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A PIVOTAL METHOD FOR AFFINE VARIATIONAL INEQUALITIES

MENGLIN CAO AND MICHAEL C. FERRIS

ABSTRACT. We explain and justify a path-following algorithm for solving the equations
Ac(z) = a, where A is a linear transformation from IR™ to IR", C is a polyhedral convex
subset of IR", and A¢ is the associated normal map. When Ac¢ is coherently oriented,
we are able to prove that the path following method terminates at the unique solution of
Ac(z) = a, which is a generalization of the well known fact that Lemke’s method terminates
at the unique solution LCP(g, M) when M is a P-matrix. Otherwise, we identify two classes
of matrices which are analogues of the class of copositive-plus and L-matrices in the study of
the linear complementarity problem. We then prove that our algorithm processes A¢(z) = «
when A is the linear transformation associated with such matrices. That is, when applied
to such a problem, the algorithm will find a solution unless the problem is infeasible in a
well specified sense.

1. INTRODUCTION

In this paper we are concerned with the Affine Variational Inequality problem. The prob-
lem can be described as follows. Let C be a polyhedral set and let A be a linear transfor-
mation from IR™ to IR". We wish to find z € C such that

(A(z) —a,y—2z) > 0,Vy € C. (AVI)

This problem has appeared in the literature in several disguises. The first is the linear
generalized equation, that is

0 € A(2) — a+ Ipe(z), (GE)
where 1¢(+) is the indicator function of the set C' defined by

0 ifzedC,
polz) = {oo ifz¢C

It can be easily shown that dvc(z) = N¢ (2), the normal cone to C at z, if z € C and is
empty otherwise, and hence (AVI) is equivalent to (GE). The solutions of such problems
arise for example in the determination of a Newton-type method for generalized equations.

The problem has also been termed the linear stationary problem and we refer the reader
to the work of [13] for several methods for the solution of this problem either over a hounded
polyhedron or a pointed convex polyhedron.

Key words and phrases. Affine variational inequality, normal map, path-following.
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2 MENGLIN CAO AND MICHAEL C. FERRIS

In this work we will use the notion of a normal map due to Robinson [11]. The normal
map, relating to a function F': R™ — IR”™ and a non-empty, closed, convex set (', is defined
as

Fo(z) := F(re(2)) + z — me(2)

where 7o (z) is the projection (with respect to the FEuclidean norm) of z onto the set C'.
Throughout this paper, we will be concerned with solving affine normal maps, that is, F' = A
is a linear map, C is a polyhedral set and the solution z satisfies

Ac(z)=a (NE)

Note that (NE) is equivalent to (AVI), since if A¢(z) = a, then z := 7¢(x) is a solution of
(AVI). Furthermore, if z is a solution of (AVI), then = := z + a — A(z) satisfies Ac(2) = a.
We shall use this equivalence throughout this paper without further reference.

A very familiar special case of (GE) is when C = K is a polyhedral convex cone. Then it
is easy to show that (GE) is equivalent to the generalized complementarity problem [7]

ze K,A(z)—ae KP,(A(2) —a,2) =0

where KD := {z*| (2*,k) > 0,Vk € K} is the dual cone associated with K. The pivotal
technique that we describe here can be thought of as a generalization of the complementary
pivot algorithm due to Lemke [8].

In §2 we describe the theoretical algorithm and apply several results of Eaves and Robinson
to establish its finite termination for coherently oriented normal maps. In §3 we carefully
describe an implementation of such a method, under the assumption that C' is given by

C:={z|Bz>bHz=h}.

In §4 we extend several well known results for linear complementarity problems to the affine
variational inequality. In particular, we generalize the notions of copositive, copositive-plus
and L-matrices from the complementarity literature and prove that our algorithm processes
variational inequalities associated with such matrices. That is, when the algorithm is applied
to such a problem, either a solution is found, or the problem is infeasible in a well specified
sense.

A word about our notation. For any vectors  and y in IR", (z,y) or 2Ty denotes the
inner product of z and y, and in this paper, these two notations are freely interchangeable.
Each m x n matrix A represents a linear map from IR™ to IR™, the symbol A refers to either
the matrix or the linear map as determined by the context. Given a linear map A from IR"
to R™, for any X C R", the set A(X) := {y € R™ |y = Az, for some @ € X } is called the
image of X under A; for any set Y C IR™, the set A71(Y) := {z € R"| Az € Y} is referred
to as the inverse image of Y under A. In particular, the set ker A := A~ ({0}) is called the
kernel of A and the set im A := A(IR") is called the image of A. Given a nonempty, closed,
convex set C in R", recC := {d€ R" |z + Ad € C,Vz € C,YA > 0} is called the recession
cone of C and linC = recC ) —recC is the lineality of C. If F' is a function from R" to
IR™, then F represents the normal map defined above. If C' is a polyhedral convex set, a
subset G is called a face of C if there exists a vector ¢ € IR™ such that G = arg max, ¢ ¢’ .
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2. THEORETICAL ALGORITHM

We describe briefly a theoretical algorithm that is guaranteed to find a solution in finitely
many steps when the homeomorphism condition developed in [11] holds. This method is a
realization of the general path-following algorithm described and justified in [3]. In what
follows we use various terms and concepts that are explained in [3]. Related methods for
finding stationary points of affine functions on polyhedral sets are given in [4, 5]. A more
detailed description of an implementation of the method is given in the §3; here we deal with
theoretical considerations underpinning the method. Other related work can be found in [1].

