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ABSTRACT

The paper, A Unified Formalization of Four Shared-Memory Models [AdH92], defines the data-race-free-1
memory model and informally discusses sufficient conditions for implementing the data-race-free-1 memory
model. This note formalizes and gives correctness proofs for the sufficient conditions.

This note does not stand alone. It should only be read as a supplement to the main paper [AdH92]. That
paper and this note subsume the original technical report [AdH91].

1. Introduction

This note is a companion to a paper that defines the data-race-free-1 memory model [AdH92]. This note

does not stand alone because it assumes the reader is familiar with the companion paper.

This note formalizes and gives correctness proofs for sufficient conditions, discussed informally in the com-
panion paper, for implementing the data-race-free-1 memory model. Section 2 develops a formalism to describe
shared-memory hardware based on work by Collier [Col92]. Section 3 uses this formalism to develop and prove

the correctness of the sufficient conditions.

2. A Formalism for Describing Shared-Memory Hardware

To formalize conditions for implementing memory models, a formalism to describe non-atomic shared-
memory operations and interactions between such operations is necessary. We use a formalism based on an

abstraction of shared-memory systems developed by Collier [Col92] as follows.
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Definition 1.1: A shared-memory system with n processors, Py, P», ..., P, is represented as follows.
(1) Each processor has a copy of the shared memory.

(2) A write operation W, on address x, is comprised of sub-operations W (1), w2), ..., W(n), where
the sub-operation W (i) atomically updates the address x in the memory copy of P; to the specified
value.

(3) A read operation R, by processor P;, on address x, is comprised of a single atomic sub-operation
R (i), that results in returning the value of x in the memory copy of P;.

Although real systems do not usually provide physical copies of the entire memory to any processor, a logi-
cal copy of memory can be assumed to be associated with every processor. For example, in a cache-based sys-
tem, the logical copy of memory for a processor may be the union of the processor’s cache and all the lines from

the main memory that are not in the cache.

Also, in a real system, some sub-operations may not be distinct physical entities. However, logically dis-
tinct sub-operations can be associated with every operation and a memory copy. For example, an update of main
memory on a write constitutes the sub-operations of the write in the memory copies of the processors that do not

have the line in their cache.

Finally, in real systems, sub-operations may not actually execute atomically; i.e., one-at-a-time and instan-
taneously. However, in most systems, sub-operations appear to execute atomically. For example, the sub-
operation involving an update of a processor cache may be spread over an interval of time and may occur in paral-
lel with other sub-operations. However, one can identify a single instant of time at which the update takes effect

such that other sub-operations take effect either before or after this time.

The notion of sub-operations is similar to that of memory operations performing with respect to a processor
defined by Dubois et al. [DSB86]. A write sub-operation, W (i), corresponds to the write W performing with
respect to processor P;. A read sub-operation, R (), corresponds to the read R performing with respect to all pro-

cessors. We find Collier’s representation conceptually and notationally simpler.

With the above abstraction, an execution of a program is a set of sub-operations along with the values read
and written by the sub-operations during a run of the program. A multiprocessor execution must satisfy two con-
straints: (i) the sub-operations of a single processor in the multiprocessor execution (including the values written
by the write sub-operations and the addresses accessed by all sub-operations) must comprise a correct uniproces-
sor execution of the processor’s code, assuming the reads are made to return the values of the multiprocessor exe-
cution, and (ii) a total order called the execution order can be defined on the sub-operations of the execution such
that a read sub-operation returns the value of the write sub-operation ordered last before it (by the execution
order) that is to the same address and executes in the same memory copy as the read. (The execution order is pos-
sible because of the assumption of atomicity for sub-operations and the definition of aread.) There may be more

than one execution order corresponding to an execution.



Sufficient conditions for implementing memory models can be specified in terms of constraints that have to
be satisfied by some execution order of every execution allowed by the implementation. Hardware designers can
implement such a specification by ensuring that the real time ordering of sub-operations in the implementation
satisfies the specified constraints on execution order. However, if useful, hardware designers are free to violate
the ordering constraints in real time as long as there is some total order on the sub-operations that is an execution
order and that obeys the specified constraints; i.e., sub-operations appear to execute in the correct order. This is
in contrast to many earlier specifications [DSB86, GLL90, ScD87] which impose constraints on the real time ord-

ering of events.

3. Sufficient Conditions for Implementing Data-Race-Free-1

The definition of data-race-free-1 [AdH92] gives the necessary and sufficient condition for implementing
data-race-free-1; i.e., hardware is data-race-free-1 if it appears sequentially consistent to data-race-free programs.
However, it is difficult to translate this condition directly into an implementation or to check if an implementation
obeys this condition. This section formalizes two sets of sufficient conditions for hardware that satisfy data-race-
free-1 and that are simpler than the definition of data-race-free-1 to translate into an implementation. The advan-
tage of the first condition is that it encompasses all data-race-free-1 hardware that we can currently envisage; the
disadvantage is that it is still not very simple to translate into an implementation. The second condition places
greater restrictions on the hardware allowed; however, it is easier to translate into implementations including ones
that do not obey weak ordering [DSB86], release consistency (with sequentially consistent special operations)
[GLL90]}, and data-race-free-0 [AdH90] (e.g., the implementation proposal in the companion paper [AdH921).

The rest of this note uses the following terminology. The following abbreviations denote the various rela-
tions introduced in the companion paper [AdH92] and this note: 2= denotes program order, =5 denotes
synchronization-order-1, =2 denotes happens-before-1, and =5 denotes execution order. A condition such
as “X (i) => Y(j) for all {, j>* implicitly refers to pairs of values for i and j for which both X (i) and Y (j) are
defined. Similarly, ‘X (i) = Y (@) for all i implicitly refers to values of i for which both X (i) and Y (i) are
defined. When considering two executions E; and E,, we say a read or a write operation from execution E; is in
execution E if the dynamic instruction from which the operation was generated in E, is issued in E,, and if the

generated operation accesses the same location in £, and E,. Finally, two sub-operations conflict with each other

if their corresponding operations conflict with each other.

Section 3.1 describes the first sufficient condition for implementing data-race-free-1 and Section 3.2

describes the second condition.




3.1. First Sufficient Condition for Implementing the Data-Race-Free-1 Memory Model

The first sufficient condition for implementing the data-race-free-1 memory model consists of the data, syn-
chronization, and control requirements, informally discussed in the companion paper [AdH92]. The formalization
of the data and control requirements results directly from the discussion in the companion paper {AdH92]. The
following discussion motivates the formalization of the synchronization requirement.

Informally, the synchronization requirement states thét for a data-race-free program, conflicting synchroni-
zation operations should be seen by a processor in the same order as on a sequentially consistent machine. This is
analogous to the informal statement of the data requirement which requires that a conflicting pair of operations,
where at least one is a data operation, should be seen by a processor in the same order as on a sequentially con-
sistent machine. The formalization of the data requirement considers the happens-before-1 relation [AdH92]
since on a sequentially consistent machine, happens-before-1 orders all pairs of conflicting operations such that at
least one is a data operation. The following formalization of the synchronization requirement considers the
happens-before-0 relation (called happens-before in earlier work [AdH90]), which orders all pairs of conflicting

synchronization operations.

