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Abstract

C** is a new data-parallel programming language based on a new computation model called large-
grain data parallelism. C** overcomes many disadvantages of existing data-parallel languages,
yet retains their distinctive and advantageous programming style and deterministic behavior.
This style makes data parallelism well-suited for massively-parallel computation. Large-grain
data parallelism enhances data parallelism by permitting a wider range of algorithms to be
expressed naturally.

C** is an object-oriented programming language that inherits data abstraction features from
C**. Existing scientific programming languages do not provide modern programming facilities
such as operator extensibility, abstract datatypes, or object-oriented programming. C** —and
its sequential subset C**+—support modern programming practices and enable a single language
to be used for all parts of large, complex programs and libraries.

This technical report consists of three parts. The body of the report is a copy of a paper
that appeared in the 5'* Workshop on Languages and Compilers for Parallel Computing, Yale
University, Aug. 1992 (to appear, Lecture Notes in Computer Science, Springer-Verlag). The
first appendix is a detailed overview of C**, which describes the language more thoroughly than
the paper. The second appendix contains several sample C** programs and some preliminary
performance results.
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Chapter 1

C**: A Large-Grain,
Object-Oriented, Data-Parallel
Programming Language

James R. Larus
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin~Madison
1210 West Dayton Street
Madison, WI 53706 USA
608-262-9519

Data-parallel programming is not SIMD programming, although this important distinction
is rarely made. Lockstep SIMD behavior reflects the underlying hardware and is not an essen-
tial attribute of data-parallel programming. C** is a new data-parallel programming language
based on a new parallel programming model called large-grain data parallelism. Unlike many
data-parallel models, large-grain data parallelism supports both data-parallel operations with
independent threads of control and nearly-deterministic execution. In particular, unlike other
non-SIMD data-parallel languages, C** retains the SIMD data-parallel languages’ advantages of
a simple, explicable parallel semantics; machine-independence; and nearly-deterministic execu-
tion. In addition, large-grain data parallelism naturally accommodates nested parallelism.

C**, in addition, is an object-oriented language that inherits C**’s data abstraction features,
which aid in constructing large systems. Existing scientific programming languages do not
support operator extensibility, abstract datatypes, or object-oriented programming. C** —and
its sequential subset C*+*—provide these facilities and enable a single language to be used for
all parts of large, complex programs and libraries.

The CM-2 parallel computer is responsible for much of the confusion between data parallelism
and SIMD programming. Hillis and Steele convincingly argued that data parallelism—which
they defined as “simultaneous operations across large sets of data”—is a widely-applicable pro-
gramming technique for massively parallel computers, by which they meant SIMD computers
like the CM-2 [8]. Many data-parallel languages reflect the quirks of SIMD hardware [1, 12].
Nevertheless, data parallelism has grown beyond its SIMD origins because it offers the ap-
pealing advantages of a simple, explicable parallel semantics and nearly-deterministic, race-free



execution.! On the other hand, SIMD execution is a major limitation for executing programs
that contain conditionals and loops with data-dependent behavior. SIMD execution steps all
processors through both arms of a conditional and all loop iterations.

Data-parallel languages have not yet settled on standard terminology. The following terms
are used throughout this paper. Wherever possible, the paper relates these terms to others’ ter-
minology. An aggregate is a collection of elements. Aggregates differ from other data structures
because data-parallel operations can be applied simultaneously to their elements. Simultaneity
is a logical rather than physical requirement. The computation on each element must appear to
occur at the same time, even if physical constraints prevent the computations from executing
concurrently.

This work shows that data parallelism and SIMD are not synonymous by describing a newly-
implemented language C** that preserves the advantages of data parallelism—an ability to
reason about program behavior and nearly-deterministic execution—without requiring parallel
computations to proceed in lockstep. The rest of this paper primarily discusses existing data-
parallel languages (Section 2.1) and C** (Section 2.2). It then briefly describes the status of the
implementation and future work.

2.1 Related Work

This section critically discusses some widely-known data-parallel languages. By describing them
in a common framework, we can compare language characteristics with the following taxonomy:

o Extensibility. Can a programmer define data-parallel functions and apply them to new
data types?

Naming scheme for aggregates. How are aggregates constructed and specified?

Style of execution. Do data-parallel operators execute with SIMD semantics?

Data races. What happens if data-parallel operators’ data accesses conflict?

o Nested parallelism. Can a data-parallel operator invoke a data-parallel operator?

2.1.1 Fortran 90

Fortran 90 is not a data-parallel language. It is a sequential language with a (new) data-parallel
sublanguage for arrays. Nevertheless, because of Fortran’s prevalence, this sublanguage is likely
to be the data-parallel language encountered by most programmers. Fortran’s data-parallel
sublanguage is composed of arithmetic operators (including intrinsic elemental functions) and
15 other functions, all of which accept array arguments and produce a scalar or array result.
FEach function computes a simultaneous, element-by-element result.

User-defined functions can accept array arguments and return array results but cannot spec-
ify data-parallel computation. The exception is that a composition of data-parallel operators
is data parallel. However, functions containing these expressions cannot have this semantics
if they contain control flow or side effects. In addition, data-parallel operators only work for

10n the CM-2, when multiple processors write a location, the write that succeeds is indeterminate. Data-
parallel languages expose this indeterminacy, which is why their execution is not totally deterministic. This
limited indeterminacy can be considered either a feature or a bug, but it clearly reflects an inherent property of
interprocessor communication that is difficult to avoid.



arrays of numbers or strings. Fortran 90 also introduces data structures, but they are second
class citizens for data parallelism. Since data parallelism is encapsulated in a predefined set of
operations that does not include a higher-order apply function, issues of SIMD semantics and
nested parallelism do not arise.

2.1.2 C*

C* is a data-parallel programming language based on C (with a few ideas from C't*) that was
originally designed for the SIMD CM-2 parallel computer [12, 11, 14, 15]. The original language
described by Rose was C* version 5. Hatcher and Quinn demonstrated that C*, despite its
origins, could be effectively compiled for shared-memory and message-passing MIMD parallel
computers [7]. Their dialect, although called Dataparallel C (DPC), is nearly identical to C~
v5. Thinking Machines subsequently changed C* into a new language, called C* version 6 [16],
that bears little resemblance to original C*.

C*, Version 5

C* v5 extends the C language with domains. A domain declaration, like a C struct, specifies
the fields in each aggregate element and, optionally, the aggregate’s size. A domain also names
the aggregate so its elements can be operated on simultaneously. The latter aspect is unusual.
Aggregates are not first class values (like arrays). Instead, a data-parallel operation is applied
to all instances of a domain with a given name. For example, suppose a programmer wants to
write a data-parallel matrix multiplication routine for a program that computes many matrices.
Either the programmer must introduce a new domain for every pair of matrices (shades of
Pascal!) or must devise a scheme to select pairs of matrices from the undifferentiated pool of
matrices with the same domain type.

