Code Generation Techniques
Todd Alan Proebsting
Technical Report #1119

November 1992

CODE GENERATION TECHNIQUES

By
Todd Alan Proebsting

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON
1992

Abstract

Optimal instruction scheduling and register allocation are NP-complete problems that
require heuristic solutions. By restricting the problem of register allocation and in-
struction scheduling for delayed-load architectures to expression trees we are able to
find optimal schedules quickly. This thesis presents a fast, optimal code scheduling
algorithm for processors with a delayed load of 1 instruction cycle. The algorithm min-
imizes both execution time and register use and runs in time proportional to the size of
the expression tree. In addition, the algorithm is simple; it fits on one page.

The dominant paradigm in modern global register allocation is graph coloring. Un-
like graph-coloring, our technique, Probabilistic Register Allocation, is unique in its
ability to quantify the likelihood that a particular value might actually be allocated a
register before allocation actually completes. By computing the likelihood that a value
will be assigned a register by a register allocator, register candidates that are compet-
ing heavily for scarce registers can be isolated from those that have less competition.
Probabilities allow the register allocator to concentrate its efforts where benefit is high
and the likelihood of a successful allocation is also high. Probabilistic register alloca-
tion also avoids backtracking and complicated live-range splitting heuristics that plague

graph-coloring algorithms.

ii

Optimal algorithms for instructidn selection in tree-structured intermediate rep-
resentations rely on dynamic programming techniques. Bottom-Up Rewrite System
(BURS) technology produces extremely fast code generators by doing all possible dy-
namic programming before code generation. Thus, the dynamic programming process
can be very slow. To make BURS technology more attractive, much effort has gone into
reducing the time to produce BURS code generators. Current techniques often require
a significant amount of time to process a complex machine description (over 10 minutes
on a fast workstation). This thesis presents an improved, faster BURS table generation
algorithm that makes BURS technology more attractive for instruction selection. The
optimized techniques have increased the speed to generate BURS code generators by a
factor of 10 to 30. In addition, the algorithms simplify previous techniques, and were

implemented in fewer than 2000 lines of C.

iii

Acknowledgements

I have benefited from the help and support of many people while attending the Univer-
sity of Wisconsin. They deserve my thanks.

My mother encouraged me to pursue a PhD, and supported me, in too many ways
to list, throughout the process.

Professor Charles Fischer, my advisor, generously shared his time, guidance, and
ideas with me.

Professors Susan Horwitz and James Larus patiently read (and re-read) my thesis.

Chris Fraser’s zealous quest for small, simple and fast programs was a welcome
change from the prevailing trend towards bloated, complex and slow software.

Robert Henry explained his early BURS research and made his Codegen system
available to me.

Lorenz Huelsbergen distracted me with enough creative research ideas to keep grad-
uate school fun.

National Science Foundation grant CCR-8908355 provided my financial support.
Some computer resources were obtained through Digital Equipment Corporation Ex-

ternal Research Grant 48428.

iv

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Overview
1.2 Instruction Scheduling
1.3 Register Allocation
1.4 Instruction Selection

2 Delayed-Load Scheduling

2.1 Overview
2.2 Previous Work
2.3 Delayed-Load Architecture V. .
2.4 Register Allocation Trade-offs .

2.4.1 Canonical Form.

2.4.2 Adding Registers Helps

2.5 Optimal Algorithm for Delay=1

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

......................

i

iv

2.5.1 Exceptional Cases for Delay=1 19

2.5.2 Algorithm 19
2.5.3 Optimality Proof 19
2.6 Spilling 22
2.7 Extensions to DLS: Related Work 27
2.7.1 Non-Delayed Leaf Nodes . e 27
2.7.2 UnaryNodeso ii i 30
2.7.3 Register Variables 31
2.7.4 DAGSs, Forests, and Internal Loads 32
2.8 Behavior for Delay>1 i e 34
2.8.1 Non-Contiguous Operand Ordering 35
2.8.2 Register Bounds . . PP 36
2.8.3 Empirical Results o 0oL 38
2.8.4 Anomaly 38
2.9 Conclusion . . . v i v it e e e e e e e e e 39
Probabilistic Register Allocation 41
3.1 OVerview . . . i i e e e e e e e e e e e 42
3.2 Graph Coloring Allocators oo 44
3.3 Probabilistic Register Allocation 47
3.3.1 Local Register Allocation and Probabilities 48
3.3.2 Global Register Allocation and Probabilities. 49
3.4 Probabilities Guide Global Register Allocation 59
3.4.1 Improving Probabilistic Register Allocation 60
34.2 Example. e 61

vi

3.4.3 Probabilities Improve Beatty’s Algorithm 65

3.4.4 Register Assignment 67
3.5 Implementation Results 68
3.5.1 Stanford Benchmarks, 68
3.5.2 SPECBenchmarks 71
3.5.3 CommMeENtS. . o v v v v v v vt e e e e e 76
3.6 Compiler Performance e 76
3.7 Algorithm Extensions e 77
3.7.1 Manipulating Probabilities 77
3.7.2 Allocation Interactions 79
3.8 Complexity v o v it e 79
3.9 Other Uses for Probabilities 80
3.9.1 Assisting Graph Coloring o 81
3.9.2 Assisting Interprocedural Allocation 82
3.10 Phase-Ordering Concerns oo v v v v oo v v v v oo 83
3.11 ConcluSIOn .« v v v v e e e e e e e e e e e e e 85
BURS Table Generation 86
4.1 OVEIVIBW v v v v v v e e e et et e et e e e e e e e e e 87
4.2 Related Work« o o i e e e 90
4.3 BURSModel . . . v it i ittt e ettt e e e e e e e e 92
4.3.1 Normal Form Patterns 94
4.4 Algorithm to Generate BURS Tables 94
4.4.1 Data Structures Used to Generate BURS Tables 95
442 ChainRules. i i e 96

vii

4.5
4.6

4.7

4.8
4.9

4.10

4.11

4.4.3 Computing States and Transitions 97

4.4.4 State Trimming o v v i i e e 102
Diverging Grammars v . v v v v v vt v v e 107
Speed Optimizing Techniques oo 108
4.6.1 Attempt Cheaper Alternatives First 108
4.6.2 Precompute Values oo e 108
4.6.3 Lazy Computations 109
464 Defer Closure« v v v v v i v b i e e e e 109
4.6.5 Itemset Equivalence 110
4.6.6 Specialize Memory Allocation 111
4.6.7 Minimize SPace v vt i e e e e e e 111
Unprofitable Optimizations 112
4.7.1 Closure Speeduip . . « « v v v v v v b b e e e e e 112
4.7.2 Post-pass State Minimization oo 112
4.7.3 Normalize Specialization oo 113
Output . & o v o e e e e 113
Implementation Results o 114
Other Applications of BURSo v 116
4.10.1 Simple Type Inferencing oo 116
4.10.2 Data Structure Auditing oo 117
4.10.83 Tree Simplification oo oo 118
Related Systems oo i i e 118
A1 TWIE - o o v v e e e e e e e 119
4.11.2 BEG e e e e e e e e e e e e e e 119

viii

4.12 ConcluSIOn . v v v v v e 120

5 Conclusions and Future Work 122
A BURG Reference Manual 125
AT OVEIVIEW . o o e 125
A2 Input. . oo e e 126
A3 Output . . oot e e 129
A4 Debugging ¢ i e e 134
A5 Running BURG o v it 136
A.6 Acknowledgements 137
Bibliography 137

ix

Chapter 1

Introduction

The three main problems in code generation are what instructions to use, in
what order to do the computations, and what values to keep in registers.

Aho, Johnson, and Ullman [AJUT77].

1.1 Overview

This thesis describes the following issues in code generation theory and technology:
Chapter 2 develops an optimal instruction scheduler and register allocator for delayed-
load architectures, Chapter 3 describes probabilistic register allocation, a new global
register allocation heuristic that is simpler and more effective than widely-used graph-
coloring techniques, and Chapter 4 outlines the design and implementation of new
and highly optimized techniques for producing retargetable BURS instruction selectors.
Appendix A is a reference manual for BURG, the code generator-generator system

developed using the techniques described in Chapter 4.

1.2 Instruction Scheduling

The instruction scheduling phase of code generation determines the order in which
program instructions will execute. For modern machine architectures with pipeline
constraints this phase of compilation is essential to generating efficient code. A common
pipeline constraint on reduced instruction set computer (RISC) architectures is that a
value loaded from memory into a register will not be available for use for some number
of subsequent cycles. During the intervening cycles it is important to schedule other
instructions to execute that do not rely on that loaded value.

Machines with such load constraints are called delayed-load architectures. RISC chips
like the MIPS R2000 and the SPARC are both delayed-load architectures that require a
single additional cycle before a loaded value is available in its target register. For these
two machines, it is necessary to find one instruction that can execute immediately after
the load instruction (and does not rely on the loaded value). If no such instruction can
be found, then it is necessary to do nothing for that cycle—thereby wasting it. On the
R2000, it is necessary to put an explicit NOP in the instruction stream; on the SPARC,
the pipeline will automatically interlock and stall the processor for the additional cycle.

Previously, most instruction schedulers handled delayed-load scheduling by solving
a more general problem of arbitrary instruction scheduling ([HG83], [GM86], [War90],
[LLM*87], and [PS90]). Arbitrary instruction scheduling considers operations other
than loads with delays (such as multiplies/divides) that can take many cycles to com-
plete. This thesis describes the delayed-load scheduling (DLS) algorithm for doing in-
struction scheduling for computations in which the only instructions facing pipeline
constraints are loads. The more general algorithms are heuristic and typically take

O(n?) time (where n is the number of instructions to be scheduled). DLS, on the other

3

hand, takes only O(n) time, and is optimal\when the load delay is one cycle. When the
delay is greater than one cycle, DLS works as an excellent heuristic.

Most of the more general scheduling algorithms do not attempt to do register allo-
cation along with scheduling. They either schedule before allocation or afterwards, but
the two issues are considered separately. This phase-ordering problem can cause the
phase that comes second to work poorly. If scheduling comes first, registers tend to be
over-allocated. If allocation comes first, the number of possible schedules (given that
allocation) can be quite small, and may not include any good schedules. DLS, on the
other hand, integrates instruction scheduling with register allocation. Done together,
DLS is able to find the optimal schedule that uses the minimum number of registers for
any optimal schedule.

Chapter 2 describes the delayed-load scheduling algorithm, DLS. In addition to
the algorithm, the chapter includes an optimality proof for machines with delay of
one, empirical results when the delay is greater than one, and extensions to handle

expressions that require more than the available number of registers.

1.3 Register Allocation

Instructions that access operands in registers are usually cheaper than those that access
operands in memory. Many instructions cannot access memory directly: if an operand
is in memory, it is necessary to explicitly load that operand for use. In either case, it is
advantageous to keep frequently used operands in registers.

Registers, however, are scarce. Even RISC processors, which are often characterized
as having many registers, typically have fewer than 32 general purpose registers. Often,

in a computer program, there are many more values that are candidates to go in registers

than there are registers. The register allocation phase of code generation is responsible
for determining which values can most advantageously be held in registers and at what
points in the program. A

Estimating the benefit of allocating a register to a value is not difficult. Execution
frequency estimates for each instruction accessing the value are simply multiplied by
the potential savings at each instruction. What is more difficult to estimate is how an
allocation will affect subsequent allocation decisions.

If a value is allocated a register over a given set of program points, no other value
that is simultaneously live can be allocated the same register. Each allocation méde by
a register allocator is made at the expense of other candidates. While there may be a
candidate that will yield the greatest single immediate benefit, it may be the case that
it will take a register from many other candidates whose aggregate benefit would have
been greater.

Previous global register allocation methods have concentrated on casting register
allocation as a graph-coloring problem ([CAC*81], [CH90], [BCKT89], [LH86]). Since
no two simultaneously live values may be assigned to the same register, an interfer-
ence graph can be built where nodes represent register candidate values, and arcs exist
between simultaneously live values. Heuristics are used to find an assignment of the
available registers to the nodes such that two connected nodes are not assigned the
same register. Unfortunately, while graph coloring ensures a legal assignment, it does
not accurately measure how the different (connected) nodes are competing—only that
they are competing——for registers.

To more accurately measure the effects of allocation of a register to one value over

another, a probabilistic measure can be made. Our technique, probabilistic register

allocation, quantifies the likelihood that a particular value might actually be allocated
a register before allocation completes. By computing the likelihood that a value will
be assigned a register by a register allocator, register candidates that are competing
heavily for scarce registers can be isolated from those that face lower competition.
These probabilities allow the register allocator to concentrate its efforts where benefit
is high and where the competition for registers is low.

The implementation of a register allocator that exploits these probabilistic estimates
has proven to be very successful in finding profitable candidates for register allocation

while weighing both the benefit of the allocation, and the effects of such an allocation.

1.4 Instruction Selection

Instruction scheduling and register allocation often assume that instructions have al-
ready been chosen to do the computations required. The instruction selection phase of
compilation determines which instructions can best do those computations. Typically,
instructions are selected to minimize the size of the generated code, or to minimize the
execution time. The instruction sets of most modern CPU’s are redundant. That is,
there are computations that may be evaluated via two or more different sequences of
instructions. The instruction selector must choose among the various (correct) options
to produce the best code.

Machine architectures are not trivial, and it is not always obvious what code will
most cheaply evaluate some expression. Many complex instruction set computer (CISC)
architectures have many addressing modes, each of which may subsume some number
of additions and shifts. Simply recognizing where they are applicable may seem diffi-

cult. Furthermore, comparing all possible combinations that legally compute the desired

result might seem computationally intensive.

Fortunately, if we restrict our attention to expression trees (rather than the more
general directed acyclic graphs) selecting optimal instructions is a straightforward prob-
lem. To do this, we will express the instruction set of the machine as a set of tree
patterns. If the tree patterns that describe different instructions are given weights to
describe their relative costs, dynamic programming can be used to select the optimal set
of instructions to evaluate the tree ([AGT89], [AJ76], [PLG88], [BDB90], and [AG85]).

Dynamic programming is an expensive operation since it finds all optimal sub-
solutions before finding a solution for the entire tree. Fortunately, Bottom-Up Rewrite
System (BURS) technology, can hide this cost from the compiler [PLG88]. BURS tech-
nology pre-processes the tree patterns and their costs to build automata that can drive
instruction selection very quickly. BURS generated instruction selectors can be built
that execute fewer than 50 VAX instructions per node of an expression tree [FH91c].

BURS code generators are fast for two reasons: they use bottom-up tree pattern
matching technology (the theoretically fastest possible [HO82]), and they do all dynamic
programming at compile-compile time (i.e., when the patterns are pre-processed to
build the code generator). By doing dynamic programming at compile-compile time, a
BURS code generator can anticipate all possible input trees with information stored in
tables. An enormous amount of computation is necessary to do dynamic programming
in anticipation of all possible trees. It is, therefore, important to have an efficient BURS
automata generator.

Chapter 4 describes an extremely fast BURS automata generator. The algorithm
described is a work-list algorithm that employs simple optimizations. The implemen-

tation of the simple algorithm is a code generator generator, BURG, that runs 10 to

30 times faster than the previous best system [FHP91]. That increase in speed lowered
the time to pre-process a VAX grammar from over 7 minutes to under 15 seconds on a
DECstation 5000.

Since its development, BURG has been made publicly available, and is being used

at AT&T Bell Labs to develop code generators for an ANSI C compiler [FH91b].

Chapter 2

Delayed-Load Scheduling

Modern RISC architectures are characterized by small, simple instruction sets, and
general-purpose registers. While simple functionally, many of the instructions are com-
plicated by instruction scheduling requirements. For instance, on a MIPS R2000, an
integer load from memory into a register requires a single delay cycle before the loaded
value can be accessed. It is necessary to find another instruction—that does not rely
on the loaded value, or contribute to the load’s address computation—to be placed im-
mediately after the load. If no useful instruction can be found, it is necessary to put a
NOP after the load to absorb the delay cycle.

Figure 2.1 gives two legal MIPS R2000 code sequences for evaluating (a+b)+c. The
instructions selected to evaluate the expression are the same except for register assign-
ment. The useful instructions differ only in their schedules (orders) and numbers of
registers used. The right sequence requires two NOP’s because the values loaded are
accessed by the subsequent instructions. A compiler (or assembler) must order instruc-
tions carefully to minimize the costs of scheduling constraints.

While the optimal evaluation order in Figure 2.1 requires two fewer instructions than

Optimal Non-Optimal
1d r1, a 1d ri, a
1d r2, b 1d r2, b
1d r3, ¢ nop

addi ri, r1, r2 | addi ri1, r1, r2
addi ri, ri, r3|1d r2, ¢

- nop

- addi ri, r1, r2

Figure 2.1: Two Legal Schedules to Evaluate (a+b)+c on a MIPS R2000.

the non-optimal, it does require one more register. Avoiding scheduling conflicts requires
the ability to move operations away from the instructions that load their operands. This
lengthens the span of those register operands, and, therefore, increases the number of
registers in use. Because registers are scarce, and can be advantageously used to hold

temporary and global values, it is important not to overuse them when scheduling

instructions.

2.1 Overview

The problem of optimally scheduling instructions under arbitrary pipeline constraints
is NP-complete ([GJ79], [LLM™*87], [HG82], and [PS90]). Many heuristics have been
proposed for scheduling pipelined code; all assume, however, that pipeline constraints
can occur after any instruction, and that operators may share common subexpressions.
The intractability of finding an optimal schedule holds even if an unlimited number of
registers is available. Optimal local register allocation in itself is also NP-complete in
the presence of common subexpressions [GJ79]. Such negative results have led to the
belief that generating good quality code for RISC machines with pipeline constraints is

too difficult to do well except in complex optimizing compilers.

10

Fast, optimal algorithms, however, can be devised for simpler, yet realistic architec-
tures. Our results show that for a restricted set of pipeline constraints and a simple
RISC load/store architecture, optimal code can be generated in linear time for expres-
sions without operand sharing. Our delayed-load scheduling algorithm, DLS, efficiently
combines instruction scheduling and register allocation. It is restricted to handling
expression trees in which all leaf nodes are direct memory references. DLS is as an
attractive, simple, fast and effective alternative to more complicated, slower heuristic

solutions.

2.2 Previous Work

An adaptation of Hu’s algorithm [Hu61] gives an optimal solution to scheduling a tree-
structured task system on multiple identical processors if each task has unit execution
time [Cof76], but the algorithm does not handle register allocation constraints. For an
architecture with 2 functional units, one for loads and one for operations, with identical
pipeline constraints, Bernstein et. al. have investigated code scheduling with register
allocation for trees ((BPR84] and [BJR89]). Although applicable to a much different
machine, Bernstein’s results and algorithms are similar to ours'——both minimize pipeline
interlocks and register usage, and both run in O(n) time (where n is the number of nodes
in the expression).

Code scheduling algorithms and heuristics for pipelined architectures have been

extensively studied in recent years. Most of the attention to code scheduling has been

1Qurs can issue only one instruction per cycle.

11

directed at scheduling expressions represented by directed acyclic graphs (DAGs) for ar-
chitectures with pipeline constraints after both loads and operations.? Heuristic attacks
on this general problem can be found in [HG82], [HG83], [GM86], [War90], [LLMt87],
and [PS90]. These techniques are similar in spirit; they schedule instructions from the
bottom of the DAG based on differing priority heuristics. The heuristics tend to favor
those instructions that (a) are ready to execute (i.e., do not face pipeline constraints);
(b) will cause subsequent pipeline constraints (i.e., need to be scheduled early); (c) are
“far” from the roots of the DAG (i.e., may be on a critical éxecution path).

Many heuristic solutions treat register allocation as a separate issue that occurs
either before or after scheduling. Most heuristics work in a breadth-first manner from
the bottom of the DAG up, they tend to cause many values to be live at once—filling
up scarce registers. Unlike DLS; these algorithms fail to fully integrate code scheduling
and register allocation, and therefore suffer from phase-ordering problems. In addition,
whereas DLS runs in O(n) time, these algorithms run in O(n?) time, and must have an
additional register allocation phase.

Attempts to integrate register allocation and scheduling have been made at the basic
block level. The techniques express the data dependences between instructions within
a basic block as a DAG. Given the DAG, they attempt to schedule the instructions
while both obeying pipeline constraints and minimizing registers. Since both optimal
scheduling and register allocation on DAGs are NP-complete problems, their solutions
to the integrated problem are heuristic.

Goodman and Hsu [GH88] describe a system, Integrated Prepass Scheduling (IPS),

that combines register allocation and instruction scheduling. TIPS is conceptually simple.

2We will use operations to denote non-load instructions.

12

The input is an instruction DAG for which registers have not been assigned. IPS consists
of two possible schedulers: CSP, and CSR. CSP does heuristic scheduling at the cost
of voracious register use, and CSR tends to minimize register use while possibly doing
poor scheduling. Given a DAG, IPS schedules instructions using CSP and maintains a
count of live registers. When the count exceeds a threshold, IPS switches to CSR to
reduce register usage. Once reduced appropriately, IPS reverts to CSP. This oscillation
continues until the scheduling process is complete.

Bradlee, Eggers, and Henry [BEH91] describe another integrated system, Register
Allocation with Schedule Estimates (RASE), and compare it to IPS. RASE works in
three sequential passes: PRESCHED, GRA, and FINALSCHED. For each basic block,
PRESCHED estimates the cost of evaluating that basic block with n registers available,
for all legal register counts. Given these cost vectors, the global register allocator,
GRA, computes the optimal number of registers to give to the block in face of register
competition for global values. FINALSCHED simply completes the schedule required
by the register level determined by GRA.

Bradlee found that IPS and RASE work well in practice—reducing execution time
by an average of 12%. While RASE occasionally worked better, the resulting improve-
ment was not significant. Both systerﬁs rely on heuristic scheduling techniques that are
slow (O(n?)), and require an ad hoc integration of register allocation and instruction

scheduling.

2.3 Delayed-Load Architecture

We restrict our attention to a simple class of architectures—RISC load/store architec-

tures with delayed loads. All instructions require a single instruction cycle to issue, and

13

reg +— memory load memory, reg
reg; — reg; Op regy | OP Teg;, TeGk, T€G;
memory < Teg store reg, memory

Figure 2.2: DLS Machine Model

[Cycle# | With Interlocks | Without Interlocks |
1. | load m1, r1 load ml, rl

* - 2.| load m2, r2 load m2, r2

/ \ 3. load m3, r3

4. | add rl, r2*, r2 | load m4, r4
/ + \ / + \ 5. | load m3, rl1 add rl, r2, r2
6. | load m4, r3 add r3, r4, r4

ml m2 m3 m4 7. add r2, r4, r4
8. | add rl, r3*, 13
9. | add r2, r3, 13

Figure 2.3: Sample Expression Tree and Two Evaluation Sequences

only loads are pipelined. Our simple machine’s instruction set is given in Figure 2.2.
This architecture is an approximation of the integer functional units of many modern
RISC processors such as the SPARC and MIPS R3000 [PH90].

A delayed load requires that the destination of a load not be accessed by subsequent
instructions for some number of instruction cycles, although other, unrelated instruc-
tions may execute. Delay will be used to refer to the number of cycles that must elapse
before the destination register is ready to be used. An attempt to use a destination
register prior to the elapsing of Delay cycles forces a pipeline interlock that blocks
processor execution until the register has finished loading.

Figure 2.3 shows two possible evaluations of an example expression tree. It is as-
sumed that Delay=1. The (naively produced) left sequence wastes cycles due to pipeline
interlocks at times 3 and 7—asterisks (*) denote the registers with which the delays are

associated. The right sequence incurs no delays.

14

2.4 Register Allocation Trade-offs

Register allocation and instruction scheduling interact because the order of instruc-
tions determines the register needs for computing a given expression. Likewise, register
allocation can limit or expand the possibilities for re-ordering code to limit pipeline
interlocks.

If register allocation precedes instruction scheduling, the ability to schedule the
code can be severely limited by constraints induced not by data dependences, but by
constraints introduced by potential register interference. If register allocation follows
instruction scheduling, a given schedule may require unnecessarily many registers, thus
limiting the effectiveness of a global optimizer and possibly requiring spill code. This
well-known phase-ordering problem is accepted in practice, but can lead to sub-optimal
register use because the instruction schedulers minimize interlocks without taking into
account the possibility that increased register demands could lead to costly register
spilling.