Happens-before-0 (denoted 405y js the irreflexive, transitive closure of program order and
synchronization-order-0 (denoted 203, where X <25 Y if X and Y are conflicting synchronization operations
and X (i) = Y (i) for some i. Note that 205 depends on the specific execution order being considered while
215 does not.

The formalization below also uses the notion of a well-formed execution order for a sequentially consistent

execution as follows. For a sequentially consistent execution, a well-formed execution order is one that preserves
program order and that makes all operations appear atomic. More formally, 2.5 s well-formed iff it obeys the
following: (a) if X 3y, then X (§) = Y(j) for all i,j, and (b) either X (i) > Y (j) foralli, jor Y (i) =5
X (j) for all i, j. By the definition of sequential consistency, a well-formed execution order must exist for every
sequentially consistent execution.

The 225 relation always orders two conflicting synchronization operations. Further, for every well-
formed > of a sequentially consistent execution, if X and Y are conflicting synchronization operations and X
05y, then X (f) 22> Y (i) for all i. Thus, conflicting synchronization operations are seen by a processor in the
same order as on a sequentially consistent machine if =>> orders their sub-operations in the processor’s memory

copy in the same order as the corresponding 20 5 The first sufficient condition for data-race-free-1 follows

next.



Condition 2.1: Hardware obeys the data-race-free-1 memory model if for every execution, Ezy, of a

program, Prog, on the hardware, there is an ==> (and a corresponding <2-5) that satisfies the fol-
lowing conditions.

(1) Data - If X and Y are conflicting operations, at least one of X or Y is a data operation, and X 225
Y, then X (i) =2 Y (i) forall i.!

(2) Synchronization - If X and Y are conflicting synchronization operations, and X -2 ¥, then X (i)
25 Y(@) forall i,

3) Control* - If Prog is data-race-free, then there exists a sequentially consistent execution, E,., with
a well-formed == and a corresponding == such that (i) an operation is in E 4y iff it is in E,,, (ii)
for two conflicting operations X and Y, such that at least one of them is a data operation, if X 2L vy
inE, then X 2% Yin E4y, and (iii) for two conflicting synchronization operations X and Y, if X
2> YinE,, then X 25 YinE.

The proof of correctness of condition 2.1 follows from the discussion in the companion paper, which shows

that the data, synchronization, and control requirements together obey the data-race-free conditions [AdH92}.3

Specifically, the control requirement ensures that for an execution, E 4y, of a data-race-free program, Prog, on
hardware that obeys condition 2.1, the operations, the ==~ relation, and the 225 relation are the same as those
for a sequentially consistent execution, E,,, of Prog and its well-formed ==>. We know that the well-formed
==> of E,, orders all conflicting sub-operations in a given memory copy in the same way as the corresponding

25 or “2 orders the corresponding operations. The data and synchronization requirements ensure that there

1. The data requirement in the companion paper [AdH92] mentions that all processors should see X before ¥ (if X and Y
satisfy the pre-conditions of the data requirement in condition 2.1 of this note). For most cases, the informal event of a pro-
cessor P; seeing an operation is equivalent to the more formal event of the sub-operation of the operation executing in P;'s
memory copy. However, the paper [AdH92] allows processor P; to also see a read operation by another processor P; (when
the read retums its value). This is an extra event for which there is no equivalent sub-operation in the memory copy of P,
Due to this extra event, the paper [AdH92] effectively imposes an unnecessary ordering constraint between the read sub-
operation in P; and other conflicting write sub-operations in the memory copy of P;. The formalism of this note does not
define the extra event and eliminates this unnecessary constraint.

2. The need for an explicit control requirement may not be obvious. It is needed only if there are reads whose values
determine if an operation will be executed (as in the presence of branches), or which address an operation will access (as in
the presence of indirect addressing). An example that gives incorrect results if only the data and synchronization require-
ments hold follows. With recent proposals for superscalar processors [FrS92], this example could be practically possible.

Initially x = flagl = flag2 =0

Po Pl
if (x ==0) {flagl =1;}  while (flag2 I=1) {;}
flag2 =1; if (flagl ==0) {x = 1;}

Let the operations on flagl and flag2 be unpaired synchronization operations and those on x be data operations. In any
sequentially consistent execution of the program, P, ’s read on flagl would always retum the value 1, and therefore P,
would never issue the write on x. Thus, there cannot be a data race, the program is data-race-free, and a data-race-free-1
implementation should appear sequentially consistent to the program. In the absence of the control requirement, an aggres-
sive implementation [Fr§92] could allow P, to write flag2 before its read of x returned a value. This could result in the fol-
lowing sequence of events which makes P,’s read on flag] return 0, and violates sequential consistency without violating
the data or synchronization requirements: (a) P, writes flag2, (b) P, s read on flag2 retums 1, (c) P, 's read on flagl retums
0, (d) P, issues its write on x, (¢) P,’s read on x returns 1, (f) P, does not issue its write on flag].

3. In the data-race-free conditions [AdH92], the informal notion that ‘*a processor should see two conflicting operations
in the same order as a sequentially consistent execution’’ can now be interpreted as ‘‘the execution order should order
conflicting sub-operations in a given memory copy in the same order as an execution order of a sequentially consistent exe-
cution,”’




is an *>> of Eay that does the same. Thus, Egy and E, have the same sub-operations and ~~->'s that order
conflicting sub-operations in a given memory copy similarly. Therefore, all read sub-operations in E; return the
value of the same write sub-operation as in E,.. This implies that all write sub-operations write the same value in
E 4y and E,. Thus, all reads return the same value in Ez, and Ej, and so the result of E 4y is the same as that of

E,.. Thus, hardware that obeys condition 2.1 obeys the data-race-free-1 memory model.

A slightly less restrictive form of the control requiremént (Condition 2.1(3)) is possible. We have not stated
that form above because its proof of correctness is more complex. Specifically, part (i) of the control requirement
can be modified to require only that a write operation that is in E4y should also be in E,.. Parts (ii) and (iii) of the
control requirement can be modified to apply only if X and Y meet the following additional restrictions: X is a read
that is in both E,, and E4y or X is a write in Ey, and Y is any operation that is in both E,, and E4y. Briefly, the
proof with the modified form of the control requirement involves recognizing that it is sufficient to prove that if all

reads that execute in both Ey and the E,, mentioned in the control requirement return the same value in Eg4y and

E,,. Then the proof involves analyzing the first read in E,, (as ordered by the > of E,. considered in the con-
trol requirement) for which the above is not true, and showing that there must be some sub-operation in E,r that

violates one of the three parts of the control requirement.

3.2. Second Sufficient Condition for Implementing the Data-Race-Free-1 Memory Model

The second sufficient condition for implementing the data-race-free-1 memory model is given as condition
2.2 below. Condition 2.2 obeys condition 2.1 and is also made of three sub-conditions respectively corresponding
to the data, synchronization and control requirements of condition 2.1. The condition for the data requirement is
similar to, but slightly less restrictive than the data requirement conditions in the companion paper [AdH92].
Further, it consists of only the actual ordering constraints between sub-operations and also includes the case for
two conflicting operations from the same processor. The condition for the synchronization requirement is based

on a sufficient condition for sequential consistency proposed by Dubois et al. [ScD87].

