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ABSTRACT. A modified auction algorithm for solving the shortest path problem is presented
and convergence is established. The proposed method differs from the standard auction
algorithm in the way dual variables are updated. By relaxing the dual feasibility requirement
we were able to substantially reduce the total number of iterations required by the auction
algorithm to compute the shortest path. Computational results show the advantage of this
new approach, especially when the number of intermediate nodes in the shortest path from
the origin to the destination is large.

1. INTRODUCTION

In this paper we present a modified auction algorithm for solving the shortest path prob-
lem. Auction algorithms were first proposed by Bertsekas [1] (see also [2, 3]) for the assign-
ment problem and later extended to general transportation problems [6, 8, 7]. A survey of
the auction algorithms for network optimization problems is contained in [5, Chapter 4].

In [4], Bertsekas proposed an auction algorithm for the shortest path problem. For the
single origin and single destination case, the algorithm can be viewed as an instance of the
“naive” auction algorithm applied to a special type of assignment problem. Furthermore,
it can be interpreted as a finitely terminating dual coordinate ascent method. Under the
assumptions that there exists a path from the origin to the destination, that each cycle of
the graph has positive length, that the forward star of each node is not empty and that all
input data are integer, the algorithm terminates in pseudopolynomial time.

Recently, Pallottino and Scutella [10] proposed two new versions of the auction algorithm
for the shortest path problem. By opportunely pruning the original graph until it “collapses”
in a shortest path tree, they developed strongly polynomial versions of the auction algorithm.

The standard auction algorithm for shortest path problems consists of 3 basic operations:
path eztension, path contraction and dual price raise. For the single origin and single
destination case, the algorithm maintains a path starting at the origin and a set of feasible
dual prices. At each iteration, the candidate path is either extended by adding a new node
at the end of the path, or contracted by deleting the terminal node. When no extensions
or contractions are possible, the value of dual variable corresponding to the terminal node
in the candidate path is raised. The algorithm terminates when the destination node is
reached.

The algorithm we propose differs from the standard auction algorithm in the way the dual
variables are updated. We do not require that dual feasibility be maintained throughout
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the algorithm. This allows us to raise the dual prices higher than in the standard auction
algorithm and, as a consequence, the number of path contractions is substantially reduced.
In Section 3 we will show that (as in the standard auction algorithm) if a node ¢ in the
graph is reached, then a shortest path form the origin to node ¢ has also been found. As a
consequence, the pruning operation proposed in [10] can be applied. The convergence prool
for our modified auction algorithm uses this pruning strategy to construct a feasible dual
solution for the shortest path on the reduced graph.

The paper is organized as follows. In Section 2 we present in detail the Modified Auc-
tion Algorithm. Convergence of the algorithm is proved in Section 3. Finally, preliminary
experiments are reported in Section 4.

2. THE MODIFIED AUCTION ALGORITHM

In this section we will describe in detail the Modified Auction Algorithm for the short-
est path problem. For sake of simplicity we will discuss only the single origin and single
destination case.

Let G = (N, A) be a directed graph, where A is the set of nodes and A is the set of arcs.
Let s be the source node and ¢ the destination node. The single origin and single destination
shortest path problem can be formulated as

minimize Z CipTip
(Lp)eA
(1) subject to > mp— Y, zTH=0by, VPEWN,
(lip)eA (p,l)eA

Zip 2 07 v (lap) € ‘Aa
where b, = 0 for all p # s,t, by =1, and b; = —1. The dual of (1) is

maximize Ty — Mt
subject to ¢p—m+ 7, >0, V(,p)e A

(2)

where m, is the dual variable associated with node p (sometimes referred to as the price of
node p). At each iteration of the standard auction algorithm a dual feasible solution and a
primal (infeasible) solution are available for which complementarity slackness holds. While
maintaining complementarity slackness, the algorithm either constructs a new primal (not
necessarily feasible) solution or a new dual feasible solution until a primal feasible (and hence
optimal) solution is obtained.