Data-parallel operations occur either in a domain select statement or a domain member
function (the main borrowing from C'**). The data-parallel code is arbitrary C that is prohibited
only from invoking another data-parallel operation. A wirtual processor executes the data-
parallel code simultaneously—in strict SIMD style—on each element of a domain. This semantics
introduces the problems of SIMD execution discussed above, but eliminates data races and allows
reasoning about a single thread of execution.

Dataparallel C

Hatcher and Quinn demonstrated that C* was not limited to SIMD hardware and could be
compiled for both message-passing and shared-memory MIMD computers. Their key observation
was that SIMD-style operation-by-operation synchronization is unnecessary. Synchronization is
only necessary between communicating statements running on distinct virtual processors. Even
so, the overhead of this synchronization would be high, except that on MIMD machines, a few
physical processors emulate each step of the many virtual processors. As problem size grows,
the ratio of virtual to physical processors increases and the relative overhead of synchronization
decreases.

Hatcher and Quinn extended C* (and renamed their version to Dataparallel C) with lay-
out directives for domains and nearest-neighbor communication primitives. These additions
offer little benefit for shared memory, but were necessary to achieve reasonable performance on
message-passing computers.



C*, Version 6

Thinking Machines recently introduced a new version of C* that dramatically revised the lan-
guage. The shape abstraction replaced domains. A shape specifies the rank, dimension, and
layout of an aggregate, but not the contents of each element. An aggregate element’s contents
is specified by prepending the aggregate’s shape as a storage class modifier in variable declara-
tions. In effect, the aggregate is declared an element field at a time. C* version 6, unlike version
5, treats aggregates as first class values to which user-defined data-parallel operations can be
applied. In addition, C* version 6 introduces communication and storage layout primitives that
expose the underlying message-passing orientation of the target hardware.

2.1.3 Paralation Lisp

Sabot’s Paralation Lisp is a simple and general data-parallel language that avoids the SIMD
bias. In Paralation Lisp, aggregates are called paralations and elements are called fields. Un-
like the other languages, Paralation Lisp is based on a dynamically-typed language, Common
Lisp, and paralations are not strongly typed, which makes them difficult to compile efficiently.
A programmer applies an arbitrary Lisp function to a paralation. The function is evaluated
element-wise on each element. The language loosely defines the semantics of parallel evaluation
by declaring a program that depends on the evaluation order in a paralation to be “in error.”
This semantics eschews one of data-parallel programming’s principal advantages by allowing
races. Although Paralation Lisp does not permit nested parallelism, subsequent work lifted this
restriction [3].

2.1.4 NESL

Blelloch’s language NESL is a strongly-typed, applicative data-parallel language designed to
support nested parallelism [2]. In NESL, a programmer applies a pure function (i.e., without
side-effects) to a one-dimensional aggregate (vector) that contains arbitrary elements. The
function application results are collected into a new aggregate. This model is semantically
attractive, since it eliminates conflicts and data races due to imperative updates, but it shares
implementation difficulties with functional languages.

2.1.5 PCH+

Lee and Gannon described a new programming model called the distributed collection model
and used it as the basis for PC++, their data parallel extension to C++ [9]. In their model,
a collection is an aggregate that contains elements and is mapped to a set of processors by a
distribution. Data parallel operations are invoked by sending a message to an aggregate, which
redistributes the message to its elements, where the operation is actually applied. This model is
similar to Chien’s Concurrent Aggregates [6]. PC++ attempts to avoid conflicts by preventing
an element from updating values in other elements, but read-write conflicts are still possible and
may not be caught by the compiler?

2.1.6 Paragon

The Paragon programming environment is a collection of C++ classes that provide data-parallel
array operations similar to those in Fortran 90 [5]. This approach is as limited as Fortran 90’s

?Personal communication from Dennis Gannon, Nov. 18, 1992.



data-parallel sublanguage, but is a good demonstration of the extensibility and abstraction
mechanisms in C++.

2.2 Design and Rationale for C**

C** is a new data-parallel language based on C**. This section describes the small set of
extensions to C*T+ that constitute C** and explains the rationale for the design choices. C** is
a new language whose design will surely evolve. This section should be read as a snapshot of a
work-in-progress rather than a final design. .

C** introduces a new type of object into Ct*. These objects are Aggregates,® which collect
elements into an entity that parallel functions can manipulate concurrently. C** also provides
slices so a program can manipulate portions of an Aggregate. Since these concepts are extensions
to C*t+, a C** program can exploit that language’s abstraction and object-oriented programming
facilities.

2.2.1 Aggregates

In C**, Aggregate objects are the basis for parallelism. An Aggregate class (Aggregate, for
short) declares an ordered collection of values, called Aggregate elements (elements, for short),
that can be operated-on concurrently by an Aggregate parallel function (parallel function, for
short). Each element in an Aggregate object contains the member fields defined in the class. For
example, the following declarations declare several 2-dimensional matrices of an indeterminate
and two fixed sizes:

class matrix {float value;} [1 [J;
class small_matrix {float value;} [5] [5];
class large_matrix {float value;} [100] [100];

The bounds of the indeterminate-sized matrix, matrix, are specified when allocating an instance:
new matrix [100][100].

An Aggregate’s rank is the number of dimensions listed in its class declaration. Rank is
fixed by the declaration and cannot change. The cardinality of each dimension may be specified
in the class declaration. If omitted, the cardinality must be supplied when an instance of the
Aggregate is created. Each dimension is indexed from 0 to N — 1, where N is the dimension’s
cardinality. For example, indices for both dimensions of a small matrix run from 0...4.

An Aggregate object looks similar to—but differs fundamentally from—a conventional C*+
array of objects:

o An Aggregate class declaration specifies the type of a collection, not individual elements.
This is an important point: a matrix is an object containing a two-dimensional collection
of floating point values, not a two-dimensional array of objects. The latter facility is still
possible in C*+.

o Aggregate member functions are applied to an entire collection of elements, not individual
elements.

¢ Elements in an Aggregate can be operated on concurrently, unlike objects in an array.

3The capital “A” is deliberate and distinguishes Aggregates from the unrelated data initialization lists called
“aggregates” that are already part of C and C*+.



o Aggregates can be sliced (see Section 2.2.5).

However, individual Aggregate elements are referenced in the same manner as array elements,
so, for example, if A is a small.matrix object, A[0][0] is its first element.

