Pointer-based Join Techniques for
Object-Oriented Databases -

Daniel F. Lieuwen
David J. DeWitt
Manish Mehta
Technical Report #1099

July 1992

Pointer-based Join Techniques for Object-Oriented Databases

Daniel F. Lieuwen
David J. DeWitt
Manish Mehta

Computer Sciences Department
Unive . v of Wisconsin
Madison, WI 53706

Abstract

In this paper, we describe and analyze four parallel pointer-based joins for set-valued attributes. These joins
will be common in next-generation object-oriented database systems, so efficiently supporting them is crucial to the
performance of such systems. Pointer-based join algorithms based on Hybrid-hash provide good performance, but
algorithms that require less replication will often produce as good or better performance, especially if each set-valued
attribute references a small number of nodes.

1. Introduction

Set-valued attributes are an important feature of next-generation database systems, both for Database Program-
ming Languages (DBPLs) and Object-Oriented Database Systems (OODBSs). Examples of systems with data-
modeling facilities for set-valued atuributes include Bubba [BORA90], E [RICH92], GemStone [BUTT91], Iris
[FISH87], LDL [CHIM90], O++ [AGRA89], ObjectStore [LAMB91], ORION [KIM90], and 0, [DEUX91]. Set-
valued attributes often contain the object identifiers (oids) of other objects. Such a structure can be used to naturally
model the relationship between a composite part and its subparts, between a program module and its functions, and
between a department and its employees—to name just a few examples. Given this structure, a common form of join
in these systems is to scan a set and examine the set-valued attribute of each element of the set. The following is an

example of such a join expressed in O++ (where P->subparts is the set-valued attribute of object P).

(1) for (P of CompositePart; C of P->subparts) suchthat (C->cost > 100)
printf ("%s %s %d ", P->name,C~>name,C->cost);

(In (1), if Cisanelementofa P—>subparts instance, then we term C a child of P,and P aparentof C.)
The most straightforward way to execute (1) istoread a CompositePart and then follow its child pointers, essen-
tially an index nested-loops join algorithm. However, that method of computing the join is often very inefficient.

Since these joins are expected to be common, it is important to find efficient methods of evaluating them.

This paper considers four algorithms for evaluating joins like (1) and compares their performance. The
remainder of the paper is organized as follows. Section 2 surveys related work. Section 3 describes four pointer-

based join algorithms for joins like (1). Section 4 analyses the four algorithms; Section 5 compares them. Section 6

This research was partially supported by a grant from Bell Laboratories.

_ -1-

contains our conclusions and future work.
2. Related Work

In [VALDS87], auxiliary data structures called join indices that can be used to speedup join processing are
described. A join index for relations R and S essentially precomputes the join between those two relations by stor-
ing pairs of tuple identifiers (tids). Each pair contains a tid from both R and S such that the corresponding tuples
join with one another. In a uni-processor system, the basic algorithm scans the index, reading the referenced tuples.
[VALDS87] compared the performance of join indices to the Hybrid-hash join algorithm, and showed that a more ela-
borate join algorithm using join indices could frequently produce better performance than Hybrid-hash in a uni-
processor system. [OMIE89] compared the two algorithms in a parallel environment and showed that Hybrid-hash

will almost always outperform join indices except when the join selectivity is very high.

[CARE90] describes an incremental join facility added to Starburst to enable a relational DBMS to efficiently
handle many-to-one relationships. The set representation employed is similar to the representation provided by net-
work database systems. Each parent (e.g. a CompositePart) contains a pointer to its first child (e.g. a
subpart)—there is an explicit ordering on children. All children are linked together in a doubly-linked list. Each
child also contains a pointer to its parent. The paper describes the results of an empirical performance study compar-
ing the performance of a number of pointer-based join algorithms. We evaluate a different set of pointer-based join
algorithms analytically. We also assume a different set representation—one where each parent contains a list of all its

children’s oids. The children objects are not linked and do not necessarily have pointers to their parents.

We employed the same set representation used in [SHEK90] which presented an analytical evaluation of
pointer-based join algorithms. [SHEK90] describes, analyzes, and compares uni-processor versions of the pointer-
based Hybrid-hash and Hash-loops join algorithms assuming no sharing of objects. We analyze a parallel version of
Hash-loops and two parallel versions of pointer-based Hybrid-hash. We compare their performance to a new algo-
rithm, the Probe-child join algorithm. {SHEK90] implicitly assumed that all objects mentioned in the query could be
accessed through an extent. We do not make this assumption, but instead proposé the Find-children algorithm to
compute an implicit extent when an explicit extent does not exist. The spirit of our Hash-loops analysis was
influenced by [SHEK90]. However, changes were required to account for the effects of sharing, of selection and pro-
jection, and of declustering objects. [SHEK90] did not take space overhead for a hash table into account; replacing
[SHEK90]’s assumption that a hash table for ¢ pages of persistent data requires ¢ pages of main memory also required

a number of changes.