By contrast, in our Modified Auction Algorithm we do not require that the dual variables
remain feasible. The dual variable corresponding to the terminal node of the candidate path
(let’s call it node ¢) is raised to the second minimum value in the set

(3) {—(Clci — T + 7!','), Cip — T4 + Tp, (7:9p) € Av }a

where node k is the immediate predecessor of node ¢ in the candidate path.

The idea of raising the dual prices to the second minimum value is not a novel idea for
the auction algorithms. In fact, for the assignment problem the dual prices are updated in
a similar fashion. However, as far as we know, no one has proposed this updating scheme
for shortest path or minimum cost flow problems. The main reason for this may be that the
above updating formula (3) does not guarantee dual feasibility.
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The following technical assumptions are needed in order to guarantee that an initial dual
feasible solution exists and the contraction operation is well defined.

Assumption 1. All cycles in the graph have positive length.
Assumption 2. The forward star for all nodes (except eventually node ¢) is not empty.
Moreover at least two arcs are in the forward star for the starting node s.

We are now ready to present in detail our Modified Auction Algorithm.

Modified Auction Algorithm

Step 0: Set z;, = 0 for all arcs. Choose 7 € RW! such that ¢ — 1 + 7, > 0 for all (I, p) € A.

Step 1: If node ¢ is the terminal node of the candidate path, stop. Otherwise, let 7 be the
terminal node for the candidate path.

Step 2: Let

Sti= {(z’,p) cA: a:ip:O}
S = {(l,i)E.At .’I)li:l}
Define

71 = min {(ig%ie%P Cip — Wi + 7rp}, (I,I-;'r)lé%— ‘—(Cli - m + 71';')}} .

If v1 = ¢ipr — m; + wp« for some (7,p*) € ST, then set
’yzmin{ min cip—7r,~+7rp}, min —(czi-»m+7r,~)}} .

(i,p)est (I,0)es—
(4,p)#(i,p*)

If, instead, v1 = —(¢p»s — m« + m;) with (I*,7) € S~, then set

=min{ min <¢ -—7r-+7r} min {—-(c~—7r +7r->} .
v {(i,p)€S+ ip 7 Pl (es 17 l 7
(I*,6)#(L,5)

Set m; = m; +
Step 3: If there exists a node j such that:

(4&) (Z,]) € A, zi;; =0, m; > 74 ¢

then set z;; = 1, and go to Step 1
If there exists a node j such that:

(4b) (J,Z) € A, Tj; = 1, m > T; — Cjs

then set z;; = 0, and go to Step 1
If there exists a node j such that:

(4(:) (i,j)EA, zi; =0, m=m; + ¢

then set z;; = 1, and go to Step 1
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Remark 1. Note that Assumption 2 guarantee that at each iteration of the Modified
Auction Algorithm, there are at least two elements in S+ U S™.

Remark 2. For each arc (I,p) € A, let ry,, := ¢ — 1+ 7, be the reduced cost for this arc.
Then, the quantity 7; is the minimum of the smallest reduced cost for the arcs leaving node
¢ and the negative of the reduced cost for the only arc in the path entering node . Later we
will show that all reduced costs for the arcs leaving node 7 are nonnegative while the reduced
cost for the only arc in path entering node ¢ is nonpositive. Therefore the quantities ; and
v defined in Step 2 of the Modified Auction Algorithm are both nonnegative.

Remark 3. The choice of 4 in Step 2 of the Modified Auction Algorithm ensures that
after Step 3 if 7; > =; -+ ¢;; for some (z,5) € A with z;; = 0, then m; < 7y — c; where £ is the
node immediately preceding node 7 in the candidate path. Similarly, if m; > 7 — cx; where
k is again the node immediately preceding node 7 in the candidate path, then m; < 7, 4+ ¢;,
for all arcs (z,p) € A

Remark 4. In Step 3 the order in which the conditions (4a)-(4c) are tested is crucial
to the convergence of the algorithm. When condition (4c) is satisfied a “degenerate” path
extension is performed. Such extensions are only allowed when no “standard” path extensions
or contractions are possible. Since the set S~ contains (except for the case ¢ = s) only a
single element, either an extension (degenerate or not) or a contraction is always possible.