Discussion

Classes, because of their support for abstractions, are a natural basis for encapsulating aggregates
and their operations. In C'*+, however, classes and arrays are too distinct to directly specify
aggregates. In C**, either an array can be a class member or a array’s elements can be objects.
However, if an array is a class member, its bounds must be fixed in the class declaration. On the
other hand, if we seek indeterminate bounds by making array elements into objects, the array
itself is not an object. To be concrete, two possible C*+ definitions of a matrix type require
array bounds to be fully specified and do not permit a matrix abstract datatype:

class matrix {
float value[10]1[10];
};

class matrix_element {float value;};
typedef matrix_element matrix[10]1[10];

C** solves this problem by introducing a new type declaration that incorporates an Ag-
gregate’s dimension into its class declaration. The syntax is a combination of class and array
declarations and clearly emphasizes that the declaration specifies an entire aggregate. Un-
fortunately, requiring static allocation for Aggregates—even if the bounds are unspecified—is
awkward for aggregates whose membership changes with time, such as tree nodes. A program
must preallocate enough tree nodes when the aggregate is created and cannot dynamically add
new elements to the aggregate. C*’s data-parallel operators, which are applied to all instances
of a type, are better suited to dynamic allocation—as long as a program builds only one object
(e.g., tree) from any aggregate.

2.2.2 Aggregate Constructors

C*t classes may define constructor and destructor functions that execute immediately after
allocating space for an object and immediately before releasing the space. An allocation function
has the same name as the class and the deallocation function’s name is the class name preceded
by a tilde (“77”).

An Aggregate constructor initializes the entire collection of elements. This differs from an
array of objects, in which each object’s constructor must be invoked specifically. For example:

class matrix {
float value;

matrix (float initial_value) {
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
*this[i][j].value = initial_value;
};
y 00 00;

defines a matrix constructor that initializes all elements to specified value, so:
new matrix [100][100] (1);

creates a 100 x 100 matrix of 1’s.



2.2.3 Aggregate Functions

In C*t, a class’s member functionsimplement abstract datatype operations. These functions can
access both public and private class fields. A member function (f) is applied to a class object (o)
with a different syntax than a normal function call: o.£(). Virtual member functions, which can
be overloaded and inherited, form the basis for object-oriented programming. A friend function
is allowed access to private fields, however it is invoked with normal function call syntax and
does not permit inheritance.

Member functions in an Aggregate are similar in most respects to class member functions. A
key difference, however, is that Aggregate member functions are applied to an entire Aggregate,
not an element, and that the keyword this is a pointer to the entire Aggregate. For example,
in:

class matrix {
float value;
float sum ();
friend ostream® operator<< (ostream®, matrix&);

YO0

float matrix::sum () {
float tot = 0.0;
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
tot += *this[i][j];
return (tot);

}

ostream& operator<< (ostream &out, matrix &m) {
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
out << m[i][j].value << " ";
out << ’\n’;

}

the function sum returns the sum of the values in a matrix and the operator << is a friend
function that prints a matrix.
All Aggregates have these two member functions predefined:

int rank () ~ Return number of dimensions in Aggregate
int cardinality (int dim) - Return cardinality of dimension dim

2.2.4 Parallel Functions

A parallel function is an Aggregate’s member or friend function that can be invoked simultane-
ously on each element of the Aggregate. Aggregate member and friend functions are sequential
by default. A parallel member or friend function is identified by keyword parallel after its
argument list. For example:

class matrix {
float value;
float checksum () parallel;
friend transpose (parallel matrix) parallel;

} OO0



declares checksum and transpose to be parallel functions.

In a parallel friend function, exactly one argument must be prefaced by parallel (for ex-
ample, the first argument in transpose). This argument is the function’s parallel argument.
In a parallel member function, the parallel argument is the Aggregate to which the function is
applied.

A parallel function is invoked simultaneously on all elements of its parallel argument. Each
invocation can determine the coordinates of the element to which it is applied from the pseudo
variables:

#0 1%t coordinate
#1 2¢ coordinate

#n — 1 n*? coordinate

Semantics of Parallel Functions

A parallel function is a large-grain data-parallel operator that is applied atomically and simul-
taneously to each element in an Aggregate. To explain this more precisely, we must define a
few terms. A parallel function call is the application of a parallel member or friend function to
an Aggregate. A parallel function invocation is the execution of the function on an individual
Aggregate element. Hence, calling a parallel function starts many invocations, all of which exe-
cute simultaneously. An invocation’s state is the collection of storage locations read or written
during the invocation.

Applied atomically means that while an invocation is executing, its state is only modified
by itself, not by other concurrently executing tasks. In other words, the call appears to execute
instantaneously and the invocations are unaffected by concurrently executed tasks. In effect,
the semantics are as if each invocation executes as follows:

o Atomically copy all referenced locations into a purely local copy.
e Compute using local copies.
e Write all modified copies back to global locations.

Since a parallel function is applied simultaneously to an Aggregate’s elements, all invocations
begin with identical state (except for the pseudo variables, #1, #2, etc., which differ in each
invocation).

If invocations of a parallel function modify global state, the only guarantee is that when the
call terminates, each modified location will contain a value written by some invocation. If an
invocation modifies more than one location, only a portion of its modifications may be visible
after the call. Other invocations’ changes to a location may overwrite a particular invocation’s
modifications.

As an example, consider a stencil computation on a matrix:

friend void stencil (parallel matrix A) parallel
{
Al#11[#2]) .value = (A[#1-1][#2].value + A[#1+1][#2].value
+ AD#11[4#2] .value + A[#1][#2-1].value
+ A[#11[#2+1]1) / 5.0;
}

The computation is applied simultaneously to each element of the matrix, so the new values are
entirely a function of the old matrix.



Discussion

An analogy between large-grain data-parallel operations and SIMD operators may help motivate
the semantics of parallel functions. Fach processor in a SIMD computer applies an operation
simultaneously, which means that no processor sees effects from an operation on another pro-
cessor. The operations, however, execute independently. For example, when processors add
numbers, each processor’s hardware may pass through a different sequence of states.* User-level
SIMD execution lacks this freedom to choose the most efficient computation for a particular
datum.

Large-grain data parallelism permits computations on each element in an aggregate to pro-
ceed simultaneously, with independent threads of control. If a computation is a pure function—
with no side effects—it suffices to specify the computation’s initial state. However, an operation
with side effects may affect the behavior of other operations. The interoperation data depen-
dences must be ordered, or races will cause indeterminate execution.

These data dependences can be ordered in a surprisingly large variety of ways. Sequential
execution imposes a canonical order on iterations over arrays (aggregates) that totally orders
dependences. Parallelizing compilers respect this order. SIMD execution imposes a near-total or-
der by advancing parallel computations in lockstep. Despite the disadvantages discussed above,
SIMD execution is easy to understand because a SIMD program only has a single program
counter, which can be followed like a sequential program counter. Another approach to prevent-
ing races is to prohibit conflicting dependences. Steele proposed a programming model in which
operations that are not causally related (i.e., may execute in either order or simultaneously)
must commute or are prohibited [13]. Violations of these semantics can only be detected during
a program’s execution. Steele described a complex memory system to detect these violations.

