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Abstract

We examine a very simple asynchronous model of parallel computation that assumes the
time to compute a task is random, following some probability distribution. The goal of this
model is to capture the effects of unexpected delays on processors.

Using techniques from queueing theory and occupancy problems, we use this model to
analyze two parallel dynamic programming algorithms. We show that this model is both
simple to analyze and realistic in the sense that the analysis corresponds to experimental
results on a shared memory parallel machine.

The algorithms we consider are a pipeline algorithm, where each processor ¢ computes
in order the entries of rows i, ¢ + p and so on, where p is the number of processors; and a
diagonal algorithm, where entries along each diagonal extending from the left to the top of

the table are computed in turn.
It is likely that the techniques used here can be used in the analysis of other algorithms

that use barriers or pipelining techniques.

1 Introduction

Parallel algorithms can suffer significant slowdown due to unpredictable delays in the system.
These delays include such things as bus contention, cache misses, and communication delays.
Unpredictable delays lead to starvation of processors. Starvation occurs anytime a processor is
ready to work, but cannot. For example, a processor may be forced to wait at a synchronization

point because the unpredictable delays have delayed another processor.
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Analytically predicting the increase in running time of an algorithm due to unpredictable
delays is an important task because it provides a basis for deciding which of a set of algorithms
is best for a particular system. However, there is no consensus on how best to do this. What is
needed is a model of computation that is simple, general and realistic. By simple, we mean the
model should be easy to use and analyze. By general, we mean the model should work for all
algorithms, or at least all algorithms on a given architecture. By realistic, we mean the analysis

should accurately reflect an experimental measure of the algorithm’s performance.

We examine a very simple asynchronous model of parallel computation that assumes the
time to compute a task is random, following some probability distribution. With this model, we
analyze two parallel dynamic programming algorithms using techniques from queueing theory
and occupancy problems. We present empirical evidence that the analysis using the model
is realistic. While this analysis does not prove the generality of the model, it is likely that
the techniques used here can be used in the analysis of other algorithms that use barriers or

pipelining techniques.

We view the dynamic programming problem as that of computing entries in a large table,
say of dimension n X m, where the computation of entry (4,j) depends on the results of its
predecessors, which are entries (7 — 1,5),(i — 1,7 — 1) and (1,7j—1),1<i<n1<j<m
(The entries in the first row and column have only 1 predecessor.) Dynamic programming
algorithms are good to study because dynamic programming is a very common algorithmic
technique (it is used, for example, to solve the Knapsack problem [9], the Longest Common
Substring problem [23], queueing network models [1], and DNA sequence alignment [17]), and
there are many possible parallel algorithms to implement it. The two dynamic programming
algorithms we will examine are the pipeline and diagonal algorithms. While experiments show
that their performance is generally much different on the same input data, synchronous models
of parallel computation, such as the PRAM [5] [8] [21], give the same time complexity for both
algorithms. A useful asynchronous model must capture the difference.

In the pipeline algorithm, when the number of processors is p, the ith processor computes the
entries in rows ¢, i+4p, ..., in order. A processor can compute an entry as soon as its predecessors
are computed. (We assume that processors can test whether the predecessors of an entry are
already computed, using locks, for example.) Almquist et al. [1] used this algorithm in solving
the longest common substring problem and a problem on queueing network models. In the
diagonal algorithm, entries along each diagonal extending from the left side to the top of the
table, are computed in turn. Within each diagonal, each processor computes approximately
1/p of the entries. The computation of the entries along a diagonal is not started until all
entries along the previous diagonal are computed. This can be accomplished using barriers, for
example. Lander et al. [12] proposed this parallel algorithm for protein sequence alignment.
The difference between the algorithms is that in the diagonal algorithm, all processors are forced

to wait at a barrier, whereas in the pipeline algorithm, a processor can compute an entry once




its predecessors are computed.

In our random model, the time required to compute an entry in the table, given that its
predecessors have already been computed, is exponentially distributed with mean 1/p, where p
is some constant, 0 < y < co. For the diagonal algorithm, we also extend our analysis to some

other distributions.

The running time of an algorithm is the time to compute all the entries in the table. OQur
model is intended simply to capture the amount of starvation of processors due to unpredictable
delays in a parallel system, which we know to be a significant cost of dynamic programming
algorithms. We ignore other costs of an algorithm, such as the operating system overhead
involved in synchronization. The results of our analysis can be used, together with estimates

of these other costs, in an overall evaluation of an algorithm.

One would expect the pipeline algorithm to perform better than the diagonal algorithm
because in the pipeline algorithm a processor can proceed to compute an entry as soon as its
predecessors are computed, whereas in the diagonal algorithm a processor must wait until all
processors complete the jth diagonal before working on the (j + 1)st diagonal. Our experi-
mental results (on a 20 processor Sequent Symmetry, a shared memory parallel machine) show
that this difference in running times is largely attributable to the unexpected delays when the
algorithms are running on large datasets. While the pipeline algorithm always outperforms
the diagonal algorithm, as datasets get larger the diagonal algorithm actually has less synchro-
nization overhead than the pipeline algorithm. Thus, our analysis is examining the important

factor influencing the difference in running times.

The analysis accurately provides a separation in expected running time of the two algo-
rithms, based on the effects of random delays on the two algorithms. Our empirical results on
a shared memory machine show that the analysis is realistic, and that unexpected delays are

the significant factor in the running time gap of the two algorithms.

1.1 Related Work

Various models have been proposed to analytically predict the increase in running time of an
algorithm due to unpredictable delays. One model, used by Anderson et al. [2] in analyzing dy-
namic programming algorithms on small, asynchronous parallel machines, allows an adversary
to control the delays of the processors. Such a model may be useful for predicting the worst

case performance of an algorithm.

Another approach is to make the running time of a task in the computation a random
variable. Nishimura [19], Cole and Zajicek [4] and Martel et al. [16] described general models
of asynchronous parallel computation with such random delays. This approach appears to be
a promising one, when one wants to estimate the performance of an algorithm on an aver-

age run, rather than in the worst case. Our simple model follows this approach. Our work



extends the above results both by considering actual algorithms rather than parallel program-
ming paradigms and by providing empirical evidence that the analysis is realistic.

There is precedent for the use of the exponential distribution in predicting the performance
of parallel programs. As early as 1983, Fromm et al. [6] used a stochastic model to analyze
the performance of a parallel system, the Erlangen General Processor Array. The time needed
to execute an instruction in this system depends on delays due to memory conflicts. Thus,
the time for an instruction is modeled as a random variable. Different distributions were
considered, including constant, exponential and “phase-type” distributions, and the results of
the analysis were compared with experimental results. The authors concluded that the analysis
using the exponential distribution compared favorably with experimental results. Another
more tecent example is the work of Mak and Lundstrom [14], who describe analytic models
for predicting the performance of a parallel program represented as a task graph with series-
parallel structure, where the time to execute a task is exponentially distributed. Our work on
the diagonal algorithm extends their results on series-parallel graphs, while our work on the
pipeline algorithm provides tools for predicting the performance of task graphs with a mesh
structure, where dependence between the tasks is much more complex than in a series-parallel

graph.

Kruskal and Weiss [10] analyzed the expected running time of p processors working on a
pool of n subtasks. Each subtask could be done independently. They were interested in finding
the best way to allocate the subtasks to each of the p processors, and concluded that giving
an equal number of subtasks to each processor all at once has good efficiency. Their result on
the expected running time of the p processors is equivalent to the expected running time on a
single diagonal of the diagonal algorithm, when p is o(n), but more than a constant. Our work
extends their result to give an upper bound for computing an entire table in this case, and also
gives results for constant p and for p = ©(n). The pipeline analysis examines processors that

are interacting, a case not considered in their work.

1.2 Overview of Results
1.2.1 Theoretical analysis

Our analytic results show that the expected running time of the diagonal algorithm is signifi-

cantly worse than the expected running time of the pipeline algorithm.