Other proposed pointer-based join algorithms include pointer-based nested loops [SHEK90], pointer-based
sort-merge [SHEK90], and pointer-based PID-partitioning [SHEK91]. These three algorithms are analyzed in

[SHEK91].
3. Four Pointer-based Join Algorithms

Consider the following loop where each element of Set1 contains a set-valued attribute named "set ™

(2) for (X1 of Setl; X2 of Xl->set) suchthat (Pred2(X1,X2))
S21;

This section describes parallel execution strategies for query (2). In (2), we will call the (implicit) set of all children
objects Set 2. We assume that Setl and Set?2 are declustered [GHAN90] across nodes, and that exactly those
n nodes will be used to execute the join. The children of a Set1 object may be located on different nodes. We do
not consider the case where children have back-pointers to their parents; this eliminates a number of the execution
strategies that [SHEK91] presented for uni-processor systems. Such back-pointers will frequently not exist in an
OODBS. This section describes and analyzes four execution strategies for loops like (2): the Hash-loops, the Probe-
children, the Hybrid-hash/node-pointer, and the Hybrid-hash/page-pointer join algorithms. It also contains the
Find-children algorithm which allows algorithms like [GERB86, SCHN91, DEWI92a]’s parallel Hybrid-hash and
our Probe-children join algorithm to be used even when an explicit extent of children of Set1 objects does not

exist.

For all of the algorithms, we assume that set-valued attributes are represented as lists of oids stored inside the
Setl objects and that the oids are "physical" [KHOS86}-—that is, each oid contains information about the node and
disk page of the referenced object. We term such oids page-pointers. Actually, only the Hash-loops and Hybrid-
hash/page-pointer algorithms require page-pointers. Probe-children and Hybrid-hash/node-pointer only require
node-pointers—oids neither completely physical nor completely logical, but which contain sufficient information to
calculate the node that the corresponding object resides on. For example, a node-pointer to a Set2 object could be
the partitioning attribute for Set 2 provided that Set2 is an explicit extent and the partitioning attribute is a xey.
Thus, Probe-children and Hybrid-hash/node-pointer can be used for parallel relational database systems that sup-

port range and/or hash partitioning.

We will ignore statement S21 in query (2) in the following discussion. 521 will be executed once for each
result tuple produced. [LIEU92b] discusses the conditions under which the join algorithms can be modified to exe-
cute S21 at the join nodes, Otherwise, $21 must be executed centrally by the application program. Leaving out

521 will make it clearer that the algorithms are equally applicable to OODBSs and DBPLs. Analysis of the

-3

algorithms can be found in Section 4.
3.1. Hash-loops

This algorithm is a parallel version of the Hash-loops join algorithm. We will first present the uni-processor
version [SHEK90], and then examine a parallel version. Both require physical oids. Let S; be the subset of set 5 at
node;. The uni-processor Hash-loops algorithm repeats the following two steps until all of the objects in Set1l (the

outer set in query (2)) have been processed:

(1) A memory-sized chunk of Setl (or the remaining portion of Setl if that is smaller) is read into main
memory. For each Setl object, the page identifier (PID) components of all the oids contained in the object’s
set-valued attribute are extracted and inserted into a hash table. Each hash entry contains both a PID and a list
of pointers to the Set1 objects with children on that page (e.g. in Figure 1, Page #20 contains child objects of

both Ralph and Pat).

(2) Once the hash table is built, the hash entries are processed sequentially by reading the corresponding page into
the buffer pool. Then, each Setl object that references the page is joined with the relevant child objects on

the page.

Main memory

Hash entries Setl object Ralph

, .
Page #10 i Ralph f Page #10 ¢ Page #20
Hash Table ! :
1) . Slot#2 . Slot#1
I ‘ ‘ K
Setl object Pat “
] Page #20 | Pat ‘ Page #20 !
" | Slot#2
_.____.__l< '

-
Page #10 Page #20
Slot#1 | Slot #1
Sally —K-En_
Slot #2 { Slot #2
Sam W '

Figure 1: Uni-processor Hash-loops example
For example, assume that the current iteration loads two Set1 objects into the hash table shown in Figure 1.
Step (2) executes as follows. First, Page #10 is read from disk. The only pointer in the hash entry for Page #10 is
Ralph. Since Ralph references Sam, the result tuple Ralph/Sam is produced. Next, Page #20 is read from disk. The
first pointer in its hash entry is Pat which references Kyle. The result tuple Pat/Kyle is produced. The second pointer

in the hash entry is Ralph, and the result tuple Ralph/Kim is produced.
The parallel version executes as follows at each node; Vi 1<i<n:

(1) Scan Setl,. Project each selected Set1; object to produce a tuple. We will term these tuples Set 1-tuples
(to distinguish them from the original objects). A Set 1-tuple is sent to each node that contains a child object
of the original Set1; object. (The tuple sent to node; will only contain oids that reference node;.) As Setl-
tuples arrive at node;, they are inserted into a hash table. On memory overflow, newly arriving tuples are writ-

ten to a single overflow partition on disk. <Synchronization>

(2) Execute step (2) of the uni-processor algorithm.