Large-grain data parallelism takes a different approach to preventing interoperation data
dependences from affecting a program’s behavior. While a parallel computation is running, its
state is changed only by the computation itself, so it appears as if the computation executed
sequentially. This suggests an analogy to database transactions, which use serializability as a
correctness criterion [10]. Serializability, however, is not appropriate for data parallelism, be-
cause it requires equivalence to some sequential execution of the parallel tasks. For example,
consider a stencil computation on a matrix. When a processor writes a location’s average, seri-
alizability requires neighboring computations to start computing anew with this value. Instead
of trying to make data parallelism equivalent to serial computation, large-grain data parallelism
regards the computations for each element as equivalent and independent events that happen
simultaneously.

Since parallel invocations cannot communicate, a typical programming style is to repeat-
edly invoke parallel operations. The communication occurs in the intervals between parallel
calls, during which the results of the previous parallel computation can be distributed to other
processors (see Figure 2.1).

Large-grain data parallelism allows data-parallel operations to invoke data-parallel opera-
tions. The semantics of nested operations are unaffected by the nesting. The side effects from
one nested call are not visible to another nested call from a different invocation.

Large-grain data parallelism weakly guarantees the side-effect consistency in a data-parallel
call. The problem, fortunately, arises only because of the undesirable situation of multiple,
overlapping, concurrent writes to a location. If each invocation writes a single location, C**’s

Tronically, on the CM-2, where integer addition is implemented in microcode on top of bit-serial hardware,
each processor passes through a different sequence of states.

10



Computation - Commupnications

Figure 2.1: Programming style for large-grain data parallelism. In this model, parallel tasks cannot commu-
nicate, so the results of a parallel call are distributed after the call and before the next call.

semantics is similar to C*’s: an arbitrary invocation’s change is visible and other modifications
are lost. However, if an invocation modifies multiple locations, we cannot ensure that all of
the invocation’s changes are consistently visible, unless we are ready to discard entirely other
changes. For example, consider three invocations that modify locations A, B, C, and D in the
following manner:

Invocation Modified Locations

1 A, B C
2 A, B, D
3 A, C, D

If we desire consistency and commit an invocation’s entire result (say invocation 1’s), all changes
to location D must be discarded because of the overlapping modifications. Rather than discard
changes (and incurring a heavy penalty to detect when this is necessary), C** adopts the view
that overlapping writes are fundamentally undesirable.

Results From Parallel Functions

Parallel functions produce either scalar or Aggregate results. If the underlying type is identical
to the parallel argument’s type, the parallel function allocates a new Aggregate of the same
size as the parallel argument and initializes it with results returned from the corresponding
parallel invocations of the function. The function invoked on the first element of the parallel
argument computes the value for the first element of the result, and so on. The new Aggregate’s
constructor, if any, is not invoked.

On the other hand, if the underlying result type is a scalar, the values returned from the
parallel function must be returned in reduction return statements (Section 2.2.4) that reduce
values from the invocations into a single value.

For example, the two functions:

friend matrix operator* (parallel matrix A, matrix B) parallel
{return (A0#1101 = BI[#21);3

friend float operator* (parallel mrow R, mcol C) parallel
{return’+ (R[#1].value * C[#1].value);}

11



comprise a matrix multiplication routine that creates and returns a new parallel matrix of the
same size as the parallel matrix A. The first operator takes the two matrices as arguments and,
for each position in the product matrix, computes the dot product of the appropriate row and
column. The second operator computes this dot product.

If an Aggregate contains multiple fields, a return statement specifies the binding between
returned values and fields with a construct similar to the one used to initialize const objects.
For example:

class ¢ {int a; char *b;}[];

friend ¢ £ (parallel ¢ A) parallel {
{return {a(i#1); b(int_to_str(#1));}
}

sets both fields in each element to a representation of the element’s position in the Aggregate.

Discussion

An expression-oriented data-parallel programming style, such as the one used in the matrix
multiplication example, is desirable for compilers. In this style, a computation is an expression
built by composing operators. If the operators are pure—compute a new result rather than
modify an existing one—a compiler has great freedom to rearrange and execute them in parallel.
Techniques such as APL dragthrough can eliminate many, if not all, intermediate results [4].
Ct*t’s inlining facilities facilitate this process by making a function’s code available at call sites.

Unfortunately, C*+ does not provide a clean mechanism for a parallel function to create and
return a composite result. In C*+, a function returns a composite result either by dynamically
allocating it or modifying a parameter. Neither approach is convenient for parallel functions,
and both complicate compiler analysis. C**’s approach is only a slight extension to C'*%, but
permits a compiler to easily determine that the result of a parallel function is a new object built
by independent, parallel computations.

Reductions

Reductions are a basic operation in data-parallel programming because they provide a conflict-
free and efficient way of combining results from independent computations. A reduction applies
an associative binary operator, pair-wise, to a sequence of values. For example, if o is the
operator, the sequence v can be reduced: v; o v3 0 v3...0v,. This reduction can be applied in
parallel in lg n steps.

C** supplies two types of reductions. The first combines values assigned to a location and
mediates conflicts between concurrent writes. The second combines values returned from the
multiple invocations of a parallel function.

Combining Assignment Combining assignments are legal only within parallel functions.
A combining assignment uses a specified operator to combine the set of values assigned to a
location. Combining assignments are necessary because an ordinary assignment permits only
one invocation to modify a location. For example:

float sum = 0.0, pos_sum = 0.0;
matrix::sum_elements () parallel {

sum =%+ value;

12



if (value > 0)
pos_sum =%+ value;

¥

computes two sums. The first is the sum of all elements in a matrix. The second (pos_sum) is
the sum of the positive elements in the matrix.

Reduction Returns A parallel function with a scalar result must combine partial results
from each invocation with a reduction return. This statement combines the value returned from
each invocation of a parallel function with a specified operator. For example:

friend float sum (parallel mrow A) parallel
{returny+ (A[#1].value);}

Discussion

C* overloads C’s += and similar operators for reductions when the left operand is a scalar and the
right operand is a parallel expression. This choice leads to complex rules for determining when
an expression is parallel and breaks the equivalence between a = a + 1 and a += 1. Because
of the semantics of large-grain data parallelism, overloading existing operators is confusing.
The assignment in a += 1 affects only local state until the surrounding parallel call finishes.
Reduction operators appear different because their semantics—of combining multiple writes
into a single, consistent value—is different.

2.2.5 Slices

A slice selects a subset of an Aggregate along the axis introduced by a subscript dimension. A
slice is not a copy. It shares all selected elements with the full Aggregate. Slices are particularly
valuable when they themselves are Aggregates and consequently can be manipulated in parallel.
Slices permit effective specification of parallel computations on a portion of an Aggregate. For
example, many matrix computations are naturally described in terms of operations on rows and
columns. If the row and column slices are Aggregates, the operations can be data parallel.

