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Abstract

Regions of control dependence identify the instructions in a program that execute under the same control con-
ditions. They have a variety of applications in parallelizing and optimizing compilers. Two vertices in a con-
trol flow graph (which may represent instructions or basic blocks in a program) are in the same region if they
have the same set of control dependence predecessors. The best known algorithm for computing regions
takes O(VXE) time, where V and E are the number of vertices and edges in the control flow graph, respec-
tively. We present algorithms for finding regions in O (V+E) time and O (V+E) space, without using control
dependence. These algorithms are based on alternative definitions of regions, which are easier to reason with
than the definitions based on control dependence.

1. INTRODUCTION

Regions of control dependence identify the instructions in a program that execute under the same control
conditions. They have a variety of applications in parallelizing and optimizing compilers [3, 5] and other
systems [8]. For example, regions can be used for identifying code that can be executed in parallel, and for
global instruction scheduling by identifying code that may be moved between basic blocks [2].

Two vertices in a control flow graph (which may represent instructions or basic blocks in a program) are
in the same region if they have the same set of control dependence predecessors. Two queries regarding
regions are useful: (1) are vertices v and w in the same region?; (2) what vertices are in the same region as
vertex v? By determining the partioning of vertices that regions induce, both questions can be answered
efficiently. The best known algorithm for computing (the partitioning induced by) regions takes O (VXE)
time, where V and E are the number of vertices and edges in the control flow graph, respectively [4]. This
is because the algorithm examines each control dependence once, and there can be Q (VXE) control depen-
dences in the worst-case, even for acyclic control flow graphs. This algorithm uses O(V+E) space.

This paper presents algorithms for finding regions in linear time and space, without using control depen-
dence. These algorithms are based on alternative definitions of regions:

* This work was supported in part by the National Science Foundation under grant CCR-8958530, by the Defense Advanced Research
Projects Agency, monitored by the Office of Naval Research under contract N0O0014-88-K-0590, as well as by grants from Xerox and
M.



° Vertices v and w are in the same weak region iff for any complete control flow path,1 v and w are
both in the path or are both absent from the path. Weak regions are equivalent to the control depen-
dence regions that arise from forward (loop-independent) control dependences 131

. Vertices v and w are in the same strong region iff v and w occur the same number of times in any
complete control flow path. Strong regions are equivalent to the control dependence regions that ar-
ise from full control dependences.

We present algorithms to find weak regions in O (V+E) time and O (V+E) space for all control flow graphs,
and to find strong regions in O (V+E) time and O (V +E) space for reducible control flow graphs. We iden-
tify a property of weak regions that allows them to be computed in a single pass over the postdominator
tree of the control flow graph, in conjunction with queries on the dominator tree. Strong regions can be
identified by loop analysis in conjunction with weak region identification, and for a certain class of reduci-
ble graphs can be computed without the aid of loop analysis.

The running time for the algorithms includes the time needed to construct the postdominator and domi-
nator trees, and to perform the loop analysis. However, as this information is commonly computed for
other purposes by program transformation systems, in the context of such systems it is free. The running
time for the algorithms, not considering the time needed to compute this information, is still O (V+E ).

This paper makes two major contributions:

(1) The first linear time algorithm for computing regions of control dependence. Previous algorithms
have poor worst-case performance. However, such algorithms typically may perform well in prac-
tice because situations where O (VXE) control dependences arise are rare. Nevertheless, our algo-
rithm performs well in all cases and is simple to implement.

(2) A new characterization of regions based on execution frequency of vertices in control flow paths.
This characterization is equivalent to that based on control dependence. The declarative nature of
this definition makes it easier to reason with than the definition based on control dependence.

The paper is organized as follows: Section 2 defines the control flow graph, describes some applications
of regions, and reviews the concepts of domination and postdomination. Section 3 shows how weak
regions can be efficiently computed using the postdominator and dominator trees. Section 4 augments the
algorithm for weak regions to compute strong regions. Section 5 shows that our characterization of regions
is equivalent to that based on control dependence.