In order to formulate the algorithm, it is important to understand the underlying geometric
structure of the problem. Our approach relies heavily on the normal manifold of the set C,
[11], which we will now describe.

Theorem 2.1. Let C be a nonempty polyhedral convex set in R™ and let {F;|i€ T} be
the nonempty faces of C. For i € I, define Np, to be the common value of Nc (-) on 1i F;
and let o; := F; + Ng.. The normal manifold Ng of C consists of the pair (R",S), where
S :={o;|i € I}. The faces of the o; having dimension k > 0 are called the k-cells of Ne.
Ne is a subdivided piecewise linear manifold of dimension n.

It can be seen that the normal map Ag will agree in each n—cell of this manifold with
an affine map, and therefore, with each such cell we can associate the determinant of the
corresponding linear transformation. If each of these determinants has the same sign, we say
that Ac is coherently oriented. The following is the central result from [11].

Theorem 2.2. The normal map Ac is a Lipschitzian homeomorphism of R™ into IR™ if and
only if Ac is coherently oriented.

We will assume first of all that A¢ is a homeomorphism of IR™ onto IR", so that the
same-sign condition holds and describe the algorithm within this framework. Later in the
paper, this condition will be weakened. The first step of the algorithm is to determine if ¢
contains any lines. If it does, take orthonormal bases for lin C and its orthogonal complement
according to the scheme explained in [11, Prop. 4.1]. The factoring procedure explained there
shows how to reduce the problem to one (which we shall also write A¢(z) = a) in a possibly
smaller space, in which the set C' appearing in this problem contains no lines. In that case,
as shown in [11], the determinants associated with A¢ in the various cells of Mg must all
have positive sign. Further, C' will have an extreme point, say ., and as pointed out in [11,
§5] the normal cone Ng(z.) must have an interior. Let e be any element of int N¢(z.). An
implementation of the factoring procedure is given as stage one of the method described in
§3. The construction of an extreme point and element in the interior of the normal cone
corresponds to stage two of that method.

Now construct a piecewise-linear manifold M from Mg by forming the Cartesian product
of each cell of Mg with R, the non-negative half-line in R. This M will be a PL (n + 1)-
manifold in R™, as can easily be verified (see [3, Example 4.3]). Define a PL function
F: M — IR™ (where IR" is regarded as a PL manifold of one cell) by:

F(z,p) = Ac(z) — (pe + a).

We shall consider solutions z(x) of F(z,u) = 0; it is clear from (NE) that «(0) will solve
our problem. Note that since we have assumed A¢ to be a homeomorphism, the function
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z(+) is single-valued and defined on all of IRy, though this property is not essential to our
argument.
Now define w(y) = z. + (a — Az.) + pe. It is clear that since

w(p) = e + ple + p7' (a — Az)] (1)

for large positive , w(p) lies interior to the cell z. + Ne(z.) of Ne. Therefore (w(y), p) lies
interior to the cell [z, + Ng(z.)] x Ry of M, and so it is a regular point of M. Further, for
such p we have mc(w(p)) = ., so that

F(w(p),p) = Aze + (a — Aze) + pe — (pe+a) =0,

and therefore for some po > 0, F~1(0) contains the ray { (w(u), 1) | ¢ = po }.

Now we apply the algorithm of [3] to the PL equation F(z,p) = 0, using a ray start at
(w(p1), p11) for some py > po and proceeding in the direction (—e, —1). As the manifold M
is finite, according to [3, Th. 15.13] the algorithm generates, in finitely many steps, either a
point (z., it«) in the boundary of M with F(z.,p.) = 0, or a ray in F~1(0) different from
the starting ray. As the boundary of M is Mg x {0}, we see that in the first case p. = 0
and, by our earlier remarks, z. then satisfies Ac(z.) = a. Therefore in order to justify the
algorithm we need only show that it cannot produce a ray different from the starting ray.

The algorithm in question permits solving the perturbed system F'(z, u.) = p(c), where
p(e€) is of the form

p(e) = Y_pie
=1

for appropriately chosen vectors p;. It is shown in [3] that p(e) is a regular value of F for each
small positive €, and it then follows by [3, Th. 9.1] that for such €, F'"'(p(¢)) is a connected
1-manifold Y (¢), whose boundary is equal to its intersection with the boundary of M, and
which is subdivided by the chords formed by its intersections with the cells of M that it
meets. Finally, for an easily computed function

T
be) = bie
=1
we have (w(p1), u1) + b(e) € Y(€), and for small positive ¢ this point evidently lies on a ray
in F~'(p(e)). Because we start on this ray, Y(¢) cannot be homeomorphic to a circle, and
therefore it is homeomorphic to an interval.