(3) After the initial hash table is processed, repeat steps (1) and (2) of the uni-processor algorithm (with the

overflow tuples taking the place of Set 1) until there are no more overflow tuples to process.

The <Synchronization> at the end of step (1) means that no node can start step (2) until all nodes have completed step

(1.
Parent object (Set 1 object)
Al B Node #1 | Node#2 | Node#1
Page #3 | Page#4 | Page#8
Slot#2 | Slot#3 | Slot#5
Fields Other
used in fields
join
X
Send projected Project and Send Send projected
tuple - I tuple
1o Node #1 "> to Node #2
Setl-tuple \\ Set1-tuple
Node #1 | Node #1 Node #2
A A
Page #3 Page #8 Page #4
Slot #2 Slot #5 Slot #3
Figure 2: "Replicating" a Set 1 object during step (1) of Parallel Hash-loops
Figure 2 illustrates the projection and "replication” of a single selected Set1l object to produce two Setl-
tuples during step (1).

3.2. Find-children

If the implicit set Set2 is not maintained as an explicit extent, one must use a parallel version of the Hash-
loops, pointer-based nested loops, or pointer-based Hybrid-hash join algorithm [SHEK90]. Alternatively, an extent
can be explicitly computed—which is what the Find-children algorithm does. Find-children computes which of
each node’s pages contain elements of the implicit set Set2. Given the computed extent, a standard parallel
Hybrid-hash algorithm can be used by producing Set1-tuples which contain exactly one child oid each and then
using the oid as the join attribute. Finding the children also allows our new Probe-children join algorithm, described
in the following section, to be applied. Find-children is not a join algorithm,; it is an algorithm that can compute

information required by certain join algorithms.

The Find-children algorithm proceeds as follows at each node; Vi l<igsn:

(1) Setl,; is scanned. Each child pointer (an oid) contained in a selected Set1; object is stripped of all informa-
tion other than the PID component of the oid (i.e. information about the node and about the object’s position on
the page are removed). Each stripped pointer is put in the bucket corresponding to the node that the original
pointer referenced (one of n buckets). If only some of the stripped pointers can fit in main memory, the excess
stripped pointers are sent to the node that they reference. Hash tables are built locally for the memory-resident

stripped pointers to make it easy to eliminate duplicates.

(2) Once Setl; has been processed, the memory-resident stripped pointers are sent to the appropriate nodes,
where they are written to disk as they arrive. (If there is sufficient room, sorted runs of stripped pointer should

be produced before writing them to disk.) <Synchronization>

(3) Pointers are sorted to remove duplicates and written back to disk at each node. (Even if step (1) eliminates all
duplicate references to node; locally at each of the » nodes, multiple nodes may reference the same page on

node;. Thus, duplicate elimination is always needed during step (3).)

Essentially, Find-children performs a semi-join between the pages of Set2 and the relevant pointers of
Setl. Asa simple example, assume that two Set 1 objects are stored at node;, each of which contains a set-valued
attribute with two children, and there is sufficient room in main memory to hold all the child pointers. Figure 3 illus-
trates the steps the algorithm goes through up to the synchronization point. Steps (a)-(d) are from step (1) of the algo-
rithm; steps (e) and (f) are from step (2). Stripped pointers may be received from other nodes while steps (a)-(f) are

occurring, and may continue to arrive until the synchronization point is reached.

We analyzed this algorithm in some detail, and used the analysis in our algorithm comparisons in Section 5.
We do not include the analysis because the cost of Find-children at node; is roughly the cost of an extra scan of
Set1, unless the number of distinct stripped pointers contained in Set 1, objects is huge. They will usually all fit in
main memory, so there will be no need io write stripped pointers to disk during step (1). The cost of sorting and writ-
ing stripped pointers to disk during step (3) is minimal compared to the cost of scanning Set2; for the join. The
comparisons include these smaller costs associated with applying Find-children, but the results would not be qualita-

tively different if only the extra scan of Set 1, was accounted for.