2. BACKGROUND

2.1. The control flow graph

The control flow graph is a directed graph, rooted at the ENTRY vertex. Vertices in the control flow graph
represent the instructions or basic blocks in a program. There is a distinguished EXIT vertex (with no suc-
cessors) and an edge from ENTRY to EXIT. Every vertex in the graph is reachable from ENTRY and EXIT
is reachable from every vertex. The outgoing edges of each vertex are uniquely labelled. A complete path
in the control flow graph is a directed path from ENTRY to EXIT. Each complete path represents a possible
program execution.

YA complete control flow path is a path from the entry point of the control flow graph to the exit point.
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Figure 1. A control flow graph with weak and strong regions identified.

2.2. Applications of regions

The Introduction presented the definitions of weak and strong regions. Figure 1 presents an example con-
trol flow graph, with weak and strong regions identified. We describe the application of strong regions to
code scheduling and profiling.

Code schedulers typically reorder the instructions within a basic block to improve program performance
(provided, of course, that data dependences are respected). Strong regions identify situations where
instructions can be moved across basic block boundaries without code duplication and without incurring a
penalty in the number of instructions executed for any complete path. For example, in Figure 1, if we wish
to move an instruction from vertex e to vertex d, the same instruction may have to be copied to vertex g o
ensure correctness. However, this duplication may increase the cost of a loop iteration that includes both
vertices ¢ and d (as each vertex now includes an extra instruction). Moving an instruction from vertex e to
vertex r does not require duplication but introduces an extra instruction on the path
ENTRY —sx—>r—f—EXIT. Moving an instruction from vertex e to vertex p, which is in the same strong
region as e, requires neither code duplication nor incurs an instruction count penalty.

Regions can also be used to profile programs efficiently. The problem of vertex profiling is to instru-
ment the control flow graph with counting code so that the number of times each vertex (basic block)
appears in an execution can be determined. A naive solution is to associate a counter with every vertex. A
better method is to allocate one counter to every strong region. By the definition of strong region, the count
for all the vertices in the same strong region must be the same. In Figure 1, only six counters are needed.



2.3. Dominators and postdominators

The computation of weak and strong regions rely on the concepts of domination and postdomination in the
control flow graph. Let v and w be vertices in a control flow graph. Vertex v dominates Verex w, denoted

by v dom w, if v#w and v is on every path from ENTRY to w2 Vertex v immediately dominates w,
denoted by v idom w, if v dom w and there is no vertex z such that v dom z dom w. Vertex v postdom-~
inates vertex w, denoted by v pd w, if v # w and v is on every path from w to EXIT. Immediate postdomi-
nance (v ipd w) is defined similarly to immediate dominance. Postdominance can be defined as dominance
in the reverse control flow graph, in which the direction of edges is reversed and the ENTRY and EXIT ver-
tices are interchanged.

The dominator (or postdominator) relation can be represented as a tree where v is the parent of w iff v
idom w (or v ipd w) and v is a proper ancestor of wiff v dom w (or v pd w). Figure 2 presents the domina-
tor and postdominator trees for the example control flow graph. Dominator and postdominator trees can be
computed in O (E) time [7]. Each tree requires O (V) space.

3. WEAK REGIONS

Vertices v and w are in the same weak region of a control flow graph G iff for any complete path inG,v
and w are both in the path or are both absent from the path. It is straightforward to show that distinct ver-
tices v and w are in the same weak region iff (v dom w and w pd v) or (w dom vand v pd w).3 In Figure 1,
p dom e and e pd p, so vertices p and e are in the same weak region. Considering the vertices p and g, ¢
does not postdominate p and p does not postdominate g, so this pair of vertices cannot be in the same weak
region.

Weak regions partition the vertex set of the control flow graph. Given a vertex v, we would like to deter-
mine the other vertices in the same weak region as v. Figure 2 presents the dominator and postdominator
trees of the control flow graph in Figure 1 with the weak regions identified in both trees with shading. The
key observation about weak regions that allows a linear time algorithm is that for any control flow graph,
the vertices of each weak region form a chain in the postdominator tree* that is the reverse of a chain in the
dominator tree. Computing weak regions reduces to the problem of computing those chains in one tree that
are the reverse of chains in the other tree. This can be accomplished easily by a depth-first search of either
tree. We first prove the chain property of weak regions and then describe the depth-first search algorithm.
The chain property of weak regions relies on the following lemma:

LEMMA (1). Given any control flow graph, if a dom ¢ and ¢ pd a then a dom b dom ¢ < ¢ pd b pda.
PROOF.