A simple computation at the starting point shows that the curve index [3, §12] at that point
is —1. By [3, Lemma 12.1] this index will be constant along Y'(¢). However, a computation
similar to that in [3, Lemma 12.3] shows that in each cell of M, if the direction of ¥(¢) in
that cell is (r, p) then

(sgnp)(sgndetT) = —1

where T is the linear transformation associated with A¢ in the corresponding cell of N.
Under our hypotheses, det T' must be positive, and therefore p is negative everywhere along
Y (¢). But this means that the parameter pu decreases strictly in each cell of linearity that
Y () enters, and it follows from the structure of M that after finitely many steps we must
have p = 0, and therefore we have a point . with Ag(z.) = a + p(e).

Now in practice the algorithm does not actually use a positive €, but only maintains the
information necessary to compute Y (¢) for all small positive ¢, employing the lexicographic
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ordering to resolve possible ambiguities when € = 0. Therefore after finitely many steps it
will actually have computed zo with A¢(zo) = a.

Note that for linear complementarity problems, the above algorithm corresponds to Lemke’s
method [8]. Tt is well known that for linear complementarity problems associated with P-
matrices, Lemke’s method terminates at a solution. For variational inequalities, we have a
similar result due to the analysis above.

Theorem 2.3. Given the problem (NE), assume that Ac is coherently oriented; then the
path following method given in this section terminates at a solution of (NE).

3. ALGORITHM IMPLEMENTATION

The previous section described a method for solving the Affine Variational Inequality over
a general polyhedral set and showed (under a lexicographical ordering) that a coherently
oriented normal equation (NE) can be solved in a finite number of iterations by a path-
following method. In this section, we describe the numerical implementation of such a
method, giving emphasis to the numerical linear algebra required to perform the steps of the
algorithm.

We shall specialize to the case where C is given as

C:={z|Bz>bHz=h} (2)

and we shall assume that the linear transformation A(z) is represented by the matrix A in
our current coordinate system. We can describe our method to solve the normal equation
in three stages. Note that by “solving”, we mean producing a pair (z,7(z)), where 2 is a
solution of (NE) and = (z) is the projection of z onto the underlying set C.

In the first stage we remove lines from the set C, to form a reduced problem (over C) as
outlined in the theory above. The lineality space of C as defined by (2) is

lin C = ker [I]ﬂ

We calculate bases for the lineality space and its orthogonal complement by performing a
QR factorization (with column pivoting) of [BT HT]. If [W V] represents these bases, the
reduced problem is to solve the normal equation

Agy =é (3)

where
C={z|Bz>bHz=h}, B=BV, H=HV. (4)

Here
A=UTAU, a=VT(I-AZ)a (5)

with

7 =WWIAWY "W, U=(I-ZA)V (6)
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and Z satisfies ZTAZ = ZT. In practice, A and @ are calculated using one LU factorization
of WT AW. Furthermore, the solution pair (z,7(z)) of the original normal equation (NE)
can be recovered from the solution pair (y,7(y)) of (3) using the identities

= Z(b— AVx(y))
c=x+Vy
x(2) = 21+ Vr(y)

Therefore, we can assume that the problem has the form (3), with C given by (4) and that
the matrix [g} has full column rank.

In the second stage, we determine an extreme point of the set C, and using this information
reduce the problem further by forcing the iterates to lie in the affine space generated by the

equality constraints. More precisely, we have the following result:

Lemma 3.1. Suppose y. € C and Y is a basis for the kernel of H. Then § solves (3) if and
only if § = ye + YT where T solves

Az =a (7)

Here A=YTAY, a =Y7(a — Ay.) and C = {z | BYz>b— By. } Furthermore, BY has

full column rank if and only if [g] has full column rank.

Thus, to reduce our problem to one over an inequality constrained polyhedral set, it
remains to show how we generate the point y. € C. In fact we show how to generate y. as
an extreme point of C and further, how to project this extreme point into an extreme point
of C. The following result is a well known characterization of extreme points of polyhedral

sets [9, §3.4].

Lemma 3.2. Let u be partitioned into free and constrained variables (ur,uc). u is an ex-
treme point of D = {u = (ur,uc)| Du=d,uc > 0} if and only if u € D and {d; |1 € B}
are linearly independent, where B := F{J{j € C|u; > 0}.

If we adopt the terminology of linear programming, then the variables corresponding to
B are called basic variables; similarly, the columns of D corresponding to B are called basic
columns; extreme points are called basic feasible solutions.

The extreme points of systems of inequalities and equalities are defined in an analogous
manner. Note that extreme points of C are (by definition) precisely the extreme points of

HRR

The slack variables s are implicitly defined by z, so without ambiguity we will refer to
the above extreme point as z. For other systems of inequalities and equations a similar
convention will be used. The following lemma outlines our method for constructing the
relevant extreme points.
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Lemma 3.3. Suppose {E] has linearly independent columns, Y is a basis of the kernel of

H and B = B~Y. Then y. is an extreme point of (8) if and only if Yy = y« + Yz, for some
Yx, 2« where Hy, = h and z. is an extreme point of

B -1 [ 0= B0 0

In our method we produce an extreme point of (8) as follows. Find orthonormal bases
U and Y for imf{ and ker H respectively. This can be carried out by a singular value
decomposition of H or by QR factorizations of H and HT (in fact, Y could be calculated as
a by-product of stage 1 of the algorithm). Let y. = UUTh and use this value of y, in (9). If
b ¢ im B, then find an extreme point of (9) by solving the following auxiliary problem with
the revised simplex method:

minimize Zaus

subject to [B b— f)’y*] [ ?

aur

Zauz = 0.