The DLS algorithm avoids this phase-ordering problem by scheduling code and al-
locating registers in tandem. DLS optimally schedules instructions to avoid all delayed-
load interlocks for expression trees when Delay=1. Furthermore, it finds an interlock-
free schedule that minimizes register usage. When Delay>1 or when DAGs are trans-
formed into trees, DLS serves as an excellent heuristic while retaining its conceptual

simplicity, guaranteed linear performance, and integrated register allocation.

2.4.1 Canonical Form

Generating code and allocating registers is much simpler for expression trees than for

arbitrary DAGs. Once a preliminary schedule for the code has been generated for a

15

tree, and the register needs determined, it is possible to reschedule the code and re-
assign the registers to obtain a code sequence in a canonical form. This canonical form
has three important invariants: the relative order of the operators remains unchanged,
the relative order of the loads remains unchanged, and the number of registers needed
remains unchanged. For a given number of registers and specific operation and load
orders, the canonical order will minimize pipeline interlocks for a delayed-load machine.

The canonical schedule is produced by moving loads as early as possible in the initial
instruction sequence (subject to the three invariants). Shifting the loads will move a
load away from its parent in the tree and therefore increase the number of instructions
between the load and its dependent operation.

To produce the canonical ordering of an instruction sequence using R registers that
has L loads and (L-1) operations,® create an ordering that consists of R loads followed
by an alternating sequence of L-R (op,load) pairs, followed by the remaining R-1 op-
erations. Loads are moved before operations that they had previously followed—this
does not affect data dependences since all operations depend on registers and all loads
depend on memory. The movement of the loads relative to the operations will cause the
necessary register assignments to change; if done systematically this will not cause the
register needs to increase. Since loads increase the number of registers in use by one,
and operations decrease the number of registers in use by one, the number of registers
in use at any point in the evaluation is equal to the number of loads performed minus
the number of operations performed. A canonical order evaluation, therefore, ensures

that the number of registers in use will never exceed R.

3There are (L—1) operations in a binary tree with L loads.

16

Figure 2.4 gives an example expression with a standard Sethi-Ullman (SU) instruc-
tion schedule [SU70], a canonical order with 3 registers, and a canonical order assuming
4 registers. (The Sethi-Ullman order, which is optimal with respect to register usage,
orders instructions by scheduling sub-trees separately so that the sub-tree with the
greater register needs is scheduled first.) Simply putting the SU-generated instructions
into canonical form without additional registers removes 1 pipeline interlock. Adding
the extra register eliminates all interlocks. Note that the relative orders of loads and

the relative order of operations is the same in all three sequences.

2.4.2 Adding Registers Helps

As is seen in Figure 2.4, adding registers sometimes helps. This follows from the observa-
tion that loads can often be shifted backwards (i.e., earlier) in the instruction sequence
without affecting the outcome of the computation. This shifting does not change the
relative ordering of the loads with respect to one another, or the relative ordering of
the operations with respect to one another—it simply shifts the loads farther from the
operations that use them. Shifting a load farther away allows its delay slot to be filled
with an intervening load or operation:

Minimizing the number of registers needed to evaluate an expression without load
delays is an essential consideration. If the operations in the expression tree in Figure 2.4
were evaluated from left to right, it would be necessary to use 5 registers rather than 4
to produce a canonical evaluation without interlocks. It is therefore necessary to treat
the problem of optimal code generation as one of minimizing pipeline interlocks and

register usage through code scheduling.

p

/ \ \

ml m2/ \\
/N /7 \

[# | Sethi-Ullman(3) | Canonical(3) | Canonical(4) ||
1. | load m3, r1 load m3, r1 load m3, r1
2. | load m4, r2 load m4, r2 load m4, r2
3. load m5, r3 load m5, r3
4. | add rl, r2*, r2 | add rl1, r2, r2 | load m6, r4
5. | load mb, rl load m6, rl add rl, r2, r2
6. | load m6, r3 load m1, rl
7. add r3, r1*, rl1 | add r3, 14, r4
8. | add r1, r3*, r3 | load ml, r3 load m2, r3
9. | add r2, r3, r3 add r2, r1,r1 | add r2, 14, r4

10. | load m1, rl load m2, r2 add rl, r3, r3
11. | load m2, r2 add r4, r3, 13
12. add r3, r2*, r2

13. | add r1, r2*, r2 | add rl, r2, 12

14. | add r3, r2, r2

17

Figure 2.4: Expression Tree and Canonical Instruction Sequences
2.5 Optimal Algorithm for Delay=1

Optimal instruction scheduling and register allocation for an expression tree when
Delay=1 can be done in time proportional to the size of the expression tree. Our
DLS algorithm is a variation of the Sethi-Ullman algorithm adapted to our machine
model. Both the SU algorithm and the DLS algorithm are driven by minimizing the
register needs for evaluating an expression. These needs are denoted as the minReg of

a node and refer to the minimal number of registers needed for computing the sub-tree

18

rooted at that node without spilling. The minReg value of a node is simply the standard

SU number, adapted to our load/store architecture.* It is calculated by the following
procedure, label().

procedure label(node : ExprNode) {
if (isLeaf(node)) {
node.minReg = 1;
} else {
label(node.left);
label(node.right);
if (node.left.minReg == node.right.minReg) {
node.minReg = node.left.minReg+l;
} else {
node.minReg = MAX(node.left.minReg, node.right.minReg);
}

}

The order of operations for an expression tree determines the optimal order of the
loads—the loads will appear in the same relative order as their parents. This follows
because forcing two (load,op) pairs, (L, o0p;) and (I, o0p;) (assuming that op; comes
before opy), out of order would force the separation between (I;, op;) to be less than it
was originally and less than the original (I, opx) distance. This decrease in separation
could cause pipeline interlocks. The increase in (I, op:) separation may avoid some
interlocks, but the net effect cannot be advantageous. The goal of finding the optimal
instruction schedule and register usage therefore reduces to finding the optimal operation

schedule and register usage.

4The original SU algorithm was based on a machine model in which binary operations could
access their right operands directly from memory. Our model requires all operands to be in
registers.

19

2.5.1 Exceptional Cases for Delay=1

When Delay=1, exactly two trees in our model have schedules that must always incur
pipelirie interlocks: the tree consisting of a single node, and the tree consisting of a
single operator and two leaf (memory) nodes. It is trivial to verify that these must incur

pipeline interlocks, and that the register needs for these trees are 1 and 2, respectively.

2.5.2 Algorithm

The DLS algorithm presented in Figure 2.5 finds an instruction schedule and register
assignment that is optimal for a given expression tree. For all trees with the exception
of the two just mentioned, the DLS schedule will have no pipeline interlocks and will
use the minimal number of registers for any schedule without interlocks.

The number of registers needed for such a schedule is exactly one more than the
minimal number of registers needed to evaluate the expression without any spills (i.e.,
the SU minReg value of the root of the expression).

The DLS algorithm is a simple three-pass algorithm for finding the optimal instruc-
tion sequence and register allocation. The procedure label() (given earlier) labels the
nodes with their SU minReg values. Procedure order() finds the operation and load
orders. order() is similar to the original Sethi-Ullman algorithm. schedule() then

emits the instructions in canonical order.

2.5.3 Optimality Proof

The argument that the DLS algorithm creates an optimal instruction schedule and regis-
ter allocation follows from two observations: the number of registers to avoid interlocks

must be at least minReg+1, and the canonical order generated by the algorithm using

// Sethi~Ullman Ordering
procedure order(root : ExprNode; var opSched, loadSched : NodeList) {
if (not isLeaf(root)) {
if (root.left.minReg < root.right.minReg) {
order(root.right, opSched, loadSched);
order(root.left, opSched, loadSched);
} else {
order(root.left, opSched, loadSched);
order(root.right, opSched, loadSched);
}
append (root, opSched);
} else {
append(root, loadSched);
}
}

// Canonical Ordering
procedure schedule(opSched, loadSched : NodeList; Regs : integer) {

jnitialLoads : integer = MIN(Regs, length(loadSched));

for i = 1 to initialLoads do { // Loads First
1d = popHead(loadSched);
ld.reg = getReg();
gen(Load, ld.name, 1d.reg);

}

while (not Empty(loadSched)) { // (Operation,Load) Pairs
op = popHead(opSched);
op.reg = op.right.reg;
gen(op.op, op.left.reg, op.right.reg, op.reg);
1d = popHead(loadSched);
ld.reg = op.left.reg;
gen(Load, ld.name, ld.reg);

}

while (not Empty(opSched)) { // Remaining Operations
op = popHead(opSched);
op.reg = op.right.reg;
gen(op.op, op.left.reg, op.right.reg, op.reg);
freeReg(op.left.reg);

X

// Schedule Instructions
procedure generate(root : ExprNode; Delay : integer) {

label(root) // Compute minReg
opSched = loadSched = emptyList(); // Initialize
order(root, opSched, loadSched); // Find Load/0Op Order

schedule(opSched, loadSched, root.minReg+De1ay); // Emit Canonical Order

Figure 2.5: Optimal Delay Load Scheduling (DLS) Algorithm

21

minReg+1 registers does not incur pipeline interlocks.

To incur no load delays requires at least minReg+1 registers. The evaluation cannot
take fewer than minReg registers by definition. If only minReg registers were available,
there must be a point at which a just loaded register must be used in the next instruction,
which would result in a load delay. This follows from the fact that only loads can increase
the number of registers in use, and thus at some point a load must put minReg registers
in use. Because only minReg registers are available, this load must be followed by an
operation on the just loaded register (if another operation could have been scheduled,
it would have been to keep the number of registers in use at a minimum). Therefore,
more than minReg registers are needed to avoid interlocks.

Because Delay=1, it is only necessary to find a single instruction to fill every load
delay slot. These can be other loads or (unrelated) operations. Adding another register,
but keeping a Sethi-Ullman ordering for the operations and a canonical ordering for the
entire instruction stream assures that there is at least one more register live than there is
in an SU order. This register must have been made live by a load since the SU algorithm
would have at most minReg registers live at any point. In other words, the loads are at
Jeast one step ahead of the operations that can use them. Since the delay slot is exactly
one cycle long, and loads are at least one cycle ahead, the loads must always be followed
by an unrelated instruction. This means no pipeline interlocks occur for any expression
tree with at least 3 operands (except for the two previously mentioned exceptions).

The DLS algorithm creates an operation order that can be evaluated using exactly
minReg registers because it creates a Sethi-Ullman ordering for the operations and loads.
Because it schedules the instructions in canonical order using a single extra register, it

must satisfy the necessary conditions specified in the previous paragraph. Therefore,

22

given a single extra register, the algorithm creates an instruction sequence optimal in

evaluation time and register usage.

2.6 Spilling

For the DLS algorithm to be practical, it must also be able to produce good schedules
when fewer than minReg+1 registers are available for allocation. Suppose, for example,
that exactly minReg registers are availa,ble. Should the algorithm introduce spill code
so that sub-trees may be computed without interlocks? If so, where should the spills
be introduced? If not, will the computation incur excessively many pipeline interlocks?
The best solution depends on the form of the expression tree.

The tree in Figure 2.6 can be best handled by allowing the canonical execution
order (with minReg=4 registers) and incurring a single load delay of 1 cycle. Having no
interlocks would have required a spill and hence cost 2 extra instructions, a store and
load. The tree in Figure 2.7 will incur 3 delay cycles, but would incur only the cost of
a single load and store if a spill were introduced.

Ordering code so that spill/delay costs will be minimized requires extending the
original DLS algorithm. Given an expression with two sub-trees that have identical
minReg values, the algorithm orders the sub-trees such that the sub-tree exerting the
minimal register pressure is scheduled last. The register pressure of a sub-tree is relative
to the minReg of that sub-tree; it is simply a count of the times that minReg registers will
be live in a normal SU evaluation order of the sub-tree. Register pressure is calculated
by the routine in Figure 2.8.

The sub-trees of the tree in Figure 2.9 are labeled with their register pressures.

The register pressure of the left sub-tree is 3 because its minReg value is 2, and in its

23

+/+\+
/N /N
AWANWARWA

ml m2 m3 md m5 m6 m7 m8

[# [No Spill—Interlock | Spill—No Interlock I

1. | load m1, rl load ml, rl

2. | load m2, 12 load m2, r2

3. | load m3, r3 load m3, r3

4. | load m4, r4 load m4, r4

5. | add rl, r2, r2 add rl, r2, r2

6. | load m5, rl load m5, rl

7. | add r3, r4, 4 add r3, r4, r4

8. | load m6, r3 load m6, r3

9. | add r2, 14, 14 add r2, r4, r4
10. | load m7, r2 load m7, r2
11. | add r1, r3, 3 store r4, TEMP
12. | load m8, rl load m8, r4
13. add rl, r3, r3
14. | add r2, r1*, 1l load TEMP, r1
15. | add 13, 11, rl add r2, r4, r4
16. | add r4,rl, rl add r3, r4, r4
17. add rl, r4, r4

Figure 2.6: Spilling May be More Expensive than Interlocks—Example with 4 Registers

24

1\ /N
/N /N

[#] No Spill—Interlock | Spill—No Interlock |

load m3, rl
load m4, r2
load m2, r3
add rl, r2, r2
load ml, rl
add r3, r2, r2
load m7, r3
add ri, r2, r2
load m8§, rl

add 13, r1*, rl
load m6, 3

add rl, r3*, 13
load m5, rl

add r3, r1*, rl
add r2,rl, rl

load m3, rl
load m4, r2
load m2, r3
add rl1, r2, r2
load ml, rl
add r3, r2, r2
load m7, r3
add ri, r2, r2
load m8, rl
store 2, TEMP
load m6, r2
add r3,rl, rl
load mb5, 13
add r2,rl, rl
load TEMP, r2
add r3,rl, rl
add r2, rl, rl

Figure 2.7: Spilling May Save Cycles—Example with 3 Registers

25

if (isLeaf(node)) {
node.pressure = 1;
} else {
if (node.left.minReg == node.right.minReg) {
// Assumes that node with minimal pressure is scheduled last.
node.pressure = MIN(node.left.pressure, node.right.pressure);
} else if (node.left.minReg > node.right.minReg) {
// node.left will be scheduled first —-- Following standard SU rule.
if (node.left.minReg == node.right.minReg+1) {
// both subtrees contribute register pressure
node.pressure = node.left.pressure + node.right.pressure;
} else {
// only the first subtree contributes register pressure
node.pressure = node.left.pressure;
}
} else {
if (node.right.minReg == node.left.minReg+l) {
node.pressure = node.right.pressure + node.left.pressure;
} else {
node.pressure = node.right.pressure;
}

Figure 2.8: Computation of Register Pressure

evaluation 2 registers will be live 3 times—after loading m3 (or m4), m2, and m1. The
register pressure of the root node is only 1, however, because minReg=3 and the left
sub-tree will be evaluated first (without ever having 3 registers live in a normal SU
order), and the right sub-tree will be evaluated second, reaching 3 live registers only
once—after m5 (or m6). Therefore, the optimal evaluation of the tree (given 3 registers)
will incur only one load delay by scheduling the left sub-tree before the right. Had the
right been scheduled first, 3 load delays would have occurred.

The decision to spill a node is made when calculating the minReg and pressure

values. A node is spilled if its minReg value is equal to the number of available registers

26

N

AN

1
+(2) m5 (1) mé (1)

m3 (1) md (1)

Figure 2.9: Tree with Register Pressure Labels

and its pressure is greater than 2 (the cost of a store and load). If a node has a minReg
value greater than the number of available registers, then its child with the greater
pressure should be spilled. Spilling information is calculated bottom-up in the tree
while calculating minReg and pressure. The algorithm avoids spilling until absolutely

necessary or until it is advantageous.

if ((node.minReg == Registers and node.pressure > 2)
or node.minReg > Registers) {

if (node.left.pressure > node.right.pressure) {
// Spill node.left;
// Make node.left a Leaf temporary;
// Set node.left.pressure = 1;
// Set node.left.minReg = 1;
// Set node.pressure = node.right.pressure;
// Set node.minReg = node.right.minReg;

} else {
// Spill node.right, etc...

}

}

Loads introduced by spills will not cause pipeline interlocks because they will occur
only at a node whose sibling has a minReg value of at least Registers-1. This ensures
that the load will be part of a tree whose root has minReg of at least Registers-1. Since

this new leaf (spill) node has a minReg of 1 and a register pressure of 1, it cannot increase

27

the minReg or register pressure of the entire tree. The cost of the spill is restricted to
the cost of the store/load, and the interlocks associated with evaluating the sub-tree

below the spilled node (which cannot be greater than 2).

2.7 Extensions to DLS: Related Work

The DLS algorithm is restricted to considering binary trees with all leaves representing
delayed loads. A more realistic machine model must be able to handle unary nodes, leaf
instructions without delays, and delayed loads at internal nodes.

Kurlander, Fischer, and Proebsting [KFP92] have extended DLS to optimally handle
unary nodes and non-delayed leaf nodes. The improvements are called Extended DLS

(EDLS). In addition, they give a simple heuristic for scheduling trees with internal

delayed loads.

2.7.1 Non-Delayed Leaf Nodes

Not all leaf instructions on real machines incur delay cycles. For instance, the result of
a “load immediate” is typically available immediately! Scheduling a tree containing a
non-delayed leaf node using DLS will always give a non-interlocking schedule, but it may
use too many registers. It is sometimes possible to schedule an expression with non-
delayed leaf nodes using only minReg registers. Figure 2.10 shows that (a+b)+(c+1)
can be scheduled (without interlocks) using exactly minReg= 3 registers. Figure 2.11
shows, however, that (a+b)+1 requires minReg+1 = 3 registers for a delay free schedule.
The expression (a+b)+(c+1) could be scheduled without an extra register because the
loadi of 1 could be immediately followed by an instruction using that value.

In the absence of non-delayed leaf nodes, the proof that an extra register is needed

28

| # | Schedule |
+ 1. | load a, rl
/ \ 2. | load b, r2
3. | load c, 13
/+\ /+\ 4. | add rl, r2, r2
5.] loadi 1, rl
a b c 1 6. | add r3,rl, rl
4 7.1 add 12, rl, rl

Figure 2.10: Delay-Free Schedule using only minReg registers.

| # | Schedule 1

+
/ \ 1. | load a, rl
load b, r2
/N
a b

loadi 1, r3
add rl, r2, r2
add r2, 3, r1

Gk

Figure 2.11: Delay-Free Schedule requiring minReg+1 registers.

for delay-free evaluation followed because any schedule requiring only minReg registers
would necessarily have load instructions that were immediately followed by operations
using those loaded values. However, if all of the leaf instructions that increase the
number of registers in use to minReg are non-delayed instructions, then the additional
register is not necessary. This observation leads directly to a linear-time algorithm for
determining if an additional register is needed. Every sub-tree will have a flag indicating
whether or not that sub-tree can be evaluated optimally without an additional register
beyond minReg. This can be computed in a single bottom-up pass of the tree (see
Figure 2.12).

Recall that any (sub-)tree can be computed interlock-free with minReg+1 registers
(when Delay=1). If the left and right sub-trees each require an identical number of

registers (minReg) to be computed, then the entire tree will be given minReg+1 registers.

29

if (isLeaf(node)) {
node.needExtra = isDelayed(node);
} else {
if (node.right.minReg == node.left.minReg) {
node.needExtra = node.right.needExtra AND node.left.needExtra;
} else if (node.right.minReg < node.left.minReg) {
if (node.right.minReg+l == node.left.minReg) {
node.needExtra = node.right.needExtra OR node.left.needExtra;
} else {
node.nesedExtra = node.left.needExtra;

} else { // node.right.minReg > node.left.minReg
// Symmetric to right.minReg < left.minReg case.
} .

}

Figure 2.12: Computing the need for an Extra Register with Non-Delayed Leaf Nodes.

This means the sub-tree scheduled firsé will have minReg+1 registers for its computation,
and the DLS algorithm ensures that it will be computed without interlocks.® The second
sub-tree will have only minReg registers. Therefore, if one sub-tree can be computed
without an extra register, it can be computed after the other, and both will proceed
interlock-free.

If the minReg values of two sub-trees differ, then their order is determined by normal
Sethi-Ullman constraints—the sub-tree with the greater minReg value must be computed
first. (The minReg value of the entire tree will be equal to that greater minReg.) Call the
two sub-trees left and right and as;ume without loss of generality that left.minReg

> right.minReg. left will be computed before right. If left needs an extra register,

5The two trees that do not have any delay-free schedules (a single load, and two loads and a
single binary operation) will not incur delays when scheduled as the first of two sub-trees. The
first instruction of the second sub-tree must fill the (otherwise unfilled) delay slot of the first
sub-tree.

30

then the entire tree must need an extra register since the tree has the same minReg value
as the left sub-tree. If left can be computed without an extra register, then it depends
on whether or not right can be computed without interlocks given only left.minReg-1
registers. If right.minReg is less than left.minReg-1 then right will have the extra
register it needs for DLS delay-free scheduling. If, however, left.minReg-1 does not
provide an extra register for right to be computed, then it is necessary to examine
whether right needs an extra register (since it is not going to get one).

While this algorithm is simple and fast, its utility is debatable. At best it can save
a single register. It does not find interlock-free schedules that DLS could not find given

an extra register.

2.7.2 TUnary Nodes

Unary operations can be scheduled via a simple extension to ordinary DLS. All unary
nodes are scheduled immediately before the operations that are going to use the values
they compute. Schedule an expression using DLS as if the unary nodes were collapsed
into the operands of their parents, and then expand them after scheduling is complete.

The (small) problem with this is that it too may overuse registers by one. It may
be the case that a schedule exists for the expression that would not need minReg+1l
registers, but instead could use only minReg. Unfortunately, some of these schedules
require a non-contiguous evaluation of the expression, and DLS cannot directly find
such evaluations. Figure 2.13 gives an example of a tree that requires only minReg= 4
registers for an optimal schedule, but to do so it requires a non-contiguous evaluation.

Kurlander’s linear-time algorithm to find the optimal schedules for trees with unary

nodes is somewhat more complicated than the algorithm to handle non-delayed leaves.

-

nelg (13)
2
+ (5) + (7)
/ \
ml m2 m3 mé
(1) (2) (3) (4)

31

@
15)
/6 e

mé
(6) (8) (10) (12)

| # | Schedule I
1. | load m1, rl
2. | load m2, r2
3. | load m3, r3
4. | load m4, r4
5. | add rl, r2, 12
6. | load m5, rl
7.1 add r3, r4, r4
8. | load m6, r3
9. | add r2, r4, r4

10. | load m7, r2
11. | add rl, r3, r3
12. | load m8§, rl
13. | negr4, 14
14. | add r2, rl, rl
15. | add r3,rl, rl
16. | add r4, rl, rl

Figure 2.13: Non-Contiguous Evaluation with Unary Nodes

N
/N /\

regN regM

” #] With Interlocks

| Without Interlocks ||

1. | load ml, rl

2. | load m2, r2

3.

4. | add r1, r2*, r2

5. | add regN, regM, r3
6. | add r2, r3, r2

load ml, rl

load m2, r2

add regN, regM, 13
add rl, r2, 12

add r2, r3, r2

Figure 2.14: Evaluation Orders with Register Variables

His algorithm is capable of finding the optimal non-contiguous evaluations. The detailed

algorithm and proof of correctness can be found in [KFP92].

2.7.3 Register Variables

As presented, the DLS algorithm cannot handle register variables (i.e., leaf nodes that

do not represent load instructions). With register variables, it is not always the case that

32

leaf nodes allocate registers or that operations will decrease the number of registers in
use. An operation that has two register variables for children will increase the number
of registers in use when evaluated (assuming that the register variables are live after the
expression).

The simple expression tree in Figure 2.14 demonstrates that a more powerful al-
gorithm is needed to handle register variables. Normal Sethi-Ullman evaluation would
label the left sub-tree with an SU-number of 2 and evaluate it before the right sub-tree
with a SU-number of 1. The entire tree would therefore have a SU-number of 2. DLS
would indicate that 3 registers would be needed for a delay-free evaluation, and that the
left sub-tree’s operator would be scheduled before the right’s (a Sethi-Ullman ordering).
Putting the operators and loads into a DLS-like canonical order gives an evaluation
order in which an interlock will occur. Had the right sub-tree’s operator been scheduled
before the left’s, no such interlock would have occurred.

Fortunately, Kurlander’s results for unary and non-delayed leaf nodes subsumes the
problem of handling register variables. For each operand of an operator that is a register
variable, simply decrease the perceived arity of that operator by one. In Figure 2.14
the add of the two register variables should be treated as a non-delayed leaf node.
It acts like a non-delayed leaf node since it has no associated delay, and it increases

the number of temporary registers in use. Kurlander’s scheduler would then find the

optimal schedule.