Condition 2.1(1) and 2.1(2) are symmetric, and we could have given similar implementations for each in
condition 2.2(1) and 2.2(2). However, since we expect synchronization operations to be less frequent than data

operations, we give a more restrictive, but easier to implement, condition for the synchronization requirement.

Below, a read R controls memory operation X if (a) both R and X are by the same processor, and (b) the
value that R returned determined if the dynamic instruction that generated X would be executed, or determined the
address accessed by X. For example, X may be in only one path of a branch whose outcome was decided by R, or

X may access an address in an array whose index was returned by R.



Condition 2.2: Hardware satisfies condition 2.1 and therefore obeys the data-race-free-1 memory

model if for every execution, E 4y, of a program, Prog, on the hardware, there is an <> that satisfies
the following conditions.

(1) Data - Let Rel and Rel’ be release operations and Acq and Acq’ be acquire operations. Let Z be
any operation. Let X and Y be conflicting operations such that at least one of X or Y is a data opera-
tion.

(a) Release-Acquire - (i) If Rel =2 Acq, then Rel (i) ==> Acq(j) for all i,j. (ii) If Z 2> Rel’
=5 Acq’ B> Rel 225 Acq, then Z(i) 2> Acq(j) for all i,j.

(b) Post-Acquire - (i) If Acq 2> Z, then Acq (i) 2> Z(j) for all i,j. (ii) If X 2> Rel 22> Acq
5 Y, thenX () = Y (@) foralli.

(c) Intra-processor - If X > Y, then X ({) 22> Y () foralli.

(2) Synchronization- Let X, Y, and Z be synchronization operations.
(@ IfY B> Z thenY(@) = Z(j) forall i
(b) If X is a write operation, Y is a read operation that conflicts with X and X <% Y 2> Z, then
X @) 2> Z(j)foralli,.
gc) ng and Y are conflicting write operations, then either X ) = Y (@) forallior Y (i) =™ X (@)
orall i.

(3) Control -
(a) Let read R control an operation X or determine the value that X writes (if X is a write).4 Then R (i)
25 X () forall i, j.
(b) Consider any sequentially consistent execution, E,, of Prog and operations X and Y such that X

-5 Y and either X and Y conflict, or X is an acquire, or Y is a release, or X and Y are synchronization
operations in E,,. Let operation X not be executed in Er and operation Y be executed in E;r. Let
read R control operation X in E; and let R be one of the reads in E,;r whose value determined that X

would not be executed in Ed,,e.s Then R (i) = Y (j) for all i, j.
() If X = Yand X is an acquire, then X (i) = Y (j) forall i, j.
(d) Let X and Y be synchronization operations. If X 2 Y, then X ({) = Y (j) for all i, j.6
The apparent complexity of condition 2.2 is because it covers a wide range of implementations. Neverthe-
less, converting the individual requirements into an implementation or verifying if an implementation satisfies the
individual requirements is much simpler than with condition 2.1 or with the definition of data-race-free-1 as illus-

trated below.

4. Kourosh Gharachorloo pointed out that a read that determines the value written by a write should be considered for
condition 2.2(3a).

5. Richard Zucker pointed out that for condition 2.2(3b), of the reads that control X, only those reads that determine that
X is not executed in E,; need be considered. This also implies that reads that determine the values written by writes need
not be considered.

6. Conditions 2.2(3c) and 2.2(3d) are needed to meet the data and synchronization requirements respectively as well.
They are duplicated in the control requirement for completeness since the data and synchronization requirements could po-
tentially be satisfied in other ways.




For the data requirement, all implementations of the models of weak ordering [DSB86] and release con-
sistency (with sequentially consistent synchronization operations) [GLL90] can be easily seen to satisfy the re-
quirement (with an appropriate interpretation of the constraint of sequentially consistent synchronization opera-
tions imposed by these models). A more aggressive implementation of the data requirement appears in the com-
panion paper [AdH92].

For the synchronization requirement, part (a) is satisfied if a processor does not issue a synchronization

operation until its previous (by ®=>) synchronization operation completes (i.e., all sub-operations are executed).
With this, parts (b) and (c) are automatically satisfied in systems that do not keep multiple copies of any memory
location. For other systems (such as those with caches), part (b) is satisfied if a processor does not issue a syn-
chronization operation until the completion of a write synchronization operation whose value the processor’s pre-
vious (by ®=>) read synchronization operation may have returned. Part (c) is satisfied by implementing a cache

coherence protocol [ASHE8].

For the control requirement, parts (c) and (d) are already satisfied by the data and synchronization require-
ments respectively. Part (a) is satisfied if an operation is not issued until it is known that it will be (committed) in
the execution and it is known what value it will write (if it is a write). Part (b) is satisfied if an operation is not is-
sued until the following is known about the previous (by =) operations that are not yet issued. First, a previ-
ous unissued operation cannot conflict with the current operation and cannot be an acquire. Second, if the current
operation is a release operation, then all the previous operations that will be in the execution are known. Finally,
if the current operation is any synchronization operation, then it is known that a previous unissued operation can-
not be a synchronization operation. Two alternative, but more conservative, ways of satisfying part (d) are for a

processor to block on all reads that could possibly control an operation, or to stall the issue of a memory operation
until it is known which previous (by ) memory operations will be (committed) in this execution.

A slightly less restrictive form of the control requirement of condition 2.2 is possible. This form obeys con-
dition 2.1 with its less restrictive control requirement discussed earlier. Specifically, the restriction in part (a) of
the control requirement of condition 2.2 need be imposed only if X is a write. The proof given below, with a few

changes, applies with this modification as well.
The proof of correctness of condition 2.2 follows next.
Proof of Correctness of Condition 2.2.
The proof must show that hardware that obeys condition 2.2 also obeys condition 2.1; i.e., an execution,

Egy, of a program, Prog, on hardware that obeys condition 2.2 has an **> (and a corresponding 205) that

obeys the data, synchronization, and control requirements of condition 2.1. We show (in three steps) that the *=->



of E;r guaranteed by condition 2.2 is the required ==>. Step I shows that any > that satisfies the data re-

quirement of condition 2.2 satisfies the data requirement of condition 2.1. Step II shows that any =5 that

satisfies the synchronization requirement of condition 2.2 satisfies the synchronization requirement of condition

2.1. Step III shows that any = that satisfies the data and synchronization requirements of condition 2.1 and the
control requirement of condition 2.2 satisfies the control requirement of condition 2.1. All the steps use the fol-

lowing definitions.

Definition: A base 22> path is a path in 22> such that each arc on the path is also a 2> arc or
an “23 arc, and no two consecutive arcs on the path are > arcs.

Definition: A base 2> path is a path in 22> such that each arc on the path is also a 2> arc or
an “25 arc, and no two consecutive arcs on th- nath are 23 arcs.

The proofs for Steps I and II are fairly straigh::  -ard, involving a simple case analysis of all possible base

225 and > paths. We include them here for completeness, but the reader may wish to skip them.