In C**, omitting an index expression from a dimension of an Aggregate reference produces
a slice that includes all elements along that dimension. Trailing empty braces may be omitted,
s0:

A[11[] <=> Al1]

For example: the following three expressions are slices of a matrix:

matrix A;

Ali] - i-th row of A

AT - or could be written this way
A[D 5] — j-th column of A

Subclassing and Slices

In C**, the type of a slice is a subclass of the Aggregate’s class, in all respects except inheritance
of functions and declaration of new members. The slice’s subclass declaration both names the
new subclass and describes which indices must be specified to compute the slice. #n denotes the
n** index in a reference to the slice. For example, consider the following matrix slices:
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class mrow : matrix[#1]; — Row slice of matrix
class mcol : matrix[][#1]1; - Column slice of matriz

mrow is a row from a matrix that is computed by omitting the column index.

Slices are similar in many ways to function closures in that they capture an input parameter
(index) and return a value that can be applied to another input to complete the computation
of a result. This idea can be generalized by using the subclass facility to specify a complete
remapping of indices. For example:

class matrixT : matrix[#2][#1];

is a class for a transposed matrix. In many cases, coercion between a matrix and its transpose
need not allocate storage and physically transpose the array. Instead, the code to access the
matrix can swap the row and column indices.

Discussion

Subclassing is appropriate for Aggregate slices in all respects except one. Any functions defined
for a base class, say matrix, cannot be inherited by the derived class, say mrow, because the
base class’s member functions expect to operate on an entire aggregate, not a portion of it.
Inheritance of other member fields is not a problem, since they are specified for every Aggregate
element, both in the full Aggregate and the slice. However, a slice cannot introduce new data
members.

2.3 Status

We have implemented a prototype translator for C**, based on the GNU g++4 compiler. The
compiler produces naive code for a DECstation workstation and Sequent Symmetry shared-
memory computer. We are investigating optimization techniques, language extensions, and
compilation techniques for non-shared-memory machines such as the CM-5.

2.4 Conclusion

Parallel programming is a difficult task that demands a high level of support from the pro-
gramming model and language. Data parallelism is a programming paradigm that reduces the
complexity of parallel programming by permitting a programmer to focus on a single item, rather
than worry about the interaction of many threads of control. This programming style results in
parallel programs (i.e., programs that use parallel algorithms) that can be effectively compiled
for a wide range of parallel computers because they contain large amounts of easily-identifiable
parallelism.

Many data-parallel languages have two flaws. They either are too closely tied to SIMD
hardware or they discarded the race-free properties of SIMD execution. The first approach
imposes the execution inefficiences of SIMD hardware on all programs. This style of execution
is not a burden in programs with simple control flow and evenly balanced work. However, many
programs do not fit this mold and perform poorly under this model. The other approach, of
viewing data parallelism as only mapping operations across aggregates, discards SIMD data
parallelism’s most attractive feature: nearly deterministic, nearly race-free program execution.

C** is a new data-parallel programming language based on C** that avoids these problems.
It introduces a new model of data parallelism, called large-grain data parallelism, that offers

14



nearly race-free execution without the restrictions of SIMD execution. In addition, C** is based
on an object-oriented language with strong support for data abstraction and provides a good
basis for building libraries of parallel data structures and operations. Finally, C** should result
in fast, efficient programs because it was designed to facilitate efficient compilation for a wide
range of parallel computers.
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Appendix A

C** Language Overview

This document describes C**, an extensible, large-grain, value-oriented data parallel language
based on Ct*. The language is described in terms of its (upwardly compatible) changes to Ct+.
The section numbers (r.#) refer to the C** Reference Manual in Bjarne Stroustrup, The C**
Programming Language, second edition, Addison-Wesley, 1991.

A.1 Aggregates

C** (1.9) Syntax: C** Syntax:
class-specifier: class-specifier:
class-head member-lisiyp, class-head member-listope agg-spec,,,
agg-spec:

[ ezpression,p, ]
agg-spec [ expression ,,, |

In C**, Aggregate objects are the basis for parallelism.! An Aggregate class (Aggregate, for
short) declares an ordered collection of values, called Aggregate elements (element, for short),
that can be operated on simultaneously by Aggregate parallel functions (parallel function, for
short). FEach element in an Aggregate object contains all member fields listed in the class
declaration. For example, the following declarations define 2-dimensional matrices of various
sizes:

class matrix {float value;} [1 [];
class small_matrix {float value;} [5] [5];
class large_matrix {float value;} [100] [100];

The rank of an Aggregate is the number of dimensions specified in its class declaration. The
cardinality of each dimension may be specified in the class declaration. If omitted from the class,
the cardinality must be supplied when the Aggregate is created. Each dimension is indexed from
0 to N —1, where N is the cardinality of the dimension. For example, indices for both dimension
of a small matrix run from 0...4.

An Aggregate object differs fundamentally from a conventional C**t array of objects:

INote, Aggregates have no relation to aggregates (r.8.4.1) in base C or C*t.
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e An Aggregate class declaration specifies the type of the collection, not the individual
elements.

¢ Aggregate member functions operate on the entire collection of elements, not individual
elements.

e Elements in an Aggregate can be operated in parallel, unlike objects in an array.

e Aggregates can be sliced (see Section A.3).

However, Aggregate elements are referenced in the same manner as objects in an array.

A.2 Aggregate Member Functions

Member functions in an Aggregate are similar, in most respects, to class member functions. The
key difference is that Aggregate member functions are defined on an entire Aggregate, not an
element. Consequently, the keyword this is a pointer to the entire Aggregate. For example, in:

class matrix {
float value;
friend ostream& operator<< (ostream&, matrix&);

Y} 0O 0

ostream& operator<< (ostream &out, matrix &m) {
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
out << m[i][j].value << " ";
out << ’\n’;

}

<< prints a matrix to a stream.
All Aggregates have the following two member functions predefined:

int rank () - Return number of dimensions in Aggregate
int cardinality (int dim) - Return cardinality of dimension dim

A.2.1 Aggregate Constructors

A constructor for an Aggregate class initializes the entire collection of elements, not the individ-
ual elements. This is unlike an array of objects, in which the array is initialized by each object’s
constructor, which is invoked in turn. For example,

class matrix o
float value;
matrix (float initial_value) {
int i, j;
for (i = 0; i < cardinality (0); i++)
for (j = 0; j < cardinality (1); j++)
*this[i] [j].value = initial_value;
};
y 00 0;
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defines a matrix constructor that initializes all elements to specified value, so

new matrix [100][100] (1);

creates a 100 x 100 matrix of 1’s.

Constructors may be parallel functions.