(a) Add #2

)Ndd #1

Node #1 Node #5 Bucket #1 Bucket #5

Page #2 Page #7 1

Sue 42 | #7

Slot #3 Slot #2 { -

(c) Add #3
Node #5 Node #5
Joe | Page#3 Page #7)

Slot #2 Slot #4 (d) Find #7 already
there, so do
nothing

v
(e) Send Bucket#1 to node, (f) Send Bucket#5 to nodes

Figure 3: Processing two Set1 objects by Find-children at node;

3.3. Probe-children Join

This algorithm requires knowing the extent Set2. (The Find-children algorithm can be used to compute the

extent if necessary.) Probe-children proceeds as follows at each node; Vi 1<isn:

(1) Set2, is scanned and the selection predicate is applied. Each selected, projected Set2;-tuple (tagged with its
oid) is put into a local memory-resident hash table based on its oid. This continues until there is no more room

in main memory. <Synchronization>

(2) Scan Setl;, producing and distributing Set1-tuples as in step (1) of parallel Hash-loops. The oids con-
tained in the set-valued attribute of each arriving Set1-tuple replica are hashed to find the relevant children.
Produce one result tuple for each match. If all of the Set2 objects referenced by the Setl-tuple are
currently in the hash table, the tuple is discarded. Otherwise, the parent and unseen children oids are written to
disk. <Synchronization>

(3) Repeat the following two steps until all of Set2; has been processed.

(a) Scan the unread portion of Set2; and put the selected Set2;-tuples (tagged with their oids) into the hash

table until the hash table fills or the set is exhausted.

(b) Read the parents and probe the hash table for children.!

Here is an example (using data from the example in the Find-children section) of processing a single Set1-

tuple at nodes.

Set 1-tuple
Node #5
Sue count=1 Page #7 Set 25-tuples
Slot #2 Nodo #5
Hash pointer Page #7
and probe table Slot #2
Jill
Hash table for Set 2; Hash
}— chain
Page #7 " Node #5
= PM Page #7
|
Slot #3
John

Figure 4: Processing a Set 1-tuple by Probe-children at nodes

For simplicity, we use the page identifier as the hash value of a pointer in this example—in general a more compli-
cated hash function will be used. The object’s pointer is hashed and the hash entry for Page #7 is found. The hash
entry’s pointers 1o Set 2s-tuples are followed and the oids in the tuples are compared to the oid in Sue’s set-valued
attribute. Jill matches, so the result tuple Sue/Jill is produced. If the maich was found during step (2), Sue need not

be written to disk for processing during step (3) as there will be no more Set 25-tuples that Sue will join with.
3.4. Hybrid-hash/node-pointer

Hybrid-hash/node-pointer, like Probe-children, requires knowing the extent Set2. The algorithm proceeds

as follows at each node; Vi 1<i<n:

(1) Set2; is scanned and the selection predicate is applied. Each selected, projected Set?2 ;-tuple (tagged with its

oid) is hashed on its oid and inserted into one of B+1 buckets. Tuples in the first bucket are inserted into a main

'A variant of this algorithm would only keep parents that have unseen children. This requires a write of such parents during step (b). The
variant has some similarities to the Simple-Hash join algorithm [DEWI84]. In both, the tuples that need to be processed later are written to a new
file and that new file is used for the next iteration. The actual Probe-child join algorithm, however, proceeds in much the same way as the Hashed
Loops join algorithm for centralized databases {GERB86]. Both build a memory-sized hash table for some fraction of the inner set Set 2. They
read the whole (local partition of the) set of Set 1-tuples to probe the hash table. This continues until all of Set 2 has been processed. There are
two major differences between the uni-processor Probe-children and Hashed Loops. First, Probe-children probes the hash table once for each
pointer in its set-valued attribute; Hashed Loops probes the hash table exactly once. Second, Probe-children eliminates some Set 1-tuples dur-
ing step (2)—much like Simple-Hash; Hashed Loops reads all of Se=- - once for each hash table.

-9.

2

3

memory hash table. All others are written to disk. The value of B is chosen such that (1) the 1st bucket of
Set1-tuples can be joined in memory with the first bucket of Set2;-tuples during step (2), and (2) the hash

table for the j-th Set2; bucket can fit in main memory Vj 2<j<B+1. <Synchronization>

Scan Setl; and distribute Set1-tuples, each of which contains exactly one Set 2 (child) oid, to the relevant
Set2 node. As a tuple arrives, its child oid is hashed and the tuple is put into one of B+1 buckets. The j-th
set1 bucket will only join with the j-th Set2; bucket. The Set 1-tuples of the first bucket probe the hash

table: the other Set1 elements are writien to disk.

The next Set2; bucket is loaded into the hash table, and the tples of the corresponding Set1 bucket probe

it. This continues until all the buckets have been processed.

This algorithm is very similar to Probe-child. There are three main differences. First, Hybrid-hash/node-

pointer may write and reread part of set2: Probe-children will only read Set2 once. Second, Probe-children

produces one replica of a Setl object per referenced node; Hybrid-hash/node-pointer produces one replica per

pointer. Thus, the Probe-children algorithm will potentially produce fewer Set1-tuples. Third, Probe-children

may reread the same Set1-tuples multiple times; Hybrid-hash/node-pointer will reread Set1-tuples at most once

because it partitions Setl-and Set2- tuples into buckets.

