in the parentheses sum to the probability that a random message arriving to ¢ from i has to

wait for a message from /=PROC (which may be in service at c, or blocked on the processor-switch link to ¢).

The above discussion highlights the main points of this new heuristic used to calculate the waiting time for

the first virtual channel. The complete equations are given with the rest of the model in Appendix B.

3.5. Complexity of the Models

The model for wormhole routing with single-flit buffers has O[L N 3] time complexity and O[L puN?1
space complexity, where L, is the length of the longest message type. As a result, the model with L, =11 and
N=64 cannot practically be run on systems with fewer than ten megabytes of main memory. Nevertheless, solving
the model is still about ten to a hundred times faster than simulating the wormhole routing protocol under a statist-
ical workload. Furthermore, the model allows us to explore various issues and design trade-offs under the realistic
assumptions of arbitrary message sizes, and blocking due to finite buffers. For example, the effects of asymmetric
channel loads and hot spot traffic are a direct result of limited buffer space for the channels. Finally, the model
with infinite buffers is highly efficient and can be used to explore many of the mesh network design trade-offs for

larger systems.

4. Results

In this section we describe the results of extensive analyses of two-dimensional networks using the above
models. We assumed a shared-memory workload for these experiments, as discussed below. We first present the
ranges of input parameter values used in our study (Section 4.1), and the results of validation experiments (Section
4.2). In Section 4.3, we evaluate the performance and scalability of a baseline system that we use as a reference
point for studying further network design issues. In Section 4.4, we study the impact of allowing multiple out-
standing requests. In Section 4.5, we compare the alternative mesh topologies. In Section 4.6, we study the perfor-
mance impact of near-neighbor workloads, and re-evaluate the design issues studied in Sections 4.3-4.5 under
such workloads. In Section 4.7, we study the degradation in system performance due to communication hot-spots.
Finally, in Section 4.8, we analyze the imbalance in processor efficiencies caused by the asymmetric loads on the

virtual channels in the deadlock prevention algorithm (see Section 2.4).

4.1. Model Input Parameter Values and Performance Measures

The measures of system performance we use are individual and average processor efficiency, defined as the

fraction of time a processor spends doing useful work:

217 -

Table 4.1. Parameter Values used in the Experiments.

Symbol Range of Symbol Value
Values Bidirectional Unidirectional

N 16,64,144-1024 Lisg s 3 2

N 1-8 Livsp 9 5

T 20-200 Lyyga 11 6

F,» 0 - 100% Lyespa 3 2
Fior 0-20% PP, 08,02 08,02

Dot = Dy 2 4 4

E[i]:m <1, Ez—]—gE[i].
RI[i] N o

Other measures that are obtained from the model equations include steady state mean channel queue lengths and

steady state link utilizations. We validated the accuracy of several of these detailed measures as well.

The ranges of values used for the various model input parameters are given in Table 4.1. Most of the experi-
ments with finite-buffer systems focus on a 64-processor (8x8) mesh, while we use the infinite-buffer model to
examine the performance impact of increasing system size for systems as large as 1024 processors (a 32x32
mesh). All processing times and memory access times are specified in units of switch cycles. In many of the
graphs, processor efficiency is plotted as a function of 1/7, where 1/7 intuitively measures the average communi-
cation rate (e.g., cache misses per cycle per processor). T was varied from 20 to 200 cycles. Values of © higher
than 200 showed very little further improvement in processor efficiency (for our parameter settings). Also, since
average remote access latencies are typically greater than 20 switch cycles in an 8%8 mesh, it is difficult to
envisage programs that make requests faster than about one every 20 cycles executing with any reasonable
efficiency on this or larger systems. Thus, we believe the above range of T should allow us to study the perfor-

mance of a fairly wide range of programs.

Messages are assumed to consist of a header flit, plus address flits (type msg 1), data flits (type resp 1),
address and data flits (type msg2), or acknowledgement flits (type resp 2). These interpretations of the message
contents and the associated message lengths in Table 4.1 are intended to represent a shared memory workload.
Message-passing programs could be expected to exchange larger messages between processes, though less fre-
quently [8]. The models can be modified to study such workloads; however, that is beyond the scope of this paper.
The message sizes also reflect the assumption that the channels in the unidirectional torus are twice as wide as in
the bidirectional networks with an equal number of wires per switch. Finally, we set P = 0.8, P,=0.2, and D,
= D,y = 4 for all experiments. We do not expect moderate changes in these parameters to significantly alter our

results.

- 18-

4.2. Validation of the Models Against Simulation

We used event-driven simulators to validate the analytical models, for both the single-flit and infinite buffer
cases. The simulators use a statistical workload identical to that of the analytical models, but implement the
wormbhole routing of the flits and the deadlock-free routing algorithm exactly. We present representative results of

the validations of the single-flit buffer model in Tables 4.2 and 4.3.

At low to moderate network loads, the average processor efficiency from the analytical model agrees
closely with the value obtained by simulation (less than 3% error). Thus our finite buffer model has accuracy simi-
lar to the very accurate, less complex models of the infinite buffer case; validations of the infinite buffer model

gave results very similar to the model in [22] and are not shown here.

In cases of high network contention (eg., with N,,, 24 and T < 50), the analytical single-flit buffer model
tends to be somewhat optimistic. In these cases some links are nearly saturated and the absolute value of the pro-
cessor efficiency tends to be very low. The maximum error in average processor efficiency across all our valida-
tion experiments was 20%, which is shown for N=16, 1=5 and N,,, = 8 in Table 4.2(a). In all cases, the predicted

efficiencies are qualitatively correct.

We also examined more detailed performance measures, including estimates of the individual, asymmetric
processor efficiencies. The maximum, minimum, and ratio of maximum to minimum processor efficiency
predicted by the analytical model and simulation for the 8x8 torus are shown in Table 4.3. Again, agreement is
very good, particularly for the max/min efficiency ratio. Note also that the ratio of the two efficiencies is always
underestimated by the analytical model. Thus, the imbalance estimates, discussed in section 4.8, are generally

conservative.

4.3. Baseline System Performance

We choose as our “baseline system” (which we will use as a reference point for studying further network
design issues), the bidirectional torus with uniform traffic, and processors that block after each request (i.e., Ny, =
1). In Figure 4.1, the solid lines show the average processor efficiency as a function of request rate (1/7) for the
baseline system with single-flit channel buffers, and system sizes of 16 and 64 processors. The performance of
this system is low at moderate or high request rates (1/1>0.03). The poor performance in this system is chiefly
caused by inherent latency of communication rather than by contention in the network. To show this, we also give
the efficiency curves assuming there is no contention in the network (the dashed lines in Figure 4.1). Comparing
the two sets of curves, we see that the absolute loss in efficiency due to contention is about 5-10%. Thus, the sys-

tem performance is latency- rather than bandwidth-limited when processors block after each request.

-19-

Table 4.2. Comparison of Overall Performance Estimates with Simulation.

(a) Bidirectional 4x4 Torus, Single Channel from Processor to Switch.

Parameters Processor Efficiency Network Residence Time

Ny T Simulation | Analytical % Error Simulation | Analytical % Error
1 5 12.37 12.01 -2.9% 22.62 24.70 9.2%
1 25 4301 42.29 -1.7% 21.07 22.44 6.5%
1 100 76.54 76.02 -0.7% 19.59 20.15 2.8%
2 5 19.56 19.58 0.1% 31.05 33.18 6.8%
2 25 68.93 70.26 1.9% 2490 26.55 6.6%
2 100 96.34 98.60 2.3% 20.21 20.69 2.4%
4 5 24.11 26.12 8.3% 60.81 57.29 -5.8%
4 25 91.48 98.30 7.4% 33.64 33.63 -0.0%
4 100 99.96 100.0 0.0% 20.44 20.75 1.5%
8 5 25.07 30.08 20.0% 136.79 11253 -17.7%
8 25 99.56 100.0 0.4% 44.89 34.44 -23.3%
8 100 100.0 100.0 0.0% 20.43 20.76 1.61%

(b) Bidirectional 8x8 Torus, Multiple Channels from Processor to Switch.

