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Abstract

A single linear program is proposed for discriminating between the elements of & disjoint point
sets in the n-dimensional real space R". When the conical hulls of the k sets are (k — 1)-point
disjoint in R™*1, a k-piece piecewise-linear surface generated by the linear program completely
separates the k sets. This improves on a previous linear programming approach which required
that each set be linearly separable from the remaining k — 1 sets. When the conical hulls of the
k sets are not (k — 1)-point disjoint, the proposed linear program generates an error-minimizing
piecewise-linear separator for the k sets. For this case it is shown that the null solution is
never a unique solver of the linear program and occurs only under the rather rare condition
when the mean of each point set equals the mean of the means of the other k& — 1 sets. This
makes the proposed linear computational programming formulation useful for approximately
discriminating between k sets that are not piecewise-linear separable. Computational results
are reported for three previously available databases.

1 Introduction

We consider the £ disjoint sets A’, i = 1,...,k, in the n-dimensional real space R" represented by
the m’ X n matrices, A%, i = 1,...,k. Our objective here is to discriminate between these sets by
a piecewise-linear convex function which is the maximum of & linear (affine) functions. The linear
pieces of one such typical piecewise-linear surface projected on R? are depicted in Figure 1 together
with the four sets in R? that are separated from each other. Many authors have considered this
problem. Nilsson [16], Duda-Fossum [5], Duda-Hart [6], and Fukunaga [8], considered iterative
methods which are extensions of the perceptron algorithm or the Motzkin-Schoenberg algorithm
[14] for determining a piecewise-linear separator when it exists. Convergence of these methods is
not known if such a piecewise-linear surface does not exist [8, page 374]. Smith [17] on the other
hand considered solving k systems of linear inequalities by solving k linear programs to obtain a
piecewise-linear separator. Unfortunately, this may not be possible for many simple piecewise-linear
separable problems as we shall demonstrate below. By contrast our linear programming approach
works for all piecewise-linear separable sets, and for those that are not some approximate separation
will be achieved.

We note that piecewise-linear separation of k& disjoint sets in R™ (see Definition 2.1) is a natural
extension of the classical separation of two disjoint point sets .A' and .A? in R* with nonintersecting
convex hulls by using the piecewise-linear maximum of two linear functions. This is equivalent to
separation by a single plane [9, 11, 4]. See Figure 2.
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Figure 1: Projection of the linear pieces of a piecewise-linear surface on R? and the sets A%, 7 =
1,...,4, that it separates.

Al C {z | w'z — 4! > wilz — 4%}

Figure 2: Separation of two sets A' and A® by a plane, or equivalently by the maximum of two
linear functions.



Figure 3: Three sets separable by a piecewise-linear function, but no one of which is linearly
separable from the other two.

One of the first questions to resolve is: When is it indeed possible to discriminate between k
sets by a piecewise-linear separator which is the maximum of k linear functions? Condition (6) of
Theorem 2.1 gives a necessary and sufficient condition for such piecewise-linear separability of k
sets. Geometrically, this condition can be interpreted as follows. For each i = 1,...,k, choose E-1
points /—ij.,j =1,...,k, j # i, in the conical hull of At ¢ R, where A is the set of m? points in
R made up of the rows of A%: = [A’ ¢], where e is an m' x 1 column of ones. Condition (6) says

that there are no points other than 0 € R"*! in these conical hulls of Al i =1,...,k, satisfying
k ~o. k -~
ST A=Y AL di=1,..k (1)
j=1 i=1
j#i i#i

We refer to this condition as the conical hulls in R**! of the k sets A%, ¢ = 1,...,k, being (k- 1)-
point disjoint. This is a considerably more relaxed requirement than that of Smith [17]. Smith
proposed solving k systems of linear inequalities that are equivalent to the linear separation of each
of the k sets from the remaining k — 1 sets. This is far too restrictive an assumption that does not
in general hold for simple piecewise-linear separable sets. Figure 3 depicts three sets separable by a
3-piece piecewise-linear function, but for which no one set is linearly separable from the remaining
two. An even simpler example in R! is A = {~1}, A? = {0} and A® = {1}. These three sets
are piecewise-linear separable by max { —z — %, -}l-, T3 but A2 is not linearly separable from
At u A