3.5. Hybrid-hash/page-pointer

This algorithm is almost identical to the pointer-based Hybrid-hash join algorithm of [SHEK90). Only step (1)

which redistributes Set 1 is different. The algorithm proceeds as follows at each node; Vi 1<ign:

(1)

2

3

Scan Setl; and distribute Set1-tuples, each of which contains exactly one Set2 (child) oid, to the relevant
Set2 node. As a tuple arrives, the PID component of its child oid is hashed and the tuple is put into one of B+1
buckets. Tuples in the first bucket are inserted into a main memory hash table. All others are written (o disk.

<Synchronization>
Execute step (2) of the uni-processor Hash-loops join algorithm.

After the initial hash table is processed, load the next Set1 bucket into the hash table. Process the table using
step (2) of the uni-processor Hash-loops join algorithm. This continues until all the buckets have been pro-

cessed.

The only differences between this algorithm and Hash-loops are that (1) each tuple has only one pointer, and

(2) each Set2 page is read only once (because of partitioning tuples into buckets).

- 10 -

4. Analysis of Pointer-based Join Algorithms

This section analyses the performance of the four join algorithms described in Section 3 for queries like:

(3) for (X1 of Setl; X2 of Xl->set) suchthat (Pred2 (X1,X%2))
S21;

To simplify our analysis, we assume that I/O is only performed on behalf of the join—that 521 does not perform any

I/O.
4.1. Assumptions for Analysis

We assume that the selection predicates on Set1 and Set?2 are equally selective at each node (i.e. no Selec-
tivity Skew [WALT91]). We define two functions for use in the analysis. The first is 8(s,p), the number of objects of

size s that fit on a page of size p:

d(s.p) = F—J
S

The second is 8(m,s,p), the number of pages of size p required to hold m objects of size s:

m
B8(m,s,p) =
mos.p {5(&1))]
Table 1 shows the system parameters and Table 2 shows the catalog information used by the analysis in later sec-
tions.
Name | Description Default
n number of nodes 32
P size of a disk page 8192 bytes
M; number of memory buffer pages at node; varied
10 time to read or write a page 20 msec
size,y | size in bytes of a persistent pointer 12 bytes
F hash table for m pages of data requires F - m pages | 1.2
k each Set 1 object has & children 10
f each Set 2 object has f parents 2

Table 1: System Parameters

The assumption that each object of Set1 has k children, and each child has f parents implies that each Set?2

object is equally likely to be referenced from a randomly chosen Set1 object. Also, dividing the number of

n

1(|Setlj| . aj,‘ - k)

f

pointers that reference Set2; by f gives the cardinality of Set2,. Thus, |Set2;] = £

Table 2 implicitly assumes that each data page contains only Set1 or Set2 objects. We also assume that the

ay; are the same for the selected subset of Set1; as for all of Set1; (this assumption shows up in the formula for P,

<11 -

Name Description
[S;1 number of objects in set S;

sizeg size in bytes of an object in set §

nwidths | size in bytes of projected S-tuple
(not including size of set-
valued attribute, if any, in S-tuple)

selg selectivity of selection predicate on §?
o fraction of pointers in Set.1;
objects that point to Set 2; objects
= number of Set1; objects that
i

reference Set 2; objects

cardinality of the selected subset
of §;, Eg, = |S; | - selg since the
selection predicates are assumed

to be equally selective at each node
o) number of selected Set1; objects

that reference Set 2; objects,
(bij: ¢; “selsery
p number of pointers from selected

Set1; objects that reference Set 2,
ObJeCtS7 pij:ESﬂli : k ' aij

Og number of S objects per page,
O = 8(sizeg,P)
Ps number of pages of S;

PS: = O(ISI |,Si2€s,P)

Table 2: Catalog Information

in Table 2). Since our examples.used to compare algorithms do not select Set1, this assumption does not affect our

performance results.

We do not include CPU time in our analysis because the CPU work required is proportional to the larger of the
1/0 and CPU times in the algorithms considered. [WALT91] included CPU time, but none of the queries were CPU
bound—the CPU time was always lost in the overlap with 1/O and communication. Thus, we feel it is safe to neglect
CPU time in the analysis. Originally, we used [WALT91)’s style of capturing overlapped communication and 1/O.
We removed communication from this analysis for two reasons. First, it is easy to derive the number of messages
sent using the analysis of 1/Os performed. Second, communication was completely overlapped with 1/O in all our
algorithm comparisons (which assumed that sending a 8K message takes 5 msec and performing an /O with an 8K
page takes 20 msec). Communication will only become the dominant cost for any algorithm considered in this section

if each object must be replicated many times and each node has enough main memory to hold all its hash table data in

2Gelectjon predicates only referto a single iterator variable—like 2 or Cin (1)—and to expressions constant for the duration of the loop.
(c~>cost >100) is an example.