To get an idea of how our results on the two algorithms compare, Table 1 presents our
results for three cases of p, in the special case when the table is of size n X n, and p = 1. The
table gives a lower bound on the expected running time of any algorithm in a large class of
static algorithms (defined below), which includes both the diagonal and pipeline algorithms. It
also gives an upper bound on the expected running time of the pipeline algorithm, and a lower




bound on the expected running time of the diagonal algorithm. In each case, the lower bound

of the diagonal algorithm is larger than the upper bound of the pipeline algorithm.

p a constant p=+n p=n
lower bound, any dp algorithm n?/p+ O(1) ny/n + 0(y/n) 2n -1
upper bound, pipeline n?/p+2n+ 0(1) | ny/n+2n + O(/n) dn
lower bound, diagonal n?/p+2nH,_, ny/n 4+ nlogn —3 | 2nlogn + ©(nloglogn)

Table 1: Analytic results for three cases of p (n X n table, p = 1)

The first analytic result is a simple lower bound on the expected running time of a general
class of static algorithms. In these algorithms, each processor is assigned a sequence of table
entries, where the assignment of processors to entries is fixed before execution of the algorithm.
A processor computes each entry of its sequence in turn and is ready to compute the kth entry in
the sequence once it has completed the computation of the (k — 1)st entry and all predecessors
of the kth entry are computed. In Section 2 we show that a lower bound on the expected

running time of a static dynamic programming algorithm with p processors on an n X m table
is (mn/p+p—1)/p.

Our general bound on the expected running time of the pipeline algorithm, presented in
Section 3, is obtained by modeling the algorithm as a queueing process, and applying results

from queueing theory on cyclic queues. For any p < n, our upper bound is

.;1; <m[n/p] +(p-1) +2m) :

Our results on the diagonal algorithm, presented in Section 4, are obtained using quite
different methods. For constant p and p = ©(n), we relate the expected running time of the
diagonal algorithm to the solution of a well-known occupancy problem and use this relationship
to obtain asymptotic estimates on the expected running time. When p is between these two
extremes, we extend a result of Kruskal and Weiss [10] on the expected running time of p
processors on k subtasks to obtain an upper bound. The following summarizes the resulting

asymptotic estimates on the expected running time of the diagonal algorithm.

As n — oo, the expected running time of the diagonal algorithm with p processors on an

n X m table, n < m, is

1. ~ mn/(up) + ©(m), when p is a constant,

2. ~ (m+ n)(logp)/u + ©(mloglogp), when p = O(n), and

3. < mn/(up)+0O(mnt/?logn), when (plog p)+¢ = O(n®*), where € is any positive constant.

Finally, for any p < n, we obtain a lower bound on the expected running time of the diagonal



algorithm, which is
1
2 ((mn + ap = 1))/p+ (m+ 0+ )(Hps = 2)

(H, denotes the pth harmonic number, defined as 37_, 1/ [20].)

1.2.2 Summary of Experiments

The two algorithms were timed on the Sequent Symmetry, a shared memory parallel machine
that has twenty processors. Details of the experiments are given in Section 5. Experiments

were run using 1, 4, 10 and 13 processors.

The pipeline algorithm performed up to 8% faster than the diagonal algorithm. On four
processors, unexpected delays in the system accounted for at least 75% of the slowdown experi-
enced by the diagonal algorithm, and at least 30% of the slowdown experienced by the pipeline
algorithm. On ten processors, they accounted for at least 65% and 17% respectively, and on
thirteen processors, they accounted for at least 60% of the slowdown on the diagonal algorithm

and 13% of the slowdown on the pipeline algorithm.

The experiments also show that the difference in running time of the two algorithms is
largely attributable to the random delays, when the algorithms are running on large datasets.
Factoring out the time spent waiting in each of the algorithms and comparing only the overhead
of synchronization (i.e. the actual time spent calling a lock or barrier), we find that as datasets
get larger, the overhead of the diagonal algorithm is actually lower than that of the pipeline
algorithm.

2 Lower Bound for Static Algorithms

Lemma 2.1 A lower bound on the ezpected running time of a static dynamic programming

algorithm with p processors on an n X m table is (mn/p+p—1)/p.

Proof: A trivial lower bound on the expected running time of an algorithm is mn/(up),
since some processor must compute at least mn/p entries, and the expected time to compute
each of them is 1/u. We can improve this lower bound to prove the lemma, by taking into
account the fact that at the start and end of the computation, not all processors can be actively

computing entries.

In what follows, it is useful to refer to the set of entries {(4,5) | ¢ + j = d + 1} as the dth
diagonal of the table. We partition the computation into three phases. The first phase of the
computation lasts until all the entries (1,1),(2,1),...(p—1,1) are computed. The second phase
of the computation lasts from the end of the first phase, until all the entries lying in diagonal




pumber n + m — p are computed. The third phase begins when the second phase ends and lasts

to the end of the computation.

Since the entries (1,1),(2,1),...,(p— 1, 1) must be computed sequentially, the expected
time to complete the first phase is at least (p — 1)/p. The computation of any entry in the
pth diagonal cannot be started until the first phase is completed. Hence, in the second phase,
all entries between diagonals numbered p and n + m — p must be computed. Thus at least
mn — p(p — 1) entries are computed in the second phase. The expected time to do this is at
least (mn— p(p—1))/(up), since some processor must compute at least mn — p(p — 1)/p entries
and the expected time to do each one is 1 /p. Finally, suppose that entry e is the last entry to
be computed in the second phase. Then entry e lies on diagonal n + m — p. There is a path of
p — 1 entries from this entry e to the bottom right entry of the table, such that the entries on
this path must be computed sequentially in order. The expected time to do these entries is at
least (p — 1)/p.

Hence the total expected time is at least

7nn—p(p—1)+2p-—1 1

“{mn/p+p~-—1).
e p #( /p+p-1)

3 Analysis of Pipeline Algorithm

We model the exccution of the pipeline algorithm as a cyclic queueing system. Suppose that
p customers are served eternally by first-come-first-served servers with unbounded queues,
numbered 1,...z, where a customer is served by the (i mod = + 1)st server after it has been
served by the ith server. We assume that the system is in steady-state and that service times
are all exponentially distributed with mean 1 /u. The following lemma, which follows from a
result of Lavenberg and Reiser [13], gives the expected time for a customer to be served s times.

Lemma 3.1 In a steady-state cyclic queue system with z servers, p customers and exponen-
tially distributed service times at each server with mean 1/p, the expected time for a customer

to be served s times is l
s p—1
{1+ —).
214+ 220)

If ¢ = m, there is a natural correspondence between the cyclic p-customer problem and the
pipeline algorithm. We next describe this correspondence informally, and then formalize the

relationship in Lemma 3.6.

In the pipeline algorithm, there are two stages of the computation. The first is the start-up
stage, which extends from the start of the algorithm until the (p — 1)st processor has computed
one cell. The second stage extends from the end of the first stage until the end of the algorithm.



Suppose we observe the queueing system when in the steady state, and we let the first server be
the one that the first customer is at, when we start observing the system. The first stage of the
pipeline algorithm corresponds to the period of time, from the point at which we observe the
system, until the time that the pth customer arrives at the queue of the first server. To model
the second stage of the computation, the computation of cell (4, j) by processor (i—1) mod p+1
corresponds to the service of the ((i — 1) mod p + 1))st customer for the [¢/p]th time by the

jth server.

Because the queueing system is cyclic, it is guaranteed that the first customer is never
more than m servers ahead of the pth customer. This is important in modeling the algorithm,
since the constraints of the algorithm imply that number of table entries computed by the first
processor can never be more than m greater than the number computed by the pth processor.
If the queueing system has z servers, where z < m, the first customer is no more than z servers
ahead of the pth customer. In this case, we can we can still model the algorithm to get an upper
. bound on its running time, since the constraints on the customers in the queueing system are
more restrictive than those on the processors executing the algorithm.

To make this precise, let S(k, j) be the time for customer k to reach server 1 and then to be
served j times after it has arrived in the queue of server 1. Let C(k, j) be the time needed for
processor k to compute its first j entries of the table, when executing the pipeline algorithm.
We claim in Lemma 3.5 that C(k,5) < §(k, j). Since C(k, j) and $(k, j) are random variables,
to prove this we neced the following definitions and results on stochastic ordering of random

variables.

Definition 3.1 Let X and Y be real random variables. We say X <Y if for all real t,

Pr[X > 1] < Pr[Y > 4.