(=>) Suppose that @ dom b dom c. This implies that every path from a to ¢ includes b. Since ¢ pd a,
every path from a to EXIT includes c, so every path from a to EXIT must also include b (b pd a). Suppose
that there is a c-free path from b to EXIT (not ¢ pd b). Since every path from a to c includes b (and a, b,
and ¢ are pairwise unique), there must be a c-free path from a to b. The above two facts imply that there is
a c-free path from a to EXIT, contradicting an initial assumption. Therefore, ¢ pd b.

*This differs slightly from the usual definition of dominance, which is reflexive.

3This definition is identical to Bernstein and Rodeh’s notion of equivalent vertices [2]. However, they use forward control depen-
dences to discover the classes of equivalent vertices, which is not as efficient as the method given here.

1A chainin a tree T is a sequence of vertices (vq, * - * ,V,) such that for all i, v; is a parent of v,y in T.



Dominator Tree Postdominator Tree

Figure 2. The dominator and postdominator trees of the control flow graph from Figure 1, with weak regions
identified. A vertex that is not shaded is in a weak region by jtself. Weak regions partition the postdominator and dom-
inator trees into chains that are the reverse of one another.

(<) Because dominance and postdominance are symmetric, the proof is symmetric to (=>). [

THEOREM (1). For any control flow graph, each weak region forms a chain in the postdominator tree that is
the reverse of a chain in the dominator tree.

PROOF. For every pair of distinct vertices (v,w) from weak region R, either (v dom w and w pd v) or (w
dom v and v pd w). Since every pair of vertices from weak region R is related by postdominance, there is
a chain in the postdominator tree that contains every vertex in R. Let (vy, -~ ,v,) be the smallest chain in
the postdominator tree that contains every vertex inR.

We first show every vertex in this chain is in R. Since v, and v, are members of R, and vy pd vy, it fol-
lows that v, dom v,. Consider any vertex v;, where 1<i<n. Since v; pd v; pd v, and v, dom v, lemma
(1) implies that v, dom v; dom v;. Therefore, v; must be in R.

We now argue that for all i <n, v;4; idom v;. Since v;4; and v; are in weak region R and v; ipd vy, it
follows that v;,; dom v;. If there is a vertex z such that v;,; dom z dom v;, then lemma (1) implies that v;
pd z pd v;.;, which contradicts v; ipd v;,;. Therefore, v;,; idom v;. (]

As in [4], we use the following data structures to represent regions:
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WREGION(v) the weak region number associated with vertex v

WHEAD®R) the first vertex in weak region R (i.e., lowest in postdominator tree)
WTAIL(R) the last vertex in weak region R (i.e., highest in postdominator tree)
WNEXT(v) the vertex after vin WREGION(v)  (i.e., WNEXT(®v) ipd v)
WPREV(v) the vertex before vin WREGION(Y) (i.e.,v ipd WPREV(v))

For each vertex in the control flow graph, three pieces of information are maintained (WREGION,
WNEXT, and WPREV), and for each weak region, two pieces of information are needed (WHEAD and
WTAIL). Since there can be at most V weak regions, the size of these data structures is O (V).

Figure 3 presents the depth-first search algorithm for computing weak regions. The global variable
region_num keeps track of the number of weak regions (chains) found so far. The depth-first search is
done on the postdominator tree (although because of symmetry, it could just as easily be done on the domi-
nator tree). EXIT is the tail of the first weak region (lines [3] and [4D).

The procedure DFS finds chains in the postdominator tree that are the reverse of chains in the dominator
tree. When examining a child w of vertex v in the postdominator tree (line [7]), the algorithm checks if w
is the parent of v in the dominator tree (line [8]). If so, then v and w are in the same weak region (lines [9-
10]). If not, then vertices v and w cannot occupy the same weak region (lines [11-14]). A new weak
region is created and w is the tail of this region (the depth-first search builds weak regions in reverse order).