a single hash table.
4.2. Analysis of Hash-loops

Before we can estimate the number of I/Os performed, we must estimate several other quantities. During step

(1), node, is expected to receive

Ji

or = Fn_‘,d).
J

=1

n
Setl-tuples and ij. pointers. Thus, the average number of pointers per Set 1-tuple received at node; is
{3
=l

p “
ar = where p=Y'p
s P &P

t

The tuples received at node; will be mwidths..; bytes long from the projected fields other than the set-valued
attribute. The set-valued attribute can be represented with an integer count and a list of oids, so the average length of

a Setl-tuple will be

nave = Twidthge, 1 + sizeof (int) + ar - sizep,

Thus, node; will receive approximately

PagesReceivea’niCy =0 (q>‘r s Taver, P)
pages -f selected, projected Set1-tuples, each of which contains approximately

TuplesPerPageh;L = & (maver, P)

tuples. During step (1), node; will need one input buffer for reading the Set1; objects it must distribute to the n
nodes, n output buffers for sending (replicated) Set1-tuples, one input buffer to receive incoming Set 1-tuples
from other nodes, and one output buffer for writing overflow Set1-tuples to disk. Thus, node; will have M;— (n+3)
pages available for its hash table. Since a hash table for ¢ pages of data is assumed to take ¢ * F pages of main

memory,

HL, . e | M= 3y |
PagesinMem ;= min|PagesReceived 2 ——

pages of Set1-tuples can be put into the hash table at node;, and

HL
ToDiskHiL = PagesReceivednic ~ PagesinMem il
pages must be written to disk for processing during step (3). Thus, node; is expected to perform the following number
of I/Os during step (1):

S13.

HL
00 = Pseuy; read Setl;

‘ +T0DischiL write overflow pages of Set 1-tuples to disk

T

To estimate the amount of work done by node; during step (2), note that a given Set?2; page will be read at
most once per hash table. To calculate the number of page reads for Set.2; objects, we use a formula from [YAO77]
for calculating the expected fraction of pages of a set with cardinality |S| that must be read to examine a subset of

size | S, | provided Og objects fit on a page. Yao’s formula is:

ISl""OS
Y(181,05.18S51) = 1 31) O |S|-|Sgl-i+1
R [S1 T ISI-i
[Ss1

To use Yao's formula to calculate the fraction of Set2; pages that must be read for a particular hash table, an esti-
mate of the number of Set2; objects that are referenced by r Setl objects is needed. To estimate this quantity, we
used combinatorics to derive Obj(r,z,c), the expected number of Set;, objects referenced by r Set,,. objects

where each Set,,. object contains a set-valued atribute with an average of z pointers to Set;, objects
(|set . .|=c). We derived Obj(r,z,c)=c¢ * {1—[%—?—} } but found that replacing it with the much simpler approxima-

tion Obj(r,z,c) = min([r - z] ,¢) produced nearly identical timing results.

We use this formula to estimate the number of I/Os performed during step (2). The
AL HL . — . . :
(PagesinMem - TuplesPerPage ;) hash table entries of step (2) will reference approximately
‘ HL, HL R . . , ‘ ,
Obj ((PagesinMem [- TuplesPerPage ;) ean |set2,|) Set2; objects. Using Yao’s formula with this
estimated Set2; subset size, the fraction of Setz; pages that must be accessed is approximately
S . HLy HL .

Y (|8et2;], Osecor Obj((PagesinMem - TuplesPerPage™” ") , ar, Iset2;])). Thus, step (2) is expected to

perform

HL
Step2; = Psery, * Y |Set2;], Oserzr Obj((PagesinMem il . TuplesPerPageHl.L) ,ar, 1set2;1))

Set 2, page reads.
To estimate the number of Set2; reads that must be performed during step (3) to process the ToDiskHl.L pages

written to disk during step (1), we use reasoning similar to the above. Step (3) at node; should perform

.14 -

(Ni—1) - PSetzi cY(|Set2;|, Osera Obj(xi»a{: |Set2;|))
Step3; =\ + Psery, * Y (1Set2;], Oseez, Objlyi.ar, ISet2,])) if ToDisk/L>0
0

Set2; reads where
. JHL HL
o; = ToDzskIf * TuplesPerPage ; number of Set 1-tuples to process

otherwise

M~1 HL number of Set1-tuples that fit
X = | TuplesPerPage ; in a main memory hash table—one page
needed for reading Set 2; objects
O; . .
N; = P number of Hash-loops iterations at node; for step (3)
Vi=0; = (N-1) * x number of Set 1-tuples for the N;-th iteration

Thus, node; should perform the following number of I/Os during steps (2) and (3):