A.2.2 Parallel Functions

Ct+ (r.8) Syntax: C** Syntax:
cv-qualifier: cv-qualifier:
const const

volatile volatile
parallel
C*+ (r.7.1) Syntax: C** Syntax:

decl-specifier:
storage-class-specifier
type-specifier
fet-specifier
template-specifier

decl-specifier:

storage-class-specifier
type-specifier

fet-specifier

template-specifier

friend friend
typedef typedef
parallel

A parallel function is a member or friend function in an Aggregate class that is invoked
simultaneously on each element of the Aggregate.

Aggregate member and friend functions are sequential by default. A parallel function (either
a member or friend function) is identified by keyword parallel after its argument list. For
example:

class matrix {
float value;
float checksum () parallel;
friend transpose (parallel matrix) parallel;

¥ OO0

declares checksum and transpose to be parallel functions.

In a parallel friend function, exactly one argument, of the same type as the Aggregate, must
be prefaced by parallel (for example, the first argument in transpose). This argument is
the function’s parallel argument. In a parallel member function, the parallel argument is the
Aggregate to which the function is applied.

A parallel function is invoked simultaneously on all elements of its parallel argument. Each
invocation can determine the coordinates of the element to which it is applied from the pseudo
variables:

#0 1%t coordinate
#1 2¢ coordinate

#n —1 n** coordinate
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Semantics of Parallel Functions

A parallel function is a large-grain data-parallel operator that is applied atomically and simul-
taneously to each element in an Aggregate. To explain this more precisely, we must define a
few terms. A parallel function call is the application of a parallel member or friend function to
an Aggregate. A parallel function invocation is the execution of the function on one Aggregate
element. Hence, calling a parallel function starts many function invocations, all of which execute
simultaneously. A function invocation’s state is the collection of storage location read or written
during the invocation.

Applied atomically means that while a parallel function is executing, its state is only modified
by the function itself, not by any other concurrently executing task. In other words, the function
appears to execute instantaneously and is unaffected by anything else running at the same time.
In effect, the semantics are as if each invocation executed as follows:

¢ Read all referenced locations into a purely local copy.
¢ Compute using local copies.
e Write all modified copies back to the global copies.

Since a parallel function is applied simultaneously to an Aggregate’s elements, all invocations
begin with identical state (except for the pseudo variables, #1, #2, etc., which differ in each
invocation).

If invocations of a parallel function modify global state, the only guarantee is that each
modified location will contain a value computed by some invocation. However, if an invocation
modifies more than one location, only a portion of its modifications may be visible after the par-
allel call. Other invocations’ changes to the other locations may overwrite the first invocation’s
modifications.

As an example, consider a stencil computation on a matrix.

friend void stencil (parallel matrix A) parallel
{
Al#1][#2] .value = (A[#1-1][#2] .value + A[#1+1][#2] .value
+ A[#1][#2] .value + A[#1][#2-1].value
+ A[#1][#2+1] .value) / 5.0;
}

The computation is applied simultaneously to each element of the matrix, so the new values are
entirely a function of the old matrix.

Implementation Note

Copying is unnecessary for locations not modified by another invocation or that are modified by
only one invocation and not read by other invocations. A location modified by one invocation and
read by other invocations can either be locked to let the readers finish or could be implemented
with the copying scheme. Multiple writers present no complications since the writes must either
be combined with an explicit combining assignment (Section A.2.2) or allow an arbitrary write
to succeed.
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Parallel Return Type

Ctt (1.6.6) Syntax: C** Syntax:
jump-statement: jump-statement:
break ; break ;
continue ; continue ;
return erpression ,,, ; Teturn ezpression ,,, ;
return ctor-initializer
goto identifier; goto identifier ;

Parallel functions produce either scalar or Aggregate results. If the underlying type is the
same as the parallel argument’s type, the parallel function allocates a new Aggregate of the
same size as the parallel argument and initializes it with results returned from the corresponding
parallel invocations of the function. The Aggregate’s constructor, if any, is not invoked. The
function invoked on the first element of the parallel argument computes the value for the first
element of the result, and so on. For example:

friend matrix operator* (parallel matrix A, matrix B) parallel
{return (A[#11[] = B[][#21);}

multiplies two matrices by setting each element of the result matrix to the inner product of the
corresponding row and column (see A.3).

If an Aggregate contains multiple fields, a return statement can specify the binding between
returned values and member fields with a construct similar to the one used to initialize const
objects. For example,

class ¢ {int a; char *b;}[];

friend ¢ f (parallel c A) parallel {
{return {a(#1); b(int_to_str(#1));}
}

sets both fields in each element to an appropriate representation of the element’s position in the
Aggregate.

On the other hand, if the result type is a scalar, the values returned by the parallel function
must be returned in reduction return statements (Section A.2.2) that combine values from the
invocations into a single value of the specified type. For example, the inner product can be

defined:

friend float operator* (parallel mrow R, mcol C) parallel
{return¥+ (R[#1].value * C[#1].value);}

Combining Assignment

C** (r.5.17) Syntax: C** Syntax:
assignment-opemtor: one of assz'gnment—opemior: one of
= k= /: '/.: dz = D= K<<= &= T= I: = k= /: '/.: = == DO= <= = "= !:

=Y =Y =Y =U& =0T =Rl =>T 0 =i<T
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Combining assignments are legal only within parallel functions. When invocations on differ-
ent elements modify a location with combining assignments, the values assigned to the location
are combine by operator specified to the right of the . The operators >? and <7 are min
and maz, respectively. Combining assignments are necessary because an ordinary assignment
permits only one invocation to modify the location.

Because of the semantics of parallel functions, within one of these functions, a combining

assignment only appears to change the assigned variable by the value produced by the right-hand
expression.

For example:

s =%+ A[#1].value; — Parallel +-reduction

if (p) s =Y+ Al[#1] .value; - Parallel +-reduction on subset

Reduction Returns

C** (r.6.6) Syntax: C** Syntax:
Jump-statement: Jump-statement:

break ; break ;

continue ; continue ;

return expression,,; ; Teturn expression,y, ;

return/red-op erpression ;
return/choose-op eTPression : erpression ;
goto identifier ; goto identifier ;

red-op: one of
VAR AR A2 A N A AT A 44

choose-op: one of
YASE A

A parallel function with a scalar result must combine the results from each element with a
reduction return. This statement combines the value returned from each invocation of a parallel
function using the operator specified to the right of the %. A parallel function with a non-void
result type, must terminate with one or more reduction returns, all of which specify the same
operator.

For example:

float sum (parallel mrow A) parallel
{returnl+ (A[#1].value);}

The second form of reduction return implements Quinn and Hatcher’s tournament idiom:
determine the value associated with the invocation that returns the minimum or maximum
key value. The expression before the colon is the key used to compare returned values. The
expression after the colon is the value associated with the invocation. The result of the return
statement is the value from an invocation that returns the minimum (maximum) key. For
example, the following function finds the row in a matrix containing the smallest element:

int smallest_row (parallel matrix M) parallel
{return¥<? (M[#1][#2].value : #1);}
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To Be Considered:

User-supplied reduction operations.