Let X1,...,Xn,Y1,...,Y, be real random variables. We say (X1y.. 0y Xn) (Y, Y0) if

for all increasing functions ¢ : R" — R,

¢(XA17 .. '7Xn) S ¢(Y17 . '7Yn)-

Lemma 3.2 Suppose that Xi,...,X, are independent random variables and Yy,...,Y, are
independent random variables, such that X; <Y;, 1 <t < n. Then

X1y s Xn) < (Ya, .-, V)

Lemma 3.3 Suppose that Xi,...,X, are random variables and Y1,...,Y, are random vari-
ables, such that X; < Y, and for 2 < i < n and all w < v, where u, v are real vectors in
Ri—l
?
P‘T‘[.Yi >1 ‘ (Xl,...,X,'._l) = '(.L] < P'l'[y', >1 l (‘Y'h"',},i-l) = ’U].

Then, (X1, .., Xn) < (Yi,...,Yn).




Lemma 3.2 is a special case of Lemma 3.3; both can be found in Marshall and Olkin [15].
See Arjas and Lehtonen [3] for a simple proof of Lemma 3.3. We extend these to prove a third

useful lemma.

Lemma 3.4 Let X1,..., Xn, Y1,...,Y, be random variables such that (X1, ..., Xn) < (Y1,.. LY.
Let 7 and Z' be independent random variables, Z < Z', such that both are also independent
of the X;’s and Y;’s. Let f and f' be increasing functions from R" to R such that on any
randomly chosen instance (T1,...,%n) 0f (X1y.0 02 Xn), f(Z15-0 04 2,) < fl(21y 0005 Tn)-

Then
(.Xl,...,,Xn,f(.Xl,...,X,,) +2)< (Y},...,Y,.,f’(Yl,...,Y,,)+ z".

Proof: We first show that (Xi,...,Xn, f(X1,.--,Xn)) < 0. CHD. &% [0, CHINS, ¢4) B
Let ¢ : R™!' — R be any increasing function. Then on any random (zy,...,%,), since

f(@1yee s za) S J(Z15-- 5 Tn),
d)(:vl,...,a:n,f(ml,...,a:,,)) < ¢(m1,...,a:n,f'(:vl,...,mn)).
Hence
Pri(Xa, ooy X, [(X1y-- oy Xn)) > 1] < Pri¢(Xiy. o s Xny f1(Xns. c Xn) >t
which proves that

(Xty e os X f(Xiye ey Xn) € (XKoo oy Xy f( X1, -, Xn)). (1)

We next show that (Xi,..., Xno (X1, X0)) < (Y1,..o Ya, f'(Y1,...,Ys)). This fol-
lows from the fact that if ¢ is an increasing function, then ¢(X1,- .., Xn, f'(X1,-. 5 Xa)) =
#'(Xy,...,Xn), where ¢' is a different increasing function. Since (Xj,.. LX) <M, Yo),

#(X1yeo s X)) S ¢V, Y0

Hence, ¢(X1,- .., Xn, f'(X1, .. 0 Xn) € d(YVh,. ., Yo, fI(Ya, - .,Y,)). This, together with (1),
immediately imply that

(X1, Xy f(X1yee ey X)) < (Y1, Yo, (Y1, ., ¥2))
From this and Lemma 3.2, it follows that
(Xiyenoy Xny f(X1y .00y X0), Z) < (lﬁ,...,Y,,,f’(Yl,...,Y,,),Z’). (2)
Finally, note that if ¢ is an increasing function, then

H(X1yeeoy X (X1, s Xn) + 2) = #(X1y. s Xy f( X1y Xn), D),



where ¢' is also an increasing function. We can thus deduce from (2) that
(X1yeeey Xy (X1, ., X))+ 2Z) £ (Y1, os Yu, /(Y1,..., Ya) + 2').

=]

We can now proceed to show that C(k,j) < S(k, j), where C(k,7) is the time for processor
k to compute its jth entry and S(k,j) is the time for customer k to arrive at the queue of the

first server for the first time and to be seved j times after that.
Lemma 3.5 C(k,7) < S(k,j), foranyj > 1 and1 <k <p.

Proof: Order the tuples (k,j) as follows: (¥,j') < (k,j) if ' < j, or j'=jand K < k.
We prove by induction on the ordered pairs (k,j) that

(C(1,1),...,C(k, 1)) £ (S(1,1),-.-, S(K, 1))-

The lemma immediately follows from this. Throughout, we denote by E, an exponentially
distributed random variable with mean p. The basis is when j = k = 1. In this case, c(1,1) =
S(1,1) = E,, which clearly implies that C(1,1) < 5(1,1).

Next, suppose that j = 1,k > 1 and (C(1,1),...,C(k=1,1)) < (8(1,1),...,8(k - 1,1)).
Then, if (w1, ..., %e-1) < (V1,-- ., Uk_1), we claim that

Pr[C(k,1) > t]| C(1,1) = uy,...,C(k=1,1) = Up—1] <

PrS(k,1) > t] 8(1,1) = vy,...,S(k = 1,1) = vea]. (3)

From this, Lemma 3.3 immediately implies that (C(1,1),...,C(k,1)) < (5(1,1),...,5(k,1)).
To prove (3), note that C(k,1) = E, + C(k — 1,1), since the time until processor k computes
its first entry is the time for processor k — 1 to complete the computation of its first entry, plus
the actual time to compute an entry, which is E,. Thus, the probability that C(k—1,1) > ¢
given that C(k —1,1) = w;_; is exactly the probability that E, >t —uz—;. On the other hand,
S(k,1) > E, + S(k —1,1). This is because the time until the kth customer is served by server
1 is the time for the (k — 1)st customer to be served, which is S(k—1,1), plus the time to serve
the kth customer once it reaches server 1, which is E,, plus the elapsed time from the point at
which customer k — 1 is served and the time that customer k arrives at the queue, (which we
do not account for). Hence the probability that S(k,1) > ¢, given that S(k—1,1) > v_1,1s at
least the probability that E, > t — vg_;. This is at least the probability that E, > ¢ - ugz_1,
since Up—1 < Vp—1-

This completes the argument when j = 1. We next prove that the lemma is true for
(k,j) assuming that (C(1,1),...,C(K,5")) < (5(1, 1),...,5(K', "), where (K',j) = (k — 1,7)
if £ > 1and (Kj') = (p,j—1) if k = 1. To do this, we show that C(k,j) can be ex-
pressed as f(C(1,1),...,C(K,j"))+Z and S(k,j) can be expressed as f'(S(1,1),...,S(K,j')+

10




7', where f and f' have the following properties. Both f and f' are increasing functions
such that on a random instance (cy1,...,cr,jr) of (C(1,1),.. HC(K,5)), flentse oscrjr) <
f'(e11y---sCrrjr)- Also, Z and Z' are independent random variables, and both are independent
of C(1,1),...,C(¥,5") and 5(L,1),..., S(k',j"). Then the result follows immediately from
Lemma 3.4. There are a number of cases.
Case (i): k = 1, j < z. Then, C(1,j) = E, + C(1,j—1) and S(1,5) = E, + (1,5 - 1).
Case (ii): k = 1, z < j < m. Then,

C(1,) = Ey +C(L,4 — 1) and 5(1,5) = B, + max(5(1,5 - 1), S(p,5 - ©)).

Case (iii): k=1, j > m. Then,

Cc(1,j) = E, + max(C(1,5 - 1),C(p,j — m)) and §(1,j) = E, + max(§(1,j - 1), S(p,j—x))-

Case (iv): k > 1. Then,
C(k,j) = E, + max(C(k,j —1),C(k - 1,5)) and S(k,j) = E, + max(S(k,j — 1),5(k - 1,5))-
In all cases, Z = Z' = E,. In cases (i) and (iv), f = f'. In case (i),
fleray- i) =crj-1 < max(cy j-1,Cpj-z) = F (€1,15+ 42 Ch131)-
Finally, in case (iii),
Fer1y- ey Chrjr) = max(€1 o1y Cpj-m) < max(cy j1,Cpj-z) = F'(€1,15 -+ ) Ch1j)-

In this case, the middle inequality follows from the fact that on any random instance (¢1,1,- -5 Crrjr)
of (C(1,1),...,C(K', j"), it must be the case that ¢, j-m < €pj-a- This is because the pth pro-
cessor must compute the (j — m)th entry before computing the (j — z)th entry, since z < m.
O

Lemma 3.6 The running time of the pipeline algorithm using the random delay model is at
most the time for a customer to be served z—1 +m[n/p] times in the cyclic p-customer problem

with ¢ < m servers, when the system is in the steady-state.