In Section 2 of the paper we begin with Definition 2.1 of piecewise-linear separability of k sets.
Then, as indicated above, we characterize this separability in Theorem 2.1. In Remark 2.2 we note
that piecewise-linear separation implies pairwise-linear separation, but not conversely, as depicted
in Figure 5. A computationally constructive characterization of piecewise-linear separability of
k sets is given in Theorem 2.2 by obtaining a zero minimum for the linear program (8) and a
corresponding piecewise-linear separation (3). Since such piecewise-linear separation (3) for the &



sets A', i = 1,...,k, is determined by the quantities (w' —wi, vt —8), 4,5 =1,..,k, j#4,it
is important to ensure the nonzeroness of (w' — w’), 4,5 = 1,...,k, j # 1. This is done precisely
in Theorem 2.3 where it is shown that the null solution w' — w’ = 0,¢,5 = 1,...,k, j # i, occurs
under the rather rare condition that the mean of each point set equals the mean of the means of
the other k — 1 sets. Theorem 2.4, however, shows that the null solution, even in this case, is never
unique. Section 3 contains some computational results employing the proposed linear programming
formulation (8).

A word about our notation now. For a vector z in the n-dimensional real space R", z, will
denote the vector in R® with components (z,);: = max {z;, 0}, ¢ = 1,...,n. The notation A €
R™*" will signify a real m X n matrix. For such a matrix, A" will denote the transpose while A,

n
will denote the ith row. The 1-norm of z, Z |;], will be denoted by ||z||,, while the cc-norm of
i=1

e, max |;|, will be denoted by ||z||,,. A vector of ones in a real space of arbitrary dimension will
i<n

be denoted by e. The conical hull of the set .A!, the set of all nonnegative linear combinations of
points in A!, {z]z = uAl, u > 0}, will be denoted by K(A").

2 Multicategory Separation by a Piecewise-Linear Surface

We begin by defining the concept of piecewise-linear separation of £ sets in R™ [16].

Definition 2.1 (Piecewise-linear Separability) The k sets At 1= 1,...,k, each consisting
of mi, i = 1,...,k, points in R™ and represented by the mt X n matrices, A*, i = 1,...,k, are
piecewise-linear separable if there exist w'e R, v €R,i1=1,...,k such that

Alw' — ey > Al —ey?, i, 5=1,.. .k, i # ] (2)

or equivalently
Alw' — ey > Aw' —ev +e, i, 5=1,...,k i#] (3)

Remark 2.1 The piecewise-linear separability can be interpreted geometrically by the exvistence of
a piecewise-linear convez function determined from (w', ¥*), ¢ =1,...,k, by

2 — N . 4 e
p(z) = max sw” -7 (4)
and such that o .
plz)=zw' —4" \ for ze A, i=1,...,k (5)
p(z) > zw! —y3 [ for j#1 7

Figure 4 depicts a simple piecewise-linear p(z) on R that separates three sets.
Our first objective is to characterize piecewise-linear separability. This is done in the following
theorem.

Theorem 2.1 (Characterization of Piecewise-Linear Separability) Let A*, i =1....,k be
nonempty point sets in R™. The following are equivalent:

(a) Ai, i=1,...,k are piecewise-linear separable; that is there exist w' € R, y'e R, i=1,...k,
satisfying (2) or (3).



Figure 4: Piecewise-linear separ ation of sets A, A? and A® by the convex piecewise-linear function
(’L’) max;=1,2,3 w'z —

(b) The conical hulls K (Af) of the k sets Ai, where A':= [A® €], i =1,...,k, are (k — 1)-point
disjoint in R**!, that is

k k

ST wAf €] =) WA €], w20, 4,5 =1,k j#i

i=1 j=1 (6)
[ J#i .

=>ut =0,4,7=1,...,k, J#1
Proof. Throughout the following arguments, i, j = 1,...,%k and j # ¢.
(a) & A(w'—w')—e(y"—+’) >0, have solution (w, w', v" ¥ € R*" x R* x R x R
& Ai(wi—wj)ne(7i~7j)—e(>0 ¢ >0,
have solution (wi w, v, C) € R" X R” XRXRXR

= —-Z wliA + Z u A =0, Z wie — Z we=0

J#z J;ﬁz J#z J#z
ok _
E Z u*e > 0, have no solution u” > 0, u" € R™
=1 j=1
J#i

(By Motzkin’s Theorem of the Alternative[13])
& (b).
d

Remark 2.2 It is evident from Definition 2.1 that piecewise-linear separability of the sets Al i =
1,...,k implies pairwise linear separability of the same sets. However the converse is not true as
evidenced by the "whirlwind” counterezample depicted in Figure 5 for which three sets are pairwise
linearly separable, but are not piecewise-linear separable. The latter fact, which may not be immedi-
ately evident from the figure, can be computationally verified by showing that the implication of (6)
does not hold by solving the dual linear program (11) and showing that it has a positive maximum.



Figure 5: The whirlwind counterexample: Three sets that are pairwise linearly separable, but not
piecewise-linear separable.