4. STRONG REGIONS

Vertices v and w are in the same strong region of a control flow graph G iff for any complete path in G,v
and w occur the same number of times in the path. Any vertices that are in the same strong region are
necessarily in the same weak region. For acyclic control flow graphs, weak regions and strong regions are
equivalent. However, for cyclic control flow graphs, two vertices may be in the same weak region but in

DFS(v : vertex , num : integer )

begin
{6] WREGION(v), WPREV(v) := num, nil;

begin [7]1 for each vertex w in PDOM(v).children do
[1] compute postdominator and dominator trees; [8] if DOM(v).parent = w then
2] region_num :=1; 91 WPREV(v), WNEXT(w) :=w, v;
[3] WTAIL(region_num) := EXIT; [10] DFS(w,num);
[4] WNEXT(EXIT) := nil; else
[51 DFS(EXIT, 1) [11] WHEAD(num) :=v;
end [12] region_num := region_num+1;

[13] WTAIL(region_num), WNEXT(w) :=w, nil;
[14] DES(w,region_num);
fi
do
end

Figure 3. Computing weak regions with the postdominator and dominator trees. PDOM(v).children is a list of v's chil-
dren in the postdominator tree and DOM(v).parent is v's parent in the dominator tree.
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different strong regions. For example, in Figure 1, vertices x and r are in the same weak region, but are not
in the same strong region, since r is in a loop that does not contain x. Vertices x and f are in the same
strong region.

In order to compute strong regions (without using control dependence) we need to reason about loops, in
addition to domination and postdomination. Stated informally, if two vertices are in different loops then
they must be in different strong regions. However, just because two vertices are in the same loop and weak
region does not imply that they are in the same strong region. There may be a cycle that contains one ver-
tex but not the other. For example, in Figure 4, although vertices a, b, and ¢ are in the same loop and the
same weak region, vertex ¢ is not in the same sirong region as vertices a and b. Given this intuition, it is
fairly straightforward to see that strong regions can be characterized as follows:

Distinct vertices v and w are in the same strong region iff ((v dom w and w pd v) or (w dom v and v pd w))
and (v is in every cycle containing w) and (w is in every cycle containing v).

This section describes how to compute strong regions efficiently for reducible control flow graphs, using
loop analysis in conjunction with weak region identification. Section 4.1 reviews the concepts of reducibil-
ity and natural loop analysis. Section 42 shows how to compute strong regions efficiently. Section 4.3
presents a class of reducible control flow graphs for which no loop analysis is needed to identify strong
regions.

Dominator Tree Postdominator Tree

Control Flow Graph

Figure 4. A control flow graph that shows that loops do not necessarily partition weak regions into strong regions.
Weak regions are identified by shading in the dominator and postdominator trees, while strong regions are identified by
outlines. A vertex that is not shaded (outlined) occupies a singleton weak (strong) region. Vertices a, b and c are in the
same natural loop, but ¢ is in a different strong region than a and b.



4.1. Reducible control flow and loop analysis

A control flow graph is reducible iff for every backedge v—w (as identified by a depth-first search of the
graph from ENTRY), either v = w or w dom v. Each vertex w has an associated set of backedge sources

back-sres(w) = { v | v—»>w is a backedge }.

A vertex k is a loop-entry if back-srcs(h) # @. Natural loops identify loops and loop nesting in the control
flow graph [1]. The natural loop associated with loop-entry his:

nat-loop(h) = {h} U { v| there is an h-free path from v to a vertex in back-srcs(h) }

In reducible control flow graphs, a loop-entry 4 dominates every vertex in nat-loop(h) (except h itself).
Roughly stated, reducibility restricts loops to have a single entry point. The exit points of nat-loop(h) are
those vertices inside nat-loop(k) that pass control out of the loop:

exits(h) = { v] 3 v—>w such that v e nat-loop(h) and w & nat-loop(k) }

If h and j are different loop-entry vertices, then either nat-loop(h) and nat-loop(j) are disjoint, or one is a
subset of the other. If nat-loop(#) contains nat-loop(j) then k dom j. The loop-entry of the innermost loop
that encloses vertex v is denoted loop-head(v). If vertex v is not in a loop then loop-head(v) = ENTRY.