Step I: To prove that an === that satisfies condition 2.2(1) also satisfies condition 2.1(1).

hbl

Proof: Consider an > (and the corresponding —>) that satisfies condition 2.2(1). We have to prove that if X
and Y are conflicting operations, at least one of X or Y is a data operation, and X <22 Y, then X (}) 2=> Y (i) for
all i. If X and Y are from the same processor, then condition 2.2(1c) implies that X (i) —> Y (i) for all i, thereby
proving the proposition. The rest of the proof assumes that X and Y are from different processors.

A base =25 path from X to ¥ must contain X, (possibly) alternating release and acquire operations, and Y.
Speciﬁcally, there must be release operations, Rel,, and acquire operations, Acq,,, where 1 < p < n such that either
X 2> Rel, orX =Rel,,Rel, 22> Acqy, Acq, 2> Rel,,, and either Acq, 2> YorAcq, =Y.

We first show the following observation. Let op represent any Rel, or Acq, above, but op # Y. We show

hbi

that op(i) = Y(j) for all i, j. We then use this observation to show that all cases for the base —> path imply

X (@) => Y(@)foralli.

Condition 2.2(1a) implies Rel (i) == Acq,(j) for all i, j. Condition 2.2(1b) implies Acq, () <> Relp1(j)
for all i, j. Thus, for any operation op mentioned above and such that op # Acq,, op(i) —> Acq,(j) for all i, j.
Further, if Y = Acq,, then op(i) = Y(j) for all i, j. If Acqg, *=> Y, then condition 2.2(1b) implies Acq,(i) =

Y (j) for all {, j and so again op(i) => Y (j) for all i, j. Thus, always op(i) => Y(j) fof all i, j. We use this

observation for most of the cases discussed below.




The following three cases cover all possibilities for the above base Lol path from X to Y.
Case 1: X = Rel,: If X = Rel, then the observation above implies X (i) == Y (j) for all , j.
Case 2: X 2> Rel, and n above 2 2: Condition 2.2(1a) implies X (f) > Acq,(j) for all i, j, and so by the
above observation, X () = Y (j) forall i, j.

Case 3: X 2> Rel, and n above = 1: Either X 2> Rel; =25 Acq; 2> YorX 2> Rel, 215 Acq, =7.
In the former case, condition 2.2(1b) implies X () —> Y @) for alli. In the latter case, X and Rel; must be to the

same address and so conflict. Therefore, by condition 2.2(1c), X ({) => Rel (i) for all i and so X (}) = Y (i)
for all i.

This completes the proof for Step L. [J

Step II: To prove that an == that satisfies condition 2.2(2) also satisfies condition 2.1(2).

Proof: Consider an —> (and the corresponding 2%3) that satisfies condition 2.2(2). We have to prove that if X

and Y are conflicting synchronization operations and X 20y ¥y, then X (7)) ==> Y (i) for all i, There are three

cases.

Case 1: There is a base 22> path from X to Y that has only <25 arcs.

This case uses the following lemma.

Lemma 1: Consider an 22> (and the corresponding —=») that satisfies condition 2.2(2). If A and B are
conflicting synchronization operations with a base <25 path from A to B that contains only 225 arcs, then A

=25 B.
Proof: The proof proceeds by induction on the number of =25 arcs in the path.
Base Case: The proposition trivially holds if the number of 2205 arcs is one.

Induction: Let the number of 22> arcs in the base == path be n > 1. Then there is an operation C such
that A =5 C 223 B and a base 2% path from C to B has n—1 arcs and consists only of =03 arcs.
There are two sub-cases.

Case la: C and B conflict: By the induction hypothesis, C 205 B, By the definition of =%, A (m) 2=
C (m) for some m, and C (n) => B (n) for some n. Condition 2.2(2¢) implies that A (7) 20y C(@)foralli

and C (i) =>> B () for all i. Since A, B, and C all conflict with each other, there must be some k for which

-10-



A(k), C (k) and B (k) are all defined. Then A (k) = B(k)andsoA =5 B,

Case 1b: C and B do not conflict: There must be a write, W, on the base 2> path from C to B. By the in-

duction hypothesis, A =2 C =% W 225 B. Applying the induction hypothesis twice again, 4 %>

Wand thenA =% B.OJ

Lemma 1 implies X 2> ¥; therefore, X (i) 22> Y (i) for some i, By condition 2.2(c), X (i) = Y (i) forall i.

Case 2: There is a base 22> path fromX to Y that ends in a 2> arc.

This case follows directly from the following, more general, lemma.

Lemma 2: Consider an = (and the corresponding =) that satisfies condition 2.2(2). If A and B are syn-

chronization operations with a base =25 path from A to B thatends ina -2 arc, then A (/) 2> B (j) for all i,

J.

Proof: The proof proceeds by induction on the number of arcs on a base =25 path.

Base Case: The lemma holds for a base 222> path of one arc because such a path must be A -=> B. Con-
dition 2.2(2a) implies that A (/) = B (j) for all i, j.

Induction: Let the number of arcs in the base == path be n > 1. Then there must be an operation C such
thateither A 2> C 25 BorA 223 C 223 B and abase 223 path from C to B ends in a 2= arc
and has < n arcs. By the induction hypothesis, C({) => B(j) forall i, j. If A 22> (, then Condition
2.2(2a) implies A (f) = C(j) for all i,j and so A (i) ==> B (j) for all i, j, proving the proposition. There-
fore, the rest of the proof assumes A <25 C. There are three sub-cases.

Case 2a: A is a read: By the definition of 22>, A(m) 22> C(m) for some m. Since A has only one sub-
operation, the induction hypothesis implies A (i) ==> B (j) for all i, j.

Case 2b: A and C are both writes: Condition 2.2(2c) implies A (i) <> C (i) for all i. The induction hy-
pothesis implies A () == B (j) for all i, j.

Case 2c: A is a write and C is a read: Let the first 2> arc on the base =25 path from C to B be E 2>
F. By the induction hypothesis, E (/) => B(j) forall {, jand F Q) =2> B(j) for all i, j. If E is the same
as C, then by condition 2.2(2b) A (i) == F(j)forall{, jand so A (i) > B(j) forall i, j. If E is not the
same as C, then by lemma 1, A 22> E. This results in a base =2 path from A to B of length < n.

Therefore, by the induction hypothesis, A (i) ==> B(j) foralli, j. O
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Case 3: All base 22> paths from X to Y contain a 2> arc and end in an 2~ arc.

Consider any base 223 path from X to Y. Let the first 2> arc after the last 2= arc on the above base

path be C 22> D. Theneither X 225 C =25 D 225 YorX - C *> D =Y. For a contradiction, as-

sume Y (m) 2> X (m) for some m. This implies that Y “2> X. Thus, either D 22> ¥ 25 X 25 CorD=

Yy 22y x 225 . There is a base -2 path from X to C'thatends in a £ arc. Therefore, by lemma 2, D (i)
225 C(j)foralli,j. Therefore, it cannot be that C =25 D, a contradiction.