2.7.4 DAGs, Forests, and Internal Loads

When code is generated or scheduled for an entire basic block it is natural to use a DAG

as the intermediate representation because of common sub-expressions. Since optimal

N\

Figure 2.15: Splitting At Internal Loads

code scheduling for DAGs is NP-complete, we prefer to schedule trees. By splitting
nodes of a DAG, it is possible to treat a DAG as an ordered forest of trees. A DAG
is split by computing shared internal nodes to temporary storage prior to computing
ancestor nodes. Proceeding in a bottém-up fashion, evaluating a DAG then reduces to
evaluating a sequence of trees (a forest).

Furthermore, Kurlander [KFP92] has used this splitting idea to handle delayed loads
that are internal to a tree (or DAG). Whenever a non-leaf lpad is encountered, the tree
is split so that that load is now at the frontier of the original tree. Figure 2.15 shows
the splitting as it would be applied to (a+b)+indir(c+d). From the original tree, a
forest of two trees has been created—each with loads only at the leaves. These trees
can be handled by DLS and EDLS.

The idea of a canonical order for trees can be extended to forests with corresponding
benefits. If two trees are executed in sequence and have no data dependences between
them, it is possible to order their operators and loads separately, and then schedule
both sets of operators and loads together. This is done by concatenating the operator
lists together and the load lists together, and then scheduling these lists such that loads

from the second expression are interspersed with the operators of the first expression.

34

[# [Without Merging || With Merging | Comments]

1. {| load A, 1l load A, rl

2. || load B, 12 load B, r2

3. || load C, 13 load C, 13

4. || load D, r4 load D, r4

5. || add rl, r2, r2 add rl, r2, r2
6. || add 13, 14, r4 load E, rl Start merging A-+B.
7. || add 12, r4, r4 add 13, r4, r4
8. || load E, r1 load F, r2

9. | load F, r2 add r2, r4, r4
10. || { NOP } add rl, r2, 12
11. || add rl1, 12, r2 -

Figure 2.16: Merging Two Trees in a Forest: (A+B)+(C+D); E+F

The operations of the first tree and the loads of the second tree are moved away from
their respective loads and operations, possibly reducing register needs and pipeline
interlocks. The right column of Figure 2.16 demonstrates that merging the expressions
(A+B)+(C+D) and E+F yields a delay-free schedule requiring only 4 registers (the same
number needed by (A+B)+(C+D) alone). This merged schedule avoids the interlock
present when E+F is evaluated alone.

Entire basic blocks can also be handled in this fashion. Data dependences between
stores and loads in a basic block will limit the ability to shift loads earlier in the schedule.

The definition of a canonical order for a basic block must require that loads not be shifted

before stores that may affect their value.

2.8 Behavior for Delay>1

The optimality results for Delay=1 do not directly extend to greater Delay values. DLS
is, however, an excellent heuristic for larger Delay’s, retaining its simplicity and linear

running time. As a heuristic for instruction scheduling with Delay>1, DLS may require

35

more than minReg+1 registers to achieve an interlock-free schedule in canonical order.
If an interlock-free schedule exists for a given expression, it can be found, however,
by using minReg+Delay registers with the DLS canonical form. The same argument
made for the optimality of the case Delay=1 shows that the number of registers needed
for an interlock-free schedule will never be greater than minReg+Delay. Not all ex-
pressions require minReg+Delay registers for an interlock-free schedule—they may have
interlock-free schedules requiring fewer registers. For this reason, a heuristic approxi-
mation to the DLS algorithm for Delay>1 is to. use a DLS-generated canonical order
with minReg+Delay registers. This heuristic retains the optimal scheduling results of
the minReg+1 case, but may, in a few cases, over-allocate registers. In §2.8.2, we give
the lower-bounds on the fewest possible registers needed for an interlock-free schedule

when Delay>1.

2.8.1 Non-Contiguous Operand Ordering

The Sethi-Ullman algorithm generates code that is contiguous. That is, instructions
generated for one sub-tree do not mix with the instructions for a sibling sub-tree. The
DLS algorithm does not possess this property because the loads from one sub-tree may
be mixed with the operations from another. The algorithm does, however, produce
schedules that exhibit some contiguity: the loads taken alone, and the operations taken
alone do have contiguous orders. It is precisely this property that allows a “divide and
conquer” approach that treats each sub-tree separately.

It is not always possible to generate code with this contiguous operation /load prop-
erty and still have the code be optimal with respect to pipeline interlocks and register

usage if Delay is greater than 1. Figure 2.17 is the smallest example of a tree that does

36

o+
N
w
C
=
U’!\
2
n
- +
e
/S
Y
>

/+\20) /+(\22) +(18)
ml m2 m3 md / \
(13) (15) (17) (19/ +Q +1\5)

+(12) +(14)

/¢ /N /N N

mnoé m7 m8 m9 ml0 mil ml2 ml3
(LY (2) (3) (4 5y (7)) (9) (11)

-+

Figure 2.17: Non-Contiguous Optimal Evaluation for Delay=2.

not have an optimal schedule in which the operations/loads are ordered contiguously
for Delay=2—the tree is labeled with the optimal evaluation order.

Lacking the contiguous property f;)r optimal results, it is unlikely that a linear time
algorithm exists for optimally scheduling trees with Delay>1. Whether the optimal
algorithm is polynomial-time or exponential-time, it will be much more expensive to

run than DLS (and in practice not all that more effective).

2.8.2 Register Bounds

The fact that minReg+Delay registers and a canonical ordering will always produce a
delay-free schedule (when one exists) gives an upper-bound on the number of registers
necessary to find such an evaluation. The optimality proof in §2.5.3 gives a lower (and
upper) bound of minReg+Delay for the case where Delay=1. The previous section
showed that minReg+Delay is not a lower bound when Delay> 1.

Given any Sethi-Ullman order evaluation of an expression, it is not difficult to show,

37

however, that minReg+[Delay/2] is a lower bound on the registers needed for delay-
free evaluation when put into canonical form (when Delay> 1). Given the canonical
evaluation order with exactly minReg registers, it must be the case that some operation
immediately follows the load of one of its operands. Adding a single register shifts the
loads earlier, and operations later in the schedule. For each additional register, each
load moves at most one instruction earlier in the schedule and each operation moves at
most one instruction later. (Loads in the initial (non-alternating) sequence of loads do
not move at all—likewise for the operations in the latter part of the schedule.) Thus,
the addition of each register can move a load/operation pair at most two instructions
further apart.

Therefore, if Delay instructions are necessary to fill a delay slot, and each register
will move at most 2 instructions between any pair, it will be necessary to use a2 minimum
of [Delay/2] registers in addition to the original minReg.

It is possible to find the minimal number of registers needed for a particular com-
bination of operation and load orders in linear time. This can be done by computing
the schedule (in canonical order) for each possible number of registers. Starting with
minReg+Delay-1 registers and working down, the canonical orders are created and tested
to make certain that the loads are separated from their parent operations by at least
Delay instructions. Because the lower bound on number of registers for a legal canon-
ical order is minReg+[Delay/2], this process will require at most [Delay/2] iterations.
With this inexpensive extra step, it is possible to further fine-tune DLS to use even

fewer registers in many cases when Delay>1.

38

DLS DLS % DLS
Delay | Optimal | Sub-Optimal Total Optimal
2 1,015,481 17,930 1,033,411 98.3
1,015,481 17,930 1,033,411 98.3
1,007,509 25,902 1,033,411 97.5
1,007,509 25,902 1,033,411 97.5
1,007,511 25,900 1,033,411 97.5
1,007,535 25,876 1,033,411 97.5
1,007,703 25,708 1,033,411 97.5
1,008,631 24,780 1,033,411 97.6

Nelie o = RO, Y

Figure 2.18: Heuristic Results for All Trees of 25 or Fewer Nodes

2.8.3 Empirical Results

The DLS algorithm works extremely well as a heuristic for Delay values greater than
1. By enumerating all possible expression trees of 25 or fewer nodes, and testing the
algorithm against an exhaustive search algorithm, the effectiveness of the algorithm as
a heuristic can be easily verified. We ran trials for Delay’s of 2 through 9 to obtain the
results given in Figure 2.18. A schedule produced by DLS is considered sub-optimal if it
uses R registers but contains no interlocks when there exists a non-interlocking schedule
needing fewer than R registers, or if it uses R registers and contains I interlocks when
there exists a schedule using R registers that contains fewer than I interlocks. DLS
never uses more than minReg+Delay registers and produces a non-interlocking schedule

for all but a finite number of trees for any given Delay.

2.8.4 Anomaly

Using DLS for Delay=2, an interesting (and surprising) counter-intuitive result has been
found. It is possible for an expression tree to have a sub-tree whose optimal (delay-free)

evaluation requires more registers than the entire tree’s optimal evaluation. The left

39

(17) +\
e T2 +\ 75)+\
(10) + (15) + (11) + (14) +

/ \ {)/ (\ (7) / ()\ (/ (\)
+ (8) + 12)+ 14)+ 7 9) + 12) + 13)+
/ NN 2NN A N AN

\)
m2 m3 mé m5 mé 7 m8 m9 m2 mé mS mé m8 m9
(1) (2) (3) 4 (5 (M (9 (11) (1) (2) (3) (4) (5) (&) (8) (10)

-+

(6

Figure 2.19: Anomaly for Delay=2. Entire Tree Needs 5 Registers—Right Sub-tree
Alone Needs 6. (The respective optimal evaluation orders are given.)

tree of Figure 2.19 can be evaluated optimally with 5 registers, however its right sub-tree
taken alone requires 6 registers for a delay-free evaluation. (No delay-free evaluation
exists using fewer than 6 registers, and DLS will find this optimal evaluation.) Note
also that the full tree has minReg=4, and Delay=2, yet it needs only 5 registers for a

spill-free, interlock-free evaluation.

2.9 Conclusion

The DLS algorithm presented performs optimal code scheduling and optimal register
allocation in linear time for binary expression trees with load delays of 1 cycle. The
algorithm can be modified to predict optimal locations for register spilling. Unlike
other code scheduling algorithms, it does not suffer from phase-ordering problems with
register allocation.

Extensions to the binary tree algorithm allow DLS to optimally schedule trees with
non-delayed load instructions and unary operations. DLS can handle (non-shared)

register variables optimally. Heuristics for splitting trees and DAGs into forests of

40

trees allow DLS to schedule entire basic blocks. Basic block scheduling is improved by
extending canonical orders to forests of trees that can be merged to fill delay slots.
Furthermore, DLS performs as an excellent heuristic for load delays greater than 1
and can be readily extended to handle tree forests derived from DAGs. As a heuristic
it retains its coordination of register allocation and code scheduling without sacrificing

its run-time efficiency or conceptual simplicity.

Chapter 3

Probabilistic Register Allocation

Register allocation is the code generation phase that determines which values should
be held in machine registers at different points in the program. Most CISC machines
(e.g., VAX) can have instruction operands accessed either directly from registers or from
memory. The accesses from memory take more cycles than direct register accesses. Most
RISC machines cannot access memory except through explicit loads. In either machine
class, a value that can be kept in a register rather than memory will be cheaper to
manipulate.

Machines, hOWevevr, have only a ';zery limited number of registers. Modern RISC
architectures, like the MIPS R2000 or the SPARC, have fewer than 32 general purpose
integer registers available for use. CISC processors typically have even fewer. Therefore,
a compiler must often choose between competing values that can be held profitably in
registers. Values that are live at a particular point in the program that are not allocated
registers must be held in main memory.

Register allocation can be done globally as well as locally. Local allocators make

allocation decisions within the limited range of a single basic block. Global allocators

41

42

operate at the procedure level—across basic blocks. Often global allocation will allocate
a register to a heavily used variable for an entire procedure. To achieve a profitable
final allocation, both local and global schemes may choose to keep a particular value in
a register at some points in the code, and in memory at others.

For instance, a value may be heavily used in one loop (that will presumably execute
often) but may not be used at all in another loop. If registers are scarce, a global
allocator may decide to allocate a register to the value only for the loop in which it
is heavily used. Not allocating it a register in the other loop will leave the register
available to another value that is used in that loop. A local allocator makes similar
allocations over different regions of a basic block.

A closely related problem is that of register assignment. Register assignment is the
problem of determining which actual physical register will hold a particular value (that

has previously been allocated a register).

3.1 Overview

The dominant paradigm in modern global register allocation is graph coloring ([CH90],
[CAC*81], [BCKT89], [LH86]). Unfortunately, graph coloring does not really address
the issue of register allocation, but rather the related issue of register assignment. That
is, graph coloring tells us how to assign registers so that simultaneously live values aren’t
assigned the same register.. The harder problem—which values to put in some register—
is not directly addressed. Hence there\ is always a spilling heuristic that reduces register
demand until coloring (register assignment) can succeed.

A famous political maxim states that “All politics is local,” and we believe that

much the same is true for register allocation. Ultimately, when an operand is actually

43

used it must be in a register, and once a value is in a register, it is easy to reuse
within a basic block. Simple, fast and‘nearly optimal local register allocators are known
[HFG89]. Once local register needs are met, the effects of global allocation can be
estimated ([Bea74], [Mor91]). In particular, a good global allocation improves upon
good local allocation by eliminating unnecessary loads at the entrance to a basic block
and by eliminating unnecessary stores at the exit from a basic block. An iﬁitial load of
v is unnecessary if all predecessors exit with v in a register, and a terminal store of wis
unnecessary if w is dead or all succeeding loads of w can be replaced with a reference to
w’s register.

Of course we do not initially know which values will ultimately be allocated to
registers, so we take a probabilistic approach. At the basic block level, we know values
loaded locally into a register and not overwritten have a 100% probability of exiting in
a register. The probability of other values residing in a register on exit depends on their
probability of residing in a register upon entrance, the number of unused registers in a
block, and the pattern of local register usage. The probability that a value will be in a
register upon entrance to a block depends on the probabilities it will exit in a register
from all predecessor blocks.

During global register allocation, we will model the competition between register
candidates with probabilities. Each instruction that requires a target (destination)
register must acquire a register from somewhere—either from a pool of free registers,
or, if necessary, from a register candidate. If the instruction must take a register from
one of possibly many register candidates, we will assume that it will choose among the
competing candidates randomly. For instance, if the instruction must take a register

from one of 4 candidates that might be in registers, each of those candidates has a

44

3/4 probability of “surviving” that instruction. That 3/4 is a measure of the register
competition among those candidates at that instruction. By combining probabilities at
all instructions where a register candidate is live in a program, we can measure the total
competition that candidate faced.

This chapter will describe probabilistic register allocation. Our algorithm uses prob-
abilities to measure the competition for registers between register candidates. The
algorithm makes allocation decisions driven by estimates of benefit and the measure of
competition based on probabilities. Probabilities are used as heuristic measures to drive
the register allocator; the register allocator is deterministic.

Once initial estimates of the probability of register allocation are made, these esti-
mates are weighted by the net benefit gained by allocating a given value to a register and
the most promising candidate is allocated to a register. Probabilities are recomputed
and again the most promising candidate is allocated to a register. This continues until
all registers are allocated. The resulting technique is simple and yet identifies those

values that can readily and profitably reside in a register.

3.2 Graph Coloring Allocators

The basic graph coloring technique involves creating a register interference graph and
then pruning nodes from that graph that can be trivially colored (assigned a physi-
cal register) ([CAC*81], [Cha82], [CH90], [LH86], [BCKT89], [CK91]). The nodes of
the graph represent the live ranges of the different register candidates (variables and
temporaries). The live range of a candidate is the set of all program points where
that candidate is live—as computed by data-flow analysis. Figure 3.1 gives an example

inner-loop of a procedure, and Figure 3.2 gives the interference graph for the variables

45

and virtual registers.! Notice that the graph abstracts away all control-flow information
about how the different live-ranges interfere with each other.

Given enough registers to “color” all register candidate values, this technique works
well. However, once the interference graph is reduced to a graph for which the node
pruning heuristic blocks, the allocator must act so that register assignment may con-
tinue. Various graph coloring techniques differ precisely in what they do when pruning
blocks.

When the pruning heuristic blocks, Chaitin’s techniques ([CAC*+81], [Cha82]) take
the simplest approach. A node (register candidate) is picked based on a cost mea-
sure, removed from the graph, and assigned permanently to a memory location. All
subsequent references to that value must be from memory.

Priority-based coloring ([CH90], [LH86]) also builds an interference graph and at-
tempts to color it by pruning nodes. If this pruning blocks, a heuristic is employed to
split large, costly live ranges into smaller ranges in an attempt to produce a graph that
can be further pruned. Complex heuristics are used to split live ranges to minimize
the costs of spilling and reloading the values across the boundaries to the new, smaller
live-ranges. This heuristic is repeated until all the register candidates are assigned
registers.

Callahan and Koblenz allocate registers globally by doing graph coloring “hierar-
chically” [CK91]. They treat the program as a hierarchy of nested “tiles.” Tiles may
be basic blocks, conditionals, or loops. They assign registers using graph pruning tech-
niques, but start by assigning registers in innermost tiles and progressively assigning

registers in enclosing tiles. This technique succeeds in isolating some local register needs

10nly virtual registers v6 and v3 are given in the interference graph because the other virtual
registers are subsumed by a particular variable.

Pre-Header

. |

1. load A, vl

2. load B, v2

3. add vl1, v2, v3
4. load C, v4

5. load D, Vv5

6. add v4, v5, vé
7. add v3, v6, v7
8. store v7, A

9. load E, v8,
10. add v7, v8, v9
11. store v9, B

12. load B, v10

13. load E, vll

14. add v10, vil, vl2
15. store v12, A

‘3 :

16. load A, v13

17. load C, vld4

18. add v13, vl14, v15
19. store vl15, E

l

Post-Exit

Figure 3.1: Inné:r Loop

Figure 3.2: Interference Graph

46

47

from global register usage so that variables referenced within deeply nested loops will be
assigned a register before a variable that is not referenced within the loop. If, however,
within a tile, the graph pruning algorithm fails to find a coloring, their technique resorts
to the graph-coloring spill techniques outlined in [BCKT89]. Therefore, while succeed-
ing in biasing register allocation within a loop to variables used within that loop, spill
decisions must still be made via ad hoc heuristic methods.

Few graph coloring techniques do local (basic block level) register allocation as well
as established local allocation algorithms ([HFG89], [Fre74], [FL88]). Unlike graph
coloring algorithms, local allocation techniques are able to exploit information about
the simple sequential nature of register usage in the block to minimize local spill code.

This information is lost when register allocation is cast as a graph coloring problem.

3.3 Probabilistic Register Allocation

Qur technique, probabilistic register allocation, utilizes graph coloring techniques to
assign registers, but not to allocate them. Probabilistic register allocation computes
probabilities to measure competition between global register candidates so that good
allocation decisions are made. Allocation is done prior to assignment based on quantified
measures of the costs and benefits of having particular values in registers. Separating
allocation from assignment allows our algorithm to concentrate on the important prob-
lem of determining which values will profitably be held in registers at different points
in the program.

Probabilistic global register allocation follows local allocation. The global allocation
proceeds from inner loops to outer loops so that values used within a loop are routinely

allocated a register for that loop.

48

3.3.1 Local Register Allocation and Probabilities

Most local register allocators share the basic principle of deciding what value should
stay in a register (or when a spill is necessary) by checking the closeness of the next
use of values already in registers ([HFG89], [Fre74], [FL88]). If a value in a register
has only distant next uses then it will be spilled before a value to be used sooner. The
intuitive explanation for such a heuristic is simple: the farther a potential use of a
value is from a program point, the less likely the value is to remain in a register all the
way to that use, thereby decreasing the expected value of retaining register residence.
The likelihood of a value being able to stay register-resident can be viewed as roughly
inversely proportional to the distance that value would have to stay register-resident.
Therefore, heuristics choose to spill the value that seems likely to lose its register anyway.
Conversely, one can view retaining a register allocation over a long distance as more
likely to result in spills of other register values—another motivation for spilling those
values with only distant uses.

The terms “less likely” and “inversély proportional” come from probability. To avoid
the NP-Complete problems of optimal local register allocaﬁion, heuristics use a simpler,
probabilistic summary of the local circumstances to drive register allocation and spill
decisions. We believe that a formal characterization of this summary information as
probabilities has been ignored because in straight-line code, distance is always directly
related to the probability of either being spilled or causing other values to be spilled.
That is, from any given point in a basic block, a distant use has a higher probability of

being spilled than a closer use.

49

3.3.2 Global Register Allocation and Probabilities

The use of probabilistic summary information to drive global register allocation has
not been previously studied. Probabilities present the foundation for a global register
allocator that combines the advantages of excellent local allocation with effective global
allocation. Probabilistic register allocation avoids the problems of live-range splitting
that plague graph-coloring techniques [Cha82], [BCKT89], [CH90] by implicitly (and
automatically) splitting ranges where the probability and benefit of residing in a register
are low.

The probability that a register value will continue to exist in that register at a more
distant point in straight-line code can be seen as inversely proportional to the distance
to that point. This is not exact, but is intuitively plausible.

Approximating global probabilities requires the ability to handle control flow. Loops
and conditionals complicate matters because a value in a register may originate in many
different locations and reach many different uses—there is not necessarily a unique
next use or a single defining point. Simple data-flow analysis can determine all of
the definitions that reach a particular use. The question to answer is “What is the
probability that the value will remain in a register over all paths reaching a particular
use from all the reaching definitions?”

A simple estimate of the probability can be derived by extending our local, basic
block heuristic—count the total number of intervening instructions on all of the paths
from definitions to the use in question.

Unfortunately, in practice this yields a relatively poor measure of probability because
not all intervening instructions equally affect the probability that a register will need

to be spilled. In addition, global register values only need to be spilled when there are

50

too few registers for both local needs and live global values. If along some path there
is a surplus of registers, all variables needing registers along that path can be allocated
registers with 100% probability. Likewise, if along some path from a definition to a use
the local allocator requires all of the registers, it would be impossible for the global
value to be in a register along that path and hence the probability of the value being in

a register at the use would be 0.

Calculating Local Register Probabilities

The global probability that a variable will reside in a register at a given use (load) is
computed from the A-probabilities for that variable in the blocks that reach the load.
A-probabilities are computed locally u(for each live variable) based on local allocations
and live variable analysis. A-probabilities are computed on a per instruction basis, and
indicate the probability that a variable’s value will continue to reside in a register after
that instruction’s register needs are resolved if the value had been in a register up to
that instruction.

The algorithm maintains a configuration state at each point in the basic block. The
configuration is a 4-tuple, (allocated, candidates, unallocated, possibly). The values
(variables and temporaries) that are allocated to registers make up the set allocated.
The variables (register candidates) that are competing for registers at a given point in
the program are in the set candidates. The maximum number of register candidates
that could be allocated registers is possibly. The count of registers known to contain
no useful value is unallocated. The total number of allocatable registers (a constant) is
REGISTERS.

The configuration will always maintain three important invariants. It must be the

51

case that the sum of the number of allocated registers, possibly allocated registers, and

known available registers is equal to the total number of registers available:
|allocated| + possibly + unallocated = REGISTERS.

The size of each group is bounded below by 0 and above by the total number of registers:
0 < |allocated|, possibly, unallocated < REGISTERS.

And, it cannot be the case that there are more candidate values possibly in registers
than there are candidates:

possibly < |candidates|.

The A-probabilities are calculated after local register allocation by iterating (in
order) over the instructions in each basic block. Figure 3.3 gives the algorithm for
computing the A-probabilities for insfructions within a basic block.

Given the local allocation, each instruction will possibly free and allocate registers.
Freeing a register will change the configuration by deleting a member of the allocated
set. If the register held the value of a variable that is still live (determined by global
data-flow analysis), then that variable is added to candidates, and the possibly count is
incremented. If the variable is dead, then the unallocated count is incremented.