Example. In the control flow graph in Figure 4, the edge d—a is the only backedge. Vertex a is a loop-
entry with back-srcs(a) = { d }, nat-loop(a) = { a, b, ¢, d }, and exits(a) = { ¢ }. Vertex a is the loop-head
for vertices a, b, ¢ and d, while ENTRY is the “loop-head” for vertices z and e. [

The loop information described above can be computed in O (V+E) time using well-known methods, as
we now outline. The main idea is to process loops from innermost to outermost, reducing a loop body to a
single vertex before proceeding to process enclosing loops. First, a depth-first search computes the back-
srcs sets. Then a post-order traversal of the depth-first search tree visits the loop-entry vertices from inner-
most to outermost loop (because & dom j implies that j will be visited before h in a post-order traversal of
the depth-first search tree). Whenever a loop-entry h is encountered, the following steps are taken:

(1) Determine nat-loop(k) by traversing edges backwards, starting from vertices in (back-srcs(h)—h), un-
il A is reached (which must occur since 4 dominates all vertices in nat-loop(#)), using marks to avoid
visiting vertices more than once. Each edge in the subgraph induced by nat-loop(k) will be visited
once. For each vertex v € nat-loop(#), loop-head(v) = h (because loops are visited from innermost
to outermost). The set exits(k) can be identified during this phase as well.

(2) Transform the control flow graph by reducing the subgraph induced by nat-loop(h) to a single vertex
¥, eliminating all edges with endpoints inside nat-loop(k). This can be accomplished using T and
T, transformations, for example [1]. Figure 5 shows the control flow graph from Figure 4 after nat-
loop(a) has been reduced.

We make the following observations about the loop analysis process:

. Let W and F be the number of vertices and the number of edges in the subgraph induced by nat-
loop(h). Any operation inserted between steps (1) and (2) that runs in O (W+F) time will increase
the running time of the loop analysis by at most a constant factor.

. The reduction operation preserves strong regions. That is, if G is the control flow graph before nat-
loop(h) is reduced and G’ is the graph after the reduction, then for any pair of vertices (v,w) in G
such that v ¢ nat-loop(k) and w ¢ nat-loop(), v and w are in the same strong region in G iff v and
w are in the same strong region in G'.



Dominator Tree Postdominator Tree
Control Flow Graph

Figure 5. The control flow graph of Figure 4, after nat-loop(a) has been reduced.

4.2. Computing strong regions during loop analysis

It is clear that if loop-head(v) # loop-head(w) then vertices v and w cannot be in the same strong region.
For some control flow graphs, the loop-head information partitions each weak region into strong regions, as
in Figure 1. However, as Figure 4 illustrates, there are control flow graphs for which this is not true. In
this graph, b dom ¢, c pd b,and a = loop-head(b) = loop-head(c), but there is a cycle that contains vertex b
and not c.

To deal with this problem it is convenient to introduce a generalized notion of postdominance: v pd w

with respect to a set of vertices S iff v #w and v is on every path from w to a vertex in S§.5 The first result of
this section is that for reducible control flow graphs:

(*) Distinct vertices v and w are in the same strong region iff

(h = loop-head(v) = loop-head(w)) and ( (vdomwandw pdvwurt. back-srcs(h) v exits(h))®
or (wdomvandypdwwrl back-srcs(h) vexits(h)) )

Note the structural similarity between this definition and the definition of a weak region. The correctness
of this new definition is proved at the end of the section. We first concenirate on how to use this definition
to implement strong region analysis efficiently. The main idea is to identify strong regions during loop
analysis, using weak region identification on each loop body (between steps (1) and (2)). The loop body is
slightly transformed so that the generalized postdominance query is formed as a standard postdominance
query. Let G be a reducible control flow graph and let H represent the subgraph of G induced by nat-
loop(h). Graph H is transformed as follows: add a new vertex TMP; for each vertex v € back-
sres(h) wexits(h), add an edge v—>TMP.

SGupta generalized postdominance so that a set of vertices could postdominate a vertex [6]. This is different from our generalization.