A.3 Slices

Ctt (1.5.2) Syntax: C** Syntax:
postfiz-expression: postfiz-expression:
postfiz-ezpression | expression | postfiz-expression [ ezpression ]

Omitting an index expression from a dimension of an Aggregate reference produces a slice
that includes all elements along that dimension. A slice is not a copy. It shares all selected ele-
ments with the larger Aggregate. The type of the slice is a subaggregate of the larger Aggregate
(see Section A.3.1).

Trailing empty braces may be omitted, so

A[1101 <=> Al1]

For example:

matrix A;

ATi] - i-th row of A

A1 - or could be written this way
A[103] — j-th column of A

Slicing is higher precedence than indexing, so given a choice between treating an index
operation as being part of a slice or indexing an object, the former is always chosen. For
example, in

class D1 {...} [J[10(1;
class S1 : Di[#1];
class S2 : Di[#1][#2];

D1 X[100][100][100];

. X[11[2]

the reference to X is an S2 slice, rather than an indexing operation on an S1 class.

A.3.1 Subaggregates and Slices
C*+ (1.10) Syntax: C** Syntax:

base-spec:
: base-list
base-list:
base-specifier
base-list , base-specifier
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base-specifier: base-specifier:

complete-class-name complete-class-name partial-agg-spec,,,
virtual access-specifier,,, complete-class-name virtual access-specifier,,, complele-class-name partial-agg-spe
access-spectfier virtual,p; complete-class-name access-specifier virtualyy; complete-class-name partial-agg-spec

partial-agg-spec:
[ ezpr-indez,,, ]
partial-agg-spec [ ]
partial-agg-spec [ expr-indez ,p, |

expr-index:
eTpression
# integer

A slice of an Aggregate produces a subaggregate, which is a new Aggregate class. Subag-
gregates allow logically contiguous subsets of an Aggregate to be manipulated as a single entity,
including having parallel operations performed upon them.

A subaggregate declaration names the new class, describes the slicing operations that pro-
duces the subclass, and describes how to map references to the subaggregate into the underlying
Aggregate. The pseudo variable #n denotes the n'* index in a reference to the subaggregate.
Dimensions whose index is not specified in a references to the subaggregate must have been
specified in the slice.

For example, consider the following slices of a matrix:

class mrow : matrix[#1]; - Row slice of matriz
class mcol : matrix[1[#1]; - Column slice of matriz

A reference to an mrow provides the column coordinate. The row coordinate is determined when
a matrix is sliced along its first axis and the mrow is created.

Subaggregates are not subclasses. All though they may define new member functions, they
do not inherit their underlying Aggregate’s member functions. Nor, many they define new data
members. In addition, the type of a slicing operation on an Aggregate must be unique, the
partial-agg-spec’s for all subaggregate of an Aggregate must be unique.
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Appendix B

Examples

This section contains three sample C** programs and some preliminary speedup numbers.

B.1 Matrix Multiplication

The first example is the complete program for multiplying matrices:

#include "css-rt.h"

struct matrix

{
double val;

matrix();
matrix operator* (matrix &B) parallel;
void print(int i);

} [512][512];

/* Initialize the matrix with pseudo random values: %/
matrix::matrix()

{
#define ran(seed) ((seed=(seed*16397+14927)%29383), seed/10000.0)
int i, j;
long seed = 39293;
for (i=0; il=N; i++)
{
for(j=0; j!=N; j++)
(*this) [i]1[j].val = ran(seed);
}
#undef ran
}

/* A column slice of a matrix */
struct column : matrix[][.]

{
};
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/* A row slice of a matrix */
struct row: matrix [.J[]

{
/% Dot product of a row by a column */
double operator*(column &B) parallel
{
return %+ (val * B[#0].val);
}
};

matrix matrix::operator* (matrix &B) parallel

{
return { val((*this) [#0J[1 = B[1[#1]) };
}

void matrix::print(int i)

{
int j, ki
if (i == 0)
return;
for (j = 0; j < cardinality(0); j ++)
{
printf("%d:\t", j);
for (k = 0; k < cardinality(1); k ++)
printf("%g ", (*this)[j1[k].val);
printf("\n");
3
printf("\n");
}
main()
{
matrix A, B;
(A * B).print(0);
}

We compiled this program with the preliminary version of our compiler and ran it on a
20 processor Sequent Symmetry. Figure B.1 compares the performance of the C** program
against a hand-coded C program. Both curves are normalized against the parallel, hand-coded
C program running on one processor. As the graph shows, the absolute performance of the C**
program is less than the C program. There are two reasons for this difference. First, our compiler
generates simple code and does not perform any optimizations. In addition, our implementation
defers all scheduling to run-time. A better compiler would statically schedule this routine.

26



Matrix multiplication of two 512x512 matrices
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Figure B.1: Comparison of C** and C matrix multiplication routines on a 20 processor Sequent Symmetry.

B.2 Pgrid

Pgrid is a program that computes potentials in a grounded box. The figure on the frontpiece is
an example of its computation. We ran two versions of this program. The first version operated
on each grid point individually:

This program computes potentials within a grounded box. There are
"objects" within the box whose potential is set to "1". (The locations
of these objects are read in from a file at startup.) A grid of data
points is formed over the box, and the potential at each point is found
by averaging the values of the four nearest neighbors. This process is
repeated until the grid "relaxes". That is, until the largest change
in value of any of the cells during an iteration becomes very small.

Normally, one would keep track of this largest change, and iterate
until it was less than some required epsilon. This program is written
such that it finds the largest change during each iteration, but the
value is ignored and a fixed number of iterations are performed. This
is because the order in which the grid points are updated in the
sequential version affects the speed at which the grid becomes relaxed.
It would likely be the case that the parallel version required a dif-~
ferent number of iterations to reach a given state of relaxation. For
timing purposes, it was thought to be better if both the sequential and
parallel version performed the same number of iterationms over the grid.