This completes the proof for Step II. [

Step III: To prove that an =-> that satisfies conditions 2.1(1,2) and condition 2.2(3) also satisfies condition
2.1(3).
Proof: Consider an == of an execution E,y that satisfies condition 2.1(1,2) and condition 2.2(3). We have to
prove that this = also satisfies condition 2.1(3). Condition 2.1(3) only applies to executions of data-race-free
programs. We assume that E is an execution of a data-race-free program, Prog.

The proof proceeds by contradiction. Below, E,. denotes a sequentially consistent execution of the program
Prog. Suppose the considered =-> (and corresponding 225) of E 45 does not obey condition 2.1(3). Then for

every well-formed —> (and corresponding 225y of every E,,, there is at least one sub-operation Y (m) that

satisfies the following properties:

(P1)Yisin E, but Y isnot in E4y, o1
(P2) Y is in E 47 and either
(i) YisnotinE,,, or
(ii) there is an operation X such that X and Y conflict, at least one of X or Y is a data operation, X RN
Y in E,,, but not in E4y, or
(iiii) there is an operation X such that X (m) exists, X and Y are conflicting synchronization operations,
X 225 Yin E,, but not in Ey.

In the following, terms such as first, before, after, etc. applied to sub-operations of an execution refer to the
ordering of the sub-operations by the considered =>> of the execution. Also since (P1) and (P2) above apply to
only well-formed ==5’s of E,., below we will implicitly consider only well-formed 223’5 for any E,..

The proof consists of four sub-steps as follows. Sub-step I shows that for any E,, and its well-formed ==,
if there is a sub-operation that satisfies (P1), then there is a sub-operation in E 4 that satisfies (P2). Let the first

sub-operation in E that satisfies (P2) for E,. and its considered 223 be called the violator for E,, and its =>.

Sub-step 2 shows that the violator for any E,, cannot satisfy (P2(i)). Sub-step 3 shows that if the violator for any
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E,, satisfies (P2(ii)), it also satisfies (P2(iii)). Sub-step 4 shows that the violator of at least one E, does not satisfy
(P2(iii)), thus proving a contradiction.
Sub-steps 2, 3, and 4 use two observations that we first prove next. Below, the set of sub-operations in Eqy

before the violator for E,, and its considered = is called the prefix for E,, and its 2>,

The Prefix Observation: For every sub-operation Y (k) in the prefix of any E,, and any of its —>"s

(a) Y(k) executes in E,,

(b) for X that conflicts with ¥, X(k) == Y(k) in E,, iff X(k) => Y(k)in E,y,
(c) if Y (k) is a read, then it returns the value of the same write in E,, and E,y; if Y(k) is a write, then it writes the
same value in E,, and E ;¢ (this implies that a read in the prefix returns the same value in E;, and Ey),

@ifX 22> YinE,, thenX <= Yin Euy,

() if X = YinE,, and X (k) exists, then X = YinE,,
Proof: The proof uses the observation that no sub-operation in the prefix can satisfy (P2).

Part (a): If Y(k) does not execute in E,,, then Y (k) satisfies (P2(i)) and therefore cannot be in the prefix.

Part (b): Suppose part (b) does not hold. There are two cases. For the first case, X(k) —> Y(k) in E,, but
not in E4;. Since E, is an execution of a data-race-free program, either X 225 Y and both X and Y are
synchronization operations, or X =25 ¥ and at least one of X or Y is a data operation. Since Y (k) is in the
prefix, it does not satisfy (P2(ii)) or (P2(iii)). Therefore, X 2y YorX 2 Yin E g also. In either case,
by conditions 2.1(1,2), X(f) = Y(i) in E 4 for all i, a contradiction. For the second case, X (k) 23 Yk)
in E4p butnot in E,.. Y must be in E,, because it does not satisfy (P2(i)). Since X (k) is also in the prefix, X
is in E,, too. Therefore, Y(k) *>> X(k) in E,.. Butthen Y =% X or Y -5 X in E,, but not in Egy.
This implies X (k) satisfies (P2(ii)) or (P2(iii)), a contradiction.

Part (c): Part (b) implies that if Y is a read, then the last write W (k) before Y (k) that conflicts with Y(k) is
the same in Er and E,.. Therefore, Y(k) must return the value of the same write in Eg4y and E,, proving
the first part of part (c). For the second part, consider the first write W (m) in the prefix that does not write
the same value in E,, and E . Then a read R (n) that determines the value of this write must have returned
a different value in E,, and E,;. Condition 2.2(3a) implies R (n) 25 W(m); ie., R(n) is in the prefix.
Therefore, by the above argument, R (n) must have read the value of the same write in E,; and Egy. This

write must be before R (n) and so before W (m) and so must have written the same value in Eg, and Eyyr.

Thus, R (n) cannot have read a different value in E;, and E 4y, a contradiction. Thus, all writes in the prefix
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write the same value in E, and E 4.

Part (d): If X 22 Yin E,,, then Y is an acquire that reads the value of X in E,,. From part (c), Y should do

the same in E 47 also. Therefore, X = Y in Ezy.

Part (e): If X =25 Y in E,,, then since Y(k) does not satisfy (P2(iii)), X <> Y in E,. Therefore, by con-

dition 2.1(2), X (i) => Y(i) for all i in E,;. Therefore, X <L Yin Eup. O
The 2 Path Observation: Consider an E,, and its ==, Let A = B in E,, such that B (k) is in the prefix for
some k or B (k) is the violator of E,, and its =, and either (a) A and B conflict in E,,, or (b) A 2> B could be
part of a bigger base 22L5 path, or (c) A and B are both synchronization operations in E,,. Then A is executed in
Eyjrand A 25 BinEyy.

Proof: First note that for case (b) to be true, either A is an acquire or B is a release. Now assume for con-

tradiction that A is not executed in E4y. Then there must be a read R in E,, and E 4y that controls A in Eg,

and returns a different value in E,, and E ;; which determines that A will not be executed in Egy. By condi-
tion 2.2(3b), R (i) *=> B (j) for all i,j. Thus, R (m) is in the prefix for some m and it violates part (c) of the

prefix observation, a contradiction. Thus, A is executed in Egpand A =5 B in E4p. O

Sub-step 1: To prove that if there is a sub-operation in E that satisfies (P1), then there is a sub-operation in E ;¢

that satisfies (P2).
Proof: Consider the first sub-operation Y (m) in E,, that satisfies (P1); i.e., Y is not in E;. Then there must be a
read in E,, and Ey such that the read controls Y in E,, and returns a different value in E,, and Ey. Consider the
first read R (k) in E, that is also in E 4y and that returns a different value in E; and Eyyr. (R (k) =29 Y(m)inE,.)
Let the last write that is before R (k) in E,, and that conflicts with R (k) be W (k). W (k) must be in E4y since Y (m)
is the first sub-operation in E,, that is not in E 4 and W (k) 22y Y(m)in E,,. Since R (k) returns a different value
in E;, and E 4y, either W (k) writes a different value in E;, and E,r or there is a write W’(k) in E 4y that conflicts
with R (k) and W (k) = W’(k) => R(k)in E4y.