Proof: From lemma 3.5, the running time of the pipeline algorithm, which is at most
C(p,m[n/p]), is at most S(p,m[n/p]). We now show that S(p,m[n/p]) is at most the time
for a customer to be served z — 1+ m[n/p] times.

Note that S(p,m[n/p]) is the time for customer p to reach server 1, plus the time for
customer p to be served m[n/p] times, once it has reached the queue of server 1. The time for
customer p to reach the queue of server 1 is at most the time for a customer to be served by
z — 1 servers. This is because customer p must pass through at most = — 1 servers before being
served by server 1 for the first time. Hence, S(p,m[n/ p]) is at most the time for a customer

to be served & — 1 + m[n/p] times, as required. O

11



Theorem 3.1 The expected running time of the pipeline algorithm is at most

% (mfafol + -1+ 2\/mla/pl(p 1)

Proof: From Lemmas 3.1 and 3.6, it follows directly that for any positive integer z < m,
the expected time of the pipeline algorithm is at most

2@ = 1+min/p)(1+ )

This is at most
m[n/p|(p - 1))_
T

1

La =14 min/pl + (o= D+
To minimize this expression, we choose z = [\/ m|n/p|(p - 1)] This gives the bound stated
in the theorem. 0O

4 Analysis of Diagonal Algorithm

In this section, we analyze the diagonal algorithm for dynamic programming on our random
model. On an n X m table, the diagonal algorithm proceeds in iterations. At the dth iteration,
the entries on the dth diagonal are computed, where the dth diagonal is the set of entries (2, )
such that i + j = d 4+ 1. If there are j entries in the diagonal, then ! processors compute
|(5 — 1)/p| + 1 entries and p — I processors compute |(j — 1)/p| entries, where | = j — p[i%lj.
In Section 4.1, we prove a general lower bound on the expected running time of the diagonal
algorithm. In Section 4.2, we obtain asymptotic estimates for the expected running time of
the diagonal algorithm for different values of p, the number of processors, using results on
the solution of a well known occupancy problem. In Section 4.3, we relax the assumption of
an exponential distribution for certain values of p. This also yields a better result for the

exponential distribution in the case of (plogp)'*® = O(n3/*).

Before measuring the expected running time of this algorithm on our random model, it is
useful to first compute its running time on a simpler, non-random model, in which every entry
can be computed in exactly 1 time unit. In this case, the total time required by the algorithm

is

2’;\_'?;(1" 1y 02t ).

p i=n p

In the first sum, the first p terms are 1, the next p terms are 2, and so on. Hence the first

sum can be rewritten as follows.

Z([i;lj+l)=]7(l+2+...+LE%—lJ)+(n—1—p|_n;1J)(Ln;1J+1),
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Hence, the total running time is
n— n—1
P

p

ol J+1 + (m=n+ DIE+ D)

1, n—1 ‘ n—1
JET+ D +2n =15

n-—1
4

= (1P Dt n =152,

Note that if p divides , this quantity is (mn + n(p — 1))/p. Also, (mn+n(p—1))/pis 2
lower bound on the total running time even when n does not divide p.

In our random model, the expected running time of the diagonal algorithm is

p—1 n-1 m
25 T(5,i)+2Y T(p,i) + D_T(p,n),

i=1 i=p i=n
where T'(p, j) is the time for p processors to complete an iteration in which the diagonal contains
j entries, where p < j. We first obtain an expression for the quantity T(p,7). The time for
any one processor to compute k = [1';;1] entries is the sum of k i.i.d. random variables, each
of which is exponentially distributed with mean 1 /p. This sum has a gamma distribution with
parameters p and k. That is, density function for the time for a processor to compute k entries
is (uk/T(k))t*~te 1 > 0, where I'(k) is the gamma function. Let M(l,k) be the time for
1 processors to compute k entries each; that is, M(l,k) is the maximum of [ i.i.d. random
variables which have a gamma distribution with parameters p and k. Then, T(p,7) is the

maximum of M(l,k+ 1) and M(p— 1, k), where I = j — p[i?-j and k = L-"——;;l-_l

In the special case when j = p, E[T(p, §)] is the expected maximum of j i.i.d. random

variables whose distribution is exponential with mean 1/p. This is known to be (1/u)Hj,

where H; is the jth harmonic number (Solomon [22]).

4.1 Lower Bound

We now obtain a lower bound on the expected time of the diagonal algorithm. We first obtain
a lower bound on T(p,j). Since in the jth diagonal, each processor must compute at least
k= |_1l’j—1_| entries, and the time to do this is M(p, k), it follows that T(p,j) > M(p,k). Consider
the processor which takes the most time in computing the first entry. The time taken by this
processor to complete k entries is clearly a lower bound on M(p,k). The expected time taken
by this processor is (1/p)(k — 1) (which is the expected time to compute k — 1 entries, other
than the first), plus the expected value of the maximum of p i.i.d. random variables which are
exponentially distributed with mean 1/u. We have already seen that this is (1/p)H,. Hence,
T(p,7) > M(p,k) > (1/)(H, + (k - 1)). Summing over all the diagonals, the total expected
time of the diagonal algorithm is at least
1. =l = i—1 = n—1

;[2; H;+2 Z;(-Hp + L‘";"J -1+ (H, + ["“I')—J - 1]

i=n
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We partition this sum into two parts A and B, where

g | on—1
A=;[2§(L » J+1)+§L(TJ+1)]
and p—-1 m+n-—p
B= -,1;[22(17,-— D+ Y (H-2)

Note that A equals 1/u times the total running time of the diagonal algorithm on the simple
non-random model, which is at least (mn+n(p—1))/(pp). Also, using Yo H; = pHp_1-(p-1),
B is at least

1 1
L@p(Hyes = 1)+ (m = 20+ Dy = 2) 2 et 1+ D(Hpos =2),
Combining these, we see that the expected time of the diagonal algorithm is at least

-llz[(mn +n(p = 1)/p+ (m+n+ 1)(Hp-1 = 2)];

4.2 Reduction to an Occupancy Problem and Resulting Bounds

To obtain further estimates on the running time of the diagonal algorithm, we relate the ex-
pected value of M (p, k), to the solution of a well studied occupancy problem. If balls are thrown
randomly and uniformly into p bins, how many balls must be thrown in order that each bin
has at least k balls? Let Oce(p, k) be the random variable denoting the number of balls needed
to ensure that each bin has k balls. Then we obtain the following relationship between the

expected values of M (p, k) and Occ(p, k).
Lemma 4.1 E[M(p,k)] = 55 E[Occ(p,k)].

Proof: This result was proved by Young [24]. We give a simple proof here. Imagine
that the processors compute entries forever; then M (p, k) is the time at which all processors
have computed at least k entries. Define an event to be an instant when some processor finishes
computing an entry. By the memoryless property of exponential distributions, the time between
events is exponentially distributed with mean pp. Thus, the expected time between events is
1/(up). When an event occurs, the processor that finished computing an entry is random (by
symmetry). Thus, the expected time for p processors to compute k entries each is

o0

ZPr[Occ(p, k) = i](expected time to complete 7 events) = ;}; Z iP1[Occ(p, k) = i] = /—%E[Occ(p,k)].

i=1 i=1

a

Using this lemma, we can apply results on the occupancy problem to obtain asymptotic
bounds on the expected value of M(p, k). We use the following results on E[Oce(p, k)].
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Lemma 4.2 1. If p is fized and k — oo, then E[Occ(p, k)] ~ pk.
2. If k is fized and p — oo, then E[Occ(p, k)] ~ p(log p + (k — 1)loglog p).