An instruction that allocates a register must acquire a register from either unallocated
or possibly. When possibly = |candidates| and the allocated register will hold a variable
from candidates, all the A-probabilities will be 1, and the register used will come from
the set counted by possibly. This follows from the fact that when possibly = |candidates],

there are exactly enough registers available to hold the elements of candidates.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

52

procedure ComputeDeltas(BasicBlock)
//Initialize Configuration.
allocated + { variables allocated registers entering the block }
// Before global allocation begins, allocated will be empty here.
candidates + { live variables entering BasicBlock } — allocated
possibly < Min(REGISTERS- |allocated|, |candidates|)
unallocated «— REGISTERS- (|allocated| + possibly)
Y insn € BasicBlock do // Iterate over instructions in order.
Y f € registers freed by insn do
allocated + allocated — { f }
if f contains the value of v, a live variable then
candidates + candidates U { v }
possibly < possibly + 1
else .
unallocated < unallocated + 1
end if
end V
if insn allocates r, a register then // Allocate result register.
allocated + allocated U { r }
if r holds the value of variable w then
candidates < candidates — { w }
end if
if possibly > |candidates| then
// Only occurs when possibly = |candidates| prior
// to satisfying preceding conditional.
A+ 1.0
possibly <+ possibly — 1
else if unallocated > 0 then
A+ 1.0 // Allocating empty register cannot kill anything.
unallocated + unallocated — 1
else
A + (possibly-1)/possibly
possibly + possibly — 1
end if
else
A+« 1.0 // Allocating no register cannot kill anything.
end if
Y v € candidates do
ATable[insn][v] + A
end V
end V
end procedure

Figure 3.3: Procedure to Compute A-Probabilities

53

Otherwise, if no unallocated registers exist, one of the registers counted by possibly
must be taken. Remember that possibly counts the number of variables in candidates
that might be allocated registers. Since we may be taking a register from such a vari-
able, we must compute the probability that a particular variable’s register will be taken.
Given possibly registers to choose from, if a given variable were in a register, the prob-
ability that the allocator would not choose that variable’s register must be

possibly — 1

possibly
Therefore, (possibly — 1)/possibly is the A-probability that a live variable (a member of
candidates) will keep its register past this instruction. If there are unallocated registers,
such a register is used first, the unallocated count is decremented, and the A-probability
of all live variables at this instruction is 1. If an instruction does not allocate any
registers, it cannot cause any live variables to lose a register, so the A-probabilities for

all such values is 1.

Example Computation of Local Probabilities

The example in Figure 3.4 illustrates how local allocation, liveness analysis and proba-
bilities interact for potential register variables. (It is based on the program whose flow
graph is shown in Figures 3.1 and 3.6.) The example assumes that there are 3 registers
available to be allocated among the 5 variables and the intra-block temporary values.
After the first instruction, local allocation requires 1 register, so 1 of the 3 registers must
be allocated to A at this point, and only 2 of the remaining 3 registers will keep their
values on entry. Therefore, the others (B-E) have a 2/3 chance of retaining a register.

(We assume that if a value is live on entry, then it may be in a register, and we must

54

Block X
Instr # | Instruction Local A-Probabilities Comments
Needs A[BJC]DI[E
1 load A, v1 1 1 [2/312/3]2/3]2/3
2 load B, v2 2 1|1~]1/2]1/2|1/2
3 add v1, v2, v3 1 0 0 1 1 1 | A, Bare dead
4 load C, v4 2 - - 1* 1 1
5 load D, v5 3 1 - - 1 1* 0 | All registers in use
6 add v4, vb, v6 2 - - | 1/2]1/2 | 1/2 | Reuse v4 or v
7 add v3, v6, v7 1 1* . 1 1 1 | Reuse v3’s register
8 store v7, A 1 1 - 1 1 1
9 load E, v8 2 1 - 1 1 1* | Reuse v6’s register
10 add v7, v8, v9 1 2/3 1 1* | 2/3]2/3|2/3
11 store v9, B 0 1 1 1 1 1
Probability Value Remains in Register | 2/3 | 1 [1/3]1/3]2/3

Figure 3.4: A-Probabilities (3 Registers available for locals and globals)

randomly choose one to give up its register when the local allocator needs an extra
register. For simplicity, in the algorithm as implemented, we do not take “distance to
nezxt use” into account when calculating spill probabilities.) A “1*” indicates that the
variable was either loaded or calculated into a register at this instruction and therefore
must exist in a register. A bold-face “1” indicates that the value has been allocated a
register through that instruction. (At this point all allocations are local, but later the
global allocation algorithm will also allocate registers into, out of, and through basic
blocks for different register candidates.)

The next instruction (#2) requires another register, so one of the remaining variables
must be spilled—but not A because the local allocator keeps it in a register for a local use
(#3). Because #2 requires 1 of the 2 remaining registers to be spilled, each candidate
has a 1/2 chance of retaining a register. Instruction #3 does not lower the probability

of any live variable because #3 frees the registers holding both A and B, and both

those values are now dead. Therefore, either of those two registers can be used to hold

55

Block Y
Instr # | Instruction Local A-Probabilities Comments
Needs A|B]C| D] E
12 load B, v10 1 2/311*[2/3]2/3]2/3
13 | load E, vil 2 1721|172 172} 1*
14 add v10, v11, v12 1 111 1 0 | E is dead (global info)
15 store v12, A 0 1 |1 1 1 -
Probability Value Remainsin Register | 1 | 1 [1/3[1/3] 0
Block Z
Instr # | Instruction Local A-Probabilities Comments
Needs | AT B C]|]D]JE
16 load A, v13 1 1* [2/312/3]2/3]2/3
17 load C, v14 2 1 |1/2) 1 |1/2]1/2
18 add v13, v14, v15 1 2/312/312/312/3]| 1*
19 store v15, E 0 1 1 1 1 1
Probability Value Remains in Register | 2/3 | 2/9 1 2/3 | 2/9| 1

Figure 3.5: A-Probabilities (3 Registers available for locals and globals)

the result of the addition without having to spill any other register candidates. It is
impossible (probability = 0) for E to be register-resident at #5 because the instruction
sequence #1-5 requires all 3 registers.

The bottom row of the table in Figure 3.4 indicates the probability that a variable
will be in a register on exit. These values were calculated by multiplying together all
the A-probabilities of the variable from the last point it was certain to be in a register
to the end of the block.

It is also possible to calculate the conditional probabilities for variables that are not
referenced within a basic block. If such a variable is in a register on entry to a block,
the product of the A-probabilities for the entire block is the probability that it will be
in a register on exit.

Figure 3.5 gives two example basic blocks with such “pass-through” values. In the

top example (Block Y), the exit probabilities for 4, B, and E are absolute probabilities

56

(because the variables are referenced within the block). The probabilities for C and D
are conditional—they are the probability that the value will still be in a register on exit
if it was in a register on entry.

The computation of the A-probabilities at #14 (Figures 3.5 and 3.6) demonstrates
the powerful interaction of local allocation and global data-flow analysis. Global data-
flow analysis indicates that the value of E is dead after #14, and, therefore, the local
allocator may reallocate its register to hold the value of the computation (4). Because
no additional registers were needed by the local allocator, the A-probabilities of B, C,

and D are 1, reflecting no competition for registers (at that instruction).

Calculating Global Register Probabilities

Given the A-probabilities for each variable at each instruction, it is a simple matter to
determine the probability that a variable will be available in a register at a particular
load. Data-flow analysis isolates all the reaching register-definitions of the variable. A
register-definition is any point in the program that the variable is known to be register-
resident due to previous allocation decisions. The Pre-Header is also considered to
be a register-definition of every variable, since loads can be added there as needed. A
register-definition, d, reaches a load, £, if there exists a register-definition-free path from
d to £. The set of all program points along such definition-free paths is the register-live-
range of the load. To remove the load of a variable, the variable must be allocated a
register over its entire register-live-range.

The A-probability of a particular instruction is the probability that a variable’s value
will continue to be in a register after that instruction executes if it were in a register

before the instruction. Therefore, the probability that none of the instructions in the

57

Pre-Header

%
FUEN——

. load A, v1 {
. load B, v2 {
. add vi,
. load ¢, v4
. load D, v5 {
. add v4,
add v3, vé6, v7
gstore v7, A
load E, v8 {
. add v7, v8, v9

. store v8, B

HOWOIOAUI S WN M

o

12.
13.
14.
15,

load B, v10
load E, vll
add v10, vli,

store v12, A

viz

{ 100%, 50}
{ 44%, 50}

¥

Z

1

16. load A,

v13
vlid

18.
19.

17. load C,

add v13, vl4,
store vl15, E

v1i5

{
{

67%,
7%,

100}
100}

l

Figure 3.6: Sample Inner Loop with Global Probabilities (Assuming 3 Registers). The
loads are annotated with {probability, benefit} pairs.

Post-Exit

register-live-range will kill the value is simply the product of all their A-probabilities.

The computation of global probabilities is done over the entire register-live-range
rather than on a per path basis because a load cannot be removed unless the variable
is allocated a register along all paths from (possibly many) reaching register-definitions
to the load. The register-live-range is precisely the set of all such program points.

The inner loop in Figure 3.6 has been annotated with global probabilities of register

58

residence at each load assuming there are 3 registers available. (Blocks X, Y, and Z are
those given in Figures 3.4 and 3.5.) For instance, the probability of C being in a register
at #4 is equal to the product of the A-probabilities for #18, #19, #1, #2, and #3.
(There are two register-definitions that reach the load at #4: one in the Pre-Header,

and one at #17.) The probability is, therefore,
2/3x 1x2/3x1/2x1=2/9~22%

Similarly, to remove the load of A at #16, A must be register resident from both of its
reaching register-definitions at #10 and #15. (Instruction #10 is a register definition
because A is in v7, an operand of #10’s addition.) Therefore, the register-live-range of
A’s load at #16 is #10, #11, and #15, with A-probabilities of 2 /3,1, and 1, respectively.
The probability of A being register-resident at #16 is, therefore, 2/3 (the product of the
A-probabilities).

The load of C at #4 has a greater global probability than the load of B at #2 even
though it follows #2 in the basic block. This can be explained intuitively by observing
that B must be register-resident through more of the loop (#13-19, #1) than C (#18-19,
#1-3).

The extremely low probability (1%) for the “load D, v5” at #5 is a consequence of
the fact that for D to be available in a register at that location, it must be in a register

for the entire loop.

59

3.4 Probabilities Guide Global Register Allocation

Our global register allocation algorithm uses local probabilities combined with a measure
of benefit to determine which variable uses should be globally allocated registers. Uses
with large benefit and high probability are given the greatest register allocation priority.
We combine the measure of benefit and probabilities by multiplying them together to
get a figure of merit. Candidates with a higher figure of merit will be given priority.

The benefit of allocating a register to a use (and hence to all the paths reaching
that use) is determined by estimating how often the use will be executed, and hence
how many cycles may be saved if the value is accessed from a register rather than
from memory. This can be determined heuristically from loop and conditional nest-
ing levels, or empirically through profiling information from previous executions of the
program [BL92].

Once a particular use has been allocated a register, there is no need to do a load of
the variable at that use, thus saving time and space. Allocating a register causes the
probabilities for other inter-block variables to change. This follows from the observation
that if a register becomes allocated at some point in the program, it must have a prob-
ability of 1 at that point. To make room for this fixed probability (1), the probabilities
of any competing candidates must change.

If, for example, B and E in block Z become allocated, then after the load of A at #16
all three of the registers will be in use. Therefore the probability that C could be in a
register at #17 must drop to 0. Because E is dead at #17, its register will be allocated
to C when C is loaded.

Because probabilities and allocations interact, global allocation is done iteratively. A

greedy algorithm finds the best candidate for register allocation based on their relative

60

figures of merit (probability X benefif). Then the probabilities are recalculated, and
another register is allocated. This process is repeated until there are no remaining uses
with probability greater than 0.

Recomputing A-probabilities requires that ComputeDeltas() (Figure 3.3) be re-
executed for each block in which global allocations have taken place. These global
allocations change the set of registers that are allocated upon entry, allocated, and
they change which registers are freed by various instructions—allocated registers are no

longer freed.

3.4.1 Improving Probabilistic Register Allocation

Probabilistic register allocation carefully determines which candidates for registers show
the greatest promise to benefit the program. Additional techniques complete the register
allocation process. Our algorithm allocates registers inside-out, from the most deeply
nested regions to the outermost, thereby emphasizing allocation in the code most likely
to be executed often. The algorithm assumes that all variables initially reside in memory
until they are allocated a register. After local allocation, the algorithm locates loads
that can be removed by allocating a register along all paths from reaching definitions
to the chosen load. After loads are removed, it is possible that some stores may be
removed—those whose values are no longer referenced from memory.? In addition,
some loads and stores may be removed f;‘om a loop by placing them outside the loop in
a pre-header or post-exit to increase loop speed. Local allocation, followed by load and
store removal, provides a mechanism for global allocation that avoids the difficulties of

splitting live-ranges or isolating spill candidates.

2Care must be taken not to remove the final store of a global variable that may be accessed
by other procedures.

61

3.4.2 Example

The example in Figure 3.6 illustrates a simplified version of our algorithm (again, assum-
ing 3 registers). Loads will be examined for removal in order of benefit and probability.
The second number of each tuple is the benefit of removing the load—a value of 100
indicates the load will be executed on all of the 100 iterations of the loop whereas a
value of 50 represents an estimate that that branch of the conditional will only execute
half as often. (We assume that the probability that a value resides in a register from
the Pre-Header is 100% because that can be made so by adding a load of the value
there.)

Because #12 has a 100% probability of finding B in a register, its consideration
could be deferred indefinitely—it is certain to be in a register! This 100% chance is
easily deduced by recognizing that block Y has only X as a predecessor, and #10 (in
X) left B in a register. (This is information that an interference graph could not readily
provide.) Delaying allocation (and the subsequent removal of the load) would, however,
contribute spurious A-probabilities to the calculation of global probabilities for other
uses; we therefore remove it immediately. The (possibly) inaccurate A-probabilities
occur because the load allocates a register for its result, and that may lower probabilities
for competing register candidates. Delaying the removal could temporarily lower those
probabilities and cause the global allocator to discriminate against those candidates.?

The loads of A at #1 and #16 will be removed next because they have the highest
probabilities (67%) of those loads with a benefit of 100 (and hence the highest “merit”

value of 67). In order to remove the load at #1, it is necessary to ensure that A’s value

3All loads with 100% probability of register allocation are removed immediately, regardless
of their benefit. Only this situation of 100% probability (certainty) is treated as a special-case
and it is done to ensure accurate A-probability computations.

62

will be in a register on the incoming L:ontrol—ﬁow arc from the Pre-Header by putting
a load of A there.

After registers have been allocated in order to remove these three loads (#1, #12,
#16), the probabilities for the remaining loads are recalculated. The new A-probabilities
are given in Figure 3.7, and the new global probabilities (calculated using these new
A’s) are given in Figure 3.8.

The A-probabilities for block Y of Figure 3.7 have undergone a dramatic change
after the allocation of registers for A and B. Because A is allocated a register upon entry,
and becausé‘ A is dead at #13, the register allocator can reuse that register for the
Joad of E. Therefore, the A-probabilities for C and D are 1 throughout the block. The
summary “Probability Value Remains in Register” seems to indicate that 4(!) values
have a 100% probability of being in a register at the end of the block. This result can be
explained by recognizing that the probabilities for C and D are conditional—the value
of C (or D) is in a register on exit only if it is in a register on entry. Since at most one
of the two could have been in a register upon entry, we have not erroneously calculated
that 4 values could fit in 3 registers.

Now, four remaining loads have the highest “figure of merit” (25) for removal: three
loads with benefit of 100 and a probability of 25% (#2(B), #4(C), and #17(C)), and
one load with benefit of 50 and a probability of 50% (#13(E)). We will arbitrarily
choose to allocate a register to C at #4—this too requires an initial load of C in the
Pre-Header. After this allocation, the remaining probabilities change again—only
two of the remaining load instructions have probability greater than 0: #13 and #17.
Fortunately, both of these loads can be removed.

It is useful to examine how probabilities could determine that D could not be in a

63

Block X
Instr # | Instruction Local A-Probabilities Comments
Needs | ATB] C | D | E
1 - 0 11| - - - - Removed
2 load B, v2 1 11]1/2)1/2]1/2
3 add v100, v2, v3 1 011 1 1 1 | Aisdead
4 load C, v4 2 -0 1 1 1 | Bisdead
5 load D, vb 3 -1 - 1 1* 0
6 add v4, v5, v6 2 -l - 11/2)1/2) -
7 add v3, v6, v100 1 1* 7 - 1 1 -
8 store v100, A 1 1] - 1 1 -
9 load E, v8 2 1] - 1 1 1*
10 add v100, v8, v200 1 1|1*|1/2]1/2]1/2
11 store v200, B 0 111 1 1 1
Probability Value Remains in Register | 1 | 1 [1/4]|1/4]1/2
Block Y
Instr #£ | Instruction Local A-Probabilities Comments
Needs | AJBJC|DJ[E
12 - 0 1117-1- - | Removed
13 load E, v11 1 0]1}1|1]1*] Aisdead
14 add v200, v11, v100 0 1*{1]1]1] 0| Eisdead
15 store v100, A 0 1(111411] -
Probability Value Remainsin Register | 1 |1 | 1|11 0
Block Z
Instr # | Instruction Local A-Probabilities Comments
Needs [AJ B [C | D | E
16 - 0 1| - - - - Removed
17 load C, v14 1 11/2] 1* [1/2]1/2
18 add v100, v14, v15 1 11/2)1/211/2} 17
19 store v15, E 0 1 1 1 1 1
Probability Value Remainsin Register | 1 | 1/4 | 1/2 [1/4] 1

Figure 3.7: A-Probabilities after 2 Allocations for A (v100), and 1 allocation for B
(v200).

64

Pre-Header load A, v100

l

X
1.
2. load B, v2 { 25%, 100}
3. add v100, v2, v3
4. load C, v4 { 25%, 100}
5. load D, v5 { 3%, 100}
6. add v4, v5, vé
7. add v3, v6, v100
8. store v100, A
9. load E, v8. { 0%, 100}
10. add v100, v8, v200
11. store v200, B

: '

12.
13. load E, vi1l { 50%, 50}
14. add v200, vl1l, v100
15. store v100, A
l z
, Y ‘
16.

17. load C, v14 { 25%, 100}
18. add v100, v14, v15
19. store v15, E

l

Figure 3.8: Global Probabilities after 3 Allocations

Post-Exit

register at #5 after removing the load of C at #4. It might appear that only 2 of the
3 registers are allocated at the entrance to block X (for registers A and C), but prior
to loading D it is necessary to load B without destroying A or C and this uses all three
registers. Similarly, B cannot be in a register at #2 because all three registers must be
in use at the end of block Z holding the values of A, C, and E thus preventing the value

of B from being held in a register over that control flow path.

65

After the loads are removed, simple data-flow analysis indicates that further im-
provements can be made by removing the stores of A (at #8 and #15). If 4 is live on
exit to the loop, a store of A must be added to the Post-Exit.

Note that removal of the “load B, v10” at #12 was possible without allocating a
register to B for its entire live-range. B must be stored at #11 so that it may be loaded
at #2 in a subsequent iteration, but probability analysis indicated that the value stored
at #11 would be available at #12 in a register, so the load could be removed.

After register allocation, A and C were effectively allocated registers for the inner
region, and a load of B was removed. In total, 5 of 8 loads and 2 of 4 stores were
removed from the loop. Figure 3.9 gives the code as it would appear after allocation
and assignment with the register contents after each instruction given in parenthesis.

By chance, our implementation actually gives a better allocation than the one de-
scribed above by removing instructions #1, 2, 8, 11, 12, 13, 15, and 16 for an estimated
cost of 50 fewer instruction. The better allocation was found because the implementa-
tion arbitrarily chose to remove instruction #2 whereas the previous (hand-calculated)
example chose #4. The implementation simply happened to break the tie between the

candidates of merit 25 differently.

3.4.3 Probabilities Improve Beatty’s Algorithm

Our algorithm is an improvement to Beatty’s register allocation scheme [Bea74]. His
algorithm does local allocation followed by global allocation through the removal of
loads and stores to loop pre-headers and post-exits. Our algorithm differs from his
in two important ways: ours uses probabilities to provide better global allocation, and

ours separates register assignment from register allocation. Beatty’s algorithm uses only

Pre-Header

load A, rl
load C, x2

™

66

=

HOWR~NIAOIE WM
.

. load B,
. add rl,

load D,
. add rz,
. add r3,

. load E,
add rl,

. store r3, B

rl, rl

r3-
r3, r3

12.
13. load E, rl

14. add r3, rl, rl

(A, C, B)
(E, C, B)
(a, ¢, B)

Post-Exit

b

Z

16.
17.

18. add rl, r2, r3

19. store r3, E

(a, ¢, B)

(A, C, E)

l

store rl, A

(», C, E)

Figure 3.9: Code After Register Allocation and Assignment (Register Assignments in

Parenthesis)

benefit analysis (estimates of execution count) to determine which global entities are

good candidates for register allocation. Absolutely no attempt is made to quantify the

effects of allocating a register to a particular set of paths leading to a use. Probabilities

directly measure the costs of allocating a register in a particular code region; a low prob-

ability indicates there is great competition for registers in the region, a high probability

indicates less competition. (A probability of 1 indicates absolutely no competition, and

67

hence a free allocation.) Probabilistic cost measures improve Beatty’s algorithm by
guiding it to make good allocation decisions by balancing benefit and cost estimates.
Our probabilistic register allocator works in three phases (in order): local register
allocation, global register allocation, and register assignment. Local allocation is done
by the simple, effective scheme of spilling (only when necessary) that value whose next
use is most distant. Global allocation is done as outlined in the previous sections.
Beatty’s algorithm combines global allocation and register assignment into one phase
(much as graph coloring algorithms do). Keeping allocation separate from assignment

simplifies and improves the register allocation/assignments that can be found.

3.4.4 Register Assignment

Once registers have been allocated to live-ranges, it is necessary to assign registers to
them. The previous allocation phases guarantee that there will never be a point in the
program that is over»all;t)cated, but so far no legal assignment has been found. All of the
variables that have been allocated registers are assigned registers using graph-coloring
techniques [Cha82], [BCKT89], [CH90]. An important difference between using graph-
coloring for allocation (as other algorithms do) and for assignment (as we do) is that
failure to find a legal coloring (unlikely) does not necessitate spilling a value.

It is possible that a program that is not over-allocated may not have a legal assign-
ment. This occurs when the pattern of interferences between the register candidates is
such that while there are never more than N candidates live at any point in the program,
an N-coloring does not exist for the entire program. To create a legal assignment in such
a situation, it would be necessary to either insert code to change register assignments of

one or more candidates at different points in the program, or duplicate a code fragment

68

with a new set of register assignments that avoid the conflicts.
Fortunately, situations with legal allocations, but no legal assignment arise infre-
quently. In the testing of this register allocation technique, this occurred only for the

SPECS89 benchmark, nasa, when it was compiled with only 6 integer registers available.

3.5 Implementation Results

A prototype probabilistic register allocator has been built as part of an experimental
code generator for an ANSI C compiler (“lcc” [FHI1b] [FH91a]). The code generator

produces MIPS R2000 assembler.

3.5.1 Stanford Benchmarks

The tables in Figure 3.10-3.11 summarizes the results of running the compiler on
the Stanford benchmarks suite. Each program was run with three different register
configurations for both integer and floating point registers. For integer registers the
configurations were 19 registers (9 caller-saved, 10 callee-saved), 12 registers (6, 6),
and 6 registers (3, 3). For floating point, the configurations were 11 registers (5, 6), 8
registers (4, 4), and 4 registers (2, 2). The numbers of loads and stores in the table
represent dynamic execution counts. The columns labeled Total represent the actual
number of loads and stores that could possibly have been removed by register allocation
had there been an unlimited number of registers.*

The results do not include the cost of saving and restoring callee-saved registers.

4For a few programs (e.g., intmm.c), the number of possible loads that may be removed is
overstated because the statistics do not reflect the fact that an initial load of a parameter passed
on the stack is unavoidable. This, of course, results in an understatement of our algorithm’s
effectiveness.

Load Removal (Execution Counts)
Program Registers Total Locally | Globally | Percent
(integer) Removed | Removed

intmm.c 19 || 977854 521726 454528 99.8
12 || 977854 521726 454528 99.8

6| 977854 457726 200128 67.3

queens.c 19 || 696950 220450 465200 98.4
12 || 696950 220450 465200 98.4

6 || 696950 220450 288100 73.0

quick.c 19 || 734725 273098 461627 100.0
12 || 734725 273098 461627 100.0

) 6 || 734725 257468 414742 91.5
towers.c 19 || 614192 458887 138908 97.3
12 || 614192 458887 138908 97.3

6| 614192 450696 138908 96.0

fit.c 19 || 2036794 | 1598413 438221 99.9
12 || 2036794 | 1598413 392001 97.7

6 || 2036794 | 1352023 303859 81.3

(floating)

fft.c 11 || 11090 5170 5895 99.8
8 11090 5170 5895 99.8

4 11090 5170 5850 99.6

Figure 3.10: Read Removal Results on Selected Stanford Benchmarks.