First consider the former possibility where W (k) writes a different value in E;; and E4y. Then there must
be a read before W (k) in E,, (that determined the value written by W) that is also in E,; but returns a different

value in E,, and Ey. This read must be before R (k) in E,.. But R (k) is the first read that returns a different value

in E 45 and E,, a contradiction.
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Now consider the latter possibility which involves a W’(k) in E ;. There are three cases possible.

Case 1: W' is not in E,,: W’(k) satisfies (P2(1)), proving the proposition.

Case 2: W is in E,, and W' (k) —> W (k) in E,,. Since E,, is an execution of a data-race-free program, then in
E,,, either W’ 2> W and at least one of W or W” is a data operation, or W’ 222> W and both W and W” are syn-
chronization operations. This cannot be true in E4; because then conditions 2.1(1,2) require that W’(k) =
W (k) in E 4, a contradiction. Therefore, W (k) is a sub-operation in E,y that satisfies (P2(1i)) or (P2(iii)), proving
the proposition.

Case 3: W’ isinE,, and R (k) = W'(k) in E,,: As for case 2, R 22> W’orR *2> W’in E,. This cannot be
true in Ey; therefore, W*(k) is a sub-operation in E4 that satisfies (P2(ii)) or (P2(iii)), proving the proposition. O

Sub-step 2: To prove that the violator for any E,, cannot satisfy (P2(i)).
Proof: Suppose the violator, V (v), for some E, and its = satisfies (P2(i)); i.e., V is not in E;. Then there must
be a read R (k) in E,, and E 4 that controls V in E,, and that returns a different value in E, and E4y. By condition

2.2(3a), R (k) = V(v)in E 4y ie., R (k) is in prefix. This contradicts part (c) of the prefix observation. {1

Sub-step 3: To prove that if the violator for any E,, and its = satisfies (P2(ii)), then it also satisfies (P2(iii)).

Proof: Suppose the violator, V (v), for some E,, and its =—> satisfies (P2(ii)). Then there is an operation U that

conflicts with V such that at least one of U or V is a data operation, and U 2Ly Vin E,, but not in E4y. The fol-

lowing (more general) lemma shows that in this case, V (v) must satisfy (P2(iii)).
Lemma 3: For any E,, and its 2>, let B (k) be in the prefix or let B (k) be the violator, and let A 2Ls BinE,,.
Consider a base <> path from A to B in E,. If A and B conflict, or if the base 23 path could be part of a
bigger base 2215 path, then either the base 21> path also exists in E4 and so A 2> B in Egy, or B (k) =
V(v) and V (v) satisfies (P2(iii)). Further, if the base <25 path could end another base <= path, then either
A(m) = B (k) in E 4 for some m,or B (k) =V (v) and V(v) satisfies (P2(iii)).

Proof: We prove the lemma by induction on the number of arcs on the base 2215 path.

Base Case: We show that the lemma holds for a base =2~ path from A to B in E,, consisting of one arc.

There are four cases.
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Casel:A £ BinE,,.

Let A and B conflict, or let A 2= B be such that it could be part of a bigger base 21 path. Then since
B (k) is in the prefix or B (k) is the violator, the > path observation implies that A 2> B in E 4y, There-
fore, the base path exists in E;r and A 2Ly Bin Ey. Further, if the base path could end another base path,
then A must be an acquire. Then condition 2.2(3c) ensures A (i) =2> B (k) for all i.

Case2: A 2> BinE,, and B (k) is in the prefix.

Part (d) of the prefix observation ensures that A <225 B in E 4. Further, by condition 2.1(2), A (k) =
B (k) in E 4.

Case3:A =%> Bin E, B (k) is the same as V (v), and V (v) satisfies (P2(iii)).

Since B (k) =V (v) and V (v) satisfies (P2(iii)), the proposition is trivially satisfied.

Case4:A > Bin E..,B (I;) is the same as V (v), and V (v) does not satisfy (P2(iii)).

A 25 B in E,, and B (k) = V(v) does not satisfy (P2(iii)); therefore, A 2225 B in E4. By condition

2.1(2), Ak) => B(k)in Egup. A 2ty Bin E 4, then there must be another write, W (k), in E 4 whose
value B (k) returns in E,r. Then W (k) is in the prefix and so W (k) is in E,, as well (by part (a) of the prefix

observation). A (k) => W (k) in Ezy and therefore in E,, (by part (b) of the prefix observation). Further,
since A =5 B in E,, B(k) 2= W (k) in E,,. By part (b) of the prefix observation, B (k) 22> W (k) in

E 4y as well, a contradiction. Therefore, A =y Bin E 4 and by condition 2.1(2), A (k) > B (k) in E 4.

Induction: We show that the lemma holds for a base 2> path from A to B in E,. consisting of n > 1 arcs.
There must be a C such that either A 2> C 225 BorA = C 2 BinE,,, and there is a base 2%
path from C to B of < n arcs. By the induction hypothesis, either B (k) = V (v) and V (v) satisfies (P2(iii)),
orC 25 Bin Ezrand C (m) => B (k) for some m in E4p. If B (k) = V(v) and V (v) satisfies (P2(iii)),
the proposition is proved. Therefore, assume V (v) does not satisfy (P2(iii)). This implies C (m) is in the
prefix.

Consider the first case where A ®> Cin E,,. By the = path observation, A = C in Ey. Therefore,
the base <= path exists in E4rand A 2l Bin E 4. Further, if the above 225 path is to end another

base 2 path, then A must be an acquire. By condition 2.2(3c), A (i) *=> C(j) in E4y for all i,j. There-

7. An arrow with a slash such as in A %> B implies that the corresponding relation (in this case A =% B)is not true.
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fore, A(l) => B (k) for some / in Ey.

Now consider the second case where A “25 C. By part (d) of the prefix observation, A **> C in E,;
hbl

and so the above 22> path exists in E;r and A 225 B in E,. Further, by condition 2.1(2), A (m) =

C(m) in E 4 and therefore A (m) = B (k) in E4p. O

Sub-step 4: To prove that there is at least one E, and its > for which the violator cannot satisfy (P2(iii)).

Proof: Suppose for every E;, and its *=> (and corresponding 223, the violator, V (v), satisfies (P2(iii)). Thus,
for every such E,, and ==>, there is an operation U such that U (v) exists, U and V are conflicting synchroniza-

tion operations, and U =% V in E,, but not in E 4.

Choose an E,, and == such that they have the longest prefix. We will show a contradiction by proving
the existence of another sequentially consistent execution and -=-> which has a longer prefix. We use the follow-
ing three lemmas for this.

Lemma 4: For an E,, and its ==, let B (k) be in the prefix or let B (k) be the violator, and let A 203 BinE,
where A and B are both synchronization operations. Consider a base 22> path from A to B in E, thatends in a

3 arc. Then the base 222> path also exists in E4rand so A 22> B in E . Further, A () 2> B(j) in Ey
for all g, j.

Proof: The proof for this lemma parallels that for lemma 3 and proceeds by induction on the number of arcs

on abase 225 path,

Base Case: We show that the lemma holds for a base <> path from A to B in E,, consisting of one arc.
Abase 225 path from A to B that ends in a 2> arc and with only one arc isA 2> B. Since B (k) is in
the prefix or it is the violator, the 2> path observation implies that A > B in E;;. Therefore, the base

path exists in Er and A 205 Bin E 4. Further, condition 2.2(3d) ensures A (i) => B(j)foralli, .