3. Ifk=ap and p — oo then E[Occ(p, k)] < pk(1 + O(/log p/p)).

Proof: 1 and 2 follow directly from results of Newman and Shepp [18]. We give a brief
outline of the proof of 3. Suppose k = ap. We first estimate the number, N, of balls needed
to ensure that with probability at least 1 —1 /p, all bins have at least k balls. Suppose that N
balls are thrown in the p boxes. The probability that some bin has less than k balls is at most

o (IZ) (1/p)°(1=1/p)"""+ (1;]) (1/p)'(1=1/p)" 4. (k]f 1) (1/p)*(1=1/p)N=*Y)

< pk (f) (1/p)F(1 - 1/p)N-F, since N > kp— 1.

If N = [p, this is at most
pk(Bp)E(1/ED(1/P)¥(1 — 1/p)PP~* < pkB*(1/k!) exp(— (B — a)),

since (1—1/p)" < et

We now find the asymptotic value of § that will make this last expression equal to 1/p.
Taking logarithms and applying Stirling’s formula, we see that 8 ~ klogB — klogk -+ k +
5/2logp + ¢, where ¢ = a + 1/2loga — 1/2log(27). Equivalently,

log(B8/k) ~ B[k — 1 - (5/2logp + ¢)/k-
Let B/k —1 = e. From the Taylor series expansion, log(1 + €) < € — €/2. Thus, as p — 00,
e—¢/2>Blk—1-(5/2logp+c)/k.
Equivalently, €2/2 < (5log p + 2¢)/(2k), that is,
€< \/(5logk + 2¢)/k.
This shows that asymptotically 8/k <1+ W and so as p — 00,

N = Bp < pk(1+/(5logk + 2¢)/k).

We observe that if not all bins have k balls by N steps, we can continue for N more steps,
again for another IV if it is not done, and so on. At each stage, the probability of finishing is
no worse than the probability that a newly begun process (starting with the all bins empty)
finishes in N steps. Now, we have a chance < 1/p of going to the second stage, < 1/p* of going

to the third stage, and so on. This implies that the mean waiting time is at most

pk(1+ \/(Blogp + 20)/B)(1 + 1/p+ 1/# +...) = pk(L+/(5/@) log /p + O(1/p)).
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Finally, Lemma 4.2 can be applied in a straightforward way to obtain the following bounds
on the expected running time of the diagonal algorithm with p processors.

Theorem 4.1 As n — 0o, the expected running time of the diagonal algorithm with p proces-

sors on an n X m table, n < m, is

1. ~ mn/(up) + ©(m), when p is a constant,
2. ~ (m + n)(log p)/p + O(mloglog p), when p = O(n), and

3. < (m+ en)(n/p)(1/p + 0o(1)) + O(m), when p = ©(+/n), where € is any constant.

Proof: 1. Suppose p is a constant. The expected running time of the algorithm is at most

2ZEM(p,[-———J+1) +ZEM(1J,L ]

i1 i=n

~ (2 Z(L-.———J +1)+ Z(L——-J + 1))

i=n
using Lemma 4.2, part 1 and Lemma 4.1. This is equal to mn/(up) + ©(m), which can be seen
using the same argument as that used to analyze the diagonal algorithm on the non-random
model at the start of this section. Similarly, the expected running time of the algorithm is at

least

I,

QZE M(p,

i=1 i=n

which is also mn/(up) + ©(m).

2. Let p = n/k, for some constant k. If k is an integer which divides n, then the expected

running time of the algorithm is at most

(ZE M(p, 1))+ ﬁ": EMpD 4t S EMG, k)]) n ZE (M (p, ¥)

i=(k-1)p
1
~ m (2 (%(logp +0loglogp) + ...+ %(logp-{- (k-1) loglogp)) 4+ (m—mn+1)(logp+ (k - 1)loglogp))
1
= ;(21110@19 +n(k — 1)loglogp + (m — n + 1)(logp + (k — 1) loglog p))

1 .
= ;((m +n+1)logp+ (m+ 1)(k - 1)loglogp).

We use Lemma 4.2, part 2, in getting to the second line from the first line. Also, the expected

running time of the algorithm is at least

p~1 2p-1 kp—-1 m
2 (Z E[M(p,0)]+ Z EM(p,D)]+...+ >, E[M(pk- 1)) +y  E[M(p, k~1)].
i=1 i=p i=(k—1)p n
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By a similar argument, this is asymptotically equal to

1
—ﬁ((m +n+1)logp+ (m+ 1)(k—2) loglog p).

3. Finally, suppose that p = \/n/k for some constant k. Let [ be any constant integer.
Then, the expected running time of the diagonal algorithm is at most

2{n/2'j~-1 i n-1 i m n—
S p = e S B EER 4 01+ 3 BMG P+ 1)
i=|n/2!] p i={n/f2!} p i=n p

To see this, note that the time to do the first [n/2'| — 1 diagonals is at most the time to do
diagonals |n/2'] ...2|n/2'] — 1, and similarly, the time to do the last |n/2'] — 1 diagonals is
at most the time to do diagonals |n/2] ...2|n/2'] — 1. Using Lemma 4.2, part 3, as p — 0o,
E[M(p, k)] < E(1/p + o(1)), if k = |552] + 1, where i > |n/2']. Hence,

2|n/2']-1 i n—-1 i m e .
2 S e, IS 42 Y BM(p 1S+ D)+ B, 2= 4 )
i={n/2'] p i=|n/2) p p

i=n

2{n/2']-1 i — n-1 i mooa
s(z I(E=UESIELIDY <L——-]-,—11+1)+Z(L——1—,—1—J+1))(1/u+o(1>)
I

=2 P i={n/2) i=n
= ((n*/p)(1/2%71 + 1/2%") 4+ mn/p)(1/p + o(1)) + O(m)
_ (m+ en)(n/p)(1/p+ o(1)) + O(m),
where € = 1/2%-1 4+ 1/2%. O

4.3 Relaxing Assumption of Exponential Distribution

The analysis of the diagonal algorithm can be extended beyond the assumption of exponentially
distributed task lengths to include all distributions whose tails are no worse than exponential
(ie. all distributions G such that dG(z) = 0(e~°®), @ > 0). Many distributions fit this
criterion, including the exponential, gamma, Weibull, truncated Normal (i.e. Normal restricted
to positive values), Uniform and constant distributions. This assumption is sufficient to extend
the analysis in the cases where the number of processors used is more than a constant but less

than the number of rows in the table.
This analysis uses results from Kruskal and Weiss [10]. We begin by presenting these results.
Let Yi,...,Y, be random variables with the common distribution function G(z) = P(Y <

Definition 4.1 The characteristic mazimum my “ inf{z :1-G(z) < 1/p}.
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Kruskal and Weiss [10] proved the following theorem based on results by Lai and Robbins
[11].
Theorem 4.2 Given a probability distribution G(z), such that for some € >0

I e®dG(z) < oo,

and given pK independent tasks of length distributed according to G with mean p and vari-

ance o such that K grows faster than log p,

then
lim  sup my, — K,ul— o\2Klogp < o0,
K/ lggp—ooo ogp
i.e.

m, = Kp+ 02K logp+ O(log p).

Let m,(I) denote the characteristic maximum of p random variables, each of which is a

sum of K tasks, as described in Theorem 4.2.

Consider an n x m table. Let p be the number of processors used in the diagonal algorithm.
The number of tasks that each processor must compute on a given diagonal is no more than
K = [r/p], where 7 is the diagonal number for the diagonals numbered less than n, n for the
diagonals numbered between n and m, and = minus the diagonal number for those diagonals
numbered between m + 1 and n + m — 1. In order to apply Theorem 4.2, K must grow faster
than log p.

We will apply Theorem 4.2 to the diagonals in the range (plog p)tte...(m+n—1) — (plogp)*e,
€ > 0. Thus, our analysis is valid if the number of processors used in the diagonal algorithm is
such that plogp is o(n).

If we overestimate the cost of the upper left and lower right corners of the table, where
the theorem does not apply, we get an asymptotic upper bound on the expected time for the
diagonal algorithm of

n-1

o[(plogp) *Im,([(plogp)*/pl) +2 >, my([r/pl) +(m —n+)my([n/p]).

r=[(p logp)*+<]

Here we have overestimated the cost of each diagonal in the corners to be the cost of the

first diagonal to which the theorem is applied.