Parameters Processor Efficiency Network Residence Time

N T Simulation | Analytical % Error Simulation | Analytical % Error
1 20 34.6 34.24 1.0% 3298 33.54 1.7%
1 333 48.9 48.37 -1.1% 30.03 30.72 2.3%
1 50 60.4 59.92 0.8% 27.94 28.61 2.4%
1 100 76.9 76.50 0.5% 25.36 25.88 2.0%
4 20 44.8 49.54 10.5% 144.06 138.57 -3.8%
4 33.3 75.01 84.16 12.2% 105.88 90.55 -14.54%
4 50 97.8 100.0 2.25% 49.20 38.55 -21.6%
4 100 100.0 100.0 0.0% 27.61 27.35 -0.9%

Table 4.3. Comparison of Maximum and Minimum Processor Efficiency Estimates with Simulation.

Bidirectional 8x8 Torus, Single channel from processor to switch.

Parameters Maximum Efficiency Minimum Efficiency Max / Min Efficiency
Now T Sim Anal | % Error}| Sim Anal | % Error || Sim Anal | %Error
1 25 || 37.78 3892 | 3.0% 35.56 38.53 8.4% || 1.062 1.010 -4.9%

1 40 |} 50.39 52.55 | 43% 48.93 52.25 6.8% || 1.030 1.005 -2.4%
1 100 {| 73.90 76.13 | 3.0% 72.25 76.03 52% | 1.023 1.001 2.1%
4 25 || 63.76 68.62 | 7.6% 42.79 47.53 | 11.1% || 1.490 1.444 -3.1%
4 40 || 88.36 96.00 | 8.6% 76.77 88.62 | 154% | 1.151 1.080 -6.2%
4 100 || 99.96 100.0 0.0% 99.90 | 100.0 0.1% || 1.001 1.000 -0.1%

Furthermore, because communication latency is the chief cause of low efficiency, increasing buffer sizes
per switch yields very little performance improvement for these system sizes. In fact, for these systems, the aver-
age processor efficiency with infinite channel buffers (shown in Figure 4.2 and discussed below) is almost identi-

cal to the performance with single-flit channel buffers.

-20 -

1001
901
801
% L 1/t=0005
E
¥ F 0]
f f 0.01
H 1 , 3
¢ c 50
i i
e e 407
¢ LTy 0.02
y 301 e latency only ; 30 0.025
latency and contention] 0.03
201 Y 20 001
0.05
101 10
0 g T g g d \[.__O T v T v Y T r \
0.00 0.01 0.02 0.03 0.04 0.05 N = 0 f46 84 1424 16 20 24 28 32
Request Rate (1/1) N= 0 6 1 256 400 576 784 1024
Figure 4.1. Efficiency of baseline system Figure 4.2. Scalability of baseline system
Bidirectional torus, single flit buffers, uniform Bidirectional torus, infinite buffers, uniform
traffic, N, = 1. traffic, N,,, = 1.

To examine how system performance scales with increasing system size, in Figure 4.2 we plot the average
processor efficiency as a function of mesh radix (\/7\/—) for different request rates (1/7), for the baseline system with
infinite channel buffers. The figure shows that the performance of the baseline system scales well (i.e. average
processor efficiency decreases slowly) with increasing system size, even though the absolute performance is low.
These curves also show that the decrease in efficiency with increasing radix is primarily due to higher latency
rather than due to network contention. Specifically, the decrease in efficiency is close to linear, showing that it is
primarily due to the increasing number of hops a message must travel, rather than an increase in the delay (due to
contention) at each hop. We conjecture that a baseline system with small channel buffers will also show good
scalability, based on the low network contention seen in all the cases studied above. (The space complexity of our

single-flit buffer model and the time requirements of simulation have prohibited us from testing this directly.)

4.4. Multiple Outstanding Requests

Since baseline system performance is chiefly limited by communication latency rather than contention, a
plausible technique for improving processor efficiency is to allow processors to make multiple requests before

blocking. The impact of multiple outstanding requests on system performance and scalability are as follows.

Figure 4.3 shows how the performance of an 8x8 baseline system (i.e., a bidirectional torus, uniform traffic)

with single-flit or infinite buffers improves as N,,, increases from 1 to 8. The figure shows that for single-flit

2921 -

100% 1007 1/t =0.005
=001
901 901
801 80+
%
}% 70 % 704
£ 60 E 601 0.02
i f
¢ 50 i 50 0.025
1 c
e i 0.03
o 407 . 40
Cc n
y 301 e 301 0.04
— ~— - Infinite buffers y 0.05
207 One-flit buffer per virtual channel 207
101 101
0.000 0010 0020 0.030 0040 0.050 W= o0 4 8§ 12 16 20 24 28 32
Request Rate (1/7) N=0 16 64 144 256 400 576 784 1024
Figure 4.3. Efficiency with multiple outstanding Figure 4.4. Scalability with 4 outstanding
requests requests
Bidirectional torus, uniform traffic, N = 64. Bidirectional torus, uniform traffic, infinite buffers.

channel buffers (solid lines), hiding communication latency with small increases in N, is clearly effective in
improving average efficiency, but each additional increase in N, brings diminishing returns because of increas-
ing network contention. In fact, there is a threshold at N,,, = 4 beyond which no appreciable improvement in per-

formance is observed.

For the infinite buffer case (dashed lines), we find that increasing N, up to 8 is worthwhile for this system
size. In larger systems with infinite buffers (not shown here) we again found that, beyond some threshold, increas-
ing N, brings little improvement; this threshold is about 8 and 4 for systems with 144 and 1024 processors
respectively. In general, a few contexis per processor or a few prefetches are effective in improving efficiency, but
there is a clear threshold at a small value of N, beyond which no further improvement is observed because of
increased network contention. These results further support conclusions in previous papers that a few contexts

per processor are sufficient in systems that are being prototyped today [1,21].

The figure also shows that larger channel buffers become increasingly important as N, is increased,
because of the increasing contention. The performance difference between single-flit and infinite channel buffers

is significant even for N,,, = 2 and becomes quite large for N, 2 4.

Because of the increased contention, it is important to re-evaluate the scalability of the network with multi-
ple outstanding requests. In Figure 4.4 we plot processor efficiency against mesh radix, VN, for N,,, = 4, infinite

channel buffers, and various values of 1/t. In contrast with Figure 4.2, efficiency drops sharply for moderate or

222

100§ . 100+
Bidirectional torus Bidirectional torus
90+ — — - Bidirectional mesh 90 -— — - Unidirectional torus
+ Nyu =4 N, =4
20 out 80 out
Now =2 Now =2
% 70 1 O Ny =1 % 704 Now =1
E
E 60 f 601
f f
1
b501 501
c i
i 40 Ny e 401
€ n
n ~a ¢]
h 30 y 30 A
Y 201 201
101 101
0 T T T T » 0 T T T T J
0.000 0010 0020 0030 0040 0050 0.000 0010 0020 0030 0.040 0.050
Request Rate (1/1) Request Rate (1/1)
(a) Bidirectional torus vs. mesh (b) Bidirectional torus vs. unidirectional torus

Figure 4.5. Comparison of network topologies.
8x8 system, uniform traffic, single-flit buffers.

high request rates (1/7 2 0.02), because of increasing network contention. Thus, the system with four outstanding
requests does not scale well under uniform traffic, even with infinite channel buffers, because network bandwidth
in larger systems does not increase in proportion to the increased communication load. In the next several sec-

tions, we focus on systems with N, = 1 and N, =4 when studying further network design trade-offs.