Induction: We show that the lemma holds for a base =2-> path from A to B in E,, consisting of n > 1 arcs.
There must be an operation C such that either A 2> C 225 BorA =25 C #2> BinE,,and there isa
base 22> path from C to B of < n arcs that ends in a 2> arc. By the induction hypothesis, C 225 Bin
Egpand C (i) 225 B(j)foralli, jin Egp. Thus, C (@) is in the prefix for all i

Consider the first case where A 2= C. By the 2> path observation, A > C in Egy. Therefore, the

base 21> path exists in Egrand A 225 B in Ey. Further, by condition 2.2(3d), A (i) = C()) foralli,
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jin Eqy. Therefore, A (i) 2> B (j) in Eyy for alli, .
Now consider the second case where A =5 C in E,,. There is some m for which both A (m) and C (m)
exist. For this m, C(m) is in the prefix. Therefore, by part (e) of the prefix observation, A 25 C in E,,

and so the above %> path exists in E4r and A 25 B in E,;. Further, by condition 2.1(2), A (k) 22>

C (k) in Egy for all k. Therefore, A (i) == B(j) in Egy for all i, j. 1

Lemmas 5 and 6 below exploit the following property. Recall that we are considering only well-formed 22 ’g
for any E,.. Such an = orders all sub-operations of any operation either after or before all sub-operations of
any other operation. Therefore, for a well-formed 2>, we can overload the definition of <> to apply to opera-

tions as well as sub-operations: for operations A and B, A == Bif A (i) 2> B (j) forall i,j.

Lemma 5: Consider an E,, and its *>> (and the corresponding 3). Let A and B be non-conflicting operations
that are not ordered by <2 in E,,. Consider the total order on the operations of E,, formed by modifying the

above == as follows. Move all operations X that are between A and B and such that X 225 B in E,, to above

A. Retain the original relative order of the moved operations. Then the above total order orders all conflicting
operations just as the original *=>, and the above total order is also a well-formed execution order for E,,.
Proof: In the new total order, the pairs of operations, C, D, whose relative ordering is changed from that of
the original > must satisfy the following restrictions with the original <> and 225, [R1)A =5 C

X5 D=BorA*=> C %25 D25 B, R2)D > B and (R3) C 22> B.

C and D cannot conflict because of the following. If C and D conflict, then originally C 23 D since E,.

is a sequentially consistent execution of a data-race-free program. Thus, by (R2), C 22> B, a contradic-
tion to (R3). Therefore, the new total order preserves the relative ordering of all conflicting operations,

proving the first part of the lemma.

The new total order is an execution order because a read returns the value of the write ordered last before it
by the total order (since the relative order of conflicting operations is the same as before). Finally, we need
to show that the execution order is also well-formed; i.e., it preserves program order and atomicity of opera-
tions. It preserves atomicity because it only moves all sub-operations of an operation before (or after) all
sub-operations of other operations. It also preserves program order because otherwise there are operations

C and D such that C == D, but the new order puts D before C, changing the relative order of C and D.

However, by (R2), C 23 D implies that C 22 B, a contradiction to (R3). O
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The following discussion uses the notion of critical operations defined below.

Definition: For any E,, and its >, an operation is called critical iff it is a synchronization opera-
tion that has a sub-operation in the prefix or that has a sub-operation that is the violator of E;. and its
22
Lemma 6: Consider any E,, and its 2> with violator V(v). Let U be the first operation in E,, for which V(v)

satisfies (P2(iii)). Then there is another sequentially consisiem execution (of program Prog) and its —> such

that (a) V (v) is the violator of the new execution and 2.5, (b) U is the first operation in the new execution for

which V (v) satisfies (P2(iii)), (c) all operations between U and the last critical operation in the new execution are
critical operations, (d) for every operation C after U and up to (and including) the last critical operation, U RaLLES

C, and all base 2 paths from U to C are made only of 225 arcs.

Proof: The proof proceeds by contradiction. Suppose for some Eq, and its =2, there is no sequentially
consistent execution (of Prog) and 2> that satisfies properties (a)-(d) specified in lemma 6. Then consider
a sequentially consistent execution E,." of Prog and its 223 guch that they satisfy the following restric-

tions: (R1) V(v) is the violator for E,;” and its considered =, (R2) U is the first operation in E,. for

which V (v) satisfies (P2(iii)), and (R3) the number of operations between U and the last critical operation in
E,.’ is the minimal of all sequentially consistent executions and 2235 that satisfy (R1) and (R2).

We first prove that E,,’ and its considered **> satisfy part (c) of lemma 6 and then prove that they also
satisfy part (d) of lemma 6. Let the last critical operation in E.. " be Cppy.

For part (c), we have to prove that all operations between U and Cy,, are critical operations. For a contrad-
iction, assume there is some non-critical operation between U and Ci,y in E,.'. Let the last non-critical

operation before C be N. There are four cases.
Case 1: There is no critical operation C such that N 25 Cin E,’, and N is a write that conflicts with some
critical operation, O, that is after N in E,,’ and that has a sub-operation in the prefix.

Let O (k) be a sub-operation of O that is in the prefix. There are two cases depending on whether N is a

synchronization or a data operation.

First, suppose N is a synchronization operation. Since N (k) exists, by part (b) of the prefix observation,

N (k) is in the prefix. Therefore, N is a critical operation, a contradiction.
Now suppose N is a data operation. Since E, is an execution of a data-race-free program, there is a release
operation Rel such that N > Rel 2y 0inE,’. Lemma 3 implies that Rel (m) —> O (k) for some m

in E4y. Therefore, Rel is a critical operation and N = Rel is a contradiction.
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Case 2: There is no critical operation C such that N € C in Ey.’, and either N is a read or N does not

conflict with any critical operation after N in E,.’ that has a sub-operation in the prefix.

Consider a total order that is the same as the considered 22> of E,. until before N, followed by all the crit-
ical operations in E,,” after N, followed by N. This order retains the original order of all conflicting pairs of
operations until Cy,, in E,.’, except that between N and V. If V is a write operation or a read operation that
does not control any other operation in E4y and does not determine the value written by any write in Eyy,
then the above total order is the beginning of some well-formed execution order of some sequentially con-
sistent execution of the program Prog. Even if V is a read that controls an operation in E4¢ or determines
the value of a write in E 4y, we know that none of the critical operations after V in E are controlled by V
(by condition 2.2(3a)). Thus, again, the new total order above is the beginning of some well-formed execu-
tion order of some sequentially consistent execution of the program Prog. Consider an execution order that
begins with the new total order. This new 2> orders all the critical operations of E,.” in the same order as
the originally chosen %> of E,.’. Therefore, a sub-operation from the original prefix does not satisfy
(P2(iii)) even with the new 3. Thus, V(v) is the violator even for the new <23, Further, since no
operations were moved before U, U is still the first operation in E,.’ for which V (v) satisfies (P2(ii)). How-

ever, the number of operations between U and the last critical operation in the new == is less than that for

the original *, a contradiction to restriction (R3) of the original ==
Case 3: There is a critical operation C such that N £ Cin E,',andU *%5 NinE,’.