We will break this sum into the following three parts:

A = 2[(plog p)+Imy([(plogp)'**/pl),

n-1

B=2 3.  m([r/pl),

r=[(p logp)*+]
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C = (m—n+ Dymy([n/p]).

Applying Theorem 4.2, these parts are

A= 2[(plogp)1“1(f£—z-’£’§f)-li1u 4 a\/z tog B2 1 0(og ),

n-l T T
B=2 Y. ([=lg+oy/2logp[=] + O(logp)),
r=[(plogp)**<] p p

C=(m-n+1)([Z]+ a\[2logp[ ] + O(logp).

The following lemma gives upper bounds on the separate parts of the sum.

Lemma 4.3 A is asymptotically no more than

o 2(14-€) 3
o (P gz;) 1+ 2(plog p)3+9a [210g p/p + 2[(plog p) +1(0v/21og p + p + O(log ))

1 l4e 1 14¢
L o(Plogn)'*e +2a\/2@—‘-’g7’) ogp,
p p
B is asymptotically no more than

%(nz — n — (plogp)?™+9 + [(plogp)™+])+

%d\/ 2log p/p(n®'? - (plogp)*/***?)
+(u + o/2Togp + O(log p))(n — [(plog p)' 1),

and C is asymptotically no more than

2
(m—n+ 1)(%’5 + a\/:;—logp + O(log p) + p + o+/21og p/p).

Proof:
The bounds on A and C are obtained by overestimating the ceiling function.

The sum B is no more than

n-1

2 Z (-T-p-l—u—i-a,/Qlogp-;+or\/210gp+0(1ogp)).

r=[(plogp)*+]

Next, we observe that

n—1

S ¢ o= (n2-n-[(plogp)* + [(plogp)*)/2

r=[(plogp)**]

1l

< (n?—n—(plogp)?+9 + [(plogp)'**1)/2
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and

Z \/_</ VT < —g-(nalz—(plogp)B/z(l'*"))

r=[(p logp)t+<] =[(plogp)i+e]

Substituting these observations back into B gives the upper bound from the lemma state-

ment. O
The expected time of the diagonal algorithm is no more than the sum of A, B and C. This

sum looks unwieldy at first glance, but the following theorem puts it in a better perspective.

Theorem 4.3 Assuming that the lengths of tasks follow a distribution with an ezponentially
bounded tail, the expected time of the diagonal algorithm is no more than

)20+
(plogp — K+ cn/?logp/l’(mnl/2 i i (Plogp)?;/z(l +) ) -+ O(mlogn).

Proof: We first write down all the parts in expanded form, using Lemma 4.3:

lo 2(L+e) 3
A < 2@—-5——%)—-—-u +2(plogp)3Ct+9ay/21og p/p + 2[(plog p)*+*1(o21ogp + p + O(log p))

1 14¢ 1+¢
+ 2_(_]1_____0gpp) u+ 26\/2_________(plogpp) log p;

n?  n  (plogp)?'*9  [(plogp)'*<] 4 a2 /o]
B < —p—-—p- + + =n%%04/210
R p 7 - pt 3 \/— gp/p
4 arve—————
- 50\/5 log p/p(plog p)*/***) + (u + o/2log p + O(log p))n
- (p+ 0\/21og + O(log p))[(plogp)'*1;

C < ‘@L‘M“—#'*' u+0\/210gp/p(mn - n?)

p

+on'/?\/2logp/p + (m — n+1)(O(logp) + p + o\/2logp/z;)-

Many of the terms from these three parts cancel out. We have the following remains.

From A, little is cancelled out and we are left with

plO p 2(14-€) 2 ] - .
uL—E-I;)—-—“ + g(plogp)“’ 214+9g4/21og p/p + 2[(plog p)'*|O(log p)

(plogp)'te
P

\/ 2(plogp)t+e
P

+ 24 + 20 log p.

Several terms of B cancel with terms in C and A, leaving
log p)'te 1 —
K—R—%@—JM + 30 "’aﬁlogp/p + O(logp)n — (i + +/2logp + O(log p))[(plogp) *].
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From C we are left with

%ﬁu + mn”za\ﬁlogp/p + onll?/2log p/p+ (m—n +1)0(logp) + (m + 1)+ Ux/glog p/p)-

Observing that (i + o+/2logp/p + O(log p)) is O(logn), everything beyond the first two
terms of each part can be lumped together and we see that A + B + C is no more than
1 2(1+¢€) 2(pl 3/2(1+¢)
T£u+ %HU 2o p/p(mnt? + _'];;nalz N §93_9:2;_13129_____,L)+ O(mlogn).
0

For cases where (plog p)+¢ is O(n®/*), this upper bound is Z*p + O(mn!/?logn), which is
asymptotically lower than our previous analysis for the case where p is O(y/n) and the tasks

are distributed exponentially.

When (plogp)'*te is Q(n3/%), the @ﬁ%ﬂu term becomes significant in the overall sum.
It is likely that the bound is too high in these cases, since this term comes from the overestimate

of the upper left and lower right hand corners of the table.

5 Experimental Results

5.1 Introduction/Equipment

Experiments were run on the diagonal and pipeline algorithms using a 20 processor Sequent

Symmetry computer. The Sequent is a shared memory parallel machine.

The goal of our experiments was to determine empirically the effect of delays on the two
algorithms. Below, we first describe the experiments, then discuss the results, and then give a

more detailed explanation of how the measurements were taken.

5.2 Methodology

Both algorithms were implemented in the C programming language, using the synchronization
routines provided in the Sequent Parallel Programming Library. The diagonal algorithm was

implemented using barriers, the pipeline using locks.

The application implemented as an example of the algorithms is the Needleman-Wunsch
algorithm for aligning two DNA sequences [17]. In aligning the two sequences, gaps may be
inserted in one or the other of the sequences in order to make the overall alignment better. The
best alignment is determined by scoring all possible alignments using a dynamic programming

algorithm.

The scoring of a cell is a very simple task. In order to increase the work between synchro-
nization points, the algorithms do 4 x 4 blocks of cells at a time. (Various sizes were tried before
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settling on 4 as the block size. This block size gives reasonable performance at various sizes of

sequences, compared against other block sizes.)

Each algorithm was run ten times on ten different data sets, ranging from sequences of
length 500 to sets of length 1400. Data sets of length less than 500 provide only a few rows
for each processor to work on in the pipeline algorithm. Data sets much longer than 1400

characters required more shared memory than were available on our Sequent.

The experiments were run while the machine was not busy, so there should be little effect
from any other jobs. The number of processors used in the algorithms was varied between 1,
4, 10, and 13.

5.3 Results

Tables 2 and 3 show the average running times of the two algorithms (with standard deviations)
over the ten runs, for the various data set sizes and number of processors. The tables also include
the time it took the algorithm to run on one processor without doing any synchronization. This
run allows us to get an idea of the synchronization overhead involved in the two algorithms.

These tables indicate that the pipeline algorithm generally outperforms the diagonal algo-

rithm, running between one and eight percent faster.

In our further discussion of these results, we center on three issues. We first look at the
relationship of synchronization delays in the algorithms to the overall slowdown experienced in
the algorithms. Next, we look at the relationship between the amount of synchronization delay
and the number of processors used in each algorithm. Finally, we discuss the effect of waiting

time on choosing which algorithm is better.

Tables 4 and 5 give the slowdown of the algorithms. The percentage slowdown of the
algorithms decreases as the datasets get larger. This coincides with the theoretical analysis
that indicates the delay of the algorithms will be linear, while the time to compute the cells
will be O(n?). Hence, the time to actually compute the cells should dominate the time spent

waiting as the datasets get larger.

The slowdown of the algorithms as processors are increased can be broken down roughly into
three categories. Two of these categories relate to the synchronization delays of the algorithm.
We subdivide these delays into the overhead of executing the locks or barriers, and the waiting
time at them. The third category is the increase in task length due to other causes such
as cache misses. Tables 6 and 7 indicate the percentage of the slowdown that was due to
the synchronization delays, and the percentage that was due only to the waiting time at the
synchronization points. In both algorithms, these percentages go down with an increase in
processors, indicating the effects of increased cache-to-cache misses on the Sequent.