T'%?ﬁ = Step2; read Set 2; pages to process hash table of step (2)
! +’I‘0Disk}‘:.L read ToDiskHl.L pages of Set 1-tuples during step (3)
+Step3; read Set 2, pages to process hash tables of step (3)

To compute the expected run time, we must add the the length of time spent getting to each synchronization

point (i.e. to the end of step (1) and then to the end of step (3)). Thus the expected run-time is:

{max{Tlf([;il} ie {1,...,n}}+ max{]‘lfélm{ ie [1,...,n}H - 10

4.3. Analysis of Probe-children Join

There is only one difference between applying Probe-children with an explicit and a computed extent. In the
second case, the stripped pointers must be read from disk and one buffer page must be reserved for this purpose. This
will not make any qualitative difference, so we will ignore it in the analysis that follows in this paper (we included it

in the experiments we ran, but including or not including these costs makes no qualitative difference in the results).

At most (M;—(n+3)) pages can be devoted to the hash table loaded in step (1), since during step (2), one
buffer will be needed for reading Set1; objects, n buffers for sending Set1;-tuples, one buffer for receiving
Set 1-tuples from other nodes, and one buffer for writing Set 1-tuples to disk. There are Zsecs; Set2;-tuples that
will need to be loaded into a hash table during steps (1) and (3). Each of these tuples will need to be tagged by its oid,

so each hash table entry will be (nwidths,. , + size,,) bytes long and

OSEEZ =0 ((Mwidthge,, + size,,) , P)

i

entries will fit on a page. Thus step (1) will load

PCy « (Jset2
l

pir

M,"“ (n+3)
TupsinMem ———

=min (Ege,,, v) Where v= { 7

wples into the hash table at node;. Assuming the selected Set?2 objects are uniformly distributed across pages of

SetZ,‘,

PC Tups]nMemP 2

i
Tfoi =

) IDSetZi

{1

Set2;

Set2; pages will be read during step (1). (This assumption is made to attempt to fairly divide up the cost of reading
set2; among steps (1) and (3); the same expected run-time would be obtained for the algorithm if the complete cost

of the read was charged to either step (1) or (3) alone.)

During step (2), if all the Set2;-tuples fit in main memory (i.e. TupsInMemPiC1=ESetzl.), then no Setl-tuples
need to be written to disk. Otherwise, some fraction of them must. In this case, we will make the worst case assump-
tion that all PagesReceivedn? pages of Set1-tuples will be written to disk.> Thus, node; will perform the following

number of 1/Os during step (2):

PC, -

T, Psety; read local pages of Set 1 during step (2)
t

0 if TupsinMem”“1=Z 5. 5,

. 1o otherwise write Set 1 pages to disk during step (2)
PagesReceived ;

During step (3), there will be (ESe:szupsInMemFFl) Set 2;-tuples to load into a hash table. During each
iteration of step (3), one page must be reserved for reading Set1-tuples, so (M;—1) pages are available for a hash

table. Thus,

M;-1
TuplesProcessedP C3 | ———| « Qser2
¢ F pir

Set 2-tuples can be processed in each step (3) iteration. It follows that

ESetzinupslnMemPiCI

lterationspic3 =
TuplesProcessedP F3

iterations of step (3) will be required—each of which will require reading all PagesReceivedniG pages of Setl-

3PagesReceiveanl.G is the number of pages of selected, projecied Set l-tuples that reference Set2—see Analysis of Hash-loops for the

formula.

.16 -

tuples. Thus, node; should perform the following number of I/Os during step (3):

TPC3 = [terations"©3 - PagesReceivedn.G read pages of Set 1 written during step (2) once for each
10, { i
‘ iteration of step (3)
o e PC|
[Tserd TupsinMem”,; . p read Set2; pages during step (3)—Ps. >, Set2; pages
set2; 4

read during steps (1) and (3)

‘:‘Set2i

Since synchronization is required after each step, the expected run-time for the query is:

+PCy . . Wl
{max{] [0[1} ie {l,...,n}}+ max{fl;gf{ ie {1,...,:1}}+ max{]"ig?{ ie {1,...,n}H - 10

4.4. Analysis of Hybrid-hash/node-pointer
As in our analysis of Probe-children, we will ignore the minor differences between using an explicit and using
a computed extent. During step (1), seiected, projected Set 2;-tuples will be produced. Since each tuple is tagged
with the original object’s 0id, the tuples will require
PHHAH = 0 (Bsecs,, (nwidthse, + sizeyy) , P)
pages of storage. During step (2), one page is required for reading Set1; objects, n pages are required for sending
Set1-tuples, and one page is required for receiving tuples from other nodes. Thus,