69

This cost is negligible in all but the recursive procedures (e.g., towers.c and puzzle.c),

and is modest and essentially unavoidable in those.

The great number of locally removed loads and stores is the result of the fact that

all basic block level temporaries that are used more than once are treated like local

variables—via a single initializing store followed by subsequent loads. This mechanism

creates a many such “variables” whose stores/loads are almost always removed subse-

quently by the local register allocator.

The Stanford Benchmarks that are not listed all had 100% of the possible loads

removed at all register levels. The sub-optimal (and identical) results for intmm.c,

Store Removal (Execution Counts)
Program Registers Total | Locally | Globally | Percent
(integer) Removed | Removed
intmm.c 19 || 272247 192002 80245 100.0
12 || 272247 192002 80245 100.0
6 || 272247 128002 75445 74.7
queens.c 19 || 183401 5650 177751 100.0
12 || 183401 5650 177751 100.0
6 || 183401 5650 155151 87.7
quick.c 19 || 213785 101453 112332 100.0
12 || 213785 101453 112332 100.0
6 || 213785 101453 58032 74.6
towers.c 19 || 311413 180258 131155 100.0
12 || 311413 180258 131155 100.0
6 || 311413 180258 114772 94.7
fit.c 19 || 479938 401267 78491 99.9
12 || 479938 401267 73191 98.9
6 || 479938 360181 67849 89.2
(floating)
ftt.c 11 1496 1024 446 98.3
8 1496 1024 446 98.3
4 1496 1024 425 96.7

Figure 3.11: Write Removal Results on Selected Stanford Benchmarks.

12 and 19 registers.

70

queens.c, and fft.c (floating) at the two greatest register levels are due to charging for
the unavoidable loads of parameters passed on the stack—100% of the other loads were
removed at both register levels. The identical (sub-optimal) results for towers.c at 12
and 19 registers stem from an implementation bug that created a load of a local variable
at the beginning of a procedure (its pre-header) because a definition-free path existed
from the beginning of that procedure to the potentially uninitialized use of that variable.

Except for this additional load, all other possible loads were removed from towers.c at

71

3.5.2 SPEC Benchmarks

Our algorithm removed virtually all of the loads/stores in the Stanford Benchmarks. We
also tested the system on the SPEC89 Benchmarks.” We used £2c, 2 FORTRAN-to-C
conversion utility, to convert the FORTRAN benchmarks to C. Figures 3.12-3.15 give
the results for load and store removal.

For floating point loads and stores, only nasa, doduc, tomcatv, and fpppp (all
FORTRAN benchmarks) showed marked degradation with only 4 registers. The table
indicates that the entire decrease is attributable to local allocation. The extremely
low number of floating point loads/stores done by matrix300 (a floating point matrix
multiplication routine) resulted from the fact that 1cc does not do any analysis to create
register candidates from globally declared variables, and matrix300 does not have very
many local variables. (The spurious addition of floating point loads for 11 resulted from
the same bug that introduced loads into towers.c.)

With 6 integer registers, the nasa benchmark failed to compile because the legal allo-
cation found by the probabilistic algo?ithm was not colorable via our coloring heuristic.
It did compile with only 5 registers.

Only nasa and matrix300 degraded significantly when integer registers were limited
to the lowest level (5 and 6, respectively). For nasa this resulted from both local and
global pressure. For matrix300, this is caused by inner-loops that reference many scalar
variables that hold index values or array addresses. With only 6 registers, some of those

must be accessed from memory.

5We excluded the GNU C compiler because it would not compile under ANSI C.

Load Removal (Execution Counts)

Program Registers Total Locally Globally | Percent
(Float) Removed Removed
008.espresso 11 4,484 2,832 1,652 100.0
8 4,484 2,832 1,652 100.0
4 4,484 2,832 1,652 100.0
013.spice2gb 11 || 331,605,625 | 203,276,714 | 128,328,911 100.0
8 || 331,605,625 | 203,276,714 | 128,328,911 100.0
4 || 331,605,625 | 179,883,961 | 128,328,911 92.9
015.doduc 11 || 141,749,098 | 131,183,315 8,283,957 98.3
8 || 141,749,098 | 126,550,890 8,283,957 95.1
4 || 141,749,098 | 110,249,145 8,283,957 83.6
020.nasa? 11 || 324,916,408 | 320,784,101 4,132,307 100.0
8 || 324,916,408 | 320,784,101 4,132,307 100.0
4 || 324,916,408 | 268,421,301 4,132,307 83.8
022.1i 11 0 0| -1,496,311 N/A
8 0 0| -1,496,311 N/A
4 0 0} -1,496,311 N/A
023.eqntott 11 0 0 0 N/A
8 0 0 0 N/A
4 0 0 0 N/A
030.matrix300 11 6 3 3 100.0
8 6 3 3 100.0
4 6 3 3 100.0
042.fpppp 11| 25,824,867 | 24,333,112 1,491,755 100.0
8 || 25,824,867 | 23,680,664 1,491,755 97.4
4| 25,824,867 | 20,412,080 1,491,755 84.8
047 .tomcatv 11 || 195,075,700 | 156,060,400 | 39,015,300 100.0
8 || 195,075,700 | 156,060,400 | 39,015,300 100.0
4 |l 195,075,700 | 136,552,900 | 39,015,300 90.0

Figure 3.12: SPEC Benchmark Results: Float Loads Removed.

72

Store Removal (Execution Counts)

Program Registers Total Locally Globally | Percent
(Float) Removed Removed
008.espresso 11 4,762 1,350 3,412 100.0
8 4,762 1,350 3,412 100.0
4 4,762 1,350 3,412 100.0
013.spice2gb 11 || 186,983,134 | 58,409,740 | 128,573,394 100.0
8 || 186,983,134 | 58,409,740 | 128,573,394 100.0
4 || 186,983,134 | 39,748,826 | 128,573,394 90.0
015.doduc 11 || 53,353,887 | 43,435,470 8,462,073 97.2
81l 53,353,887 | 41,070,951 8,462,073 92.8
4| 53,353,887 | 32,911,291 8,462,073 77.5
020.nasa7 11 || 156,163,274 | 152,023,017 4,140,257 100.0
8 || 156,163,274 | 152,023,017 4,140,257 100.0
4 | 156,163,274 | 99,660,217 4,140,257 66.4
022.1i 11 0 0 0 N/A
8 0 0 0 N/A
4 0 0 0 N/A
023.eqntott 11 0 0 0 N/A
8 0 0 0 N/A
4 0 0 0 N/A
030.matrix300 11 4 1 3 100.0
8 4 1 3 100.0
4 4 1 3 100.0
042.fpppp 11| 10,693,636 9,201,881 1,491,755 100.0
8| 10,693,636 8,875,657 1,491,755 96.9
41 10,693,636 6,585,745 1,491,755 75.5
047.tomcatv 11| 91,035,400 | 52,020,100 | 39,015,300 100.0
81 91,035,400 | 52,020,100 | 39,015,300 100.0
4| 91,035,400 | 32,512,600 | 39,015,300 78.5

Figure 3.13: SPEC Benchmark Results: Float Stores Removed.

73

74

Load Removal (Execution Counts)
Program Registers ‘Total Locally Globally | Percent
(Integer) Removed Removed
008.espresso 19 || 1,698,143,794 | 709,926,046 | 988,180,477 99.9
12 || 1,698,143,794 | 709,926,046 | 987,671,146 99.9
6 || 1,608,143,794 | 709,925,842 | 817,601,836 89.9
013.spice2g6 19 || 1,227,321,939 | 966,962,203 | 257,639,982 99.7
12 || 1,227,321,939 | 966,962,203 | 257,639,982 99.7
6 | 1,227,321,939 | 966,962,203 | 257,602,630 99.7
015.doduc 19 238,846,530 | 160,806,536 70,652,862 96.9
12 238,846,530 | 160,806,536 70,310,650 96.7
6 238,846,530 160,806,536 68,860,359 96.1
020.nasat 19 [[8,761,160,769 | 7,264,062,350 | 1,497,087,513 99.9
12 || 8,761,160,769 | 7,264,062,350 | 1,101,368,913 95.4
5 || 8,761,160,769 | 6,019,475,400 | 335,604,296 79.5
022.1 10 | 1,952,143,913 | 849,876,710 | 1,091,165,086 99.4
12 || 1,952,143,913 | 849,876,710 | 1,091,165,086 99.4
6 || 1,952,143,913 | 849,876,710 | 1,086,532,001 99.1
023.eqntott 10 [777,044,072 | 241,304,263 | 535,724,423 99.9
12 777,044,072 241,304,263 535,724,423 99.9
6 777,044,072 241,304,263 533,161,877 99.6
030.matrix300 19 || 2,178,363,191 | 870,507,685 | 1,306,401,029 99.9
12 || 2,178,363,191 | 870,507,685 | 1,304,231,427 99.8
6 || 2,178,363,191 | 870,507,685 | 869,331,632 79.8
042 fpppp 19| 21,166,919 | 12,447,767 5,081,601 87.0
12 21,166,919 | 12,447,767 5,905,762 86.7
6 91,166,919 | 12,429,231 5,761,920 85.9
047 tomcatv 10| 676,717,877 | 643,949,977 | 32,767,900 | 100.0
12 || 676,717,877 | 643,949,977 | 32,767,900 | 100.0
6 676,717,877 | 630,944,977 26,214,300 97.1

Figure 3.14: SPEC Benchmark Results: Integer Loads Removed.

75

Store Removal (Execution Counts) °

Program Registers Total Locally Globally | Percent
(Integer) Removed Removed

008.espresso 19 640,130,571 | 288,578,937 | 351,546,310 99.9
12 640,130,571 | 288,578,937 | 350,604,645 99.8

6 640,130,571 | 288,578,916 | 267,181,168 86.8

013.spice2gb 19 519,393,524 | 383,476,762 | 135,916,762 100.0
12 519,393,524 | 383,476,762 | 135,916,762 100.0

6 519,393,524 | 383,476,762 | 135,889,622 99.9

015.doduc 19 80,001,256 66,660,868 | 13,109,383 99.7
12 80,001,256 66,660,868 | 13,037,874 99.6

6 80,001,256 66,660,868 | 12,064,351 98.4

020.nasa? 19 || 2,763,958,479 | 2,759,472,520 4,485,059 99.9
12 || 2,763,958,479 | 2,759,472,520 4,200,557 99.9

5| 2,763,958,479 | 2,022,665,570 2,569,471 73.2

022.1 19 975,099,481 | 312,081,752 | 656,697,223 99.3
12 975,099,481 | 312,081,752 | 656,697,223 99.3

6 975,099,481 | 312,081,752 | 632,403,818 96.8

023.eqntott 19 456,491,641 81,998,573 | 374,439,604 99.9
12 456,491,641 81,998,573 | 374,439,604 99.9

6 456,491,641 81,998,573 | 371,971,351 99.4

030.matrix300 19 440,684,228 | 435,612,636 5,071,568 99.9
12 440,684,228 | 435,612,636 5,066,744 99.9

6 440,684,228 | 435,612,636 3,612,334 99.6

042.fpppp 19 6,859,283 4,706,221 1,929,264 96.7
12 6,859,283 4,706,221 1,882,923 96.0

6 6,859,283 4,687,685 1,686,177 92.9

047.tomcatv 19 266,895,460 | 266,767,360 128,100 100.0
12 266,895,460 | 266,767,360 128,100 100.0

6 266,895,460 | 253,762,360 102,500 95.1

Figure 3.15: SPEC Benchmark Results: Integer Stores Removed.

76

3.5.3 Comments

Unfortunately, 1cc does not do any global optimizations such as alias analysis or global
common subexpression elimination that would create many additional candidates for
global register allocation and, therefore, test our techniques more strenuously. (Lcc
only considers temporaries, and scalar local variables and parameters as candidates for
register allocation.) We have, therefore, chosen to create a similar register scarcity
artificially by lowering the number of available registers. While not a perfect measure
of how the algorithm would do in an optimizing compiler, the numbers are impressive

nonetheless.

3.6 Compiler Performance

The current register allocator is a prototype implementation that slows lcc’s compi-
lation rate from over 1000 lines/sec. to about 50 lines/sec. The naive implementation
recomputes data-flow and A-probability information for the current loop after each load
is removed. Doing this recomputation incrementally would likely increase the allocation
speed considerably.

Alternatively, a quicker, but less accurate, allocation heuristic could be built that
would not recompute these values, but would instead use a static “snapshot” of the
probabilities. This would avoid recomputing the A-probabilities after each load is re-
moved. The static initial probabilities would still serve as an accurate metric of the

relative scarcity of registers faced by each register candidate.®

6The current algorithm terminates when all the global probabilities are 0. If A-probabilities
are not recalculated, it would be necessary to terminate when it is determined that no more
candidates can fit in the available registers.

77

store vl, A

.

. // Very busy code
. // that allocates
. // many registers.

... // Assume ‘A’ has
ve.. // low (~0%) chance
we.. // of reaching the
.... // end of this block
«... // in a register.
(load A, v999 —- insert?)

\ .

load A, v2 { ~0% or 100%}

Figure 3.16: Inserting a Helpful Load

3.7 Algorithm Extensions

3.7.1 Manipulating Probabilities

Probabilities are not cast in stone. As the previous algorithm demonstrates, the prob-
abilities of different values being allocated a register change as the program is trans-
formed. With each removal of a load or store, some of the remaining values had changes
to their probabilities.

It is possible—and in some cases desirable—to artificially manipulate probabilities
by transforming the program. For instance, inserting a load of a particular value on a
path to a second load of that value will almost certainly increase the probability of that
value being in a register at the original load. In fact, the closer the inserted load is to

the latter load, the more it will likely increase the probability.

78

This observation can be used to tune the allocation process. Figure 3.16 gives an
example of where adding a load may help get a better register allocation. If we assume
that block Q is voracious in its use of registers, it may be that variable A has a very
low chance (= 0%) of being register resident at its load at the beginning of block R.
However, inserting a load of A at the end of block Q will raise the probability for A at
the beginning of R to 100%. With the inserted load in Q, the load in R can be removed.
At the cost of inserting a load into one arm of a conditional, a load that must always
be executed could be removed, resulting in superior code.

Our algorithm already insert loads into loop pre-headers when necessary to give a
better allocation within a loop. It does this by computing probabilities as if the inserted
loads were already there, and then as necessary, actually adding them. Inserting loads
into less frequently executed arms of conditionals to bias allocation towards removing
loads in busier parts of the code should further improve allocations.

It may be possible to isolate profitable opportunities for inserting loads by computing
the probabilities that a variable will reach a load in a register along individual paths.
If a low probability path traverses an infrequently executed block of code, that block
may be a good location to insert a load. The infrequently executed load may greatly
increase the probability of the variable reaching a subsequent, more frequently executed
load. Removing the subsequent load may now be possible, and the overall effect may

be positive. We believe this would be a fruitful area of future research.

79

3.7.2 Allocation Interactions

Probabilistic register allocation greedily allocates registers by identifying the load with
the greatest estimated figure of merit and removing it. This greedy algorithm can-
not, however, fully compare the “aggregate effects” of different allocation choices. For
instance, it may be possible that three candidates, A, B, and C, have comparable prob-
abilities but that an allocation for A is slightly more beneficial than for either B or
C. Furthermore, assume that B and C do not interfere with each other, but they both
interfere with A. In this situation, it would be possible to allocate a single register to
both B and C at a greater total benefit than allocating a single register to A.

By ignoring the aggregate effects and global constraints of allocation, the greedy
nature of probabilistic register allocation may make sub-optimal decisions. Because
of the exponential number of ways grouping register candidates, it is not clear how
to best compute aggregate benefits for purposes of guiding register allocation. The
previous example suggests grouping non-conflicting register candidates as a place to
start. Finding an efficient means of utilizing a measure of aggregate benefit will require

future research.

3.8 Complexity

The run-time complexity of our global register allocation algorithm is O(n®) where 7 is
the number of instructions in the procedure. This assumes that the number of loads, the
number of register candidates, and the size of register-live-ranges are all proportional
to the number of instructions.

Computing a single A-probability takes only a constant amount of work. Therefore,

80

the complexity of computing all the A-probabilities within a loop is

O(|loop| x candidates).

After A-probabilities have been computed, computing the probability for any given load

requires multiplying together all the A-probabilities in the register-live-range, which is

O(|register-live-range]).

Therefore, computing the probabilities for all the loads is

O(|register-live-range| x loads).

Because the computation of load probabilities is done before each load removal, the

algorithm takes

O(|register-live-range| x loads®).

Assuming the register-live-ranges are proportional in size to the program, and that
the number of loads removed is too, the complexity of our algorithm is O(n®). This is
a conservative estimate that reflects the complexity of the current algorithm. As noted
in §3.6, it may not be necessary to recompute probabilities after each load is removed.

This would decrease the complexity to O(n?).

3.9 Other Uses for Probabilities

Probabilities are a good model of the scarcity or competition for registers. The previous

algorithm, adapted from Beatty’s algorithm, is designed to do allocation from innermost

81

C, 2%
D, 1%
A, 30%
E, 0%
v3, 100%
v6, 100%

Figure 3.17: Interference Graph with Probabilities.

loops to outermost loops, and is tuned to make good use of probabilities. Register

probabilities could be used advantageously beyond this algorithm.

3.9.1 Assisting Graph Coloring

Register probabilities are general enough to help graph-coloring algorithms site spills
and split live-range. Presently graph coloring heuristics prune the interference graph
by making the trivial observation that any live range with fewer conflicts than available
registers can be removed from the graph and subsequently assigned a register. Proba-
bility analysis can additionally indicate, for those live ranges with too many conflicts,
which will probably be allocated a register—thus intelligently directing further pruning
of the interference graph.

For instance, the interference graph in Figure 3.2 can be updated to include prob-
abilities. These probabilities, given in Figure 3.17 indicate the level of competition
between the various register candidates—not just who is competing with whom. The

probabilities were computed simply by multiplying the original A-probabilities for each

82

variable for its entire live-range.” The lower probabilities for D and E indicate that
they are infrequently used relative to demands they place on the register allocator. The
higher probabilities for A and B indicate that they put less pressure on the allocator, and
would therefore be good candidates for removal. Chow’s priority-based graph coloring
algorithm [CH90] used the size of a live range (measured in instructions) as a crude
measure of this competition. Of course, the expected benefit of allocating a register to
a value must also be weighed when deciding between two candidates.

Similarly, probabilistic register allocation could be used after graph-coloring tech-
niques have exploited all the trivial pruning opportunities available. If the pruning stage
fails to allocate registers to every node in the graph, our probabilistic algorithm could
be used to allocate registers among the (presumably) many fewer remaining register

candidates.

3.9.2 Assisting Interprocedural Allocation

Interprocedural register allocation at;cenlpts to allocate registers among procedures so
that procedures may pass parameters in registers, avoid saves and restores around calls,
and share global values in registers.

Wall [Wal86] built a system that allocated registers interprocedurally, at link-time
when the entire program was available. All local and global variables had been previ-
ously allocated to memory, and his allocator attempted to allocate these values—when
most profitable—to registers. His system allocates local variables to registers so that
registers will never need to be saved around calls. That is, for any possible path in the

call graph, the system guarantees that at most one local variable will be assigned to

7The 100% probabilities for v3 and v6 assumes that local allocation has guaranteed them a
register.

83

any one physical register.

It is no longer the case that local variables are competing for registers only against
other variables (and temporaries) within the same procedure, but now they are compet-
ing against all potentially simultaneously live variables from other procedures. Wall’s
system chooses among different candidates based on estimates of execution frequencies
of each candidate.

Register probabilities could be used interprocedurally to isolate the competition for
registers among local variables of different procedures or among locals and globals. For
instance, one procedure could have such high register demands that its performance
would suffer greatly if registers were allocated to other procedures’ locals or to globals.
Such a procedure would necessarily lower the probabilities of any value that might be
allocated a register simultaneously with it. These lower probabilities would discourage

the interprocedural allocator from allocating those values to registers.

3.10 Phase-Ordering Concerns

Phase-ordering problems in a compiler exist when the order in which optimizations are
applied may affect the efficacy or correctness of subsequent optimizations. In Chap-
ter 2, we discussed the relationship between register allocation and instruction schedul-
ing when compiling expressions for a delayed-load architecture. For that problem, we
avoided the phase-ordering problems by doing register allocation in tandem with in-
struction scheduling.

A phase-ordering problem exists between the DLS algorithm and probabilistic reg-

ister allocation. Probabilistic register allocation operates by removing loads and stores.

84

Computing A+B+C+D
DLS Schedule | Remove Load of C | Rescheduled after Removing
Load of C
load A, rl load A, 11 load A, rl
load B, r2 load B, r2 load B, r2
load C, r3 { NOP } load D, r4
add rl1, r2, rl | add rl1, r2*, rl add rl, r2, rl
load D, 12 load D, r2 add ri1, r3, rl
add r1,13,rl | add rl, r3, rl add rl, r4, rl
add r1, r2, rl1 | add rl1, r2, rl

Figure 3.18: Phase-ordering problem between DLS and Probabilistic Register Alloca-

tion.

This allocation assumes that instructions have already been chosen, and that the ba-
sic blocks have been scheduled. It might seem, therefore, that DLS should logically
precede the global register allocator. Unfortunately, the global register allocator, by
removing loads and stores, may destroy the good schedules previously produced by
DLS. Figure 3.18 demonstrates the problem encountered when DLS precedes register
allocation. The left code sequence computes (A+C+C+D) in normal DLS order. The
center code sequence indicates that if the “load C, r3” is removed, an interlock will
occur before the first add can proceed.

If scheduling were done after probabilistic register allocation, the interlock-free
schedule on the right might be found. The interlock-free schedule without the load
of C requires an extra register, however, to allow the load of D to be moved earlier in
the schedule. If code scheduling is done after register allocation, however, there is no
guarantee that this additional register will be available.

We believe that more research is necessary to integrate instruction scheduling with

global register allocation to avoid this phase-ordering problem.

85

3.11 Conclusion

Probabilities measure the competition among register candidates for scarce registers.
The higher the probability a candidate will be allocated a register, the lower the scarcity
faced by that candidate. By biasing allocation towards candidates with high probabil-
ities, a register allocator uses registers sparingly—eliminating as few other competing
candidates as possible from being allocated registers. Therefore, probabilistic register
allocation can weigh competition along with benefit when making allocation decisions.

Using probabilities to guide global register allocation after a local allocation phase
provides a simple and effective algorithm that avoids complex graph-coloring spill heuris-
tics. It focuses attention on the problem of allocating registers over assigning registers—
a weakness inherent to previous graph coloring schemes. Graph coloring algorithms
awkwardly handle splitting live-ranges when registers are exhausted, but probabilistic
global allocation completely subsumes this concern. Finally, because of the clean sepa-
ration between local allocation and global allocation, our probabilistic algorithm allows
existing excellent local register allocation and instruction scheduling algorithms to run

unconstrained by global allocation policies.

Chapter 4

BURS Table Generation

Efficient instruction selection is difﬁ;:ult in compilers because CISC instruction sets
often present many different choices for legally evaluating the same expression. This
problem is compounded by the increasing number of new processors available—each
with a unique instruction set. Because new instruction sets require new code gener-
ators, much work has been done to ease the job in retargeting a compiler. The task
of creating retargetable compilers can be made more manageable if the work necessary
for retargeting a compiler is isolated within the code generator (CG) and if automatic
tools exist to aid in creating the retargeted CG. Such tools are known as code generator
generators (CGGs).

CGGs automatically create a code generator for a particular intermediate represen-
tation (IR) from a description of the instruction set of a given processor and a description
of the form of the IR. These descriptions range from being low-level patterns that, when
matched against the IR, signal which machine instructions are to be emitted to very
high-level descriptions of machine and IR semantics from which such patterns are de-

duced. A CGG allows the mechanics of finding IR-machine instruction matches to be

86

87

automated, reducing the work of creating a CG, and the likelihood of mistakes.

Possibly the simplest way to visualize and understand the complex instructions and
addressing modes of a processor is to view them as expression trees in which leaves
represent registers or memory locations, and internal nodes represent operations on
operand values. Describing even the most complex addressing mode is simplified when
such trees are used. Figure 4.1 gives an example of tree patterns.