It follows that U > Cin E,,” and a base 22> path from U to Cendsina 25 arc, Therefore, by lem-
mad, U@) => C(j)foralli jin Egy. Therefore, U 205 Vin E4y, a contradiction since V satisfies
(P2(iiD).

Case 4: There is a critical operation C such that N 2> Cin E, andU > NinE,, .

Since N 2 CinE,,’, N cannot be a synchronization operation because otherwise the > path observa-
tion implies that N =3 Cin E 4y, condition 2.3(3d) implies that N (i) is in the prefix for all i, and therefore

N is a critical operation, a contradiction.

By lemma 5, N and all operations ordered before it by =22 can be moved to before U to give a new well-
formed execution order of E,,". By lemma 5, the resulting execution order has the same order of conflicting

operations as before; therefore, it has the same violator as before. Further, all the synchronization operations

moved before U were ordered before C by a path in the original 225 that ends in 2>, Therefore, by

lemma 4, those synchronization operations are critical operations too and all their sub-operations are in the
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prefix. Therefore, U is still the first operation in the new execution order for which V satisfies (P2(iii)).
Thus, the new —> satisfies restrictions (R1) and (R2). However, the number of operations between U and
the last critical operation in the new =>> is less than for the original 2>, a contradiction to restriction
(R3) of the original =->.

This completes the four cases that prove that E,,” and-its considered = satisfy part (c) of lemma 6; i.e.,
all operations in E,,” between U and Cla are critical operations. We now prove that E,.” and its considered
2 also satisfy part (d) of lemma 6; i.e., for every operation C after U and up to (and including) Crpe, U
05 and all 225 paths from U to C are made only of -2 arcs. For a contradiction, consider the
first operation C in E,,” that does not obey the above.

s 223 C, then there is no other operation O after U such that O 205 because then U =+> 0, con-
tradicting the choice of C as the first operation in E,;” that does not obey part (d) of the lemma. By lemma

5, there is another well-formed execution order of E,,’ that is the same as the considered 223 except that it

moves C before U. By lemma 5, the resulting execution order orders conflicting operations as the originally
chosen = therefore, the new <> has the same violator as the old 22>, and therefore the new >

satisfies restriction (R1). Since U 293 ¢, Uand C do not conflict; therefore, either C accesses a different
address from U or both U and C are reads to the same address. In the former case, clearly V(v) does not

satisfy (P2(iii)) with C. In the latter case, if C (v) exists, then it must be in the prefix and therefore again
V(v) does not satisfy (P2(iii)) with C. Thus, U is the first operation in the new 22y for which V(v)
satisfies (P2(iii)). Thus, the new 2oy aatisfies restriction (R2). In addition, the new X% has fewer opera-

tions between U and C,,, than the old *>, a contradiction to restriction (R3) for the old =->.

If there is a 22> path from U to C with a 2> arc, then C must be the operation on the #> arc. By

lemma 4, U () = C(j)foralli, jie., U (v) is in prefix. Therefore, V(v) cannot satisfy (P2(iii)) for U,
the final contradiction. O

We use lemma 6 to show the contradiction discussed earlier. Recall that we have to prove that there is

some E,, and its 2> for which its violator does not satisfy (P2(iii)). Consider an E, and its 22> (with violator

called V (v) and the first operation in E,, for which V (v) satisfies (P2(iii)) called U) such that (@) E,, and =
have the longest prefix possible, (b) all operations between U and the last critical operation in E,, are critical

operations, and (c) for every operation C af:: '/ and up to (and including) the last critical operation in E, U

0y~ and all base 22> paths from U to C .z¢ made of only 05 arcs. Lemma 6 ensures that such an execu-
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tion is possible.

We now show that there must be another sequentially consistent execution and 2% with a longer prefix
than for the chosen E,, and <%, a contradiction to (a) above. Let the last critical operation in E,, be Cp,,,. Note

that by (c) above, there is no critical operation C such that U 2 (Cin E,.. Further, again by (c), all critical

operations after U access the same location as U. There are three cases.

Case 1: U and V are both writes.

U (k) cannot be in the prefix for E,, and its considered = for any k. (Otherwise, by part (b) of the prefix
observation, U (k) = V (k) in E4¢ and therefore, U 22 Vin E 4¢. Thus, V (v) does not satisfy (P2(iii)) with U,
a contradiction.) Therefore, no critical operation after U in E,. other than V itself can conflict with [/ (otherwise,
its sub-operation in the prefix will satisfy (P2(iii))). Since U is a write, this implies (due to (c) above) that the only
critical operation after U is V. Further, U > V. Consider a total order of operations that is the same as =25
until U except that V is moved before U. This total order must be the beginning of some well-formed execution
order of some sequentially consistent execution of the program Prog. Further, this total order preserves the order-
ing of all conflicting critical operations except that between U and V. Since U was the first operation for which V
satisfied (P2(iii)) in the original E,,, it follows that the violator for the new execution order is after V(v) in Egy.

Thus, the new execution order has a longer prefix than the original E., a contradiction.
Case 2: U is a read by processor P, and V is a write.

U (v) cannot be in the prefix; otherwise, V(v) does not satisfy (P2(iii)). Suppose there is a critical write

operation C (other than V) after U in Eg. Then C(v) is not in the prefix because otherwise C(v) would satisfy
(P2(iii)) with U. Thus, V(v) =5 C(v)in E 4 and so by condition 2.1(2) V (i) 2= C (&) in Egy for all i, Since

C is critical, C (k) must be in the prefix for some k. Therefore, V 2> Cin E,.. Thus, all critical writes after U

are also after V in E,; i.e., there are only critical reads between U and Vin E,. Consider a total order of opera-

tions up to Cy,, that is the same as = until before U/ except that all critical operations after U and up to (and in-

cluding V) are moved before U. (The relative ordering of the moved operations is retained.) The argument ap-

plied to the total order generated in case 1 applies here as well and so again we have a new E, and = witha

longer prefix than the chosen one, a contradiction.
Case 3: U is a write and V is a read.

U(v) cannot be in the prefix; otherwise, V(v) does not satisfy (P2(iii)). Therefore, for all writes, W,
between U and V in E,, W (v) cannot be in the prefix; otherwise, W (v) will satisfy (P2(iii)). Therefore, for all

writes between U and V in E,,, V (v) must satisfy (P2(iii)). Consider a total order of operations up to Cy,,, that is
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the same as ==> until Ci, €xcept that V is moved before U. Again, this total order must be the beginning of
some well-formed execution order of some sequentially consistent execution of the program Prog. Further, this
total order preserves the ordering of all conflicting critical operations except that between V and all the operations
after and including U in E,, for which V satisfied (P2(iii)). Since U was the first operation for which V satisfied
(P2(iii)) in the original E,., it follows that the violator for the new execution order is after V () in E 4. Thus, the

new execution order has a longer prefix than the original E,., a contradiction.

This completes all the cases for sub-step 11 and completes the entire proof. O
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