Note that z = 0, z4ue = 1 is an initial feasible point for this problem, with basic variables
(2, Zguz)- In contrast to the usual square basis matrix (with corresponding LU factors), we
use a QR factorization of the non square basis matrix. The calculations of dual variables and
incoming columns are performed in a least squares sense using the currently available QR
factorization. This factorization is updated at each pivot step either by using a rank-one
update to the factorization or by adding a column to the factorization (see [6]). In order to
invoke Lemma 3.1, we let y. = y. + Y z. be the feasible point needed to define (7).

Note that in the well known method of Lemke, stages one and two are trivial since ¢’ = IR},
has no lines and a single extreme point at 0. Furthermore, stage one is an exact implementa-
tion of the theory outlined in the previous section and stage two corresponds to determining
an extreme point and treating the defining equalities of C in an effective computational
manner.

It remains to describe stage three of our method. We are able to assume that our problem
is given as

Asz =a (10)

Cu

with C = {z | Bz > 73}, where B has full column rank and . is an extreme point of C' (easily
determined from z.). We also have available a basis matrix corresponding to this extreme
point along with a QR factorization, courtesy of stage two.

The method that we use to solve this problem is precisely a realization of the general
scheme for piecewise linear equations developed by [3]. The general method of Eaves (as-
suming a ray start and regular value v) moves along the curve F~'(v) in the direction d;
from z; and can be described as follows:
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Algorithm 1
Initialize :
Let Ly, denote the linear map representing F' on the cell o;. Determine
(z1,01,d1) satisfying
L, dy = 0,d; points into oy at z;.
F(z1)=v (11)
1€ EM,zy €int{z—0d,|0>0}C Flv. (12)

Iteration :
Given (zg, ok, di) let

0 = Sup{alwk+0dk€0k} (13)
If §;, = +oo then ray termination.
If 2441 := zp + Ord, € OM then boundary termination.
Otherwise determine (Tg41, Okt1, dit1), disr F# 0, satisfying
Loy, dps1 =0, and dpyq points into op4q from zp4q.
oke1 € M\ {op} with 2y € Op4r (14)
Set k = k + 1 and repeat iteration.

How does this relate to the description we gave in the previous section? The manifold we
consider is

M — Né X ]R,+
and the corresponding cells o4 are given by

(Fa+ Nr,) x Ry

where F4 are the faces of C. B B
A face of C is described by the set of constraints from the system Bz > b which are active.
Let A represent such a set so that

Fu= {Z‘ BAZ ZBA,BIZ > T)I}

where 7 is the complement of the set .A. The normal cone to the face (the normal cone to
C at some point in the relative interior of Fy) is given by

{BTul ug <0,ur = O}

It now follows that an algebraic description of (z, 1) € o4 is that there exist (2, 2, ua, sz, t)
which satisfy

B = Iy

B];Z—SI = bI,SI_ZO (1,,))
T = z—]—BﬂuA,uASO '
po> 0
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In particular, if x, is the given extreme point, the corresponding face of the set C' is used
to define the initial cell o;. The piecewise linear system we solve is

F(z,p) = Ag(z) — (pe + @) =0

where e is a point in the interior of Ny (z.). An equivalent description of N¢ (z.) is given
by

{BZ{M u < 0}

from which it is clear that the interior of this set is nonempty if and only if B4 has full
column rank.

Lemma 3.4. If z. is an extreme point of {zl Bz > 5} with active constraints A, then By
has full column rank.

Proof. By definition,

By 0 .
G = [sz‘ _} (16)

has linearly independent columns. If B4 does not have linearly independent columns, then
Bsw = 0, for some w # 0, so that
w
G I:B;[w:l =0

with (w, Br) # 0, a contradiction of (16). [

This is a simple proof (in this particular instance) of the comment from the previous section
that the normal cone has interior at an extreme point. For consistency, we shall let e be any
point in this interior {Bﬂu| u < 0}, and for concreteness we could take

1

e=-B%|:

1
Hence F is specified, v = 0 and the cells of 04 are defined. By solving the perturbed
system F(zc, ) = p(e) (as outlined in §2), we know that F~'(p(e)) is a connected 1-
manifold whose boundary is equal to its intersection with the boundary of M and which
is subdivided by the chords formed by its intersections with the cells of M that it meets.
In practice, this means that (under the lexicographical ordering induced by p(e)) we may
assume nondegeneracy. Thus, if ties ever occur in the description that follows, we will always

choose the the lexicographical minimum from those which achieve the tie.
Note that if (z, u) € 0.4 as defined in (15) then

Flz,p)=Az+z—2—pe—a
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It follows that if (z,x) € o 4N F~1(0) (ie. (z,p) is in one of the chords mentioned in the
previous paragraph), then there exist (z, z, u4, sz, ) satisfying

rT—z = —f—lz—i—,ue—!—c'z
BAZ = EA
Brz—sr = br,s1>0 (17)
rT—z = Bﬂzu,uASO
p = 0

Furthermore, these equations determine the chord on the current cell of the manifold, or
_ in the notation used to describe the algorithm of Eaves, the map L,,. The direction is
determined from (11) by solving L, ,d = 0, which can be calculated by solving

Az —Az = — ANz +eAp
BsAz = 0 i
BIAZ - ASI =0 _ (‘lb)
Az — Az = BﬁAuA

At the first iteration, B4 has full column rank, so that Az = 0, which also implies that
As7 = 0. The remaining system of equations is

Az = elp

Az = BiAuyu
We choose Ay = —1 in order to force the direction to move into oy (as required by (11)),
and then it follows that Az = —e for the choice of e outlined above Auy = (1,...,1)T. The

actual choice 3 = (w(u), ) given in the previous section ensures that (12) is satisfied.