Because of their expressive power, trees also serve as a natural IR to be generated
by the front-end of a compiler. If the same domain of trees is used to describe machine
instructions as is used for the IR, instruction selection for a given IR tree becomes a
matter of matching instruction patterns against the generated IR such that the IR is
covered (parsed) with adjacent patterns. Figure 4.2 shows two legal covers of the same
expression tree. Many techniques are known for finding such coverings efficiently (in
time proportional to the size of the IR tree). Equally important, finding a least-cost

covering (based on costs associated with the patterns) is also efficient.

4.1 Overview

Tree pattern matching combined with dynamic programming can be used in code gen-
erators to create locally optimal code for expression trees [AGT89]. Code generators
based on bottom-up rewrite system (BURS) theory can be extremely fast because all
dynamic programming is done when the BURS automaton is built. At compile-time, it
is only necessary to make two traversals of the subject tree: one bottom-up traversal to
label each node with a state that encodes all optimal matches, and a second top-down
traversal that uses these states to select and emit code. Fraser and Henry [FH91c]

report that careful encodings can produce an automaton that executes fewer than 50

88

PATTERN LABEL PATTERN Cost
NUMBER
1 goal S reg (0)
2 reg —_—— Reg (0)
3 reg — Int (1)
4 reg — Fetch (2)

addr
5 reg Plus (2)
reg reg
6 addr —— reg (0)
1 addr Int (0)
8 addr Plus (0)
reg Int

Figure 4.1: Sample Machine Instruction Templates

89

#4

#4

Figure 4.2: Sample Coverings of Identical Trees

VAX instructions (= 90 RISC instructions) per node to do both traversals.

The automaton that labels the tree is a simple state transition machine. A bottom-
up walk of the tree is performed and the label for any given node is determined by a
table lookup given the operator at the node and the states that label each of its children.
The automaton that emits code is equally simple in design. The code to be emitted is
determined by the state that labels a node, and the nonterminal to which that node
should be reduced—another table lookup.

Two difficulties arise in creating a BURS-style code generator: efficiently generating
the states and state-transition tables (because all potential dynamic programming de-
cisions are done at table-generation time, they must be done efficiently), and creating
an efficient encoding of the automata for use in a compiler. A solution to the encoding

problem is described by Fraser and Henry in [FH91c].

90

This chapter describes a new simple and efficient table generation algorithm whose
implementation is an order of magnitude faster than the best current systems. Simplic-
ity has increased, not decreased, efficiency. Efficiency has been enhanced, and tables
sizes kept small, by the development of a two new techniques, chain-rule trimming and
triangle trimming, for eliminating most redundant states. Triangle trimming is an un-
complicated optimization that, for complex grammars, reduces both the table generation
time and table sizes by over 50%. We also describe optimizations that take advantage

of special properties of BURS states.

4.2 Related Work

Bottom-up tree pattern matching was developed by Hoffman and O’Donnell [HO82].
Bottom-up pattern matching is the theoretically fastest possible—relying on a single
bottom-up tree walk with a simple table lookup at each node in a tree to do the match-
ing. BURS technology relies on this technology for much of its speed.

Naively generating BURS states and state-transition tables fails because the tables
become too large. (The same is also true for simple Hoffman-O’Donnell bottom-up
matchers without dynamic programming.) A typical CISC machine description will
generate over 1000 states.! Directly encoding the transition table for a single binary
operator would, therefore, require over 1,000,000 entries.

Fortunately, many of the rows (and columns) of bottom-up pattern-matching transi-
tion tables are identical. To exploit this redundancy, indez maps can be used to encode
much smaller tables. Index maps are vectors that map states of the automaton to rep-

resenter states for indexing a transition table. States may share a given row or column

1The integer subset of a Motorola 68000 grammar has over 800 states (Figure 4.16).

91

of a transition table through a single indirection. Chase demonstrated that these maps
can be produced on-the-fly during table generation so that no superfluous work need be
performed [Cha87].

Pelegri-Llopart, the originator of BURS theory ([PLG88], [PL88]), encorporated
Chase’s ideas into a system that added cost information for dynamic programming at
table generation time. In addition to recognizing that dynamic programming could be
done prior to compile time, he developed the theoretical foundation for showing that the
process is theoretically feasible for typical machine grammars. Pelegri’s technique is not
limited to finding least-cost parses of an input tree; his BURS theory also incorporated
tree-rewrites. A specification could include grammar rules that allowed a matched tree
to be rewritten for subsequent matches. This allowed the specification of commutativity
transformations, for instance.

Subsequent BURS systems, including the techniques described here, do not allow
general rewrites, but instead defer that responsibility to another phase of the compilation
process. Balachandran, Dhamdhere, and Biswas [BDB90] simplified Pelegri’s model by
disallowing rewrite rules, and also generalized Chase’s ideas to use cost information.

Henry [Hen89] developed optimization techniques to limit the number of BURS
states produced during table generation. With fewer states, a smaller automaton is
produced more quickly. Henry’s techniques are much more aggressive than Chase’s
simple index map techniques, but at the cost of increased complexity. In [Hen89], Henry
states, “The table builder uses space and time voraciously, even though it uses very
complex algorithms designed to minimize these resources.” Our algorithm generalizes
and simplifies his work. Our system can be directly compared to his on a variety

of machine specifications, and routinely shows a factor of 10 to 30 improvement in

92

Simple Grammar Canonical Form

Rule# | LHS RHS Cost | LHS RHS Cost
1. goal — reg (0) | goal — reg (0)
2. reg -+ Reg " (0) reg — Reg (0)
3. reg — Int (1) reg — Int (1)
4. reg -+ Fetch(addr) (2) reg — Fetch(addr) (2)
5. reg — Plus(reg, reg) (2) reg — Plus(reg, reg) (2)
6. addr -+ reg (0) | addr — reg (0)
7. addr -+ Int (0) | addr — Int 0)
8. addr — Plus(reg, Int) (0) | addr — Plus(reg, n.1) (0)
8a. n.l — Int (0)

Figure 4.3: Simple Grammar and Its Canonical Form

generation speed.

To further decrease the size of the generated tables, both Henry and Pelegri-Llopart
incorporate an additional post-pass to minimize the number of states. Such a pass is
essentially a DFA state minimization pass that reduces the number of states by finding
states that do not differ with respect to the matches they encode or the transitions they
induce. They only differ with respect to the costs that they encode—information that

is not needed at compile-time.

4.3 BURS Model

The input to a BURS code generator generator is a set of rules. Each rule indicates a
tree pattern, a cost, a replacement symbol, and an action. The set of all the rules is
called the grammar. Figure 4.3 gives a small sample grammar (without actions). The
replacement symbol is a nonterminal on the left of the rule—the linearized tree pattern
it derives is on the right. In the sample, goal, reg and addr are nonterminals. In addition
to nonterminals, the grammar has operators of varying arities. In the sample, Reg, Int,

Fetch, and Plus are operators with respective arities of 0, 0, 1, and 2.

93

(goal -> reg #1, 4;
Fetch reg -> Fetch(addr) #7, 4;
addr -> reg #4, 4)
(goal -> reg #1, 2; ‘ *
reg -> Fetch(addr) #7, 2; Fetch
addr -> reg #4, 2)
{(goal -> reg #1, 2;
Plus reg -> Plus(reg, reg) #8, 3;
/ \ addr -> Plus(reg, n.l) #6, 0)
Reg Int
(goal -> reg #1, 0; (goal -> reg #1, 1;
reg -> Reg #2, 0; reg ~> Int #3, 1;
addr -> reg #4, 0) addr -> Int #7, O0;

n.1 -> Int #8a, 0)

Figure 4.4: Dynamic Programming Applied to Example Tree. Each node labeled with
“(Nonterminal, Rule#, Cost)”

A least-cost parse can be found using dynamic programming. By trying all matching
patterns at all nodes, it is possible to remember the rules that lead to the cheapest
derivation from each possible nonterminal. Figure 4.4 applies the rules in Figure 4.3
to the tree representing Fetch(Fetch(Plus(Reg, Int))). Each node is labeled with the
least-cost derivation from each nonterminal.

A BURS pattern matcher finds a least-cost parse of a subject tree for the grammar
that reduces to the goal nonterminal. Each tree node will be labeled with a state that
encodes which rule is to be used when that node is to be reduced to a given nonterminal.

These states encode the information given explicitly in Figure 4.4. For example, it
is possible to derive the leaf node, Int, from all the nonterminals. Int can be directly
derived from the nonterminals reg, addr, and n.1, by directly applying the rules #3,
#7, and #8a, respectively. The costs associated with each derivation is the cost of that
particular rule. The derivation from goal utilizes the rule, “goal — reg,” that will

require that Int be subsequently derived from reg. Therefore, while the cost associated

94

with rule #1 is 0, the cost of the derivation is 1 — the sum of the costs of complete

derivation of Int from goal.

4.83.1 Normal Form Patterns

To simplify the generation of BURS tables, all patterns are put into the canonical form
introduced in [BDB90]. This form requires that all patterns be of the form “n — m”
where both n and m are nonterminals, or of the form “ng — op(ny,..., 7)? where n;
are all nonterminals, & > 0, and op is an operator. This canonical form does not reduce
the expressiveness of the grammars——any set of rules not in canonical form can be put
into canonical form by introducing new nonterminals. Putting the previous rules into

canonical form gives the rules on the right of Figure 4.3.

4.4 Algorithm to Generate BURS Tables

Our method of computing the states and state transition tables is an uncomplicated
work-list algorithm. This algorithm is outlined below in procedure Main(). Initially,
the states corresponding to each leaf operator (arity = 0) are computed, and added
to the set of known states, States, and to the list of states to be processed, WorkList.
One by one, states are removed from WorkList and processed. For each operator with
arity greater than 0, the state must be examined to determine what transitions are
induced by that state when combined with each of the already processed states. These

transitions may create new states to be added to the WorkList.

95

1 procedure Main()

2 States =)

3 WorkList = 0

4 ComputeLeafStates()

5 while WorkList # 0 do

6 state = Pop(WorkList)

7 Y op € Operators do

8 ComputeTransitions(op, state)
9 end V

10 end while

11 end procedure

4.4.1 Data Structures Used to Generate BURS Tables

The set of known states, States, is a table that maintains a one-to-one mapping from
individual states to non-negative integers. These integers are used as indices into state
transition tables via index maps.

States in 2 BURS code generator encode three pieces of information at any node in
a subject tree: the nonterminals derived from patterns that match a rule at that node,
the relative costs of those nonterminals, and which rules generated each nonterminal
(at a minimal cost). Such triples are called items, and a collection of items describing a
particular state is called an itemset. Itemsets are implemented as arrays of {cost,rule}
pairs that are indexed by a nonterminal. Itemsets are, therefore, states. A cost of
infinity (co) indicates that, in this state, no rule derives the given nonterminal. The
empty state (§) has all costs equal to infinity.

The relative costs are called delta costs and are always normalized so that the non-
terminal with the lowest cost derivation has a delta cost of 0. Figure 4.5 gives the results
of dynamic programming on the tree in Figure 4.4 after the grammar has been put into
canonical form and the relative costs have been normalized. Note that the states for the

two different Fetch nodes are identical-—normalization of costs caused this to happen.

96

(goal ~> reg #1, 0;
Fetch reg -> Fetch(addr) #7, 0;
addr -> reg #4, 0)
(goal -> reg #1, 0; *
reg -> Fetch(addr) #7, 0; Fetch
addr -> reg #4, 0)
(goal -> reg #1, 2;
Plus reg -> Plus(reg, reg) #8, 3;
/ \ addr -> Plus(reg, n.l) #6, 0}
Reg Int
(goal -> reg #1, 0; (goal -> reg #1, 1;
reg -> Reg #2, 0; reg -> Int #3, 1;
addr -> reg #4, 0} addr -> Int #7, O;

n.1 -> Int #8a, 0)

Figure 4.5: Dynamic Programming with Delta Costs. Each node labeled with “(Non-
terminal, Rule#, Delta Cost)”

Without cost normalization there would be infinitely many states for this grammar.

Costs within an itemset are normalized by the routine NormalizeCosts() below.

1 procedure NormalizeCosts(state)

2 delta = miny; {state[i].cost}

3 Y n € Nonterminals do

4 state[n].cost = state[n].cost — delta
5 end V

6 end procedure

4.4.2 Chain Rules

Itemsets are computed in a two-step process. ComputeTransitions() applies rules of
the form “n — op(...)” to generate nonterminals in the initial itemset. Next, the
algorithm computes the closure of this set by applying chain rules. Chain rules are
rules of the form “n — m” where both n and m are nonterminals. These rules may
introduce new nonterminals into an itemset, or they may introduce cheaper ways of
deriving nonterminals already in the set. Finding the closure of the set is done by

iteratively trying all the chain rules and repeatedly applying those that add new or

97

cheaper nonterminals, until no changes are made. Closure() below implements this
procedure. Because all costs are non-negative, and because a change is made only if a
strictly less expensive derivation is found, this process must terminate.

One nonterminal may be derived from another by zero or more chain rule appli-
cations. The least cost derivation is denoted “n = m.” The cost of such least cost

derivations, “Cost(n = m),” can be computed efficiently using a shortest path algo-
g

rithm.

1 procedure C’losure(stabte)

2 repeat

3 Y r : n — m such that m € Nonterminals do
4 cost = r.cost + state[m].cost

5 if cost < state[n].cost then

6 state[n]) = { cost, r }

7 end if

8 end V

9 until no changes to state

10 end procedure

4.4.3 Computing States and Transitions

The computation of the states and the state transition tables begins by generating a
state for each leaf operator (with arity of 0) in the routine ComputeLeafStates(). These
Jeaf states must be combined as children of each non-leaf operator, and new states will
be created. Each new state is added tc; the WorkList and will be subsequently processed
to determine what transitions it induces.

Computing the state to label each leaf is straightforward. Rules with a right hand
side of the given leaf operator generate nonterminals directly into the itemset. Normal-
izing the costs and finding the closure of the itemset completes the computation of the

state corresponding to the leaf operator. Figure 4.6 illustrates ComputeLeafStates().

98

1 procedure ComputeLeafStates()

2 V leaf € Leaves do

3 state = () // state[n].cost = 00, ¥ n € Nonterminals
4 Vr:n— leaf do

5 if r.cost < state[n].cost then

6 state[n] = { r.cost, r }

7 end if

8 end V

9 NormalizeCosts(state)

10 Closure(state)

11 WorkList = Append(WorkList, state)
12 States = States U {state}

13 leaf .state = state

14 end V

15 end procedure

Figure 4.6: ComputeLeafStates()

1 function Project(op, i, state)

2 pState =

3 VY n € Nonterminals do

4 ifdr: m— op(ny,. .., Ric1, By Rig1y-- < \Mop.arity) then
5 // Nonterminal n may be used in the i*h dimension of op.
6 pState[n).cost = state[n].cost

7 end if

8 end Y

9 NormalizeCosts(pState)

10 return pState

11 end procedure

Figure 4.7: Project()

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

99

procedure ComputeT ransitions(op, state)
Vi € l..op.arity do
pState = Project(op, i, state)
op.map|i][state] = pState
if pState ¢ op.reps[i] then
op.reps[i] = op.reps[i] U {pState}
v (51) ceey Simly PState, Siqly ey Sop.arity)
such that Vj # i, s; € op.reps[j] do
result = (
Vr:n - op(m,...,Mop.arity) dO
cost = r.cost + pState[m;].cost + 3 ;; s;[m;]-cost
if cost < result[n].cost then
result[n] = { cost, r }
end if
end V
Trim(result)
NormalizeCosts (result)
if result ¢ States then
Closure(result)
WorkList = Append(WorkList, result)
States = States U {result}
end if
op.transition[sy, ..., Si—1, pState, Siy1, .-+, Sop.arity) = result
end V
end if
end V
end procedure

Figure 4.8: ComputeTransitions()

100

For each dimension of a non-leaf operator,? an index map of representer states is
maintained. Representer states are constructed from an itemset by retaining only those
nonterminals that may contribute to a match in the given dimension for the given
operator ([Cha87], [BDB90]). Suppose that, for a given grammar, there is no rule with
a tree pattern for the binary operator, 6, that has a left child of nonterminal n. In
this case, we would project n out of any state when that state is to be examined as a
possible left child (in the 1% dimension) of 6.

Project() will retain only those nonterminals in a given state that may be used in
determining the transitions that may be induced by that state as a given child of a
particular operator. A representer state also discards the rule field of each item because
that information does not affect transitions (only reductions). For each dimension,
d, a table of representer states, op.reps[d], is maintained that encodes a one-to-one
mapping between those states and non-negative integers. Each dimension’s op.map|d]
table maintains a mapping from global states to representer states (op.mapld][s] is the
representer state to which s maps in the d*h dimension of op).

Figure 4.9 illustrates the relationship between index maps and transition tables.
Given the states I and r for the children of binary operator 8, an indirection is used to
look up the state transition for the § node. Figure 4.7 describes the computation of the
relevant nonterminals.

Transition tables are computed based on representer states, not on the original
states. This reduces transition table size because many states may map to the same
representer state. At tree-matching time the cost of using this technique is the extra level

of indirection necessary to compute transitions. In Figure 4.8, ComputeTransitions()

2Each operator of arity n has a transition table of n dimensions.

101

m
a state
| =P transition
[1] table

—

Figure 4.9: Computing Transitions for 6(l,r) Using Index Maps.

finds all the transitions that each new state induces when used in combination with
other known states for a given operatbr.

Each representer state is checked to see if it has already been processed. If the
representer state has been previously processed, then no additional work must be done.
If the representer state is new, the transition table must be extended along the given
dimension for all possible combinations of the representer states of other dimensions
(along with this representer state). This is done by generating all such combinations
and then searching for all applicable rules. Once these rules have been applied, the delta
costs are normalized, and the itemset is closed. If the generated state is new, then it is
added to States and WorkList.

The postponement of Closure() until after the check for the state’s existence in States
is an optimization justified in §4.6.4. Trim(), the routine responsible for reducing the

number of states produced, is discussed in §4.4.4.

102

4.4.4 State Trimming

Many of the states created by the Coﬁpute Transitions() are nearly identical. The state-
generation algorithm will run faster if it can increase the likelihood that two created
states will be identical. Two states can often be made identical by trimming unessential
nonterminals from the itemset. A nonterminal is unessential (in a particular state) if it
can be proven that it will never be needed to produce a least-cost cover of any subject
tree. Henry devised two ad hoc techniques, “sibling,” and “demand” trimming [Hen89],
to identify when one “{ cost, rule }” item (representing a nonterminal) can be safely

removed from a state because another item subsumes it.

Triangle Trimming

By generalizing Henry’s trimming techniques, we have developed triangle trimming for
safely removing unessential nonterminals from an itemset. Triangle trimming considers
all pairs of nonterminals in a particular itemset and determines if, given their respective
costs, one of the nonterminals can be removed. A nonterminal can be removed if, in all
dimensions of all rules where it is applicable, the other nonterminal can be used in a
different rule to generate the same resulting nonterminal at no greater cost. Informally,
a nonterminal, i, can be removed from an itemset if it can be shown that everywhere ¢
can lead to a pattern match, another nonterminal, j, in the itemset can also lead to a
comparable pattern match at no greater cost.

Determining if j subsumes ¢ requires comparisons that have 2 triangular shape (see
Figure 4.10). For a given operator, 0, and in a given dimension, d, two rules must be
found such that both rules represent patterns for 8, and one rule, r, can employ ¢ as its

d* child, and the other rule, ¢, can employ j as its d®™ child. (It is not necessary that

103

i

Jl*

Rule r: Ny - 0(Driiy oo Prdy «-es Pr,arity)
ﬂ* Jl* Jl* Jl* Jl*
Rulet: n, — 0(pei, --+» Prds «-+1 Proarity
T[*
J

Figure 4.10: Triangle Trimming Relationship (for j to subsume i)

state[i).cost + r.cost + Cost(pya =4) >
state[].cost + t.cost + Cost(p:a =3) + Cost(n, = n;)
+ Zk¢d Cost(p. = Drik)

Figure 4.11: Inequality that must hold for i to be removed if j is present.

these rules use ¢ and j directly—they may use nonterminals that are derived from ¢ and
j via chain rules.)

Since rule r reduces to nonterminal n,, it must be shown that t can also produce n,
at no greater cost. We, therefore, start by assuming that rule r has matched. From this
it can be determined if rule ¢ can also match. Rule ¢ can also match if its children in
dimensions other than d can be derived via chain rules from the corresponding children
of rule r. (All we are assuming is that r matches, therefore all we may assume in
determining if p; s exists for a match of rule ¢ is whether p, , may derived from p;x via
chain rules.)

Figure 4.10 shows how ¢ and j, and the rules 7 and ¢ must relate for j to subsume
i, Once rule r is found to use % to derive n,, a rule must be found that can employ j
and can also derive n,. Notice that for any rule r that employs ¢, it is only necessary
to find one such rule ¢ employing j for j to subsume <.

Subsumption is based not only on feasibility, but also on costs. A nonterminal

104

cannot be removed if its removal would force more expensive reductions to be found
than had it been retained. For the pair of rules, r and ¢, in Figure 4.10, it is possible
to remove i from the itemset containing j if the inequality in Figure 4.11 holds. The
cost of using r is the sum of the cost of , the cost of deriving p 4 from 4, and the cost
of r. Since our premise is only that rule r matches and that ¢ and j are present in
some itemset, the computation of the cost of using ¢ with j to indirectly produce n,
will require not only the costs of ¢, j, and p;q 2 §, but will also require the costs of
deriving the other p;, from prx and the cost of deriving n, from n;.

The inequality in Figure 4.11 is the basis for finding the minimal cost difference
between two nonterminals to allow one of them to be removed for a given rule. In
general, to safely remove i, it is necessary to examine all contexts in which ¢ can be
used and find the cost difference that is sufficient to guarantee that i can be removed
based on the relative costs of i and j. In Figure 4.12, Triangle(), calculates this minimal
difference for any pair of nonterminals. (When it is impossible for nonterminal j to be

used in place of i, regardless of their respective costs, Triangle () returns 00.)

Chain Rule Trimming

Two states are identical if they represent the same nonterminals at the same costs with
each respective nonterminal generated by the same rule. Triangle trimming removes
nonterminals from states whenever possible, thereby eliminating the possibility that two
states differ on the particular costs or rules involving those nonterminals. To further
minimize the number of states, it is necessary to bias the algorithm towards using the
same rules whenever possible. Biasing the algorithm towards using chain rules whenever

possible increases the likelihood that two states will have used the same rules to derive

// Compute C, such that if state[i].cbst > state[j].cost + C
// then i can safely be removed from state.

1
2

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

function Triangle(i, j)
if 1 = Goal then
return oo // Do not remove the goal nonterminal.
end if
Maz = —o0
VY n € Nonterminals—{i} do
if Maz < Cost(n = j) — Cost(n = i) then
Maz = Cost(n = j) — Cost(n = i)
end if
end V
Y op € Operators do
Y d € 1..op.arity do
Vr: ny — Op(pr,lr . wpr,opnarity) do
C,' = C’ost(p,,d =*> Z)
if C; < oo then
LocalMin = oo
Vi: ng — Op(pt,lr . 'apt,op.an'ty) do
C,. = Cost(n, = ng)
Cj = COSt(pt’d é])
Cr = Zk;ﬁd Cost(p:,k = Pr,k)

C=C,; + Cj + Ci + t.cost — r.cost C;

if C < LocalMin then
LocalMin = C
end if
end VY
if LocalMin > Maz then
Maz = LocalMin
end if
end if
end V
end V
end VY
return Maz
end procedure

Figure 4.12: Triangle()

105

106

1 procedure Trim(state)

2 VY n € state do

3 VY m € state (m# n) do

4 C = Cost(n = m)

5 if state[n].cost > state[m].cost + C then

6 state[n] = { 0o, L } // Remove n from state.
7 end if

8 end V

9 end V

10 VY n € state do

11 VY m € state (m# n) do

12 C = Triangle(n, m)

13 if state[n].cost > state[m].cost + C then

14 state[n] = { co, L } // Remove n from state.
15 end if

16 end V

17 end V

18 end procedure

Figure 4.13: Trim()

a given nonterminal. This bias can be forced by removing nonterminal entries from an
itemset prior to closure when it can be determined that Closure() will restore those
nonterminals at an equal or lesser cost using chain rules.