6Note that if h = loop-head(v) = loop-head(w) and w pd v with respect to exits(k) then w pd v, since any path from a vertex in nat-
loop(h) 1o EXIT must include a vertex in exits(h).
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Domination and postdomination can be computed for the loop subgraph H, where vertex h acts as
ENTRY and TMP acts as EXIT. Figure 6 illustrates the loop transformation on the control flow graph from
Figure 4. Weak regions are shaded in the dominator and postdominator trees of the loop graph. Note that
vertex ¢ no longer occupies the same weak region as a and b, and that weak regions in the transformed loop
graph correctly identify strong regions. The vertex TMP should be removed from its containing region, as
it merely serves as a temporary EXIT vertex.

We make two observations relating dominance and postdominance in G and the loop graph H: first,
because G is reducible, v dom w in G iff v dom w in H; second, w pd v with respect to back-
srcs(h) wexits(h) in G iff w pd v in H. Given the correctness of the new definition for strong region and
these observations, it is fairly straightforward to see that for any pair of distinct vertices (v,w) such that & =
loop-head(v) = loop-head(w), v and w are in the same strong region in G iff v and w are in the same weak
region in H.

Between steps (1) and (2) of loop analysis, weak regions are identified in the (transformed) loop graph.
If W and F are the number of vertices and edges in the subgraph induced by nat-loop(#), the transformed
graph contains (W+1) vertices and (F + Iback-srcs(h) U exits(h)]) edges, which is clearly O (W+F). There-
fore, weak region analysis of the (transformed) loop graph runs in time O (W-F), adding only a constant
factor to the running time of the loop analysis phase.

As noted before, the reduction step (2) is guaranteed to preserve strong regions (with respect to the origi-
nal vertices in the control flow graph). However, a loop may contain reduced vertices representing loops
that have already been analyzed. Figure 5 shows the graph from Figure 6 after the loop has been reduced
to a single vertex, a’, which ends up in the weak region for vertices ¢ and z. These reduced vertices can be

H
H
H
H
:
H
H
H
:
:
:
B
'
H
*
S
*,
.

T™P

Transformed Loop Body

Control Flow Graph Postdominator Tree

Figure 6. Weak region analysis on the (transformed) loop identifies strong regions.
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eliminated from the weak regions after the regions have been identified.

We now prove two lemmas from which the main result of this section (*) follows:

LEMMA(2). Let v dom w and w pd v in a reducible control flow graph. If v is in every cycle containing w
and w is in every cycle containing v, then A = loop-head(v) = loop-head(w) and w pd v with respect to
back-srcs(h) v exits(h).

PROOF. If loop-head(v) # loop-head(w) then there is a cycle that contains v but not w, or vice versa. There-
fore, h = loop-head(v) = loop-head(w). Since (k= v or & dom v) and v dom w, there must be a w-free path
from A to v. We now show that w pd v with respect to back-srcs(h) v exits(h). If there is a w-free path
from v to a vertex in back-srcs(k), then there is a cycle containing v but not w. Therefore, w pd v with
respect to back-srcs(h).

Suppose there is a vertex z € exits(h) such that there is a w-free path from v to z. Let 2’ be a successor
of z such that z’¢ nat-loop(h). If there is a w-free path from 2’ to EXIT, then w does not postdominate v,
which contradicts an initial assumption. If every path from 2z’ to EXIT includes w, then the first vertex from
nat-loop(k) in each such path must be & (since z’¢ nat-loop(h) and w € nat-loop(#)). This implies that
there is a w-free path from z to A, so there is a cycle that contains v but not w. Therefore, w pd v with
respect to exits(h). [l

LEMMA(3). For any reducible control flow graph, if 4 = loop-head(v) = loop-head(w), v dom w and w pd v
with respect to back-srcs(h) Uexits(h), then: (A) v is in every cycle containing w, and (B) w is in every
cycle containing v.

PROOF.

(A) Suppose there is a cycle that contains w and a backedge y—z. If z=v then the proof is complete.
Assume that z #v. Vertex w must be a member of nat-loop(z). Since loop-head(v) = loop-head(w)
and w e nat-loop(z), it follows that v € nat-loop(z) and that z dom v. Since z dom v and v dom w,
any path from z to w must include v, so v is in the cycle.