4.5. Alternate Mesh Network Topologies

We next compare the performance of the different network topologies under uniform communication. In
this sub-section, we use the term “mesh” specifically to refer to the network without end-around connections. Our
first comparison is between the two bidirectional networks: the torus and the mesh. The average number of hops a
message must travel assuming uniform traffic is about 33% larger without the end-around connections. On the
other hand, as explained in Section 2.6, the mesh does not require multiple virtual channels per physical link, as
required by the deadlock-prevention algorithm for the torus. We therefore use a buffer size of 2 flits per physical

link in the mesh network, to ensure a fair comparison with the torus with a single-flit buffer per virtual channel.®

6. Since our single-flit-buffer analytical model does not extend to networks with two-flit buffers, we used simulation to estimate
the performance in the mesh with two-flit buffers per link

-23 -

Figure 4.5(a) plots processor efficiency versus request rate for one, two, and four outstanding requests, for
each of the two topologies. The results are for an 8x8 system. For N, = 1, there is only slight benefit to the end-
around connections because the higher number of hops in the mesh has only a small effect on latency, due to the
pipelined routing of messages and the low contention per hop. For N,,, = 4, however, the torus has up to 30%
higher performance because the higher network contention makes the higher number of hops in the mesh more
significant. Thus, end-around connections significantly improve performance with multiple outstanding requests.
This result should hold as well for larger systems (where the savings in hops for the torus increases) and larger

buffer sizes (where network contention is still significant for N,,, = 4, as shown in Section 4.4).

We next compare the bidirectional torus with the unidirectional torus. For the former, we use message
lengths of Lyge1 =4, Lyespr = 10, Lyysgz = 12 and Lyygyo = 4, rather than 3, 9, 11 and 3 used in all other experi-
ments. This allows us to halve these message lengths for the unidirectional torus, according to our assumption that
its links are twice as wide as those in the bidirectional torus. Figure 4.5(b) plots processor efficiency as a function
of 1/1 for N, = 1, 2 and 4, for each topology. The results are similar to the comparison against the bidirectional
mesh. In particular, the bidirectional torus performs significantly better than the unidirectional torus with multiple
outstanding requests. Thus, the extra number of hops in the unidirectional torus is not sufficiently offset by the
wider channels. These results should hold approximately as system size increases, since the distance as well as

the bandwidth scales at the same rate in both topologies.7

4.6. Nearest-Neighbor Workloads

The previous experiments assumed uniformly distributed inter-node communication, i.e., each node is
equally likely to communicate with each other node. In this section, we investigate how near-neighbor communi-
cation locality affects system performance and our previous conclusions about system design trade-offs. We con-
sider near-neighbor traffic patterns in which some fraction, F,,, of the traffic generated by each processor is
equally divided among its four nearest neighbors, while its remaining traffic is uniformly distributed to all nodes
(including the four neighbors). The uniformly distributed traffic represents non-near-neighbor communication

required by the near-neighbor application, as well as other activity on the system such as operating system traffic.

Figure 4.6(a) shows processor efficiency as a function of mesh radix, YN, for various values of F,,,, for Ny
= 1. Curves are shown for two values of request rate, 1/T = 0.01 and 0.04. In both cases, increasing locality of
communication improves processor efficiency only gradually. Figure 4.6(b) gives the results for N,,; =4 and 1/1

= 0.4. (At 1/1 = 0.01, the efficiency is close to 100% even with uniform traffic, as shown in Figure 4.4.) In this

7. Section 4.8, however, shows that performance imbalance between different parts of the system is higher with the unidirec-
tional network, which may exacerbate the difference in performance at larger system sizes.

_74 -

1001 100
v\"\o\FIKQ(n)O%

901 Fon = 90+ 80%

o] ESESE oI T T T 0% 80
% SS DS o= ST T 80%

g 707 N % 70 s
b 60 Ity o o 0
if e %g% f (single-flit
¢ 501 i 160% (,: 504 buffers) 40%
l .
1
o407 80% e 40 20%
c n
y 307 60% ¢ 301 0%
40% ¥
] 20%] 1/1=0.04

20 — — - 1/t=001 0% 2 ’

101 1/1=0.04 101
R 0+ ——————————
N="0 4 8 12 16 20 24 28 32 W="0 4 8 12 16 20 24 28 32
N= 0 16 64 144 256 400 576 784 1024 N= 0 16 64 144 256 400 576 784 1024

(@) Npy = 1. (b) Noyr = 4.

Figure 4.6. Effect of communication locality.
Bidirectional torus, infinite buffers except single points in (b).

case, efficiency improves substantially with increasing locality because locality reduces contention as well as
latency. For example, the 1024-processor system with F), = 60% shows more than twice the efficiency of the

same system under uniform traffic.

Locality of communication influences many of the design issues that were examined in previous sections

assuming uniform traffic distribution. These must now be re-evaluated.

The set of points for single-flit buffers in Figure 4.6(b) shows mean processor efficiency for the 8x8 mesh
with single-flit buffers and N,,, = 4. We observe that, as for uniform traffic, the infinite buffer case is significantly

better than the single-flit buffer case even up to F,, = 70-80%.

The results for 1/1 = 0.04 in Figures 4.6 (a) and (b) show that the improvement when N,,, goes from 1 to 4
is much stronger at higher levels of locality, for N > 64. Thus, locality increases the benefit of multiple outstand-
ing requests for large systems. This is true because network contention is reduced for high values of F,,, so that
increasing N,,, does not cause much higher contention, but does improve performance by overlapping communi-

cation with computation.

We can also re-evaluate how system performance scales when communication locality is present. Under
uniform traffic we concluded that the mesh network scales well when N, is 1, but scales poorly for N,,, = 4. In
Figure 4.6, we see that increasing locality has a positive effect on the scalability of the network (as expected), but

nevertheless, for N, = 4, system performance only scales well for F,,280%. It may be unrealistic to expect such

-25-

high levels of locality for real workloads.

Finally, the relative performance of the various mesh topologies may differ under near-neighbor workloads.
In particular, we showed in Section 4.5 that the bidirectional torus has a significant performance advantage over
the unidirectional torus with multiple outstanding requests. The performance advantage of the bidirectional torus
will increase in the presence of locality since, in the unidirectional torus, a round-trip message to a near-neighbor

requires N hops as compared with 2 hops.

To summarize the results of this section, locality of communication improves system performance particu-
larly in large systems with multiple outstanding requests, and increases the benefit of multiple outstanding
requests, but only marginally improves the ability of the mesh to support larger system sizes. In particular, the
case of N,,, = 4 does not scale well for F,, <80%. Other conclusions of the experiments with uniform workloads

are also not altered for workloads with communication locality.

4.7. Hot-spot effects.

Hot-spots are a form of non-uniform communication that can strongly impact system performance. Hot-
spots can arise, for example, when a number of processors make a significant fraction of their requests to a single
memory module or to a single node in a multiprocessor. The issue has been studied using open queueing models

(i.e., assuming non-blocking processors) in the context of multistage interconnection networks [13, 17,23].

We examine the effect of hot-spots in mesh networks by assigning some fraction, Fy,,, of requests from
each processor to a particular node in the system, while the remaining fraction 1-F,, is distributed uniformly
across all processors. Figure 4.7 plots the mean response time (sum of average network plus remote-node
residence times) versus request rate, 1/t, for various values of Fy,, in a bidirectional 8x8 torus with single-flit
buffers. For N, = 1 (Figure 4.7(a)), there is very little increase in mean round-trip time for Fy,,; £ 10%. For N, =
4, however, much smaller fractions (about 2.5%) of hot traffic cause significant increases in mean round-trip time.
(Note the larger range on the y-axis in Figure 4.7(b).) This result indicates that the effect of a hot-spot is very sen-
sitive to N,,. In particular, this suggests that open traffic models (N, =) may yield extremely pessimistic

results.