/
#include <stdio.h>

#include <math.h>
itinclude "css-rt.h"
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#define DIM 52
#define INF 100000

struct grid

{
float val; /* This grid point’s value */
float diff; /* difference between old and new values */
grid() parallel /* set to all zeros initially */
{
val = 0;
}

float update() parallel;
} [pIM][pIM];

int obj[DIM][DIM]; /* array holding locations of "objects" #*/
FILE *infile;

/%
# This method updates each of the grid points in parallel. The
* largest change (as a percentage) is returned and would ordinarily
* be used to decide when the computation was sufficiently precise.
*/
float grid::update() parallel

{
float old;
diff = 0;
if ((#0==0) || (#0==DIM-1) [l (#1==0) || (#1==DIM-1)) /+* edges */
return %>7 diff;
if Cobj[#0I[#1] == 1) { /* on an object, value is 1 */
val = 1;
diff = 0;
} else { /% otherwise, average neighbors #/
old = val;
val = ((#this) [#0] [#1-1].val + (*this) [#0][#1+1].val +
(*this) [#0-1]1[#1].val + (*this) [#0+1][#1].val)/4.0;
if (val !'= 0)
diff=fabs((double) (val - old))/val;
else if (fabs((double)(val - old)) == 0)
diff = 0;
else
diff = INF;
}
return %>7? diff; /* return largest change */
¥
main()
{
int i, j;
float max=0;
grid G;

28



infile = fopen('setup", "r"); /* read object positions from file */
if (infile==NULL) fprintf(stderr, "Didn’t find setup file.\n");

for (j=1; j<DIM-1; j++)
for (i=1; i<DIM-1; i++)
fscanf (infile, "%d", &objl[il[jl);

for (i=0; i<500; i++) { /* do 500 iterations */

max = G.update();
}

for (i=0; i<DIM; i++) {
for (j=0; j<DIM; j++)
printf("%d %d Y%f\n", i, j, G[il[j1.val);
printf("\n");

This version was inefficient because the amount of computation at each point is small and
our simple compiler does not optimize the program by combining these small tasks. The second
version of the program is similar, except that it performed parallel operations on each row in
the matrix:

This program computes potentials within a grounded box. There are
"objects" within the box whose potential is set to "1". (The locations
of these objects are read in from a file at startup.) A grid of data
points is formed over the box, and the potential at each point is found
by averaging the values of the four nearest neighbors. This process is
repeated until the grid "relaxes'". That is, until the largest change
in value of any of the cells during an iteration becomes very small.

Normally, one would keep track of this largest change, and iterate
until it was less than some required epsilon. This program is written
such that it finds the largest change during each iteration, but the
value is ignored and a fixed number of iterations are performed. This
is because the order in which the grid points are updated in the
sequential version affects the speed at which the grid becomes relaxed.
It would likely be the case that the parallel version required a dif~-
ferent number of iterations to reach a given state of relaxation. For
timing purposes, it was thought to be better if both the sequential and
parallel version performed the same number of iterations over the grid.

_.___*/

#tinclude <stdio.h>
#tinclude <math.h>
#include "css-rt.h"
#define DIM 52
#define INF 100000

struct rows
{
float values[DIM]; /# This grid point’s value */
float max_diff; /* largest difference between old and new values #/
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rows() parallel

{
int i;
for (i=0; i<DIM; i++)
values[i] = 0;
}

float update() parallel;
} [pimMl;

int obj[DIM] [DIM];
FILE *infile;

/*

/* set to all zeros initially */

/* array holding locations of "objects" %/

* This method updates each of the grid points in parallel. The
* largest change (as a percentage) is returned and would ordinarily
* be used to decide when the computation was sufficiently precise.

*/
float rows::update() parallel
{
int col;
float old, diff;

max_diff = 0;
if ((#0==0) || (#0==DIM-1))
return %>7 max_diff;

for (col=1; col<DIM-1; col++) {

if (obj[#0][coll == 1) {
values[col] = 1;

} else {
old = values[coll;

/* edges */

/* on an object, value is 1 */

/* otherwise, average neighbors */

values[col] = (values[col-1] + values[col+1] +
(*this) [#0~1].values[col] +
(#this) [#0+1].values[col])/4.0;

if (values[col] !'= 0)

diff=fabs((double) (values[col] - o0ld))/values[col];
else if (fabs((double) (values[col] - o0ld)) == 0)

if (diff > max_diff) max_diff = diff;

diff = 0;
else
diff = INF;
}
}
return %>7 max_diff;
¥
main()
{
int i, j;
float max=0;
rows R;

infile = fopen("setup", "r");

/* return largest change */

/* read object positions from file */
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Figure B.2: Comparison of C** and C grid routines on a 20 processor Sequent Symmetry.

for (j=1; j<DIM-1; j++)
for (i=1; i<DIM-1; i++)
fscanf (infile, "%d", &objl[il[j1);

for (i=0; i<500; i++) { /* do 500 iterations */
max = R.update();
}

for (i=0; i<DIM; i++) {
for (j=0; j<DIM; j++)
printf("%d %d %f\n", i, j, R[il.values[jl);
printf("\n"});

Figure B.2 shows the speedup of the two version of this program. The row-blocked version
of the program did not have enough parallelism on the original 52 x 52 matrix, so we also ran
it on a larger matrix.

B.3 Quicksort

The final example is a C** program for sorting a vector with quicksort. Although quicksort is
not a very good parallel algorithm, this program shows several important features of C**. The
data parallel operations are performed on two-element descriptors that delimit the partition of
the vector. These operations are recursive and so the data parallelism is nested. The current
compiler does not schedule nested data parallelism properly, so the performance of this program
does not improve with additional processors.
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/* gqs.c
quicksort program in C#*.

Copyright (c) James R. Larus, June 1992.
All rights reserved.
*/

#include <stdlib.h>
#include <stdio.h>

#include "“css-rt.h"
class desc
{
public:
void gs () parallel; /* Quicksort */

desc (int 1, int h, int* v) parallel {low = 1; high = h; vec

desc (int 1, int mid, int h, int* v)

{
(*this) [0].1low = 1;
(*this) [0].high = mid;
(*this)[1].low = mid;
(*this) [1].high = h;
(#this) [0].vec = v;
(*this) [1].vec = v;
¥
public:
int low, high;
int *vec;
Y00

int partition (int *vec, int low, int high);

int
main (int argc, char *argv[])
{

int N;

int *vec;

int i;

if (arge < 2)
{
printf("Usage : gsort size\n");
exit(-1);
}

N = atoi(argv[1l);
vec = new int[N];

for (i

= 0; 1 < N; i++)
vec[i] =

random ();
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desc d[1](0, N, vec);
d.gs O;

for (i = 0; i < N - 1; i++)

if (vec[i] > vec[i+1])
printf ("4d: %d > %d: %d\n", i, vec[il, i+1, vec[i+1]);

void desc::gqs () parallel

{
if (low < high - 1)
{
int mid = partition (vec, low, high);
desc sd[2](low, mid, high, vec);
sd.gs O);
}
}

int partition (int *vec, int low, int high)

{
int pivot = vec [(low + high) / 2];
while (low < high)
{
while (vec[low] <= pivot && low < high) low ++;
while (vec[high] > pivot &% high > low) high --;
if (low < high)
{
int tmp = vec[low];
vec[low] = veclhighl;
vec[high] = tmp;
}
}
vec[(low + high) / 2] = vec[low];
vec[low] = pivot;
return (low - 1);
}
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