The diagonal algorithm was greatly affected by synchronization delays, which account for

22




75 — 85% of the slowdown on four processors, 65 — 70% on ten processors and 60 — 65% of the

slowdown on thirteen processors.

Because a great deal of time was spent waiting at the barriers, the overhead cost of executing

a barrier is only a small portion of the total slowdown, accounting for only three or four percent.

The opposite case occurs in the pipeline algorithm, where the slowdown due to waiting at
a lock is relatively small (never more than nine percent) while the overhead cost of executing
all the locks involved in the synchronization accounts for 28 — 49% of the slowdown on four
processors, 14 — 42% on ten processors, and 11 — 34% on thirteen processors.

Qverall, the pipeline algorithm was affected less by synchronization delays than by other
factors that increase the task times. For four processors, the waiting accounted for 30 — 55%
of the slowdown. For ten processors, it decreased to 17 — 40%, and for thirteen processors it
accounted for only 13 — 38% of the slowdown.

The relation of synchronization delays to the number of processors used is quite different in
the two algorithms (see Tables 8 and 9). In the pipeline algorithm, the synchronization delays
on the last processor go down as the number of processors increases. In the diagonal algorithm,
the synchronization time increases as the number of processors increases. This difference in the
effect of increasing processors reflects the difference in synchronization method. In the pipeline
algorithm, an increase in processors means fewer rows for each processor to work on and thus
fewer locks. As the theoretical analysis indicated, processors do not spend a great deal of time
waiting at a lock, so the overhead of actually executing a lock dominates the time spent at a
lock. The diagonal algorithm also fits the theoretical analysis, which indicated that an increase
in processors would cause and increase in the waiting time at a barrier, since the maximum

time spent on a task increases.

The time spent waiting at a synchronization point is extremely important in choosing which
algorithm to use. At first glance, one might believe that the pipeline algorithm is always a better
choice than the diagonal algorithm. One indication that this is not the case, however, is seen
in Tables 2 and 3; the one-processor diagonal algorithm performs better than the pipeline
algorithm in the case of the size 500 data set.

Another point in favor of the diagonal algorithm is that it has many fewer barriers than the
pipeline algorithm has locks and so spends less overhead on synchronization calls. The diagonal
algorithm has ©(n) barriers, while the pipeline algorithm has ©(n?) locks. The overhead on a
barrier is no more than three times the cost of a lock for thirteen processors, and less for fewer.
Thus if no waiting were done beyond the calls to synchronization, the diagonal algorithm would
be a better choice than the pipeline.

However, considering only the call to the barrier as the overhead in synchronizing using
barriers is misleading. When using p processors in the diagonal algorithm, (p — 1)/p of the

diagonals will have at least one processor waiting for other processors to do an extra task on

v
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the diagonal. This extra waiting at the barrier is a sort of overhead that one must pay for using

the diagonal algorithm.

When this extra cost is factored into the measurement of overhead, the pipeline algorithm
is the better choice as the number of processors increase. However, as Table 10 shows, for
a smaller number of processors, the diagonal algorithm has less overhead than the pipeline
algorithm on large data sets. That is, if there were no waiting at a barrier or lock, the diagonal
algorithm would be a better choice in those cases. Thus, the influence of waiting time becomes

significant as the size of data sets grow.

5.4 Timing Details

Timings were done using the getusclk() function provided by the Sequent timing facility. Both
algorithms take the same number of timings, minimizing the effect of timing the algorithms
on the relative performance. The results of the timings were buffered and output after the

algorithm completed, preventing variations in time due to i/o effects.

For the diagonal algorithm, the time of a task was defined to be the time the algorithm
spent between barrier operations. The waiting time at a particular barrier was considered to
be the difference between the maximum time spent on the task prior to that barrier and the
average time spent by all processors on the task prior to that barrier. The overhead of a given
barrier is the minimum amount of time spent at the barrier by any of the processors. Thus,

the overhead measurement does not overlap the waiting time measurement.

For the pipeline algorithm, the time of a task was defined to be the time the algorithm
spent between a pair of locking operations. The waiting time was defined to be the time at
the lock. This includes the overhead of the lock (there is no easy way to avoid including the
overhead in the timings). In order to get an idea of the overhead caused by the locks, we
calculate an average overhead per lock for each data set by running the pipeline algorithm with
one processor on that data set and then dividing by the total number of locks used during that
run. The waiting time of the algorithm is the total waiting time of the processor that computes
the last row of the table.

The slowdown of a parallel algorithm on p processors is the difference between the actual
running time on p processors and the time of the algorithm on one processor, divided by p.
This definition leaves several possibilities to be considered as the one processor version of the
algorithm. One possibility is to take the sequential version of the algorithm; another is to run
the parallel algorithm on only one processor; a third is to run the parallel algorithm without

synchronization on one processor.

The results presented above use the one processor, no synchronization version of the algo-
rithms. This allows the measurement of slowdown due to increased overhead as the number of
processors and size of data sets increases.
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6 Conclusions

We have examined a very simple model of parallel computation that models unexpected delays
on processors. We have shown that this model is simple to analyze for two parallel dynamic
programming algorithms. We have experimentally shown that the analysis is also realistic,
accurately reflecting the effects of unexpected delays on the running times of the two algorithms.
The techniques used in our analysis likely can be used in analyzing other parallel algorithms,
since they apply to situations using pipelining or barriers.

Our experimental work supports our analysis, and indicates that unexpected delays on
processors are the most important difference in the running time of the two algorithms.

In future work, we would like to extend the analysis for the pipeline case for some non-
exponential distributions, as in the diagonal algorithm. A theorem by Glynn and Whitt [7] can
be used to get a very weak upper bound of (m[n/p])/p + O(nm!=%/?), when p = ©(m?), for
0<a<l

We also plan to analyze and implement other parallel algorithms to continue evaluating the

model in terms of being simple, realistic and general.
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Processors | 1 (no synch) | 1 4 10 13

Size of data

500 12478243.20 | 12472891.60 | 3238878.40 | 1450118.90 | 1184672.10
(2255) (2559) (623) (447) (490)

600 18072069.00 | 18072317.50 | 4668570.90 | 2062288.70 | 1674693.90
(4539) (4091) (1258) (785) (837)

700 24649953.90 | 24989848.10 | 6342885.10 | 2777989.30 2241275.60
(9362) (517992) | (1589) (885) (810)

800 39394014.50 | 32396818.40 | 8285103.10 | 3596705.80 | 2895731.90
(10183) (13856) (1911) (1427) (3352)

900 40881820.80 | 40910215.50 | 10464597.90 | 4523639.60 | 3626344.20
(16078) (83005) (2272) (1735) (1836)

1000 50540925.70 | 50521212.20 | 12908946.50 | 5545659.70 | 4436447.80
(16256) (11860) (2473) (1201) (1919)

1100 61489308.50 | 61482684.20 | 15684339.30 | 6707540.30 | 5344876.70
(26260) (22272) (2429) (2403) (2562)

1200 73774369.30 | 73511145.20 | 18671564.00 | 7930990.40 6294657.10
(20396) (323008) | (4558) (2223) (2732)

1300 86019335.50 | 86040906.10 | 21885205.90 | 9261423.30 7339761.70
(17722) (28449) (4586) (2257) (2117)

1400 00889741.30 | 99972650.50 | 25370583.30 | 10686687.90 | 8451358.70
(58597) (248890) | (6420) (2263) (2989)

Table 2: Time in p secs (standard deviation), Diagonal Algorithm
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Processors | 1 (no synch) | 1 4 10 13

Size of data

500 12270613.10 | 12487084.10 | 3212986.40 | 1346213.70 | 1060563.10
(1321) (997) (596) (2293) (4128)

600 17750036.00 | 18065073.10 | 4621585.85 | 1874435.10 | 1514662.20
(3001) (1930) (4335) (4838) (4735)

700 24170492.50 | 24605586.00 | 6250204.50 | 2598433.40 | 2045927.20
(5902) (6573) (7727) (6488) (8505)

800 31583729.20 | 32147597.40 | 8119519.10 | 3314655.40 | 2658502.00
(5120) (3173) (7332) (6857) (10693)