The above hot-spot experiments assumed a single node-to-switch link, as in all previous experiments. This
link in the hot node is a bottleneck in the system, and substantial queues build up at the link because we have
assumed unlimited buffer space for it. Hence, traffic in the rest of the network sees almost no contention. Using
multiple links from node to switch (for example, one node-to-switch link per outgoing virtual channel) alleviates

this bottleneck. The average response times for this case are shown in Figure 4.8.8 The figure shows that the

8. The curves for N,, = 4 and F,, = 10% and 20% in Figure 4.8(b) were plotted using data from simulations because the
analytical model did not converge in this case. (The results of the analytical models for lower values of F,,, were in good agreement
with simulations.)

_26 -

120} 600}
Fyor =20%
A 1101 A
v \Y Fior =20%
e 1001 e 5001
T r
a 901 a
g g
e 801 e 400
R 701 R 10%
[+ €
s 601 s 3001
P p
o 501 0 5%
n n
s 4071 s 2001
. 0%, 0.5%, 1%, 2.5% . 2.5%
30+
T T
i 20 i 1001 0%, 0.5%, 1%
m m
e 101 e
0 ; : - : ‘ 0 - : : ; .
0.00 0.01 0.02 0.03 0.04 0.05 0.00 001 0.02 0.03 0.04 0.05
Request Rate (1/1) Request Rate (1/1)
(2) Npy = 1. (b) N = 4-
Figure 4.7. The effect of hot-spots on overall mean response times.
Bidirectional 8x8 torus, single-flit buffers.
1201 6001
;\} 110 A
e 1001 vV 5001
T [
a 90 r
g a
e 801 g 4001
[
R 70
e R For =20%
s 601 Frop = 20% e 300
P s
o 50 p
n o]
s 40 10% n 2001
€ 0%, 1%, 5% §
T 301 €
i 20 T 1001 0%, 1%
m 1
[10 m
e
0 T T T T) 0 : T T T)
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Regquest Rate (1/7) Request Rate (1/1)
(@) Ny = 1. (b) Now = 4.

Figure 4.8. Overall mean response times under hot-spot traffic with multiple node-to-switch links.

Bidirectional 8x8 torus, single-flit buffers.

average round-trip time has reduced considerably for the cases that showed non-negligible increases in response
time due to hot-spots in Figure 4.7. Although Figure 4.8 assumes one link per outgoing channel, we would expect

to see approximately the same performance if the eight processor-switch channels were multiplexed onto 2-3

-27 -

o wnD 0T w0 X

5 =]

- 0T N -0

90

""""""" Average response time to hot processor 400+ .
) R I Average response time to hot processor
80 Average response time to _-° .
] non-hot processors - Average response time to
non-hot processors -
70 F, A i
hot
R 3001 + 5:%7)
60+ Z’ 0 0% ,'*
P ,,'
504 0 ;
] '
s 2004 /
40 | e /
T
304 i
m
20 e 1001
10+
0 T T T T | 0 . T T T]
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Request Rate (1/7) Request Rate (1/7)
(@) Noy = 1. (b) Noye = 4.
Figure 4.9. The effect of hot-spots on mean response times to non-hot processors.
Bidirectional 8x8 torus, single-flit buffers, multiple node-to-switch links.
0.05 1 0.05 7
. p e »
our = / ot~ /
Noyr =1 / I]: Noy =4 /
/ : /
0.04 i 0.04
Frot / t Fror /
a 20% / a 20% 4
/ R /
x 10% / a X 10% /
] t k
0.03{ + 5% Y Loosy o+ 5% /
o 1% / x o 1% / X
/ ¢ /
o e o 0% e
0% Y) P o Y
0.02 / P g 0.02
0
t
S
0.01 p 001
0
t
0.00 4 T T T | 0.00 - T T T T)
0.00 0.05 0.10 Q.15 020 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Request Rate In Flits ((1/7)X Lygg) Request Rate In Flits ((1/7) X l_,,,,‘,.g)

Figure 4.10. Effective flit rate to hot node with blocking and non-blocking processors.
Bidirectional 8x8 torus, single-flit buffers, multiple node-to-switch links.

-28 -

physical links since a very high fraction of the outgoing traffic at each node uses only two or three of the eight
outgoing virtual channels. (7/8 of the total traffic out a node must go out first on the column, and is further res-

tricted to only two or three of these four outgoing virtual channels by the deadlock-avoidance algorithm.)

When the bottleneck on the node-to-switch link in the hot node is alleviated, the switch-to-node link
becomes the new bottleneck in the system. Now, channel buffers on paths leading to this bottleneck link can get
filled up, affecting messages to non-hot nodes as well. Hot-spot studies in indirect networks have shown that
traffic to memory modules other than the hot module is slowed down as much as traffic to the hot module itself
[17]. This phenomenon has been called tree saturation. To analyze the corresponding effect in mesh networks, we
plot in Figure 4.9 the average response time for messages to the hot processor (dashed lines) and to all other pro-
cessors (solid lines), assuming multiple node-to-switch links.” For N, = 1, we see that traffic to non-hot proces-
sors does not see significant increase in response time even when Fj,, is as high as 20%. For N, = 4, mean
response time to the non-hot processors actually decreases slightly when F),, is increased from 0 — 5%. In this
case, contention at the hot node has significantly decreased overall network throughput, offsetting any tree-

saturation effect.

The above results suggest that the presence of hot-spots in mesh networks does not significantly increase
response times for non-hot traffic, in systems of this size. This is different from the conclusions of Pfister and Nor-
ton [17] for systems of the same size based on multistage interconnection networks. The principal reason for the
difference in results is that Pfister and Norton assumed an open model, in which processors generate requests con-
tinuously without blocking for responses to return (i.e., Ny, =). To illustrate the effect of this assumption, Fig-
ure 4.10 shows the actual request rate in flits per processor to the hot module for N,,, = oo (dashed lines) as well as
N, = 1 and N, = 4 (solid lines) as a function of the input rate (in flits), (1/1-)><Z,,,Sg. The request rate to the hot
module is significantly higher for N,,, = oo than for finite values of N,,, and this would also be true for the multis-

tage interconnection network.

The hot-spot experiments described in this section have focused on 64-processor systems. The degradation
due to a hot-spot will become more severe with increasing system size. However, finite-buffer models are neces-
sary for realistic hot-spot studies and we have been unable to use our analytical finite-buffer model to study large
systems quantitatively. (Simulating these systems is even more difficult.) Nevertheless, we believe the results of
this section provide insights that would be valuable in studying large systems. Qualitatively, we expect multiple

node-to-switch links to significantly alleviate the effect of a hot-spot for larger systems as well. We also expect

9. Note that for N, =4, with uniform traffic (F,, = 0%) the round-trip time to the “hot” processor is actually lower than to oth-
er processors. This is a direct result of the asymmetric loads on the virtual channels described in Sections 2.4 and studied in Section
4.8. The hot processor chosen for these experiments (processor [2,2]) is located at a point in the mesh where loads on the outgoing
virtual channels are balanced.

-9 .

Table 4.4. Efficiencies of Individual Processors in the Mesh.