In Figure 4.13, Trim(), uses both ﬁiangle and chain rule trimming to prune nonter-
minals from itemsets so that they will be more likely to be identical, thereby reducing

the size of the generated tables and the table generation time.

Fully General Trimming

Nonterminal trimming does not need to be constrained to looking at pairs of nontermi-
nals as it was in triangle and chain rule trimming. While it may not be the case that a

single nonterminal in an itemset subsumes any other, it may be the case that some set

107

of nonterminals subsumes another.

One can ask the simple question, “Given all the nonterminals, n;, in state IV, can we
safely remove nonterminal n;?” This could be answered by attempting, one by one, to
remove nonterminals from the itemset and determining by analysis similar to triangle
trimming if that removal would force more costly matches to be found. If not, the
nonterminal can be safely removed.

We do not know how much, if any, general trimming would reduce the number
of states. The general approach to state trimming was not attempted because it is
significantly more expensive than triz;bngle trimming. Because triangle trimming tests
pairs of nonterminals, the relative costs necessary for subsumption can be cached for
reuse easily (see §4.6.3). There is no simple relationship based on a set of nonterminals

that can be so easily stored and accessed.

4.5 Diverging Grammars

Because all dynamic programming is done at compile-compile time, it is necessary to
anticipate all possible trees, and generate states that can label the nodes of those trees.
To do this, there must be only a finite number of states. Grammars that do not produce
a finite number of states are said to diverge [PL88].

A grammar diverges when it is possible for the derivation costs of a pair of non-
terminals in the same state to become arbitrarily distant. To prevent the BURS table
generation algorithm from attempting to enumerate an infinite set of states for diverg-
ing grammars, a simple threshold test is used. A test is inserted into the normalization
procedure (NormalizeCosts()) to determine the greatest cost differential between nonter-

minals in any given state. If that differential is above the threshold value, the grammar

108

is rejected as “probably diverging.”

Fortunately, code generation grammars do not typically diverge. This is because
the nonterminals usually describe data values (e.g., registers, data, addressing modes)
that can be interchanged at a bounded cost. For instance, it is unlikely that the cost of
computing a value into a register could be arbitrarily more expensive than computing

a value into memory since there almost certainly is a store instruction of fixed cost.

4.6 Speed Optimizing Techniques

The previous routines provide many opportunities for speed optimization. Some of
the improvements are general techniques not specific to BURS table generation; other

improvements rely on subtle knowledge of BURS table generation.

4.6.1 Attempt Cheaper Alternatives First

It may appear that the two sets of nested loops in Trim() could be jammed into a
single pair of nested loops for improved efficiency. Both loops have the intended side-
effect of removing nonterminals from the states. Since the loops iterate over only the
nonterminals that remain in the state, the second set of loops will normally iterate fewer
times than the first set. Because triangle trimming is an expensive operation relative
to chain rule trimming, it is more efficient to remove all possible nonterminals via chain

rule trimming and then attempt triangle trimming only on the remaining nonterminals.

4.6.2 Precompute Values

In the previous routines, many situations exist where values can be computed once and

used many times. For instance, Project() requires the knowledge of which nonterminals

109

can appear in the :** dimension of operator op. Because this list is invariant for a given
rule set, it can be computed once and used repeatedly.
Efficiency is also enhanced if the list of rules is partitioned by the operator of the
pattern, so that ComputeTransitions() will only iterate over the list of applicable rules.
The cost of transitive closure rules (Cost(n = m)) is precomputed advantageously

since it is used often by Trim() and Triangle().

4.6.3 Lazy Computations

There are O(N?) possible pairs of nonterminals that may be used in a call to Trian-
gle(), but in practice only very few pairs are ever used. Our original implementation
precomputed the results of calling Triangle() with all possible combinations of non-
terminals and then used table lookup for these values. Using this strategy, Triangle()
consumed over 75% of the execution time generating tables for a VAX grammar. With
179 nonterminals in the (canonical form) grammar, Triangle() was called 32041 times,
but fewer than 1000 of those values were ever referenced! Changing the program to
compute those values by need increased the speed tremendously. Once computed, these

values are cached for subsequent calls with the same arguments.

4.6.4 Defer Closure

If two itemsets are equal before closure, then they must be equal after closure. Because
two itemsets are chain-rule trimmed before closure, it is also the case that if two itemsets
are equal after closure, they must have been equal before closure. By maintaining both
pre-closure and post-closure copies of an itemset in a table, we can check for the existence

of an itemset in the table by comparing their pre-closure representations. This allows

110

the closure computation to be deferred until it is known that the state is indeed new

and must be added to the table.

4.6.5 Itemset Equivalence

Determining whether an itemset is already in a table of states is an expensive operation,
and this test is done for every entry in every transition table. The integer subset 68000
grammar required over 425,000 calls to determine itemset equivalence. Making itemset
equivalence testing efficient is extremely important. For two itemsets to be equal, they
must be equal for all of their items. Fortunately, two observations make testing for
equivalence much more efficient: two itemsets created as members of transition tables
for different operators can never be equal, and for any given operator it is only necessary
to compare the entries corresponding to the left-hand sides of the rules for that operator.

By keeping a reference to the generating operator as part of an itemset’s representa-
tion, many itemsets can be determined to be unequal by recognizing that those entries
differ. Should those entries be the same, it is only necessary to check that the nontermi-
nal entries for the relevant nonterminals are equal for both itemsets. This check must
be done after the states have been trimmed.

The same routines are used to implement the global States table, and each of the
local op.reps[] tables. These tables are implemented as hash tables. Computing the
hash function is also made more efficient by examining only the relevant nonterminals.

Calling NormalizeCosts() after Trim(), but before Closure(), allows it to limit the
nonterminals it must inspect. Again, the same nonterminals that are relevant to de-

termining itemset equivalence are those that must be normalized prior to a call to

Closure().

111

4.6.6 Specialize Memory Allocation

QOur program allocates and deallocates an enormous amount of memory during the
computation of the itemsets and transition tables. The primary source of allocation
and deallocation of memory in the algorithm is the tentative allocation of itemsets by
ComputeTransitions() and Project(). Only after the itemset is allocated and computed
can it be determined if an equivalent state has already been seen, thereby allowing the
deallocation of the itemset. Redundant itemsets really must be deallocated—for a 68000
grammar the program computed over 100,000 redundant itemsets.

Fortunately, knowledge of the the allocation/deallocation pattern of particular data
can lead to very efficient memory management [Han90]. This is the case with itemsets.
Itemsets, after allocation, are compuﬁted and then either retained forever or immedi-
ately released. It can never be the case, therefore, that two itemset deallocations occur
sequentially without an intervening allocation. This allows the creation of specialized
deallocation and allocation routines for itemsets. The deallocation routine simply main-
tains a reference to the last discarded itemset, and does not return the space to the heap.
Allocation checks this reference, and if the reference is not null, it returns the reference
to the previously deallocated value (and clears the reference); only if the reference is

null does the allocator request space from the heap.

4.6.7 Minimize space

On a machine without enormous amounts of RAM, it is important to avoid over-
allocating memory and thrashing. The single biggest user of memory is the itemset
representation for all of the computed states. Itemsets are kept as small as possible

by minimizing the number of nonterminals in the canonical form grammar. A naive

112

translation of a grammar into canonical form may produce too many nonterminals if
it creates different nonterminals that represent identical patterns. It is important (and

easy) to reuse previously created nonterminals.

4.7 TUnprofitable Optimizations

Three additional techniques were not implemented because either the speed-up did not
merit the additional complexity, or because the resulting code would only reduce the

number of states, without also speeding up the code.

4.7.1 Closure Speedup

Because least-cost transitive chain rules are precomputed for use by Trim(), they are
available for speeding up the Closure() routine. Closure(), however, represents less than
4% of the execution time of thé program, and using these transitive rules only speeds

that routine by 10-20%.

4.7.2 Post-pass State Minimization

It is possible to further eliminate states after they and the transition tables have been
generated by isolating and removing states that differ only in the respective costs of
each constituent nonterminal. State minimization for BURS is similar to DFA state
minimization. Because state minimization is a post-pass, it cannot make the program
faster—it must make it slower.? We decided the space savings was not worth the addi-

tional complexity or time and, therefore, did not attempt to add a state minimization

3Henry [Hen89] found that the additional time for the post-pass was negligible (< 1%) in his
system.

113

pass.

4.7.3 Normalize Specialization

When an itemset is normalized, the relative costs of all the nonterminals are retained.
This is unduly conservative because certain nonterminals can never be used in the same
context, and could, therefore, be independently normalized within the same itemset. It
is possible to partition the set of nonterminals based on whether they can be used in
the same context (i.e. in the i*" dimension of a given operator, or as part of the same
chain rule). Once the nonterminals are partitioned, each partition can be independently
normalized.

The hope was that this would cause more identical states to be found because differ-
ences between elements of different partitions would now be irrelevant. Unfortunately,
only the VAX grammar showed any reduction in the number of states—2 states were

eliminated from over 500.

4.8 Output

The table generator must output two sets of data: the state transition tables for labeling
the subject tree, and a mapping from (statesxnonterminals) to rules for reducing the
matched tree and emitting code. |

For the transition tables, it is necessary to output both the n-dimensional transi-
tion tables (op.transition) and the mappings from states to representer states for each
dimension (op.reps[d]) since the transition tables are indexed by representer states. For
leaf nodes, it is only necessary to give the mapping from the node to its unique state

(leaf .state).

114

| Function [Lines (C/Yacc) |
Table Generation 1981
Front End 633
Table Output 1345
Total 3959

Figure 4.14: Code size for our BURS table generator

The reduction mapping is a table of all the states (States) and the rule fields that
correspond to each nonterminal. These fields indicate which rule produces the given

nonterminal. There is no need for the cost field at compile-time.

4.9 Implementation Results

Our algorithm has been implemented in a system called “BURG” [FHP91]. The input
has two parts: a description of the operators (including the arity and identifying value
of each), and a list of grammar rules. The operators are limited to being nullary (leaf),
unary, or binary. (The arity was limited because the intended application required only
nullary, unary, and binary operators.) Each rule includes an arbitrarily complex pattern,
the nonterminal the pattern derives, its cost, and a unique external rule number (for
identification). The front end of the table generator puts the rules into canonical form.

As output the program creates C routines and tables for labeling and reducing a
subject tree. The program can output either a simple table-driven tree-labeler and
reducer, or a hard-coded labeler and reducer. The hard-coded routines incorporate the
time and space saving techniques in [FH91c].

The entire program is under 4000 lines of code that splits evenly between table
generation routines and input/output routines. Figure 4.14 gives the number of lines of

code used to implement the table generator.

115

Grammar Time (sec.) | Ratio
Machine | Rules | Henry’s | Ours
vax 291 467.7 | 144 32
MIPS 136 214 0.6 36
vax.bwl 524 146.8 | 15.5 9
mot.bwl 462 251.5| 144 14

Figure 4.15: Timings

Grammar States Ratio
Machine l Rules | Henry’s | Ours
vax 291 1017 | 1015 | 1.00
MIPS 136 125 | 125 | 1.00
vax.bwl 524 493 | 586 | 0.84
mot.bwl 462 499 | 838 | 0.60

Figure 4.16: Number of States

Qur program runs quickly on both simple and complex inputs. We compare our
system to Henry’s table generator that was derived from the CodeGen system [Hen89].
His system consists of over 20,000 lines of C code. It is not clear, however, how much of
this code is a direct consequence of algorithm design, and how much is an indirect con-
sequence of the fact that his BURS system was derived from the much bigger CodeGen
distribution.

Figure 4.16 gives a description of 4 sample input grammars and the execution times
for each system on each grammar. The first two grammars (used to generate code
generators for 1cc [FH91a]) are for the VAX and the MIPS R3000 RISC processor.
Two others that were developed as part of the CodeGen project are integer (byte, word,
and long) subsets of the VAX and Motorola 68000 processors. The timings were taken

on a DECstation 5000 with 96Mb of RAM.*

4The timings are more favorable towards our system on machines with limited amounts of
RAM.

116

Rule # | LHS Pattern Cost
1. integer — ADD(integer, integer) | (0)
2. real — ADD(real, real) (0)
3. set — ADD(set, set) 0)
4. real — integer (1)

Figure 4.17: Inference Rules for Pascal’s “+”

The differences in the number of generated states between the two systems for the
CodeGen grammars can be attributed to the presence of a state minimization post-pass

in Henry’s system that is not present’in our system.

4.10 Other Applications of BURS

BURS technology has applications outside of instruction selection. For instance, BURS
can be used to do simple type inferencing, data structure auditing, and tree simplifica-

tion.

4.10.1 Simple Type Inferencing

Waite has used BURG to automate simple type inferencing [Wai91]. In many Algol-
like languages, arithmetic operators are overloaded and may operate on different types.
For example, in Pascal, “+” may operate on sets, reals, or integers—but both operands
must be the same type. To add a real and an integer, the compiler must realize that the
integer must be converted to a real before the addition. However, the compiler must
not convert two integer operands to reals.

BURS simplifies the process of determining which instance of the overloaded op-
erator must be used, and what conversions (if any) must be performed. The BURS

grammar for this simple inference system is given in Figure 4.17. Given this grammar,

117

Rule # | LHS ~ Pattern Cost
1. int — ADDI(int, int) (0)
2. double — ADDD(double, double) | (0)
3. double — CVID(int) (0)

Figure 4.18: Type Rules for lcc’s Intermediate Representation

a BURS tree matcher will try to find a least-cost match of the tree. The patterns chosen
will indicate which type of “addition” must be used. If the rule “real — integer” is used,
then an integer must be converted to a real at that location. Because the conversion
rule has a cost greater than zero, it will not be used unless necessary to find a legal

parse of the tree.

4.10.2 Data Structure Auditing

BURS pattern matchers can also be used to determine if a tree has any legal parses.
If the underlying grammar defines all legal tree structures, this can be used to quickly
audit trees to ensure that they are not malformed.

In an experiment, a BURS pattern matcher audited the intermediate representation
generated by the front-end of lcc [FH91b], an ANSI C compiler. The IR trees were
tested to see if they were correctly formed with respect to basic types. A small portion
of the grammar is given in Figure 4.18. If the matcher finds a parse, then the expression
tree is legal, otherwise it is malformed.

After running the experiment on about 10,000 lines of C, a few trees were found
that did not parse. The problem was not in lcc, it was in the IR documentation. The
documentation did not fully describe all the legal combinations of intermediate operators
and types. The experiment was intended to search for bugs in the implementation, and

succeeded in finding omissions in the documentation.

118

Rule # | LHS Pattern Cost
1. int — ADDI(int, int) (1)
2. int — NEGI(int) (1)
3. int ~— ADDI(int, NEGI(int)) | (0)
4. int — ADDI(NEGI(int), int) | (0)

Figure 4.19: Simplification Rules for lcc’s Intermediate Representation

4.10.3 Tree Simplification

Tree pattern matching can also be used to find opportunities for tree simplification in
a compiler. Patterns can be used to represent opportunities for tree modifications that
will result in simpler or more efficient code.

A simple modification would be to substitute subtraction for the addition of a
negated integer. The example in Figure 4.19 gives rules for parsing the ADDI and
NEGI operators. When a BURS pattern matcher finds a parse for an expression tree,
it will choose to use rules #3 and #4 whenever possible since they have a lower cost
than the composition of rules #1 and #2. A subsequent simplification pass would iso-
late these rules and perform the necessary tree modifications. Since the matchers are
automatically generated, it is a simple matter to incrementally build the patterns that

lead to simplifications.

4.11 Related Systems

Other code generation systems based on tree pattern matching and dynamic program-
ming have been developed. They differ primarily in what technology they use to do tree
pattern matching, and in the fact that they do dynamic programming at compile time

rather than compile-compile time.

119

4.11.1 Twig

Aho, Ganapathi, and Tjiang [AGT89] created a tree manipulation language and system
called Twig. Given a specification of tree patterns and associated costs, Twig gener-
ates a tree automaton that will find the least-cost cover of a subject tree. Twig uses
fast top-down Hoffmann-O’Donnell [HO82] pattern matching in parallel with dynamic
programming to find the least-cost cover in O(patno X |tree|) time (where patno is the
number of patterns in the grammar, and |tree| is the size of the tree to be parsed).
The costs associated with patterns in Twig are more general than those afforded by
(any) BURS system. Twig may compute the cost of a pattern dynamically—depending
on semantic information available at ;:ompile-time. This flexibility further allows Twig
to abort certain matches if semantic predicates are not satisfied. Thus, the applicability
of Twig’s patterns is contezt-sensitive. BURS cannot have this flexibility since all costs

must be compile-compile time constants to precompute dynamic programming decisions.

4.11.2 BEG

A code generator generator based on tree pattern matching was developed by Emmel-
mann, et al. [ESL89]. The Back End Generator (BEG) uses naive pattern matching
to find pattern matches within the tree IR to do instruction selection. The least-cost
cover of the tree is found using dynamic programming techniques that are essentially
identical to Twig’s. Like Twig, BEG can guard patterns with semantic predicates.

A BEG specification, in addition to having instruction patterns, includes a descrip-
tion of the register set of the target machine. This specification is used to generate the
register allocator. Two different types of register allocators may be generated: a simple

on-the-fly allocator, and a more complex post-pass allocator that processes the cover

120

tree prior to emitting instructions. They found the code quality and code generation
times to be comparable to their hand-written CGs. |

Both Twig and BEG have the advantage over BURS of being able to incorporate
semantic information into pattern matching and dynamic programming. However, they
generate pattern matchers that are significantly slower than pattern matchers based on
BURS technology. This is because they use slower pattern matching technology (either
top-down or naive) and they do dynamic programming at compile time. For a VAX
grammar, experiments indicate that BURS code generators are about 7 times faster
than highly-tuned compile-time dynamic programming.® Switching from BURS to the

slower system decreases lcc’s speed by 15%.

4.12 Conclusion

The BURS table generation algorithm presented is a simple and efficient method of
producing BURS tables. To the best of our knowledge our system is significantly faster
than any other BURS system. The prototype implementation required fewer than 2000
lines of C code for producing the BURS automata. It was able produce these tables
over 30 times more quickly than the previous “state of the art” optimizing system. Our
system does not sacrifice table compaction optimizations to achieve this speed—to the
contrary, the compaction techniques increase the overall speed of the implementation
by reducing the number of states that must be examined.

The algorithm employs only simple data structures and routines to generate these
tables quickly. We believe that, to a large degree, this design simplicity increases ef-

ficiency. To further increase speed, optimizations that exploit the specific nature of

5The system used for comparison generates faster code generators than Twig.

121

BURS table generation were isolated and are described here.

To reduce the number of states created a new technique of trimming states, triangle
trimming, has been developed to isolate nonterminals that can be removed from a
state. This trimming provides a many-fold reduction in the number of states and a

commensurate speed-up in table generation.

Chapter 5

Conclusions and Future Work

This thesis makes the following advances in code generation theory and technology:
(a) development of an optimal instruction scheduler and register allocator for delayed-
load architectures; (b) invention and implementation of probabilistic register allocation,
a global register allocation heuristic that we believe to be simpler and more effective
than widely-used graph-coloring techniques; (c) design and implementation of new and
highly optimized techniques for producing retargetable BURS instruction selectors. Or,
more simply stated, this thesis attacks “the three main problems in code generation”:
instruction scheduling, register allocation, and instruction selection.

The Delayed-Load Scheduling (DLS) algorithm presented in Chapter 2 is an optimal,
linear-time solution to the problem of scheduling instructions and allocating registers for
evaluating expression trees on architectures with load delays of one cycle. The algorithm
minimizes both execution time and register use and runs in time proportional to the
size of the expression tree. For less restricted problems, optimal register allocation and
instruction scheduling are NP-complete problems, and must be handled by slow, and

often complicated, heuristics. DLS, however, represents a simple and fast solution for a

122

123

realistic class of modern RISC architectures. In addition, the algorithm is simple; it fits
on one page. When the delay is greater than a single cycle, DLS works as an excellent
heuristic while maintaining the same simplicity.

We believe that the integrated instruction scheduling and register allocation model
developed for DLS provides a useful foundation extending the DLS algorithm to handle
arbitrary pipeline delays. A more powerful algorithm will be necessary to schedule oper-
ations with long latencies such as floating point multiplications and divisions. Covering
long latencies (tens of cycles) will certainly require basic block, and possibly inter-block,
level scheduling. Integrating DLS register allocation into an inter-block scheduler will
be necessary to effectively allocate registers and schedule instructions at the procedure
level.

To help automate instruction selection, this thesis describes a simple and efficient
mechanism for generating Bottom-Up Rewrite System (BURS) automata to be em-
ployed in code generators. BURS technology produces extremely fast code generators
by doing all dynamic programming before code generation. Thus, the generation pro-
cess can be slow. To make BURS technology more attractive much effort has gone into
reducing the time to produce BURS code generators. These complex techniques often
require a long time to process a complex machine description (over 10 minutes on a
fast workstation). The algorithms in Chapter 4 improve the efficiency of BURS table
generation algorithms so that BURS technology is now a more attractive method for
instruction selection. The new optimized techniques have increased the speed to gener-
ate BURS code generators by a factor of 10 to 30. In addition, the algorithms simplify
previous techniques, and were implemented in fewer than 2000 lines of C.

While tree pattern matching is a excellent model for instruction selection, it has

124

limitations. To model sharing, intermediate representations are more naturally DAG-
structured; to express side-effects, machine instructions are also more naturally DAG-
structured. We believe that extending BURS pattern matching technology in the future
to DAGs could create more expressive and powerful code generator-generators for more
realistic machine models.

The dominant paradigm in modern global register allocation is graph coloring. Un-
like graph-coloring, our technique, probabilistic register allocation (described in Chap-
ter 3), is unique in its ability to quantify the likelihood that a particular value might
be allocated a register before allocation actually completes. By computing the likeli-
hood that a value will be assigned a register by a register allocator, register candidates
that are competing heavily for scarce registers can be isolated from those that have less
competition. These probabilities allow the register allocator to concentrate its efforts
where benefit is high and the likelihood of a successful allocation is also high. Proba-
bilistic register allocation also avoids backtracking and complicated live-range splitting
heuristics that plague graph-coloring algorithms.

Probabilistic register allocation can be extended to assist interprocedural register al-
location. By computing probabilities ‘for register candidates that compete for registers
between procedures, better interprocedural register allocations should be isolated. Bet-
ter interprocedural allocations will avoid much of the expense of program overhead by
passing parameters in registers, avoiding call/save sequences around calls, and allocating

global variables to registers.

Appendix A

BURG Reference Manual

Originally published as

Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG
— fast optimal instruction selection and tree parsing. SIGPLAN Notices,

27(4), April 1991.

A.1 Overview

BURG is a program that generates a fast tree parser using BURS (Bottom-Up Rewrite
System) technology. It accepts a cost-augmented tree grammar and emits a C pro-
gram that discovers in linear time an optimal parse of trees in the language described
by the grammar. BURG has been used to construct fast optimal instruction selec-
tors for use in code generation. BURG addresses many of the problems addressed
by Twic [AGS85, App87], but it is somewhat less flexible and much faster. BURG
is available via anonymous f£tp from kaese.cs.wisc.edu. The compressed shar file
pub/burg.shar.Z holds the complete distribution.

This document describes only that fraction of the BURS model that is required to

125

126

A
#define NODEPTR_TYPE treepointer

#define OP_LABEL(p) ((p)->op)

#define LEFT_CHILD(p) ((p)->left)

#define RIGHT_CHILD(p) ((p)->right)
#define STATE_LABEL(p) ((p)->state_label)
#define PANIC printf

h}

%start reg

Yterm Assign=1 Constant=2 Fetch=3 Four=4 Mul=5 Plus=6
Wh

con: Constant =1 (0);
con: Four =2 (0);
addr: con 3 (0);
addr: Plus(con,reg) =4 (0);
addr: Plus(con,Mul(Four,reg)) = 5 (0);
reg: Fetch(addr) =6 (1);
reg: Assign(addr,reg) =7 (1);

Figure A.1: A Sample Tree Grammar

use BURG. Readers interested in more detail might start with [BDB90]. Other relevant

documents include [Kro75, HO82, HC86, Cha87, PLG88, PL88, BMW87, Hen89, FHO91c,

Pro92].

A.2 Input

BURG accepts a tree grammar and emits a BURS tree parser. Figure A.l shows a
sample grammar that implements a very simple instruction selector. BURG grammars
are structurally similar to YACC’s. Comments follow C conventions. Text between “%{”
and “4}” is called the configuration section; there may be several such segments. All
are concatenated and copied verbatim into the head of the generated parser, which is

called BURM. Text after the second “%%”, if any, is also copied verbatim into BURM, at
) y

127

the end.