We can now describe the general iteration and the resultant linear algebra that it entails.
We are give a current point (z, z,u4, sz, 1) satisfying (17) for some cell o4 and a direction
(Az, Az, Aug, Asz, Ap) satisfying (18). The value of 0 to satisfy (13) can be calculated by
the following ratio test; that is to find the largest @ such that

ug +0Auy < 0
st+0As; > 0 (19)
p+0An > 0

Ray termination occurs if Aug < 0, Asy > 0 and Ap > 0. Obviously, if u + 0Ap =0,
then we have a solution. Otherwise, at least one of the {u;|i € A} or {s;|7 € I} hits a
bound in (19). By the lexicographical ordering we can determine the “leaving” variable
from these uniquely. The set A is updated (corresponding to moving onto a new cell of the
manifold) and a new direction is calculated as follows: if u;, 7 € A is the leaving variable,
then A := A\ {:}, As; = 1 and the new direction is found by solving (18); if s;, + € T
is the leaving variable, then A := AU{:}, Au; = —1 and the new direction is found by
solving (18). Note that in both cases, the choice of one component of the direction ensures
movement into the new (uniquely specified) cell o4 and forces a unique solution of (18).
The linear algebra needed for an implementation of the method is now clear. The actual
steps used to carry out stage 3 are now described. First of all, z is eliminated from (17) to
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give
~Az+peta = BﬂuA + B%"u;
BAZ — 84 = I-)A
BIZ — 87 = I_)I

Y ZO‘)UA SO,UI:O,SI > 073A =0

Note that we have added in the variables which are set to zero for completeness. The QR
factorization corresponding to the given extreme point is used to eliminate the variables z.
In fact, we take as our initial active set A, the variables corresponding to QR, where R is
the 1nvert1ble submatrix of R. Thus

z = B;l(SA +BA)
and substituting this into the above gives

—-ABY' (3A+b,4)+,ue+a = Blua+ Bfus
BIB_A (SA—I-ZJA)——SI = by
p>0,us <0,ur =0,87 20,54 =0

Essentially we treat this system as in the method of Lemke. An initial basis is given by
(u4,s7) and complementary pivots can then be executed (using the variables u and s as the
complementary pair). Any basis updating technique or anti-cycling rule can be incorporated
form the literature on linear programming and complementarity. In fact we have an initial
QR factorization of the basis available from the given factorization if needed.

We showed in the previous section that if Ac was coherently oriented then following the
above path gives a monotonic decrease in p. However, the proof of the finite termination
of the method (possibly ray termination) goes through without this assumption, and in the
following section we will look at other conditions which guarantee that the method terminates
either with a solution or a proof that no solution exists. The coherent orientation results
are direct analogues of the P-matrix results for the linear complementarity problem — the
results we shall give now generalize the notions of copositive plus and L-matrices.

4. EXISTENCE RESULTS

The following definitions are generalizations of those found in the literature.

Definition 4.1. Let K be a given closed convex cone. A matrix A is said to be copositive
with respect to the cone K if

(z,Az) > 0,Vz € K

A matrix A is said to be copositive-plus with respect to the cone K if it is copositive with
respect to K and

(z,Az) =0,z € K = (A+AT)z=0

Definition 4.2. Let K be a given closed convex cone. A matrix A is said to be L-matrix
with respect to K if both

a ) For every ¢ € 1i(KP), the solution set of the generalized complementarity problem
ze€K, Az+qe KP, T(Az+4¢)=0 (20)

is contained in lin K.
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b ) For any z # 0 such that
zeK, Aze KP, 2TA2=0

there exists 2’ # 0, such that 2’ is contained in every face of K containing z and — AT
is contained in every face of K containing Az.

To see how do these definitions relate to the standard ones given in the literature on
linear complementarity problems (e.g. [10] and [2]), consider the case that C' = IR} and
K = recC = R%. Condition a) says that LCP(g, A) has a unique solution 0 for all ¢ > 0.
Condition b) states that, if z # 0 is a solution of LCP(0, A), then there exists 2’ # 0 such
that 2’ is contained in every face of IR] containing z and —AT2" is contained in every face
of R% contalnmg Az. In particular, 2’ € {z € IR"’] z; =0}, for all 7 € {7] z; =0}. Hence
zi = O for each i such that z; = 0. That is, supp 2’ C supp z. In another words, there exists

a diagonal matrix D > 0 such that 2’ = Dz Similarly, there exists a diagonal matrix £ > 0
such that —ATz' = EAz. Hence

(EA+ ATD)z=0

where D, E > 0 and Dz # 0. Thus the notion of L-matrix defined here is a natural extension
of that presented in [10]. The following lemma shows that the class L-matrices contains the
class copositive-plus matrices.