We can now specify a linear program that will generate a piecewise-linear separation between
the sets A%, i = 1,...,k, if one exists, otherwise it will generate an error-minimizing separation.
The linear program will generate (w’, y') € R* X R, i = 1, ..., k, that will satisfy (3) by minimizing
the 1-norm of the averaged violations of (3), that is

kok
. € g g i i i -
31322;1—;(-A(w~w’)+6(7 -7 +e), (7)
od=1 j=1
z ]J'?fi
This minimization problem can be written as the following linear program (LP):
k k .. .. . . . . . ..
; ~ eyt |yl 2 —A(w = w) te(r = 77) +e Y 20, «
min — C - S
wi g ;]Z;l mi i#5,4,7=1,....k (8)
J#

. 1 .
The purpose of the weights —, which are analogous to those of [4] for the two-category case,
mt ‘

is to avoid the null w® — w’ = 0 solution. See Theorem 2.3 below. Note that for any solution
(w', v, y7), of the LP (8), we have that

yij = (—Ai(wi _wj)+€(')’i"")’j)+e)+7 Z#]a ia .7 = 1,...,k (())

Since the inequalities (3) of the piecewise-linear separator are satisfied if and only if the minimum
of (7) or equivalently of (8) is zero, we have the following result.

Theorem 2.2 (Multicategory Piecewise-linear Separation via Linear Programming)

The sets Ai, i = 1,...,k, represented by the m* x n matrices A*, i = 1,...,k, are piecewise-linear
separable if and only if the solvable linear program (8) has a zero minimum, in which case any
solution (w', 7%, y"), 4,5 = 1,...,k, j # k, provides a piecewise-linear separation as defined by

(3)-



As was the case for linear separation of two sets by linear programming [3, 4], it is important here
also to rule out the null solution in case the sets A%, 1 = 1,...,k are not piecewise-linear separable.
Since the piecewise-linear separation (3) is in effect achieved by a special pairwise linear separation
between the sets A, ¢ = 1,...,k, which is determined by (w’ — w/, ' — %) € R* x R, i #
§, 4, j=1,...,k, it is therefore the nonzeroness of w* — w’, i # j, 4, j = 1,...,k that matters.
In [4] it was shown for the two-category case that w' — w? can be zero if and only if the Al
and A% have equal means, in which case the null solution w! — w? = 0 is not a unique solution
of the linear program. We shall derive generalizations of these two results to the multicategory
case. Nonzeroness of w' — w#, ¢ # j, 1, j = 1,...,k, is an important issue when one is trying to
generate an approximate piecewise-linear separation (that is allow some errors in the separation)
for sets which are not piecewise-linear separable. Zero w' — w?, i # 7, 4, j = 1,...,k will yield no
information and no approximate separation for this case.

We give now a result that provides a necessary and sufficient condition for the occurrence of
null wi —w?, i #3,4,7=1,...,k

Theorem 2.3 (Null Solution Occurrence) The linear program (8) has the null solution, w' —
w =0,t#7, 4 7=1,...,k if and only if

eAl 1 Sedl 5
WZK‘IZW,ZZI,...,IC (10)

e

=3
ok
Proof. The dual of the linear program (8) is

, 5 )
Z(uz’in_ujiAj):O’ i::l,...,k
j=1

J=

kb i
s i_lg;e“ Z(—eu”—}—eu“):o, i=1,...,k (11)
T i ji=1
J#
i<« S X
\ 0<u ‘<“mi iF g 1=1,...,k

The vectors w* —w? =0, 7 # 7, 1, j = 1,...,k constitute an optimal solution for the primal LP
(8) if and only if the equivalent minimization problem (7) is minimized by setting w’ — w! = 0 and
N4l =0,4i#j,4,5=1,...,k, which gives " = e, i # j, 4,5 = 1,...,k and a primal minimum
value of k(k — 1). Since 0 < u¥ < — i#3j,i=1,...,k and the dual optimal objective must

equal the primal optimal objective of k(k — 1) we have

z: Z eu' = k(k—1)

i=1 j=1
i#]
It follows that c
’U,”"'E?,i#j,z-—l, ak'
and .
E—-1 Al
( )eAz: e t=1,...,k,
mt ” mJ
J=1
1%



which is (10).

O

We now show even in the unlikely event that (10) is satisfied, the null solution w! —w’ =0, i #
4, 4, 5 =1,...,k, is not unique, and hence some nonzero solution will also be optimal.

Theorem 2.4 (Nonuniqueness of the Null Solution) If condition (10) is satisfied, the null
solution w* —wi =0, i # j,14,j=1,...,k, to the linear program (8) is not unique.