® : Minimum Efficiency Value
: Maximum Efficiency Value

(a) Unidirectional Torus (N,,,=4,1/7=0.02) (b) Bidirectional Torus (N,,,=4,1/1=0.04)

ColO 1 2 3 4 5 6 1 Cl0 1 2 3 4 5 6 1
Row 0 80 88 87 88 89 89 89 | RowO [@ 52 57 60 60 59 55 49
89 8 8 8 84 8 87 87 52 55 60 62 63 61 58 53
8 79 72 71 76 83 85 85 59 61 64 66 66 65 63 60
81 67 55 55 63 78 83 83 64 65 67 [68 [6B] 67 66 64
81 62 @ @ 57 78 83 83 64 65 67 [68] [68] 67 66 65
83 74 62 61 70 81 84 84 60 62 64 65 65 65 63 60
84 81 78 78 79 8 83 8 53 57 61 62 62 61 58 54
85 84 8 83 83 8 83 83 49 53 58 60 60 58 55 49

I B WD e
SR W=

that larger systems with blocking processors (finite N,,) will be able to support much higher levels of hot-spot
traffic without introducing tree-saturation than would be predicted using open system models (i.e., assuming

N()llf = oo)

4.8. Performance Imbalance Caused by the Deadlock-Free Routing Algorithm

The analyses of torus performance using the single-flit buffer analytical model show significant differences
among processor efficiencies at different locations in the system, and these observations are corroborated by simu-
lation (see Section 4.1). To illustrate the imbalance, Table 4.4(a) gives the efficiencies of the individual processors
in the unidirectional 8x8 torus, (N,,, = 4, 1/1 = 0.02) under uniform traffic, i.e., with equal loads on all physical
links. The table shows that the processors near the corners have high efficiencies, while the ones near the center of
the mesh have much lower efficiencies. Table 4.4(b) shows the processor efficiencies for the bidirectional 8x8
torus (N,,, = 4, 1/1 = 0.04) under uniform traffic. Again imbalance is observed; however, this time the processors
near the corners have low efficiency. Note that these two cases represent operating points with moderate to high
average processor efficiency (79% and 58% respectively), yet also with significant performance imbalance across

the system.

To quantify the performance imbalance at particular parameter settings, we use the ratio of the maximum
processor efficiency to the minimum processor efficiency. Figure 4.11 plots this ratio as a function of the request
rate for the unidirectional and bidirectional 8x8 tori, for N,,, = 1, 2, and 4. The figure shows that the imbalance
becomes significant when network contention is moderately high, but includes cases that represent reasonable
operating points (i.e., average efficiencies greater than 50%). For example, the 64-processor system with N, = 4
has average efficiency greater than 50% at most request rates, as shown in Figure 4.5(b); however, the imbalance
is as high as 1.5 for the bidirectional torus and 4.0 for the unidirectional torus. Finally, comparing Figures 4.11 (a)

and (b), we also see that the imbalance is much greater in the unidirectional torus than in the bidirectional torus.

-30 -

The results described above suggest that the imbalance in system performance can be significant and needs
to be considered during the design of the system. The imbalance in processor performance may have significant
implications, for example, for parallel programs that synchronize via barriers. Whether the imbalance is
significant for any particular system depends on several factors, including buffer size, message lengths and request

rate.

Recent studies have shown that mesh networks without end-around connections also have significant, sym-
metric imbalances in processor performance even under uniform communication [3,7]. However, these imbal-
ances occur because of unequal traffic requirements on the physical links, which arises from edge effects due to
the lack of end-around connections. In torus networks, physical link loads are balanced under uniform traffic; thus

the source of the observed imbalance in processor performance must be sought elsewhere.

A potential source of imbalance in torus networks is the asymmetric virtual channel loading by the deadlock
avoidance algorithm, described in Section 2.4. In attempting to determine whether and how this asymmetry causes
the imbalance, an obvious guess is that the round-trip communication by some nodes makes greater use of high-
load virtual channels (i.e., channels that carry a high fraction of their links’ traffic). However, this explanation
cannot account for an observed peculiarity in the pattern of imbalance in the unidirectional case, namely, that pro-
cessors with poor performance are not necessarily located where greatest asymmetry in channel loading occurs.
In fact, channels near the edges have the greatest traffic asymmetry (Figure 2.4) but processors near the edges
have the best performance (Table 4.4(a)). To understand why the above explanation is invalid in general, note that
for outgoing requests that use high-load channels, the responses will use low-load channels on the return trip (and
vice-versa) due to symmetries in the routing algorithm. (This is easiest to reason about for the unidirectional
torus.) Some careful thought reveals that the differences between nodes that place somewhat greater load on bal-
anced virtual channels versus nodes that place somewhat greater load on high- and low-load channels are not

likely to account for the fairly large observed imbalance in processor efficiencies.

More careful consideration of message pipelining and blocking behavior reveals a different and potentially
substantial impact of the asymmetric loads that can also explain the particular patterns of imbalance observed in
Table 4.4. Specifically, certain nodes’ outgoing messages (both requests and responses to other nodes) experience
relatively severe blocking due to high-load virtual channels, after leaving the node. Such nodes will see
significantly higher contention for their node-to-switch link because of the pipelining and blocking of messages.
Since each processor is the heaviest user of its own node-to-switch link, increased contention on this link results in
lower efficiency for the processor at such a node. Furthermore, in the unidirectional torus, it is the nodes near the
center of the network whose outgoing messages experience most severe blocking due to high-load channels,
whereas in the bidirectional torus it is the nodes near the edges. This leads to the different patterns of imbalance in

the two cases.

-31 -

2.01
1.81
1.6

O e g3 R

1.4
1.2

asted

1.01

Now=1

w2

0.8
{
0 0.61
M 0.4
1
021

0.0 " T T) 0.0 d T . - ,
0.000 0.010 0020 0.030 0.040 0.050 0.000 0.010 0.020 0.030 0.040 0.050
Request Rate (1/7) Request Rate (1/1)

(a) Unidirectional 8x8 torus (b) Bidirectional 8x8 torus

Figure 4.11. Maximum performance imbalance.
Single-flit buffers, uniform traffic

4007 607
360 R R 54+
Wiode (D)
3201 481
2801 42" anly 6]
T 2401 T 367
i i
200 301
n T | RNH =~ RGLD
€ 160+ € 241 LT -
120 18) R()
80 121 gLy TTURGSH)
40 : ~ 6
poeme T RENL)
ol ROLD 0
o 1 2 3 4 5 6 17 o 1 2 3 4 5 6 17
Row Number (i) Row Number (i)
(a) Unidirectional 8x8 torus (b) Bidirectional 8%8 torus

Figure 4.12. Residence time on first virtual channel.
Nodes on column 3; single-flit buffers, uniform traffic.

To demonstrate the phenomenon quantitatively, consider the nodes on some fixed column (as in Figure 2.4)

of a mesh network. For the node on row I, define

R(c,i) = mean residence time on outgoing virtual channel ¢ for a message out of the node (i.e., for
a message that was transferred over the node-to-switch link into the buffer for channel c),

-32 -

R() = average of R(c,i), averaged over all outgoing channels c,

W0 (i) = mean waiting time for the node-to-switch link at the node.

Figure 4.12 (a) plots R(c,i), for c = NH and NL, ﬁ(i), and W,,4.(i) as functions of i (row number) for column 3 of
a unidirectional 8x8 torus (NH and NL denote the High and Low channels in the North direction). R (i) is higher
near the middle of the column than near the edges, showing that outgoing messages from the nodes near the mid-
dle experience much more severe blocking, as described above. Now, high R(i) also implies a high residence time
on the node-to-switch link, and hence a high waiting time, W, (i), just as shown in the figure. This leads to
poorer performance for these nodes. For the bidirectional case, Figure 4.12 (b) plots R(c,i) for c €
{NH,NL,SH,SL}, R(i), and W, (i). In this case, R(i) and hence W, (i) are higher near the edges of the torus,

and thus the efficiency is lower.