3. CONVERGENCE OF THE MODIFIED AUCTION ALGORITHM

In this section we will establish the convergence of the Modified Auction Algorithm. First
we show in Lemma 3.1 that at each iteration the reduced costs are nonnegative for the arcs
not in the candidate path and nonpositive for the arcs in the candidate path. Then, we will
show that each time a node is reached the candidate path is a shortest path from the origin
node s to its terminal node. Finally, we will prove that the Modified Auction Algorithm
terminates in a finite number of steps if all cycles in the original graph have positive costs, if
a path from the source node s to the terminal node ¢ exists and if all input data are integer.

Lemma 3.1. At each iteration of the Modified Auction Algorithm

e the arcs (I,p) € A corresponding to z, = 1 determine a simple path from the origin
to a node i € N,

e dual variables (not necessarily feasible) are available for which the following conditions
are satisfied:

(5a) (LpeA zp=0 = rp=cp—m+71,2>0

(5b) LpeA zp=1= rmp=cp—m+m, <0

Proof Clearly the initial choice of the primal and dual variables satisfy all the conditions
above. The initial path only includes the starting node s. Let’s now assume that at the
beginning of the generic iteration of the Modified Auction Algorithm the arcs (I, p) € A with
z1, = 1 determine a simple path from the source node to a node ¢ and that dual variables 7
satisfying (5a) and (5b) are available. We will show that after performing Steps 2 and 3, a
new simple path is constructed and new dual variables satisfying (5a) and (5b) are obtained.

Let ¢ be the terminal node of the candidate path. Note that the quantity v specified
in Step 2 of the algorithm is nonnegative since (by assumption hypothesis) all the reduced
costs for the arcs in ST are nonnegative and the reduced cost for the only entry in S~ is
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nonpositive. In Step 2 of the Modified Auction Algorithm, all the dual prices are unchanged
except m; whose value is increased by . Set 77" = 7; + 7.

Clearly, the reduced costs for all arcs (I,p) € A with z;, = 0 and not incident to node
¢ remain nonnegative. Moreover, since the value of the dual variable 7; is increased, the
reduced costs are nonnegative for all arcs entering node .

We must now consider two distinct cases. Suppose that in Step 3 we extend our candidate

path to include a new node j. This only happens if
w2 w4 ¢y, and WY < T — gy

where k is the immediate predecessor of node ¢ in the candidate path. Therefore the reduced
costs for the arcs (4,j) and (k,?) are both nonpositive. The choice of v in Step 2 of the
Modified Auction Algorithm also guarantees that for any other arc (i,p) € A, p # j, the
reduced cost is nonnegative. Note that it is not possible that the newly reached node j was
already in the path from s to ¢. In fact, suppose, by contradiction, that the candidate path
was

{3,... iy lslay b =kyi).

Then, by summing the reduced costs over the arcs of the cycle

(7,1), (I, 12), ..y (Iry2), (4,7)
we obtain
i +en, .o, t6; <0
which contradicts Assumption 1.
Suppose now that we contract our path. Note that this only happens when no extensions
are possible, that is there are no arcs (z, p) leaving node ¢ with 77** > 7, + ¢;;,. Therefore,
the reduced cost for all the arcs leaving node ¢ are nonnegative. Again, let k be the node

immediately preceding node ¢ in the candidate path. Condition (4b) guarantee that 7]*** >
7, — ¢k and hence also the reduced cost for the arc (k,¢) is nonnegative. O

As part of the above lemma, we also showed that the dual variables are only increased
during the algorithm. The next lemma shows that the candidate paths constructed by the
algorithm are shortest paths from the origin to their terminal nodes.