(B) Suppose there is a cycle that contains v and a backedge y —z. v must be a member of nat-loop(z), as
well as nat-loop(k). Since nat-loop(#) is the innermost loop containing v, any path from v to y must
contain a vertex in back-srcs(h) v exits(h). Since w pd v with respect to back-srcs(h) v exits(h), it
follows that w must be in the cycle. O

4.3. Strong regions without loop analysis

A natural loop nat-loop(k) is a while loop if no vertex in nat-loop(k) postdominates 4. A while-graph is a
reducible control flow graph in which every natural loop is a while loop. The control flow graph in Figure
1 is a while-graph, but the control flow graph in Figure 4 is not. While-graphs are of interest because
strong region analysis can be accomplished by weak region analysis over the entire control flow graph, fol-
lowed by a simple pass over each region. No loop analysis is required for these graphs.” Strong regions in
while-graphs can be characterized as follows:

Mt is possible to transform any reducible control flow graph into a while-graph and preserve strong regions. To do this requires loop
analysis. The transformation can be done in linear time and adds O (V+E) components to the graph.
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(+) In a while-graph, distinct vertices v and w are in the same strong region iff
(neither v nor w is a loop-entry) and ((v dom w and w pd v) or (w dom v and v pd w))

Thus, strong regions can be identified as follows: (1) compute weak regions; (2) for each weak region R
and for each vertex v in R, if vertex v is a loop-entry (i.e., is the target of a backedge), then remove v from
R and put it in its own strong region. The vertices that remain in R are in the same strong region. The pro-
perties of while-graphs that lead to the simplified definition of strong regions (+) are:

(1) If his the loop-entry of a while loop, then his in a strong region by itself.

(2) In a while-graph, if v and w are distinct vertices, neither is a loop-entry, and v and w are in the same
weak region then loop-head(v) = loop-head(w). This does not hold in general. For example, in Fig-
ure 4, vertices z and b are in the same weak region but not in the same loop.

(3) In a while-graph, if A= loop-head(v) = loop-head(w) then w pd v iff w pd v with respect to back-
srcs(h) wexits(h). Because of this property, the generalized postdominance query can be answered
with a normal postdominance query.

5. CONTROL DEPENDENCE REGIONS

This section reviews the definition of control dependence and the algorithm for computing regions with
control dependence. It then shows that strong regions are equivalent to control dependence regions for all
control flow graphs.

In a control flow graph, vertex w postdominates the L-branch of v, denoted by w pd (v,L), iff wis the L-
successor of v or w postdominates the L-successor of v. There is an L control dependence from vertex v to
vertex w, denoted by v ~>Lw, iff w pd (v,L) and not w pd v. The control dependence predecessors of w
are denoted by the set CONDS(w) = { (v,.L) | v —>Lw }. Vertices v and w are in the same control depen-
dence region iff CONDS(v) = CONDS(w). The control dependence graph contains every vertex in the
control flow graph except EXIT and a directed edge for each control dependence v —Lw.

Example. Figure 8(a) presents the control dependence graph of the control flow graph from Figure 1, with
control dependence regions identified. These regions are equivalent to strong regions. Figure 8(b) presents
the forward control dependence graph, which contains those control dependences that are not loop-carried.
Regions of forward control dependence are equivalent to weak regions. []

In [4], the authors showed how regions can be computed by examining the control dependence succes-
sors of each vertex. Using the control flow graph and postdominator tree, the control dependences succes-
sors of a vertex can be enumerated in time proportional to the number of such successors [4]. Thus, the
control dependence graph need not be explicitly constructed to perform region analysis (yielding an
O (V+E) bound on space). Unfortunately, there can be O (VXE) control dependences because each vertex
can have O (E) control dependence predecessors in the worst case. For example, in Figure 8, vertices b, c,
and d have multiple control dependence predecessors.

We now show that for all control flow graphs, strong regions are equivalent to control dependence
regions. The following two lemmas are used in the proof of this result:

LEMMA(4). Let v be a vertex (v # ENTRY and v # EXIT) in a control flow graph. On any path PTH from
ENTRY to v, there is an edge p—¥q such that p —>%v.