Thus, the ultimate effect of high-load channels is the same in both networks: they cause more severe block-
ing for outgoing messages of some nodes, which produces much greater contention for the node-to-switch link at
these nodes. However, the pattern of use of the high-load channels by outgoing messages is different in the two
networks. In the bidirectional case, blocking of outgoing messages is more severe for nodes near the edges
because these nodes’ outgoing messages make much greater use of high-load virtual channels compared to nodes
near the center. For example, a node on row 7 in an 8x8 bidirectional network sends all its outgoing messages on
channels that carry 100% of their links’ traffic (NL and SL), whereas the outgoing messages for a node on row 3
are mostly concentrated on channels with low to moderate load (NL and SH). In the unidirectional case, however,
the nodes near the center, which have poor performance, make only slightly greater use of high-load virtual chan-
nels than nodes near the edges. In these networks, it appears more significant that outgoing messages from nodes
near the center travel from channels with a low to moderate load into channels with a high load, whereas for nodes
near the edges the opposite is true (refer to Figure 2.4). The pipelined routing causes significantly greater blocking

for the former than for the latter.

As the preceding discussion indicates, the precise explanation of the relationship between the asymmetric
channel loadings and the performance imbalance is fairly subtle and non-intuitive. Formulating and validating the
explanation required significant insight as well as analysis detailed metrics obtained from the analytical model.
Furthermore, the imbalance cannot be detected or analyzed using models or simulations that ignore the virtual
channel loadings or the finite switch buffers. Finally, note that the waiting times for the node-to-switch links, and
hence the imbalance itself, might be reduced by the use of multiple physical node-to-switch links and/or multiple

virtual node-to-switch channels.

- 33 -

5. Conclusions.

We have developed accurate, approximate Mean Value Analysis models for k-ary n-cube interconnection
networks with wormhole routing, with single-flit and infinite buffers at the switches. Interesting aspects of the
model include the techniques used to estimate mean message blocking times, mean message queueing times at the
processors, and the mean queue lengths seen at the first outgoing link when multiple channels connect each pro-
cessor to its switch output channels. Many of the experimental results would not have been possible with simpler
analytical models that do not represent the message blocking and details of the routing. The equations for channel
waiting time, which form the foundation of the single-flit-buffer model, use recurrence relations to model the
dependencies among flit blocking times within a single message, yet use random arrival instant assumptions to
model interference by other messages. The models were shown to be quite accurate by extensive validations with
simulation. We are not aware of any previous work that has used similar models of blocking in these networks.
We believe the validation results are important evidence that approximate mean value analysis is a viable tech-

nique for modeling complex systems.

We used the models to analyze various issues that arise in the design of 2-dimensional (mesh) networks.
These results (summarized below) should prove useful for engineering high-performance systems based on low-

dimensional k-ary n-cube networks.

Some of our results confirm and quantify existing intuition about mesh interconnection networks. With pro-
cessors that block on every request we have shown that contention in the network is low, and the three network
topologies (bidirectional and unidirectional torus and bidirectional mesh) show little difference in performance.
Multiple outstanding requests can help increase performance, but also cause increased contention. Thus, in this

case, substantial performance gain is achievable by increasing buffer size.

We also gained new intuition from some of our results, including:

e Under uniform workloads absolute performance is higher with multiple outstanding requests, but network per-
formance does not scale well with increasing system size.

e Communication locality improves system performance, particularly for multiple outstanding requests, but at
least 70-80% of each processor’s traffic must be directed to its nearest neighbors before the case of 4 outstand-
ing requests scales well.

e With multiple outstanding requests, the bidirectional torus performs significantly better than the other two
topologies. Furthermore, it exhibits much lower performance imbalance (see below) due to the deadlock-free
routing algorithm than the unidirectional torus.

e Open system models can yield extremely pessimistic results in hot-spot studies. When processors block after
making a few requests, only high fractions of hot-spot traffic cause significant performance degradation in 64-
processor systems with single-flit buffers. Furthermore, traffic to the non-hot processors is not much affected
by hot-spot traffic in these systems (i.e., tree-saturation is not observed).

e At some plausible operating points (i.e., in cases where average processor efficiency is reasonably high), there
is perceptible difference in the efficiencies of processors at different locations in the mesh. This imbalance is
due to asymmetric loads on the virtual channels by the deadlock-avoidance algorithm.

- 34 -

A number of related issues for k-ary n-cube networks remain to be studied. The models developed in this
paper can be used to study network performance for message-passing and hierarchical systems. The conclusions
from the experiments need to be examined for 3-dimensional networks. The result that a communication hot-spot
does not significantly slow down other traffic in the system needs to be re-examined for larger systems. A related
question that needs to be answered is what buffer sizes are required to approximate infinite buffer performance,
under various workload assumptions. However, for interconnection networks with pipelined routing in particular,
modeling the performance with larger finite buffers is a difficult problem. (Previous analytical models of intercon-
nection networks that allow finite buffer sizes are based on a decomposition approximation in which each queue is
analyzed in isolation, thus ignoring the dependencies between network stages caused by the blocking and pipelin-
ing of messages; for example, see [15] and the references therein.) Finally, it would be worthwhile to develop a
deadlock-free routing algorithm for the mesh network that does not lead to the imbalance in processor efficiencies

that we have observed.

6. Acknowledgements.

We thank Amarnath Mukherjee and Derek Eager for valuable discussions during the development of the
model. We also thank Sarita Adve, Anant Agarwal, Derek Eager, Mark Hill, Susan Owicki, Gurinder Sohi and an

anonymous referee for valuable comments on earlier drafts of this paper.

References
[1] A. Agarwal, B. Lim, D. Kranz and J. Kubiatowicz, APRIL: A Processor Architecture for Multiprocessing, 17th Annual
International Symposium on Computer Architecture, May 1990, 104-114.

[2] A. Agarwal, Limits on Interconnection Network Performance, [EEE Trans. on Parallel and Distributed Systems 2, 4
(October 1991), 398-412.

[3] K. Bolding and L. Snyder, Mesh and torus chaotic routing, Advanced Research in VLSI and Parallel Systems:
Proceedings of the Brown/MIT Conference, March 1992, 333-347.

[4] K. Bolding, Non-Uniformities Introduced by Virtual Channel Deadlock Prevention, Technical Report 92-07-07,
Department of Computer Science and Engineering, University of Washington , July 1992.

[5] S. Borkar, iWarp: An Integrated Solution to High-Speed Parallel Computation, Proceedings of Supercomputing '88,
November 1988.

[6] K.M. Chandy and D. Neuse, Linearizer: A Heuristic Algorithm for Queueing Network Models of Computer Systems,
Communications of the ACM 25(1982), 126-134.

{71 S. Chittor and R. Enbody, Performance Degradation in Large Wormhole-Routed Interprocessor Communication
Networks, Proc. 1990 International Conference on Parallel Processing, 1990, 1-424 - 1-428.

[8] W. 1. Dally, A VLSI Architecture for Concurrent Data Structures, Ph.D. Thesis, California Institute of Technology,
March 1986.

{97 W.J. Dally and C. L. Seitz, Deadlock-Free Message Routing in Multiprocessor Interconnection Networks, IEEE Trans.
on Computers C-36, 5 (May 1987), 547-553.

-35-

(10]

(1]

{12]

[13]

[14]

(15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

[23]

W. J. Dally, Performance Analysis of k-ary n-cube Interconnection Networks, IEEE Trans. on Computers C-39, 6 (June
1990), 775-785.

E. Gelenbe, Performance Analysis of the Connection Machine, Proc. ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems 18, 1 (May 1990), 183-191.