900 30984861.50 | 40702515.00 | 10352875.30 | 4251429.20 | 3340050.00
(6748) (10619) (4186) (8665) (17484)

1000 49375508.40 | 50257330.80 | 12763127.20 | 5145017.60 | 4108269.80
(9777) (11278) (3465) (7651) (18001)

1100 60175123.10 | 61154486.00 | 15493261.60 | 6338617.90 | 4971757.40
(234220) (6555) (19613) (10137) (25498)

1200 71576096.70 | 72839887.60 | 18385477.60 | 7420469.70 | 5853417.20
(16300) (12274) (25736) (8915) (1052)

1300 84149125.30 | 85553536.60 | 21657106.90 | 8808685.90 | 6742332.60
(243032) (6479) (4219) (3821) (10464)

1400 97563507.50 | 99344616.70 | 25115406.60 | 10094690.90 | 7824081.80
(11778) (69876) (15840) (8918) (11684)

Table 3: Time in p secs (standard deviation), Pipeline Algorithm

29




Processors | 4 10 13

Size of data | ps % | ps % | ps %
500 119317.60 3.8 | 202294.58 16.2 | 224807.24 23.4
600 150553.65 3.3 | 255081.80 14.1 | 284534.75 20.5
700 180396.63 2.9 | 312993.91 12.7 | 345125.30 18.2
800 196599.47 2.3 | 357304.35 11.0 | 403884.63 16.2
900 944142.70 2.4 | 435457.52 10.7 | 481588.75 15.3
1000 273715.08 2.2 | 491567.13 9.7 | 548684.28 14.1
1100 312012.17 2.0 | 558609.45 9.1 | 614929.89 13.0
1200 397971.67 1.8 | 59355347 8.1 | 650474.85 11.5
1300 380372.02 1.8 | 659489.75 7.7 | 722889.74 10.9
1400 308147.98 1.6 | 697713.77 7.0 | 767532.45 10.0

Table 4: Slowdown of Diagonal Algorithm

Processors | 4 10 13

Size of data | us % | ps % | ps %
500 145333.12 4.7 | 119152.39 9.7 | 116669.78 12.4
600 184076.80 4.1 | 99431.50 5.6 | 149274.82 10.9
700 207581.37 3.4 | 181384.15 7.5 | 186658.55 10.0
800 293586.80 2.8 | 156282.48 4.9 | 228984.37 9.4
900 356659.93 3.6 | 252943.05 6.3 | 26429142 8.6
1000 419250.10 3.4 | 207466.76 4.2 | 310163.77 8.2
1100 449480.83 3.0 | 321105.59 5.3 | 342901.78 7.4
1200 191453.43 2.7 | 262860.03 3.7 | 347563.61 6.3
1300 619825.57 2.9 | 393773.37 4.7 | 269322.96 4.2
1400 794529.73 3.0 | 338340.15 3.5 | 319196.61 4.3

Table 5: Slowdown of Pipeline Algorithm
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Processors | 4 10 13

Size of data | w/ovthd w/o ovthd | w/ovthd w/o ovrhd w/ovthd w/o ovrhd
500 77.6 73.8 | 67.8 65.0 | 64.6 62.1
600 76.2 72.5 | 66.6 63.9 | 64.0 61.6
700 75.3 71.7 | 65.9 63.3 | 63.1 60.7
800 86.5 82.4§ 67.3 64.6 | 63.9 61.6
900 75.6 72.2 | 65.5 63.1 | 62.8 60.6
1000 7.7 74.2 | 65.4 63.1 | 62.3 60.8
1100 78.1 74.7 | 65.4 63.1 | 62.7 60.1
1200 85.6 82.2 | 67.2 64.8 | 64.0 61.8
1300 79.1 75.9 | 66.2 63.9 | 63.6 61.5
1400 84.3 80.9 | 67.4 65.0 | 64.7 62.6
Table 6: Percentage of Slowdown in Diagonal Algorithm from Synchronization
Processors | 4 10 13

Size of data

w/ovrthd w/o ovrhd

w/ovthd w/o ovrhd

w/ovthd w/o ovrhd

500 34.3 6.5 17.1 3.3 ) 134 2.6
600 38.8 7.0 284 3.6 152 2.8
700 46.5 821219 401 16.5 3.9
800 56.0 8.7 321 56| 17.6 3.1
900 45.1 8.7 26,7 4.7 | 19.3 3.5
1000 47.2 8.8 | 37.9 591 203 3.9
1100 53.0 8.2 30.0 421 22.1 3.1
1200 57.9 8.5143.5 7.0 1 26.8 4.8
1300 54.4 8.11 34.5 5.2 1 38.2 4.4
1400 63.7 7.6 | 46.0 561374 6.5

Table 7: Percentage of Slowdown in Pipeline Algorithm from Synchronization
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Processors 4 10 13
Size of data | w/ovthd w/oovrhd | w/ovrhd w/oovrhd | w/ovrhd w/o ovrhd
500 02615.35  88091.15 | 137062.60 131488.40 | 145295.25  139685.95
600 114774.20 109182.50 | 169937.41  163003.21 | 182111.82  175298.62
700 135757.48 129263.48 | 206315.76  198003.16 | 217734.38  209548.18
800 161416.10 153818.90 | 240346.34  230694.34 | 258222.03  248929.83
900 184532.25 176150.25 | 285076.28  274681.78 | 302205.81 291711.11
1000 212677.33 203140.83 | 321642.85 310000.95 | 345202.78  333419.08
1100 333528.47 233029.77 | 365424.11  352375.51 | 385752.19  372663.19
1200 980597.92 269439.72 | 398649.02 384396.82 | 416269.67  402272.87
1300 301010.45 288557.85 | 436860.61 421655.61 | 459678.25 444354.95
1400 335504.10 321948.40 | 470082.55 453752.75 | 496909.72  480458.52
Table 8: Average total synchronization time, Diagonal Algorithm
Processors 4 10 13
Size of data | w/ovthd w/oovrhd | w/ovthd w/oovrhd | w/ovthd w/o ovrhd
500 49897.00 9407.80 | 20363.50 3914.70 [ 15662.80 3009.90
600 71451.40  12941.10 | 28258.40 3622.50 | 22679.50 4202.60
700 96489.80  16976.90 | 39697.50 7169.50 [ 30847.00 7354.60
800 125174.40 19428.40 | 50174.90 8705.90 | 40202.90 7027.70
900 160744.70  31143.70 | 65072.30  11843.50 | 51026.60 9369.30
1000 197749.10  36830.10 | 78680.30  12269.50 | 63039.50  11954.30
1100 238443.80 36985.80 | 96397.20 13443.90 | 75779.80 10602.20
1200 284581.50 41544.50 | 114310.00 18374.40 | 93261.10 16512.60
1300 337434.40  50418.40 | 135873.40  20367.40 | 102950.30  11945.30
1400 389304.00  55403.00 | 155602.70  19006.70 | 119413.00  20760.40
Table 9: Average total synchronization time, Pipeline Algorithm

Processors 4 10 13

Size of data | Diagonal Pipeline | Diagonal Pipeline | Diagonal Pipeline

500 80502.7 40489.2 | 98344.7 16448.8 | 101406.2 12652.9

600 97145.2  58510.3 | 116209.8  24635.9 | 121375.1 18476.9

700 113304.4  79512.9 | 137499.8  32528.0 | 141399.1 23492.4

800 129284.3 105746.0 | 155404.4  41469.0 | 160935.9 33175.2

900 145137.0 129601.0 | 176110.6  53228.8 | 180549.7 41657.3

1000 162018.4 160919.0 | 193810.6  66410.8 | 200066.6 51085.2

1100 178196.0 201458.0 | 215112.7  82953.3 | 219593.3 65177.6

1200 193580.9 243037.0 | 232742.5  95935.6 | 238595.2 76748.5

1300 210110.3 287016.0 | 253693.3 115506.0 | 258507.0 91005.0

1400 226532.9 333901.0 | 271397.6 136596.0 | 278991.8  98652.6

Table 10: Overhead of diagonal algorithm plus waiting due to unequal number of tasks on
diagonals versus overhead of pipeline algorithm
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