Lemma 3.2. At each iteration of the Modified Auction Algorithm, the simple path from the

starting node s to node 1 € N determined by the primal variables set to 1 is a shortest path
from s to 1.

Proof We already showed that, at each step of the Modified Auction Algorithm, the arcs
corresponding to primal variables equal to 1 determine a simple path from the origin s to
a node : € N. Since our initial path includes only node s, the assertion is true at the
beginning of the first iteration of the algorithm. Suppose now that at the beginning of the
generic iteration the candidate path starting at node s and ending at node ¢ is a shortest
path from s to ¢. If in Step 3 we contract our path back to node k, the new path is again a
shortest path from s to k [9, Proposition 2.1, page 56]. When the candidate path is extended
to include node j, a new set of dual variables is also constructed for which conditions (5a)
and (5b) are satisfied. Let P be the candidate path from s to j and P’ an alternative path
from the same two nodes. Also, let [ be the last node that is in both paths. If [ = 7, then
since the subpath of P from s to ¢ is a shortest path from s to ¢, it follows that the sum
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of the arc costs for the path P is no greater than the sum of the arc costs for the path P’.
Suppose now [ < 7 and let?

P = S,...,1,11,12,.--’lr,i7j}
Pl S)"'vl7li’l,27"'7l':'lj}'

Since the arcs (I,4), (l,), (I-,4), (3,7) are in the candidate path while the arcs (,1}),
(14, 15), (I.,%) are not, we have

an +euly + i+ cij —m A+ <0 < e+ o — T

and hence
¢y + ey, + e+ iy < ey ey oo

Since ([9, Proposition 2.1, page 56]) the subpath of P from s to [, is a shortest path from s
to [ the total sum of the costs for the arcs in P is smaller than the sum of the costs for the
arcs in P’. 0

Corollary 3.3. If the Modified Auction Algorithm terminates, then a shortest path from the
origin node s to the destination node t has been found.

The optimality of the candidate paths (for the standard auction algorithm) is the funda-
mental property used by Pallottino and Scutella in [10] to construct their polynomial time
versions of auction algorithm. The key observation is that the candidate path P is a shortest
path from s to its terminal node ¢ and hence the first time that node ¢ is reached we can
delete from the original graph all the arcs in the backward star of ¢ except arc (k,7) where
k is the immediate predecessor of 7 in the path. We will use a similar approach to show
convergence of our modified auction algorithm.

Let

P(r) = {io = 8,i1,42, .. , ik kg1 = i}
be the candidate path constructed at iteration r of the Modified Auction Algorithm and let
7" be the (not necessarily feasible) dual variables available at iteration r. Define A(r) as
the subset of the arcs in A obtained by deleting all the arcs in the backward star of the

nodes in the candidate path P(r) except their immediate predecessor in the path and let

G(r) = (N, A(r)) be the subgraph of G. Corresponding to the variables ("), construct a
new set of dual prices #{") as follows:

(6a) 70 = ), Vpg P(r)
(6b) = ),
(6c) fr,(;) = 7&'1(21 + ¢ijijyy for j=kk—1,...,0

The next two lemmas demonstrate that the dual variables #(") are feasible for the dual
problem:

maximize Ty — Ty
subject to ¢ —m 4+ 71, 20, V (I,p) € A(r).