The configuration section configures BURM for the trees being parsed and the client’s
environment. This section must define NODEPTR.TYPE to be a visible typedef symbol for
a pointer to a node in the subject tree. BURM invokes OP_LABEL(p), LEFT_CHILD (p),
and RIGHT_CHILD(p) to read the operator and children from the node pointed to by p.
It invokes PANIC when it detects an error. If the configuration section defines these op-
erations as macros, they are implemented in-line; otherwise, they must be implemented
as functions. The section on diagnostics elaborates on PANIC.

BURM computes and stores a single integral state in each node of the subject tree.
The configuration section must define a macro STATE_LABEL(p) to access the state field
of the node pointed to by p. A macro is required because BURG uses it as an lvalue. A
C short is usually the right choice; typical code generation grammars require 100-1000
distinct state labels.

The tree grammar follows the configuration section. Figure A.2 gives an EBNF
grammar for BURG tree grammars. Comments, the text between “%{” and “%}”, and
the text after the optional second “%%” are treated lexically, so the figure omits them.
In the EBNF grammar, quoted text must appear literally, Nonterminal and Integer
are self-explanatory, and Term denotes an identifier previously declared as a terminal.
{X} denotes zero or more instances of X.

Text before the first “%4%” declares the start symbol and the terminals or operators
in subject trees. All terminals must be declared; each line of such declarations begins
with %term. Each terminal has fixed arity, which BURG infers from the rules using that
terminal. BURG restricts terminals to have at most two children. Each terminal is de-

clared with a positive, unique, integral ezternal symbol number after a “=”. OP_LABEL(p)

128

grammar: {dcl} *%%’ {rule}

del: »Ystart’ Nonterminal

dcl: »Yterm’ { Identifier ’=’ Integer }

rule: Nonterminal ’:’ tree ’=’ Integer cost ’;’
cost: /* empty */

cost: »(> Integer { ’,’ Integer } ’)’

tree: Term ’(’ tree ’,’ tree ’)’

tree: Term ’(’ tree ’)’

tree: Term

tree: Nonterminal

Figure A.2: EBNF Grammar for Tree Grammars for BURG

must return the valid external symbol number for p. Ideally, external symbol numbers
form a dense enumeration. Non-terminals are not declared, but the start symbol may
be declared with a line that begins with %start.

Text after the first “4%” declares the rules. A tree grammar is like a context-free
grammar: it has rules, non-terminals, terminals, and a special start non-terminal. The
right-hand side of a rule, called the patiern, is a tree. Tree patterns appear in prefix
parenthesized form. Every non-terminal denotes a tree. A chain rule is a rule whose
pattern is another non-terminal. If no start symbol is declared, BURG uses the non-
terminal defined by the first rule. BURG needs a single start symbol; grammars for
which it is natural to use multiple start symbols must be augmented with an artificial
start symbol that derives, with zero cost, the grammar’s natural start symbols. BURM
will automatically select one that costs least for any given tree.

BURG accepts no embedded semantic actions like Yacc’s, because no one format

suits all intended applications. Instead, each rule has a positive, unique, integral external

129

rule number, after the pattern and preceded by a “=”. Ideally, external rule numbers
form a dense enumeration. BURM uses these numbers to report the matching rule to
a user-supplied routine, which must implement any desired semantic action; see below.
Humans may select these integers by hand, but BURG is intended as a server for building
BURS tree parsers. Thus some BURG clients will consume a richer description and
translate it into BURG’s simpler input.

Rules end with a vector of non-negative, integer costs, in parentheses and separated
by commas. If the cost vector is omitted, then all elements are assumed to be zero.
BURG retains only the first four elements of the list. The cost of a derivation is the sum
of the costs for all rules applied in the derivation. Arithmetic on cost vectors treats
each member of the vector independently. The tree parser finds the cheapest parse of
the subject tree. It breaks ties arbitrarily. By default, BURG uses only the principal
cost of each cost vector, which defaults to the first element, but options described below

provide alternatives.

A.3 Output

BURM traverses the subject tree twice. The first pass or labeller runs bottom-up and
left-to-right, visiting each node exactly once. Each node is labeled with a state, a single
integer that encodes all full and partial optimal pattern matches viable at that node.
The second pass or reducer traverses the subject tree top-down. The reducer accepts a
tree node’s state label and a goal non-terminal — initially the root’s state label and the
start symbol — which combine to determine the rule to be applied at that node. By
construction, the rule has the given goal non-terminal as its left-hand side. The rule’s

pattern identifies the subject subtrees and goal non-terminals for all recursive visits.

130

Here, a “subtree” is not necessarily an immediate child of the current node.! Patterns
with interior operators cause the reducer to skip the corresponding subject nodes, so
the reducer may proceed directly to grandchildren, great-grandchildren, and so on. On
the other hand, chain rules cause the reducer to revisit the current subject node, with
a new goal non-terminal, so z is also regarded as a subtree of z.

As the reducer visits (and possibly revisits) each node, user-supplied code imple-
ments semantic action side effects and controls the order in which subtrees are visited.
The labeller is self-contained, but the reducer combines code from BURG with code from
the user, so BURM does not stand alone.

The BURM that is generated by BURG provides primitives for labelling and reducing
trees. These mechanisms are a compromise between expressibility, abstraction, simplic-
ity, flexibility and efficiency. Clients may combine primitives into labellers and reducers
that can traverse trees in arbitrary ways, and they may call semantic routines when and
how they wish during traversal. Also, BURG generates a few higher level routines that
implement common combinations of primitives, and it generates mechanisms that help
debug the tree parse.

BURG generates the labeller as a function named burm_label with the signature

extern int burm_label (NODEPTR_TYPE p);

It labels the entire subject tree pointed to by p and returns the root’s state label. State
zero labels unmatched trees. The trees may be corrupt or merely inconsistent with the

grammar.

The simpler burm_state is burm_label without the code to traverse the tree and

to read and write its fields. It may be used to integrate labelling into user-supplied

1BuRG does not require that the input grammar be in normal form (§4.3.1).

131

traversal code. A typical signature is
extern int burm_state(int op, int leftstate, int rightstate);

It accepts an external symbol number for a node and the state labels for the node’s
left and right children. It returns the state label to assign to that node. For unary
operators, the last argument is ignored; for leaves, the last two arguments are ignored.
In general, BURG generates a burm_state that accepts the maximum number of child
states required by the input grammar. For example, if the grammar includes no binary

operators, then burm_state will have the signature
extern int burm_state(int op, int leftstate);

This feature is included to permit future expansion to operators with more than two

children.

The user must write the reducer, but BURM writes code and data that help. Primary
is
extern int burm_rule(int state, int goalnt) ;

which accepts a tree’s state label and a goal non-terminal and returns the external rule
number of a rule. The rule will have matched the tree and have the goal non-terminal
on the left-hand side; burm_rule returns zero when the tree labelled with the given state
did not match the goal non-terminal. For the initial, root-level call, goalnt must be

one, and BURM exports an array that identifies the values for nested calls:
extern short *burm_nts[] = { ... };

is an array indexed by external rule numbers. Each element points to a zero-terminated

vector of short integers, which encode the goal non-terminals for that rule’s pattern,

132

left-to-right. The user needs only these two externals to write a complete reducer, but

a third external simplifies some applications:

oxtern NODEPTR_TYPE #burm_kids(NODEPTR_TYPE p,
int eruleno,
NODEPTR_TYPE kids[]);

accepts the address of a tree p, an external rule number, and an empty vector of pointers
to trees. The procedure assumes that p matched the given rule, and it fills in the vector
with the subtrees (in the sense described above) of p that must be reduced recursively:
kids is returned. It is not zero-terminated.

The simple user code below labels and then fully reduces a subject tree; the reducer

prints the tree cover. burm_string is defined below.

parse(NODEPTR_TYPE p) {
burm_label(p); /% label the tree */
reduce(p, 1, 0); /#% and reduce it */

}

reduce (NODEPTR_TYPE p, int goalnt, int indent) {
int eruleno = burm_rule(STATE_LABEL(p), goalnt); /* matching rule # */

short *nts = burm_nts [eruleno] ; /* subtree goal non-terminals */
NODEPTR_TYPE kids[10]; /* subtree pointers */
int i;

for (i = 0; i < indent; i++)

printf("."); /* print indented ... */
printf(*%s\n", burm_string[eruleno]); /* ... text of rule */
burm_kids(p, eruleno, kids); /# initialize subtree pointers */
for (i = 0; nts[i]; i++) /+ traverse subtrees left-to-right */

reduce(kids[i], nts[il, indent+1); /% and print them recursively */

133

The reducer may recursively traverse subtrees in any order, and it may interleave
arbitrary semantic actions with recursive traversals. Multiple reducers may be written,
to implement multi-pass algorithms or independent single-pass algorithms.

For each non-terminal z, BURG emits a preprocessor directive to equate burm_z_NT
with z’s integral encoding. It also defines a macro burm_z.rule(a) that is equivalent

to burm.rule(a,z). For the grammar in Figure A.1, BURG emits

#define burm_reg NT 1
#define burm_con_NT 2
#define burm_addr_NT 3
#define burm_reg_rule(a) ...
#define burm_con_rule(a)
#define burm_addr_rule(a) ...

Such symbols are visible only to the code after the second “4%”. If the symbols burm_z _NT
are needed elsewhere, extract them from the BURM source.
The -I option directs BURG to emit an encoding of the input that may help the

user produce diagnostics. The vectors
extern char *burm_opnamel[];
extern char burm_arity[];

hold the name and number of children, respectively, for each terminal. They are indexed

by the terminal’s external symbol number. The vectors
extern char *burm_string[];
extern short burm_cost[][4];

hold the text and cost vector for each rule. They are indexed by the external rule

number. The zero-terminated vector

extern char *burm_ntnamel[];

134

is indexed by burm.z_NT and holds the name of non-terminal z. Finally, the procedures

extern int burm_op_label (NODEPTR_TYPE p);
extern int burm_state_label (NODEPTR_TYPE p);
extern NODEPTR_TYPE burm_child (NODEPTR_TYPE p, int index);

are callable versions of user-defined configuration macros. burm_child(p,0) implements
LEFT_CHILD(p), and burmchild(p,1) implements RIGHT CHILD (p). A sample use is
the grammar-independent expression burm_opname [burm_op-label(p)], which yields
the textual name for the operator in the tree node pointed to by p.

A complete tree parser can be assembled from just burm_state, burm_rule, and
burm.nts, which use none of the configuration section except PANIC. The generated
routines that use the rest of the configuration section are compiled only if the configu-
ration section defines STATE LABEL, s;) they can be omitted if the user prefers to hide
the tree structure from BUrRM. This course may be wise if, say, the tree structure is
defined in a large header file with symbols that might collide with BURM’s.

BURM selects an optimal parse without doing dynamic programming at compile
time [AJ76]. Instead, BURG does the dynamic programming at compile-compile time,
as it builds BurM. Consequently, BURM parses quickly. Similar labellers have taken as

few as 15 instructions per node, and reducers as few as 35 per node visited [FH91c].

A.4 Debugging

BURM invokes PANIC when an error prevents it from proceeding. PANIC has the same
signature as printf. It should pass its arguments to printf if diagnostics are desired
and then either abort (say via exit) or recover (say via longjmp). If it returns, BURM

aborts. Some errors are not caught.

135

Yterm Const=17 RedFetch=20 GreenFetch=21 Plus=22
W

reg: GreenFetch(green_reg) = 10 (0);

reg: RedFetch(red_reg) = 11 (0);

green_reg: Const = 20 (0);
green_reg: Plus(green_reg,green_reg) = 21 (1);

red_reg: Const = 30 (0);
red_reg: Plus(red_reg,red_reg) = 31 (2);

Figure A.3: A Diverging Tree Grammar

BURG assumes a robust preprocessor, so it omits full consistency checking and error
recovery. BURG constructs a set of states using the algorithm of Chapter 4. BURG con-
siders all possible trees generated by the tree grammar and summarizes infinite sets of
trees with finite sets. The summary records the cost of those trees but actually manipu-
lates the differences in costs between viable alternatives using a dynamic programming
algorithm.

Some grammars derive trees whose optimal parses depend on arbitrarily distant data.
When this happens, BURG and the tree grammar cost diverge, and BURG attempts to
build an infinite set of states; it first thrashes and ultimately exhausts memory and
exits.2 For example, the tree grammar in Figure A.3 diverges, since non-terminals
green_reg and red.reg derive identical infinite trees with different costs. If the cost of
rule 31 is changed to 1, then the grammar does not diverge.

Practical tree grammars describing instruction selection do not cost-diverge because
infinite trees are derived from non-terminals that model temporary registers. Machines

can move data between different types of registers for a small bounded cost, and the

2The -c option sets a threshold to abort processing if the grammar appears to diverge.

136

rules for these instructions prevent divergence. For example, if Figure A.3 included
rules to move data between red and green registers, the grammar would not diverge.
If a bonafide machine grammar appears to make BURG loop, try a host with more
memory. To apply BURG to problems other than instruction selection, be prepared to

consult the literature on cost-divergence [PL88].

A.5 Running BURG

BURG reads a tree grammar and writes a BURM in C. BURM can be compiled by itself
or included in another file. When suitably named with the -p option, disjoint instances

of BurM should link together without name conflicts. The command:

burg [arguments] [file]

invokes BURG. If a file is named, BURG expects its grammar there; otherwise it reads

the standard input. The options include:

-c N Abort if any relative cost exceeds N, which keeps BURG from looping on diverging

grammars. [PLG88, Hen89, BDB90, Pro92] explain relative costs.
-d Report a few statistics and flag unused rules and terminals.
-0 file Write parser into file. Otherwise it writes to the standard output.
-p prefiz Start exported names with prefiz. The default is burm.

-t Generates smaller tables faster, but all goal non-terminals passed to burm rule
must come from an appropriate burmnts. Using burm.z NT instead may give

unpredictable results.

137

-I Emit code for burm_arity, burm_child, burm.cost, burm_ntname, burm.op-label,

burm_opname, burm_state_label, and burm_string.

-0 N Change the principal cost to N. Elements of each cost vector are numbered from

Zero.

Compare costs lexicographically, using all costs in the given order. This option
slows BURG and may produce a larger parser. Increases range from small to

astronomical.

A.6 Acknowledgements

The first BURG was adapted by the second author from his CODEGEN package, which
was developed at the University of Washington with partial support from NSF Grant
CCR-88-01806. It was unbundled from CODEGEN with the support of Tera Computer.
We wrote the current BURG with the support of NSF grant CCR-8908355. The interface,
documentation, and testing involved all three authors.

Comments from a large group at the 1991 Dagstuhl Seminar on Code Generation im-
proved BURG’s interface. Robert Giegerich and Susan Graham organized the workshop,
and the International Conference and Research Center for Computer Science, Schloss
Dagstuhl, provided an ideal environment for such collaboration. Beta-testers included

Helmut Emmelmann, Dave Hanson, John Hauser, Hugh Redelmeier, and Bill Waite.

Bibliography

[AGSS5]

[AGTS9]

[AJ76]

[AJUTT]

[App87]

Alfred V. Aho and Mahedevan Ganapathi. Efficient tree pattern matching:
An aid to code generation. In Proceedings of the 12th Annual Symposium on

Principles of Programming Languages, pages 334-340, January 1985.

Alfred V. Aho, Mahedevan Ganapathi, and Steven W. K. Tjiang. Code gen-
eration using tree matching and dynamic programming. ACM Transactions

on Programming Languages and Systems, 11(4):491-516, October 1989.

A. V. Aho and S. C. Johnson. Optimal code generation for expressions trees.

Journal of the ACM, 23(3):488-501, July 1976.

A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions
with common subexpressions. Journal of the ACM, 24(1):146-160, January

1977.

Andrew W. Appel. Concise specifications of locally optimal code generators.
Technical Report CS-TR-080-87, Princeton University, Dept. of Computer

Science, Princeton, New Jersey, February 1987.

[BCKT89] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Col-

oring heuristics for register allocation. In Proceedings of the SIGPLAN 89

138

[BDBY0]

[BeaT74]

[BEH91]

[BIR8Y)

[BL92]

[BMWS87]

139

Conference on Programming Language Design and Implementation, pages

275284, 1989.

A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable
code generation using bottom-up tree pattern matching. Computer Lan-

guages, 15(3):127-140, 1990.

J. C. Beatty. Register assignment algorithm for generation of highly opti-
mized object code. IBM Journal of Research and Development, 18(1):20-39,

January 1974.

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register
allocation and instruction scheduling for riscs. In Fourth International Con-
ference on Architectural Support for Programming Languages and Operating

Systems, April 1991.

David Bernstein, Jeffrey M. Jaffe, and Michael Rodeh. Scheduling arithmetic
and load operations in parallel with no spilling. STAM Journal on Computing,

18(6):1098-1127, December 1989.

Thomas Ball and James R. Larus. Optimally profiling and tracing programs.
In Proceedings of the 19th Annual Symposium on Principles of Programming

Languages, pages 59-70, January 1992.

Jiirgen Borstler, Ulrich Ménche, and Reinhard Wilhelm. Table compression
for tree automata. Technical Report Aachener Informatik-Berichte 87-12,

Fachgruppe Informatik, Aachen, Fed. Rep. of Germany, 1987.

140

[BPR84] David Bernstein, Ron Y. Pinter, and Michael Rodeh. Optimal scheduling

of arithmetic operations in parallel with memory access. In Proceedings of
the 12th Annual Symposium on Principles of Programming Languages, pages

325-333, January 1984.

[CAC*81] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cooke, M. E. Hopkins,

[CH90]

[Cha82]

[Cha87]

[CK91]

[Cof76]

and P. W. Markstein. Register allocation via graph coloring. Computer

Languages, 6:47-57, January 1981.

Fred C. Chow and John L. Hennessy. The priority-based coloring approach
to register allocation. ACM Transactions on Programming Languages and

Systems, 12(4):501-536, January 1990.

G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings
of the ACM SIGPLAN ’82 Symposium on Compiler Construction, pages 98—

101, June 1982,

David R. Chase. An improvement to bottom-up tree pattern matching. In
Proceedings of the 14th Annual Symposium on Principles of Programming

Languages, pages 168-177, 1987.

David Callahan and Brian Koblenz. Register allocation via hierarchical graph
coloring. In Proceedings of the SIGPLAN 91 Conference on Programming

Language Design and Implementation, pages 192-203, June 1991.

E. G. Coffman, Jr., editor. Computer and Job-Shop Scheduling Theory. John

Wiley and Sons, 1976.

[ESL8Y]

[FH91a]

[FH91b)

[FH91c]

[FHP91]

[FL88]

[Fre74]

(GHSS]

141

Helmut Emmelmann, Friedrich-Wilhelm Schréer, and Rudolf Landwehr.
BEG—a generator for efficient back ends. In Proceedings of the SIGPLAN ’89
Conference on Programming Language Design and Implementation, pages

227-237, 1989.

Christopher W. Fraser and David R. Hanson. A code generation interface
for ANSI C. Software—Practice and Ezperience, 21(9):963-988, September

1991.

Christopher W. Fraser and David R. Hanson. A retargetable compiler for

ANSI C. SIGPLAN Notices, 26(10), October 1991.

Christopher W. Fraser and Robert R. Henry. Hard-coding bottom-up code
generation tables to save time and space. Software— Practice and Ezperience,

21(1):1-12, January 1991.

Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG
— fast optimal instruction selection and tree parsing. SIGPLAN Notices,

27(4):68-76, April 1991.

Charles N. Fischer and Richard J. Leblanc, Jr. Crafting a Compiler. Ben-

jamin/Cummings, Menlo Park, California, 1988.

R. A. Freiburghouse. Register allocation via usage counts. Communications

of the ACM, 17(11), November 1974.

James R. Goodman and Wei-Chung Hsu. Code scheduling and register allo-
cation in large basic blocks. In International Conference on Supercomputing,

July 1988.

[GIT9)

[GMS6]

[Han90]

[HC86]

[Hen89]

[HFG89)]

[HG82]

142

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Phillip B. Gibbons and Steven S. Muchnick. Efficient instruction scheduling
for a pipelined architecture. In Proceedings of the SIGPLAN ’°86 Symposium

on Compiler Construction, pages 11-16, 1986.

David R. Hanson. Fast allocation and deallocation of memory based on
object lifetimes. Software—Practice and Ezperience, 20(1):5-12, January

1990.

Philip J. Hatcher and Thomas W. Christopher. High-quality code generation
via bottom-up tree pattern matching. In Proceedings of the 13th Annual

Symposium on Principles of Programming Languages, pages 119-130, 1986.

Robert R. Henry. Encoding optimal pattern selection in a table-driven
bottom-up tree-pattern matcher. Technical Report 89-02-04, University of

Washington, 1989.

Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the min-
imization of loads/stores in local register allocation. IEEE T ransactions on

Software Engineering, 15(10):1252-1260, 1989.

John L. Hennessy and Thomas R. Gross. Code generation and reorganization
in the presence of pipeline constraints. In Proceedings of the 9th Annual

Symposium on Principles of Programming Languages, pages 120-127, 1982.

[HG83]

[HO82]

[Hu61]

[KFP92]

[Kro75]

[LHS6]

[LLM+87]

[Mor91]

143

John L. Hennessy and Thomas R. Gross. Postpass code optimization of
pipeline constraints. ACM Transactions on Programming Languages and

Systems, 5(3):422-448, July 1983.

Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in

trees. Journal of the ACM, 29(1):68-95, January 1982.

T. C. Hu. Parallel sequencing and assembly line problems. Operations Re-

search, 9(6):841-848, 1961.

Steven M. Kurlander, Charles N. Fischer, and Todd A. Proebsting. Extended
delayed-load scheduling. Technical report (in preparation), University of

Wisconsin, 1992.

H. Kron. Tree Templates and Subtree Transformational Grammars. PhD

thesis, University of California, Santa Cruz, 1975.

J. R. Larus and P. N. Hilfinger. Register allocation in the SPUR lisp compiler.
In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction,
pages 255263, 1986.

Eugene Lawler, Jan Karel Lenstra, Charles Martel, Barbara Simons, and
Larry Stockmeyer. Pipeline scheduling: A survey. Computer science research

report, IBM Research Division, 1987.

W. G. Morris. CCG: A prototype coagulating code generator. In Proceed-
ings of the SIGPLAN ’91 Conference on Programming Language Design and

Implementation, pages 45-58, 1991.

[PF91]

[PF92]

[PH90]

(PL88]

[PLGSS]

[Pro92]

[PS90]

144

Todd A. Proebsting and Charles N. Fischer. Linear-time optimal code
scheduling for delayed-load architectures. In Proceedings of the SIGPLAN
’91 Conference on Programming Language Design and Implementation, June

1991.

Todd A. Proebsting and Charles N. Fischer. Probabilistic register allocation.
In Proceedings of the SIGPLAN ’92 Conference on Programming Language

Design and Implementation, June 1992.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers, Palo Alto, California, 1990.

Eduardo Pelegri-Llopart. Rewrite Systems, Pattern Matching, and Code
Generation. Phd Thesis, Technical Report UCB/CSD 88/423, Computer

Science Division, University of California, Berkeley, 1988.

Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation
for expression trees: An application of BURS theory. In Proceedings of the
15th Annual Symposium on Principles of Programming Languages, pages

294-308, 1988.

Todd A. Proebsting. Simple and efficient burs table generation. In Proceed-
ings of the SIGPLAN ’92 Conference on Programming Language Design and

Implementation, June 1992.

Krishna Palem and Barbara Simons. Scheduling time-critical instructions on
RISC machines. In Proceedings of the 17th Annual Symposium on Principles

of Programming Languages, pages 270-280, 1990.

[SU70]

[Wai9l]

[Wal86]

[War90]

145

Ravi Sethi and J. D. Ullman. The generation of optimal code for arithmetic

expressions. Journal of the ACM, 17(4):715-728, October 1970.
William Waite. Personal communication. (Electronic mail), December 1991.

David W. Wall. Global register allocation at link time. In Proceedings of the

SIGPLAN ’86 Symposium on Compiler Construction, pages 264-275, 1986.

H. S. Warren, Jr. Instruction scheduling for the IBM RISC system/6000

processor. IBM Journal of Research and Development, 34(1):85-92, 1990.