Proof. Let the primal solution to (8) be such that

@ —-® =0,7 -5 =0, gi=e it i=1,...,k

Hence only the constraints y*/ > 0 of the linear program are inactive. It follows that this solution
is unique in @° — @’ if and only if the following has no solution for all ¥ € R", in the variables

(v -, w— @, =), i# g, =1k

>

izl

k
ji=1

(y7 -77) 20

(49 = 9) + A (= ) = (0 = @) = (3 = 77) = (3= 7)) 2 0
Z — hi((w' - w') ~ (@ - @) >0

z',_j=.1
1£]

By Motzkin’s Theorem [13] this is equivalent to the following system having a solution for
all B9 e R*,i# 5,4, 7=1,...,k:

k

Z (uiin_ujiAj):hij’ 7 = ]_,...,k
j=1

J#d

k ‘. ¥

Z (—euw’ +ew?)=0,i=1,...,k
J=1

- eC+ud =0,i#75,i=1,....k
(G )20, i £, =1,k

This is obviously not true because there are h', i # 7, ¢, j =

written as:

eA’ 1 L edd
m k-1~ mi
Jj=1
J#i

Hence @' — @’ = 0 is not unique.

3 Computational Results

1,...,k in R™ that cannot be

Wi=(k-1)—-7=72 | ¢20

We present now computational results that utilize the linear programming formulation (8) for
discriminating between k sets for both the piecewise-linear separable and inseparable cases. Three
different problems were considered: wine cultivar discrimination [1], iris classification [7], and breast



Classes | Dimension | Size Percent Correct

Problem k n Training | Testing
Wine Cultivars 3 13 178 100.0 91.0
Iris Plants 3 4 150 98.7 96.7
Breast Cancer 3 11 122 66.3 56.6

Table 1: Performance of multicategory linear program on three problems. Correctness estimated
using ”leave-one-out” cross validation.

cancer prognosis [18]. The first two databases are available via anonymous file transfer protocol
(ftp) from the University of California Irvine UCI Repository Of Machine Learning Databases
[15]. The breast cancer prognosis data is available by request from the authors. Table 1 gives
the number of classes, dimension, and size of each database as well as the results of using linear
program (8) to discriminate between the classes. Cross validation testing was done by using the
leave-one-out method [10, 8] to estimate the training set error and the testing set error (error on
unseen examples). A brief discussion of the numerical results follows.

The Italian wine cultivar database is piecewise-linear separable. A single linear program was
able to correctly separate the training set. The testing set performance was comparable to previ-
ously published results [1]. Fisher’s classical iris discrimination problem is almost piecewise-linear
separable and once again the multicategory linear programming approach performed quite well
on both the training and testing sets. These problems illustrate that a single multicategory lin-
ear program can effectively discriminate sets that are totally (or almost totally) piecewise-linear
separable.

The breast cancer prognosis problem is inherently more difficult. The breast cancer prognosis
problem was created by dividing the Wisconsin breast cancer database into three classes: cancer
which recurred (developed distant metastates) in less than 3 months, cancer which recurred in
between 3 and 24 months, and cancers which did not recur in 24 months. The fact that the sets
are not piecewise-linear separable is evidenced by the relatively poor training set accuracy shown
in Table 1. A single linear program is insufficient for solving such problems. However, the results
of several multicategory linear programs can be combined by using multisurface methods [12, 3, 2].
To demonstrate this, we used the multicategory linear program to create the multivariate splits in
the multisurface method tree algorithm (MSMT) [2, 18].

MSMT-multicategory works by applying the linear program (8) to a k-class classification prob-
lem. The resulting piecewise-linear surface divides the space into k regions. If each of these &
regions contains mostly points of one class, then we are done. If any region contains an unaccept-
able mixture of points then the linear program (8) is used again to divide that region into & or less
regions. The resulting discriminant function can be thought of as a decision tree, thus the name
multisurface method tree - multicategory (MSMT-MC).

The results using MSMT-MC are given in Table 2. These results show that using a multisurface
approach enables the linear program (8) to be used for solving problems that are not piecewise-
linear separable. By applying this approach to the breast cancer prognosis problem the training
set accuracy improved over 40 percent and the testing set accuracy improved over 17 percent.



Single LP | MSMT-MC | Change
Training Correctness (%) 66.3 93.0 +40.3%
Testing Correctness (%) 56.6 66.4 +17.3%
Average Number of LP’s 1 5.1 +4.1

Table 2: Comparison of MSMT-MC and single multicategory linear program on breast cancer
prognosis problem. Correctness estimated using ”leave-one-out” cross validation.
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