Lemma 4.3. If a matriz A is copositive-plus with respect to a closed convex cone I, then
it is an L-matriz with respect to K.

Proof. Suppose that ¢ € ri(KP) and z € K \lin K, then W(IinA 1(2) # 0. Furthermore, there
exists an € > 0, such that ¢ — emy, )2 (2) € K7, since aff (KP) = (lin K)* (cf. [12, Theorem
14.6]). It follows that

2

0< <Z,q - €7T(Iin1()i(z)> = <Z,<]> - 6<2,7T(1inf()l(z)> = (Z,(Z> — € “W(nnh’)i(z) 9

2
That is (z,q) = € “W(nnK)L(Z)HZ > 0. Also 2T Az > 0 since A is copositive with respect to

K. Thus 27(Az + q) = 2T Az + 2Tq > 2¥q > 0. This shows that the set K \ lin K’ does not
contain any solution of (20). Therefore the solution set of the problem (20) is contained in
lin K.

To complete the proof, note that for any z € I, such that Az € K D and zTAz = 0,
we have Az + ATz = 0, or —ATz = Az, since A is copositive-plus. So the condition b) of
Definition 4.2 is satisfied with 2z’ =z. O

We now come to the main result of this section.
Theorem 4.4. Suppose C is a polyhedral convez set and A is an L-matriz with respect to
rec C which is invertible on the lineality space of C. Then exactly one of the following occurs:

o The method given above solves (AVI)
o the following system has no solution

Az —a € (recC’)D, zeC (21)
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Proof. Suppose that C = {z| Bz > b, Hz = h}. We may assume that (AVI) is in the form
(10) due to Lemma A.4 and Lemma A.5. The pivotal method fails to solve (AVI) only if, at
some iterate zy, it reaches an unbounded direction di41 in oj1. We know that z, satisfies
(17), and the direction dy4; which satisfies Lg,,,dr41 = 0 can be found by solving (18).
Suppose (Az, Az, Aua, Asz, Ap) is a solution of (18), then

Auy <0, Asz >0, Ap>0 (22)
provided that xj + 0dj4; is an unbounded ray. By reference to (18), we have

BEAuy +_/—1Az = eApu
BaAz = 0 (23)
BIAZ = ASI Z 0
That is, Az satisfies

Az € recC
ANz —eAp = BI(—Auyu) € (rec C’)D
AZT(AAz — eAp) = AZTBY(—Aug) = —(BaAz)"Aug =0

If Ap > 0, then eAp € int Ng (@), hence —eAp € int (rec C_')D. The above system has
a unique solution Az = 0 by the fact that A is an L-matrix with respect to recC and
linC' = {0}. Therefore the terminating ray is the starting ray, a contradiction. Thus Ay = 0.

It follows that Az € recC, AAz € (rec é)D, and zT Az = 0, therefore there exist z # 0,

such that 7 is contained in every face of rec C' containing Az, and that —AT% is contained
in every face of (rec C’)D containing AAz. We observe that, since zj € o) N opy1 N F1(0),
there exist zx, Uk, Sk, and g such that (17) is satisfied. It is easy to verify that Az isin the
face

Gy = {z € recC” 2T (BTuy) = O}
of recC, and AAz is in the face
Gy = {z € (recC)Di z = BTu,u = (u4,0) > 0}
of (rec C’)D, and thus
— AT3 = BT e G,, for some @ = (@i4,0) >0 (24)

Consequently, by (17) we have

and
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since # € G4. Therefore
aWTb+3Ta = ﬁT(?) — Bz) + T Bz + %T(wk — 2 + Az, — ept)
= (BTa+ AT%) Tz — pe’z
= —pef3>0

in which the last inequality is due to # € recC and e € int Ng (z.) C —int (rec C’)D. We
now claim that the the system

Az — @ € (rec (j)D, zeC (25)
has no solution. To see this, let € C, then
@Bz + 7T Az =0
as a result of (24). Subtract from this the inequality
b+ #7a > 0
which we have just proven, then
iT(Be —b) + 2T (Az —a) < 0
But it is obvious that @7(Bz — b) > 0, hence
T(Az —a) <0
But % € recC. Thus Az — a ¢ (recC’)D.

The proof is complete by noting that (25) has a solution if and only if (21) has a solu-
tion. [

As a special case of this theorem, we have the following result for copositive-plus matrices.

Corollary 4.5. Suppose C is a polyhedral convez set, A is copositive-plus with respect to
rec C and invertible on the lineality space of C. Then ezactly one of the following occurs:

e The method given above solves (AVI)
e the following system has no solution

Az —a € (recC)’, zeC (26)

Proof. Obvious, in view of Lemma 4.3. [

APPENDIX A. INVARIANCE PROPERTIES OF L—MATRICES

In this appendix we show that the property of L-matrix with respect to a polyhedral
convex cone is invariant under the two reductions presented in §3. We begin with the
following technical lemmas.