(7)

!Note that I = s is possible.
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Lemma 3.4. Let #(") be the dual variables available at iteration r of the Modified Auction
Algorithm. Then

(8) () < ()

where #(7) is given by (6)

Proof From (6a) and (6b) we have that #(") = ={7) for all node p ¢ P and # = £,
Moreover, for all { =0,... ,k

k
(9) ﬁz(zr) = Cijia + ”zgr)
3=l
But from Lemma 3.1, the reduced costs ¢;; ;.,, —W§;)+W§;_|)_1 are nonnegativeforally = 0,... ,k
and hence
: () | 0 ) LS () 4 20
02> ZI (Cz’j,ml —m Wij+1) ==y b w T+ Zlcij,i,u,l = =7 + 7
J= J=
0
Lemma 3.5. For all (I,p) € A(r) we have "

10 P = — 77 4 20 >
p Y4 1 P

where () is the vector given by (6)

Proof From Lemma 3.1 and (6a) we have that the reduced costs are nonnegative for all
the arcs (I, p) with both ! and p not in P(r). Condition (6b) ensures that the reduced costs
are 0 for the arcs in the candidate path. Finally, since #(") < ("), dual feasibility holds for
all arcs leaving nodes in the path and reaching nodes not in P(r). O

The way the graph G(r) is constructed, ensures that the set of nodes that can be reached
from the source node s in G(r) is the same as the set of nodes reachable in G. Therefore,
if a shortest path from s to ¢ exists in the graph G, it must also exist in the graph G(r)
and hence the maximization problem (7) (which is feasible since (2) is feasible) cannot be
unbounded above.

The following assumptions, in addition to Assumptions 1 and Assumptions 2, are needed
in order to guarantee finite termination of the Modified Auction Algorithm.

Assumption 3. There exists a path from s to .
Assumption 4. All input data are integer.

We already showed that during the Modified Auction Algorithm, the dual prices associated
with the nodes are never decreased. Moreover, each time a contraction is done, the dual price
for the end node of the candidate path is raised by a positive quantity.

Lemma 3.6. Suppose that Assumptions 1, 2 and 3 hold. Then, each time we perform a
path contraction from a node, the price of this node is raised by a positive quantity.

Lemma 3.7. A path contraction is only performed if in Step 3 of the Modified Auction
Algorithm

T > Tk — Cki
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where k is the node immediately proceeding i in the candidate path. But the reduced cost for
the arc (k,1) was previously nonpositive, and hence in Step 2 the dual price associated with
node © was raised by a posttive quantity.

Lemma 3.8. Suppose that the algorithm does not terminate. Then, under the Assumptions
1, 2 and 4, at least one of the dual prices goes to +oo.

Proof If the algorithm does not terminate, there is at least one node visited an infinite
number of times. Since the graph has no cycles of length less than or equal to 0, an infinite
number of :extensions-(and, more important, contractions) involve this node. At each con-
traction, the dual price associated with the node is raised by at least 1 (since we assumed
that all input data are integer) and hence the dual price for this node goes to +oo. 0

The previous lemma shows that, when the algorithm does not terminate, there exists at
least one node (let’s call it 7) such that

lim 7" = +o0.

From the sequence 7("), we can extract a subsequence 7("#) with the following properties:

(1) the paths P(r;) are identical for all j,
(2) Node ¢ is the end node for these identical paths.

Such subsequence exists because (under the assumption that the algorithm does not termi-
nate) node ¢ is the terminal node for an infinite number of candidate paths and the number
of distinct (shortest) paths from s to ¢ is finite. Since the candidate paths P(r;) are identical,
also identical are the set of arcs A(r;) for all j. Let ¢’ = (N, A’) with A" = A(r;). The
variables #("3) are feasible for the problem

maximize Ty — Ty
subject to ¢, —m 471, >0, V(l,p) € A".

(11)

We already noticed that the dual price for node t is never modified and hence wt(rj ) = 7”rt(” ),

Moreover, the quantity i) frt(”) must remain bounded since the variables #(") are feasible

a (75)

for (11) and hence #9) must remain bounded. But, since #; ”’ — 400, we have
im#) - #79) = —o0
i D
which is impossible since #{*) — 7"
the arcs in P(r;).