P. Kermani and L. Kleinrock, Virtual Cut-through: A New Computer Communication Switching Technique, Computer
Networks 3(October 1979), 267-286.

G. Lee, C. P. Kruskal and D. J. Kuck, The Effectiveness of Combining in Shared-Memory Parallel Computers in the
Presence of ‘Hotspots’, Proc. International Conference on Parallel Processing, 1986, 35-41.

D. Lenoski,]. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz and M. Lam, The Stanford
DASH Multiprocessor, IEEE Computer 25, 3 (March 1992), 63-79.

T. Lin and L. Kleinrock, Performance Analysis of Finite-Buffered Multistage Interconnection Networks with a General
Traffic Pattern, Proc. 1991 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, San Diego, California, USA, May 21-24,1991.

M. D. Noakes, D. A. Wallach and W. J. Dally, The J-Machine Multicomputer: An Architectural Evaluation, 20th Annual
International Symposium on Computer Architecture, May 1993, 224-235.,

G. F. Phster and V. A. Norton, ‘Hot Spot’ Contention and Combining in Multistage Interconnection Networks, IEEE
Trans. on Computers C-34, 10 (October 1985), .

P. Schweitzer, Approximate Analysis of Multiclass Closed Networks of Queues, International Conference on Stochastic
Control and Optimization, 1979.

H. S. Stone, High Performance Computer Architecture, Addison-Wesley Publishing Company, 1987.

M. K. Vernon, E. D. Lazowska and J. Zahorjan, An Accurate and Efficient Performance Analysis Technique for
Multiprocessor Snooping Cache-Consistenicy Protocols, Proc. 15th International Symposium on Computer Architecture,
June 1988.

W. Weber and A. Gupta, Exploring the Benefits of Multiple Hardware Contexts in a Multiprocessor Architecture:
Preliminary Results, The 16th. Annual International Symposium on Computer Architecture, May 1989, 273-280.

D. L. Willick and D. L. Eager, An Analytic Model of Multistage Interconnection Networks, Proc. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, May 1990, 192-202.

P. Yew, N. Tzeng and D. H. Lawrie, Distributing Hot-Spot Addressing in Large-Scale Multiprocessors, I[EEE Trans. on
Computers C-36, 4 (April 1987), .

- 36 -

Appendix A. Notation used in the Model.

We use the following convention for integer subscripts in the model equations: i, s, d, ¢ denote node

numbers. (In this usage, i always appears within brackets, i.e., “[{]” and “(i,n)”). j denotes message type. k

denotes flit number. ¢ denotes a virtual channel. i, I denote input ports. (In this case, { always appears as a sub-

SCTipt, €.8., 7 ¢ i)-

Term Definition
Terms common to the entire model
Rli] Mean round-trip time for customer of class i.
Taenvark L1]i.] Mean residence time for a customer of class { in the network, at the processor, and at the remote node
FaRes ¥ 4
proct= respectively.
rl emore [l]
Visd Mean residence time in the network for a message of type j from s to d.
(ctk)y The virtual channel which is k steps after (or before) virtual channel ¢ on the path from to s to d.
c The virtual channel that shares the same physical link as c.

Queueing for the channels

bnmle.j.s Iq[k]’
CInmle.j.v tq

Tnode,j.s [k]
Deiy1i(s)
"j.(.'.l[k],

u; .1kl
Ticsalk]
Uiink,e

Wiode,s lq

W, 17

For a message class g arriving to the link from processor to switch at node s: respectively, the probabili-
ty that the link is busy serving the k™ flit of a request of type j, and the mean number of waiting requests

of type j.
Mean residence time for the k™ flit of a request of type j, on the link from processor to switch at node s.
Set {d | messages from s to d, or responses from d to s if j is a reply message, visit ¢ via input port i}.

Respectively, the mean residence time of the k™ flit of messages of type j on channel ¢, which arrive to
¢ via input port I, and the mean utilization of channel ¢ by such flits.

Mean residence time on channel ¢ of the k™ flit of a message of type j from s to d.
Utilization of the physical link corresponding to channel ¢ by messages on companion channel c.

Mean waiting time for the link from processor to switch at node s, for the header flit of a message of
class g.

Mean waiting time for channel ¢, for a message arriving to ¢ via input port /.

Queueing for the processors

q])l()c(i7”)7
Uproe (6512),
rpr{)c (i,ll)

FeSproc

Steady state mean queue length, residence time, and utilization of processor i when there are n custo-
mers in class i.

Mean residual service time of a customer found in service by a message arriving to a processor, as seen
by the tail flit of the message, conditioned on the header flit finding the processor busy.

Queueing at a remote node

B

mem, j.s bd»
chm.jns‘ |d>
mem, j.s {d
FeSmem.j'yj

For an arriving request from s at remote node d: respectively, the probability d is busy serving a request
of type j/, the mean number of waiting requests of type j*, and the mean waiting time.

Mean residual service time of a request of type j at a remote node as seen by the tail flit of a type ;" re-
quest, conditioned on the header flit finding the type j request in service.

Queueing for the first network virtual channel on a path, with multiple processor — switch channels.

b,j,c.i l(£{k]’
q i g

Vj.c‘l

’
Welg

For a customer of class g arriving to channel ¢ via input port i: respectively, the probability ¢ is serving
the k™ flit of a request of type j, and the mean number of waiting requests of type j.

Total visit ratio of all customer classes to channel ¢ as type j messages arriving via input port i.

Mean waiting time for channel ¢ by a customer of class g, where c is the first network virtual channel on
its path.

- 37 -

Appendix B. The Model.

The equations of the model are given in detail here. Throughout the development of the model, we call a
message from s to d or a response from d to s a message of class s. Also, in a summation over all four types j, we

write ¥ instead of .
j Jje(msglmsg2,respl.resp2)

Rli]= Toroc]+ Fuenvort[E] + Tremoreli], i=1---N. (1)

Queueing in the network.

Frework[8]= Z Fo(Py (rmxg 1sd T resp l,ds‘) + PZ("ms‘g 2,5d resp 2,ds‘)), i=1---N. (2)
d#s
Visd = Whode,sd | j + Z rj,c,szl[l] + Tcarc/nq),j,szl’ jE I’mSgI’mSgZ» "eSPI:”?SPZ/y (3)
c

where the sum is over all channels ¢ on the path from s to d.

W ety 11+ Utink,z + 1 k=1
TiesdlK1= 9 a1y, [1]+ iz k > 1,d is k or more steps away from c. 4,
therwise
1'{'ulink,E 0

Tearchup 1s the length of the message less 1 (for the header) plus the delay due to sharing the physical links with
traffic on other virtual channels, summed over the links the tail flit must traverse after the header flit reaches the

destination node:

Tcatclmp,/',s‘d = Lj -1+ Z Wlink, e
c: cis < L;hops from d

The equation for the waiting time, w, |;, has been explained in Section 3.2.

wc]l‘ Zzzujct[k] 'jcz[k]+ Z’jtl[l]}

i#l j k=l I=k+1
uj o 1(Lj) TiealL]
+ Z j[:,-l : X J‘z : + ZE uj(C 1)[1] Z’]c:[l] (6)
TI=32 3wl p
1=l

Ticilk], ujcilk], and . remain to be calculated. These can be expressed in terms of Ticsalk] in a

straightforward manner. First, define D, ;|;(s) = { d | messages from s to d visit ¢ via input port { }. Then,

Z Z de Tie, szl[k]

s=1 deD,; ()

ealkl= N ’ "
Y 2 FyuP
s=1 deD,;;(s)
N Nouthderj ¢ sd[k]
Ueslkl=3, ¥ - ®
! s=1 deD.;;(s) R [S]

- 38 -

N{)urEs‘del{/'

Uink,c = Z z Z
j

, where D, :(s) = D, ;yi(s). 9)
=1 deDys) R[s] L L’J cilj

Waiting time for the processor link

The remaining term in Equation (3), Wyog,s), is calculated next. For request messages, woge s j 18 the
average waiting time for the P-link at node s seen by a class s message (W4, y5), and for reply messages
Wyode,sd |; 1S the average waiting time for the P-link at node s seen by a class d message (W45 14). In general,

Whode,s |¢ 18 calculated in a manner very similar to (6) for w, ;.