Lemma A.1. Let C, C, and C be as in (AVI), (3) and (10); V and Y be as in (6) and
Lemma 3.1. Then

recC V(recC) (27)
recC = Y(recC) (28)
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and
VT((recC)P) = (recC)” (29)
YT ((rec (~7)D) = (rec (j’)D (30)
Furthermore
V(i (recC)P) = ri(rec()” (31)
Y7 (ri (rec0)°) = 1i(recC)” (32)
Proof. (27) and (28) are obvious from definition.
Based on these two equations and [12, Corollary 16.3.2], we have
(recC)’ = —(recC)° = —(Vrec c)e
= — (V) (recC) = (VT)"I(recC’)D
where K° = —KP is the polar cone of K and (VT)~! is the inverse image of the linear map

VT (also see [12]). Similarly
(rec C~')D = (Yrec C’)D = (Y")}(rec C’)D

So we have proven (29) and (30).
(31) and (32) can be obtained from (29) and (30) by applying [12, Theorem 6.6]. [

Lemma A.2. For z € recC, Z € rec C, and z € recC, define
D(z) = {(l € (recC)? | (d, ) = 0}

)

D) = {(ZG (rec (j’)D‘ <cz,

P2
S~
I

D(z) = {de(recC)”|(d,z) =0}
Then
D) = VID(V3) (33)
D(z) = YTD(Y?) (34)

where V and Y are as in (6) and Lemma 3.1.
Proof.
pE) = {J € (recC)” | (4,2) = o} = {d e VT(recC)P | {d,2) = 0}
= VT{d e (recC)”| (d",Vz) =0} = VID(VZ)
The other equation can be proven similarly. []

Actually, for z € recC, D(z) is the set of vectors defining faces of rec C containing z, a
vector z' is in every face of rec C' containing z if and only if (d,2') = 0 for all d € D(z).
Similar observation can also be made for the set C' and C.
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€ (rec (’) , and 0 € (recC’)D, define
{rerecC|(r,w)=0}
{F €recC | (F,0) =0}
R(@) = {rerecC|(F,d)=0}

v*§,v
ii

Then
VR(VTw) = R(w) (35)
YR(YTw) = R(w) (36)
where V and Y are as in (6) and Lemma 3.1.
Proof.

Rw) = {rerecC|(raw)=0}={reV(ecl)|(r,w)=0}
= v{r (7, VTw) =0} = VR(V w)

The other equation can be proven similarly. [

Similar to the case of Lemma A.2, for w € (rec (')D R(w) is the set of vectors defining
faces of (recC)P containing w, a vector w' is in every face of (rec P)D containing w if and
only if (r,w’) = 0 for all r € R(2). The situation is similar for the set C and C.

Now, we come to the invariance of the L—matrix property.

Lemma A.4. Given the problems (3) and (10). Suppose A is an L-matriz with respect to
recC, then A is an [-matriz with respect to recC.

Proof. For z € recC, Yz € recC. For any g E ri (rec C) there exists ¢ € ri(rec CY/')D such
that g = Y74 due to (32). If Az + G € (rec (‘) then

YTAYZ + Y74 € (recC)’

by definition of A. Hence

(AYz +4, vz) = (YTAvz+Y7§, 2)>0, VzerecC
It follows from (28) that

(AYz + ¢, £) >0, VierecC
Thus ) D
AYZ 4 G € (recC)

Therefore Z satisfies

zerecC, Az+q€ (recC_’)D, and zT(Az4+q)=0 (37)
with ¢ € 1i(rec C-')D, implies Yz satisfies

Yzerecl, AYz4ge (recC)’, and (Y2)T[A(YZ) 43 =0 (38)

with ¢ € ri(rec C) Thus, the solution Yz of (38) is contained in lin C = {0}, which implies
that z = 0. Thus the solution set of (37) is {0} C linC.
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For any 0 # Z € rec C such that
Az € (recC)’ and 2TAz=0
we have, 0 # Yz € rec C, and
Avz € (rec @)’ and  (VE)TA(YZ) =0

So, there exists 0 # % € rec C such that 7 is contained in every face of recC' containing Y'Z,
D S .
containing AY'z. That is
Vd € D(Y2)

Vi € R(AY?)

and —AT% is contained in every face of (recC)
<(z, §>
(7,—ATz)

Consequently, there exists 0 + 7 € recC such that 3 = Y. For any d € D(z), d = Y7Td for
some d € D(Y'z). Hence

=0
=0

(d,2) = (v7d,7) = (d, YZ) =0
So, 7' is contained every face of rec C' containing z. Moreover, for any 7 € R(A2)
(7,—ATZ') = (YT, ~ATYE) = (Y7, —ATz) =0

since Yz E_R(AY %). We see that —ATZ’ is contained in every face of (rec C’)D containing
Az. Thus A is an I-matrix with respect to C. [

Lemma A.5. Given the problems (NE) and(3). Suppose A is an L-matri with respect to
rec C, then A is an L-matriz with respect to rec C.

a~

Proof. For any % € recC, VZ € recC and
Uz=(V - VV(W/TAI/T/)“lT/VTAV)E =Vi-WWIAW)'WTAVE € recC

since W(WTAW)TWTAVZ € linC. For any ¢ € ri(rec é)D, there exists ¢ € 11 (rec C)D
such that § = VTq. If A% + ¢ € (rec C’)D then