PROOF. Let p be the closest vertex to the last occurrence of v in PTH (excluding the last occurrence of v)
such that v does not postdominate p. Such a vertex must exist since no vertex except EXIT postdominates
ENTRY. Let g be the successor of p in PTH. Let the label on edge p—q be L. Either v=gq or v pd q (oth-
erwise there is a vertex in PTH closer to v that v does not postdominate). Since not v pd p and v pd (p,L),
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Figure 8. The full (a) and forward (b) control dependence graphs of the control flow graph in Figure 1, with regions of
identical control dependence identified.

it follows that p —L v. O

LEMMAC(5). Let v be a vertex (v # ENTRY and v # EXIT) in a control flow graph. On any path PTH from v
to v, there is an edge p—s~q such that p —>¢ v.

PROOF. Let p be the closest vertex to the last occurrence of v in PTH (excluding the last occurrence of v)
such that v does not postdominate p. Such a vertex must exist since v does not postdominate itself. If p=v
and v has only one control flow successor then EXIT is not reachable from v, which contradicts the
definition of control flow graph. Otherwise, the proof follows as in lemma (4). 0

THEOREM (2). Given a conirol flow graph, distinct vertices v and w are in the same strong region
CONDS(v) = CONDS(w).

PROOF.

(=) Let p be a vertex such that p —>Ly. We will show that p —>L w must exist. A symmetric argument
can be used to show that each control dependence predecessor of w is also a control dependence predeces-
sor of v. In what follows, let P(v) denote the number of occurrences of vertex v in path P.

Let P, be a path from ENTRY to p. Since notv pd p there is an acyclic v-free path from one of p’s suc-
cessors to the EXIT vertex. Let P, denote such a path. Let P5 denote any acyclic path starting with the L-
successor of p and ending with EXIT. P5(v)=1 since v pd (p,L) and P is acyclic. Because v and w are
in the same strong region, it must be the case that P{(WHP,(v)=P;(wHP,(w) and that
P (0)+P3(v) =P (WP 3(w). Using the facts that P,(v) =0 and P5(v)=1, these equations simplify to
Pi(v)=P{(w)+Po(w) and P (v}+1= P (w)+P3(w). Simplifying further, we have 1=P3(w)-P,w).
Since P, and P, are both acyclic, w can occur at most once in each path. Therefore, P3(w)=1 and
P,(w)=0. These facts imply that w occurs on any path from the L-successor of p to EXIT w pd (p.L))
and that there is a w-free path from one of p’s successors to EXIT (not w pd p). Therefore, p —Lw.

(&) The proof breaks into two parts:

(1) Show that every complete path that contains v also contains w and vice versa. Let PTH be a com-
plete path that contains vertex v. By lemma (4), the prefix of PTH up to and including v must contain
an edge p——>Lq such that p —>Ly, Since p —>L w, it follows that w pd (p,L). Therefore, w must
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occur in PTH. A symmetric argument shows that v is in every complete path that contains w.

(2) Show that every cycle that contains v also contains w and vice versa. By lemma(5), any path from v
to v (a cycle C) must contain an edge p—-)Lq such that p —>Ly. Since p —>L w, it follows that w pd
(p,L) and not w pd p. Suppose that cycle C does not contain w. There is a w-free path from p to p
that starts with the L-branch of P (specifically, the cycle C). Since not w pd p, there is a w-free path
from p to EXIT. These two facts imply that w does not postdominate the L-successor of p, a contrad-
iction. Therefore, cycle C must contain vertex w. A symmetric argument shows that v is in every
cycle that contains w. [

6. CONCLUSIONS

Regions of control dependence have a variety of uses in optimizing and parallelizing compilers, and pro-
gram transformation systems. This paper has presented the first linear-time algorithm for identifying
regions (without the use of control dependence) and has identified two types of regions, weak regions and
strong regions. The algorithms make use of a special property of dominator and postdominator trees to
compute weak regions efficiently. Combining loop analysis with weak region identification yield a linear
time algorithm for computing strong regions.
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