L Tnode, j,s k] L L
Waode,s lq = Z z bnolle,j,s](][k] (9 + z rm)tle,/',s[l]) + qll()ll(.’,f,\‘ g Z’nnode,j,.s' [l] - (10)
j k=1 I=k-+ I=1
The main differences from equation 6 for w, |, are:
i the second term in equation 6 is no longer required and the first term does not have a summation over input
ports. In both cases the reason is that the buffer capacity for this link is unbounded.
ii. The third term in equation 6 used the probability that there is a waiting request, for each input port i. Now,

however, we require an actual queue length, g, s 4> denoting the average number of requests of type j

waiting for the processor link in node s when a request of class g arrives. This can be calculated as follows:

(N r)ul_lls =q))Fs(lP j Whode,s | s
dé. R[s] ’ Jje{msgl,msg2)
node,j,s lqg = 11
Inode.jis 1q (Nour'"l/s:q})E\"quwn()de,s'Iq . an
> 7 , je(lrespl,resp2)
oo R[s]
where 1/, is 1 if s=q, and 0 otherwise. We can calculate 1,4, ,[k] and b, ; ;|4 [k] similarly.
(Nout"lls‘:q/)Es‘de
EL R[s] ’ je{msgl,msg2)}
Duode.is 1tk] =1
node, j,s l(][] <N{)lll_1/\Y/=(]})ES"(]Pj , . (12)
> R 1, je({respl,resp2)
s'#s
[N
szderj,node,s‘d[k]
d=1
N ’ je{msgl,msg2]
Y. FP;
d=1 o
Tnode, j,s k1=9 w > (13)
Z Fs's Pi rj,nmle, s'p [k]
i 5 jefrespl,resp2}
Fs"pPi
s'=1

-39 .

Queueing at the processor.

As defined in Appendix A, T'prac(,11) is the average residence time at the processor for a customer of class i,
when there are n customers in its class. Hence Tproc i 15700 (,N,,;) by definition. Toroc(i,1) is calculated by

recursion on 1.

rproc(i’n) = [sz-nc(ia”“l) - upmc(i’” -1)] XT + upmc (i’”"'l) X resproc’ n>1, (14)
1 X 1,0 (6,1)
. proc\ts
Gproc(i,n) = ——— — —, (15)
! '[Jmc (1971) + rnerwol"k [l] + Tremote [l]
. nXT
Uproe (i,1) = : - T - —, and (16)
! Toroc (l,ll) + Toenwork i 1 + Fremote [l]
Goroc(is 1) = 10,1, (i, 1) = L (17)
procits — Yproc\ty - R . N Ty
f T+ Fuenwvork [l] + Tremote [l]
. _- me;‘] P me:‘] — 1 1 /
FéSproc —(T_I)X(Pl Y + Y) Y= -(T)' (18)

Residence time at the remote node.

The equations for the residence time at the remote node are developed assuming that the request is serviced
at the memory of the remote node without interrupting the remote processor (we denote 7y, as 7y, here). For
example, in a shared-memory system remote memory accesses could be of this type, with msg 1, msg 2, resp 1 and
resp2 corresponding to read, write, data and acknowledgement messages respectively. The time to access one
word is Dy, | for a read request and D,y 2 for a write request. We assume that a request is queued for a
memory module only when its last flit is received at the node. We also assume that the memory at each node is
interleaved and, to simplify the analysis, all accesses read or write the first byte from the first module, the second
byte from the second module and so on. This implies that D, | (D, 2) cycles after a read (write) request
begins service, the next memory request can begin service. Further, for a read request the response (data message)
is queued up to be transmitted as soon as the first word of data is read out from the first memory module, with
subsequent words being transmitted one per cycle. An acknowledgement in response to a write request is queued
when the last byte has been written, i.e. after Lyyse2 cycles. We do not limit the number of requests that can

simultaneously be queued up for a given module.

The method for calculating the mean residence time at memory is the same as in [22].

Vinem [S] = Z E F,x‘thj (Dmem,j +Wmem,/,s‘ l(l))’ (19)
d je{l2)

wmem,i.x ld = Z Qmem,j',,\'](IDmem,/" + bmem,j’,.s' ld’mesmem,j’]j (20)

j'e(1,2}
Wiem, s |d

Dmem,j’s'|d = Z (N(mt"ll,yzx'}) FS(/P/" R (21)

s#d [s]
nem,j’

bmem,i',s'[d = Z (N{)III'1/.¥=.¥’})Fsde' . (22)

Sad Rls]

Finally, just as in the processor queueing equations, the residual life of a memory request in service has to be

- 40 -

calculated as seen by the tail flit rather than as seen by the head. Defining res,,, j-|; to be the residual service time

of a type j’e {1,2] request as seen by the tail flit of a message of type je {msgl,msg2}, we have:

FeSmem,j'tj = (Dllleltl,j'-Lj+1) X (Dmem,j'“Lj) / (ZXDmem,}")' (23)

Waiting time for the first virtual channel in the network, with multiple processor-switch channels.

The equations of the model described so far have been the same for single or multiple processor — switch
channels. The only exception is (10) for w4 Which now would be denoted by w4, and must be
calculated separately for each outgoing channel ¢ from node s. Similarly, guode,j.c 145 Dnode,j,c 1glk 1 @and Fuoge j 1K1

have to be calculated separately for each ¢; however, in all cases the equations remain essentially the same.

The waiting time for the buffer in the first switch is the only part that needs to be calculated somewhat

differently, as described in Section 3.5. The equations are as follows.

L cl[1 L
Weag=2{ T ij,c,uq[k][DLk S, e 11]
j i#PROC k=] I=k-+1
L
+ {anmle,j,clq[k]} (rj,c [PROC[Lj] -1) 24)
k=1

Li
+ X {q,/,c.iiq Zf,',c,i[k]} }
k=1

i#PROC

The first term in Equation (24) has been explained in Section 3.5, and the remaining two terms are similar to the

second and third terms in Equation (6). Then, as explained in Section 3.5, b’; . ;|,[k] is calculated as

L,

M

Z bn()(le,j,c lq [k }
Jj

k

b'jciiglkl= Xt c.ilk] (25)

I~

k=1

]

- ”/,c,PROC (k]
j

Finally, the equation for ¢’ . ;, is:

V'c,i
q,j,c,i lg = {Zzbnmh jic (q{k]} Z . ZZ U/ <, PROC[k] + Z Ui (c~Dppoc [U }
7

=] Virerroc | izt

L V'ci L
YR PIILS eitglklp X —=— X X B3 ujerlk] (26)
i"#PROC = Z Z Jeli i"#PROC j k=]

i"#PROC j'
i

i# i

The first line of (26) corresponds to waiting for messages that were blocked on input port i#PROC by the
preceding message on the processor-to-switch link, when the processor-to-switch link is found busy. When it is
found idle but channel ¢ is busy serving a message that arrived from input port i"#i,i’#PROC, the tagged message
also has to wait for messages on input port i that were blocked by the message occupying c. This is the second line
of (26).

This completes the equations for the case with multiple processor switch channels, and the description of

the model.

_41 -