UT AU3 + VTq € (rec ()7,
by definition of A. But

UTAU = VTAU — VT ATW(WTAW) TWT AU = VT AU

q € (recC)”

since WT AU = 0, as can be directly verified. Thus
D

VI(AUz 4 q) = VTAUZ + VT € (rec C) q € (rec )P

which implies
(AU + ¢,V3) = (VI(AUZ + ¢),%) 20, VZerecC
It follows from (27) that

(AUZ + q,z) >0, Vz€recC
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Thus
AU3 + q € (recC)P

Also
(U£)TTA(US) + ¢l = 3T A2 =0
Therefore Z satisfies
serecC, Ai4ge(recC)’, and #T(A3+§) =0 (39)
with ¢ € ri (rec C’)D
Us € recC, AUZ+q¢€ (recC)?, and (UZ)T[A(UZ)+¢] =0 (40)

implies UZ satisfies

with ¢ € 1i(rec C)D. Hence the solution Uz% € lintecC = lin C. But then
Vie WWTAW) 'ATVZ +1inC C linC

which, by the definition of V, implies Z = 0. This shows that the solution set of (39) is
contained in linC' = {0}.
For any 0 # Z € rec C such that

i Y oand #TAz=0

Az € (recC
we have 0 #£ UZ € recC, and
VTAUS = UTAUZ = A% € (rec 0)”
which implies A(UZ) € (rec C)P. We also have
(Uz)TAUZ) = 5TA2 =0

So, there exists 0 # 2’ € rec C such that 2’ is contained in every face of rec C' containing Uz,
and that —ATZ' is contained in every face of (rec C)” containing A(U%). That is

(d,2'y=0 Vde DU%)
(r,—AZz) =0 Vre R(AUZ)

Consequently, there exists 0 # 7' € rec C, such that 2/ = VZ, and for any d € D(%), we have
d = VTd, for some d € D(VZ), but since d € (recC)”, W¥d = 0, therefore (d, V'Z) = (d,UZ),
so d € D(V%) implies d € D(UZ), hence

(d,#) = (V1d,#) = (d,V#) = (d,2') =0
So, 5" is contained in every face of rec C containing 2. For any # € R(AZ)
(7,—AT¥) = (7, ~UTATUZ') = (7, ~UTATVE) = (7, ~UTAT)
= (7, -VTATZ) = (V7 ~ATZY = (r,—ATZ") = 0

since r = Vi € R(AUZ) as a result of (36). This proved that —AT3" is contained in every

face of (rec (:’)D containing A2. 0O



A PIVOTAL METHOD FOR AFFINE VARIATIONAL INEQUALITIES 19

Acknowledgement. We are grateful to Prof. Stephen Robinson for several enlightening dis-
cussion on the material contained in this paper and for his insights into the practicality of
the normal equation formulation of the affine variational inequality problem.

1.

2.

[SAR

11.

12.
13.

REFERENCES

J.V. Burke and J.J. Moré. Exposing constraints. Mathematics and Computer Science Division MCS-
P308-0592, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Tllinois, 1992.

R.W. Cottle, J.S. Pang, and R.E. Stone. The Linear Complementarily Problem. Academic Press, New
York, 1992.

. B.C. Eaves. A short course in solving equations with pl homotopies. In R.W. Cottle and C.E. Lemke,

editors, Nonlinear Programming, pages 73—143, Providence, RI, 1976. American Mathematical Society,
SIAM-AMS Proceedings.

. B.C. Eaves. Computing stationary points. Mathematical Programming Study, 7:1-14, 1978.
. B.C. Eaves. Computing stationary points, again. In O.L. Mangasarian, R.R. Meyer, and 5.M. Robinson,

editors, Nonlinear Programming 3, pages 391-405. Academic Press, New York, 1978.

G.H. Golub and C.F. Van Loan. Matriz Computations. The John Hopkins University Press, Baltimore,
Maryland, 1983.

S. Karamardian. Complementarity problems over cones with monotone and pseudomonotone maps.
Journal of Optimization Theory and Applications, 18:445-454, 1976.

. C.E. Lemke. Bimatrix equilibrium points and mathematical programming. Management Science, 11:681~

689, 1965.

. K.G. Murty. Linear and Combinatorial Programming. John Wiley & Sons, New York, 1976.
. K.G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Helderman—Verlag, Berlin,

1988.

S.M. Robinson. Normal maps induced by linear transformations. Mathematics of Operations Research,
17:691-714, 1992.

R.T. Rockafellar. Conver Analysis. Princeton University Press, Princeton, NJ, 1970.

Y.Dai, G. van der Laan, J.J. Talman, and Y. Yamamoto. A simplicial algorithm for the nonlinear
stationary problem on an unbounded polyhedron. STAM Journal on Optimization, 1:151-165, 1991.

COMPUTER SCIENCES DEPARTMENT, UNIVERSITY OF WISCONSIN, 1210 WEsST DAYTON STREET,

MapisoN, WiscoNsiN 53706

E-mail address: cao@cs.wisc.edu ferris@cs.wisc.edu