The following theorem summarizes the convergence results for the Modified Auction Al-
gorithm.

is constant and equal to the sum of the costs for all

Theorem 3.9. Under the Assumptions 1-4, the Modified Auction Algorithm terminates af-
ter a finite number of extensions and contractions. The final path is a shortest path from the
origin node s to the target node t.

4. COMPUTATIONAL RESULTS

We compare the results obtained with our Modified Auction Algorithm with the results
for a standard auction algorithm implementing the graph reduction operation as specified in
[10]. To generate our problems we used the “gridgen” generator written by Yusin Lee and
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Jim Orlin for grid-like networks. This graph generator, in addition to the arcs connecting
the nodes in the grid (that can be two-way arcs or one-way arcs), introduces supplemental
arcs by uniformly picking random node pairs. The number of these supplemental arcs is
controlled by a parameter specifying the average node degree.

We tested the single origin and single destination version of the Modified Auction Algo-
rithm (Figures 1, 2 and 5) as well the single origin and multiple destinations version (Figures
3 and 4). In the second case the stopping criterion in step 1 of the Modified Auction Al-
gorithm is modified and termination occurs only when all nodes in the graph have been
terminal nodes for at least one candidate path.

All the results are graphically displayed in Figures 1 to 5. For a specific number of nodes
or grid size we report the range of variation for

Told - Tnew
Tora

where T4 is the time for the standard auction algorithm and T, is the time for our Modified
Auction Algorithm. The average value is indicated by an asterisk.

In Figures 1 and 2 we display the results for the single origin and single destination case
for graph with number of nodes varying from 1,000 to 10,000 for almost square grids (Figure
1) and very skew, long grids (Figure 2).

Figures 3 and 4, instead, deal with the single origin multiple destination case for the same
almost square or long grid graphs considered before.

In all our 4 test sets our Modified Auction Algorithm outperformed the standard auction
algorithm, and in some case the time reduction was almost 50%. The reduction time observed
by using the Modified Auction Algorithm is more pronounced (an average of over 28%) for
the single origin and single destination case than for the single origin and multiple destination
case for which the average time reduction was about 18.5%.

In general we observed a greater time reduction when very long candidate paths are
constructed. In this case the Modified Auction Algorithm, by raising the dual prices to
higher values, avoids useless contractions.

This observation motivated us to experiment on some pathological cases. We considered
again grid graphs but now only the arcs belonging to the grid are generated. Moreover, nodes
at opposite ends of the grid were chosen as origin and destination nodes. Figure 5 reports
comparative results with the standard auction algorithm for this class of problems. We
observed a substantial time reduction. In some instances our Modified Auction Algorithm
was over 10 times faster than the standard auction algorithm and for skewed grid we observed
an average time reduction of over 68%. The reduction is due to the fact that for these graphs
the intermediate paths contains a large number of nodes and the Modified Auction Algorithm
requires a smaller number of contractions before reaching the optimal solution.

5. CONCLUSIONS

We presented a modified auction algorithm for solving the shortest path problem. The al-
gorithm differs from the standard auction algorithm because the dual feasibility requirement
is relaxed. As a consequence, the total number of contractions is substantially reduced. Com-
putational results show the advantage of this new approach in particular when the number
of intermediate nodes in the shortest path from the origin to the destination is large.
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FIGURE 1: Percent of time reduction for the single origin, single destination problem. Almost square grid.
Average number of incident arcs per node = 4.
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FIGURE 2: Percent of time reduction for the single origin, single destination problem. Long grid. Average
number of incident arcs per node = 4.
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FIGURE 3: Percent of time reduction for the single origin, multiple destination problem. Almost square grid.
Average number of incident arcs per node = 4.

% time reduction

1000 3000 5000 7000 10000
number of nodes

FIGURE 4: Percent of time reduction for the single origin, multiple destination problem. Long grid. Average
number of incident arcs per node = 4.
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FIGURE 5: Percent of time reduction for the single origin, single destination problem. Number of nodes =
10,000. Varying grid size. Grid arcs only.