ME = M~ (n+2)

pages are available for the hash table and the output buffers at node;. Using reasoning from [DEWI84],

pHEAH - pHH

BHHH —
‘ MAH_

output buffers are needed and the fraction

MHH _ pHH-H

H-H . i i
qH =min|1.0, ——pr—
t ! PHI{-H - F

of pages of Set2;-tuples can be put in the hash table (the min is required because at most 100% can be put into hash

table). Thus,

Overflow! = [PHHH . (1 gH#-Hy |

pages of Set2;-tuples must be written to disk, and step (1) will require the following number of I/Os:

-17 -

HH-H .
T 0= Psey read Set2; to select and project

t .
+0verﬂow”t.1 write overflow Set2;-tuples

n
During step (2), Set1; must be read. Node; will receive Zpﬁ set1-tuples. Since each tuple contains exactly
=

one pointer, these tuples will require

n
PH[H =0 (Zpﬁ, (Rwidthsee, + Siz€yy) o P)
=

pages of memory, and

Overftowt2 = [PHH - (11|

pages of these tuples must be written to disk. The other tuples probe the first hash table. Thus, step (2) must perform:

HH-H, -

I 5 Pgecy; read Setl,

+0verﬂowH‘.2 write overflow Set1-tuples

I/Os. Step (3) must read the partitions written to disk, so

HH-Hy _

10.
i

T OverﬁowH‘.I read overflow Set 2;-tuples

+0verﬂowh§2 read overflow Set1-tuples

1/0s must be performed. The only synchronization required is at the end of step (1), so the expected run-time is:
HH-Hq{{ . HH-H o HH-Ho | .
{max{T 101.1} i€ {1,...,n}}+ max{T ,0[3+1 [0?{ ie {1,...,n}ﬂ - JO
\
4.5. Analysis of Hybrid-hash/page-pointer
pHH
i

Using the analysis of Hybrid-hash/node-pointer, we estimate that node; will receive pages of Setl-

tuples. Since the space requirements of step (1) of Hybrid-hash/page-pointer and step (2) of Hybrid-hash/node-

pointer for redeclustering Setl are identical, MH‘.H pages are available for the hash table and the output buffers at

node;. Using analysis in [DEWI84],

HH . _ pmHH
PHH . F - Mt

HH-P _
R = MHH 1

output buffers will be needed, and the fraction

-18 -

MHH . gHH=P
H-P _ .. i L
qu =min|1.0, PH‘.H 7
of the arriving pages of Set1-tuples can be put in the hash table. Thus,

0verﬁ’0wpil = {PHIH . (l_quf“P)1

pages must be written to disk, and the cost of step (1) is:

HH, _

T Psetli read Set1; to select, project, and replicate
L

+0verﬂowP[1 write overflow buffers to disk.

Since partitioning is on the PID component of an oid, no Set2 pages will be reread. Thus, steps (2) and (3)

will require the following number of 1/Os.

HHz,3 -

I ()verﬂowPiI read overflow buffers
L

+PSet21 read Set 2 pages

This will overestimate the number of Set 2; pages read if the selection predicate on Set1 is very restrictive,
since in this case some Set2; pages will not need to be read at all. However, since our algorithm comparisons

involve selecting all of Set1, such a correction would not affect the results. Thus, the expected run-time is:

[max{T}%}! ie {1,...,n}}+ rnax{T}}'g[?'3= ie {1,.u.,n)H - 10

5. Comparison of the Algorithms for Set-Valued Attributes

In this section, we will compare the four algorithms presented in Section 3 and analyzed in Section 4. We will
call Hybrid-hash/node-pointer and Probe-children the load-child algorithms; Hybrid-hash/page-pointer and
Hash-loops the load-parent algorithms; and Probe-children and Hash-loops the low-replication algorithms
(because they produce one replica per node rather than per pointer). We assume in all our algorithm comparisons that

selection predicates are equally selective at each node (i.e. no Selectivity Skew [WALT911).

5.1. Poorly Clustered Database

In the first comparisons, the system defaults from the Section 4.1 were used. Data was uniformly distributed
across n=32 nodes, with |Set1;|=6080, and |Set2,|=30,400 Vi 1<i<n. Each Setl object had k=10 children,
and each Set2 object had f=2 parents. Also, each Setl object was
. =(256+sizeof (int)+k * size,,) =380 bytes long, and each Set2 object was sizeg. ,=256 bytes

sizeg,

T

- 19 .

long. Projected Set1-tuples were 128 bytes for fields other than the set-valued attribute (which contained one or
more pointers). Projected Set2-tuples were exactly 128 bytes long. The average number of pointers per object

received at node; for the low-replication algorithms (i.e. Probe-children and Hash-loops), ar, was set to 1.15 (the

number that would be expected if no clustering of references was attempted, and pointers from objects at node; are
randomly distributed across the 32 nodes). M; (the number of memory buffer pages at each node;) and sels.., (the
selectivity of the predicate on Set2) were both individually varied; the unvaried parameter’s value appears at the top
of the graph describing the results. All the objects of Setl are selected. Set2 does not exist as an explicit extent,

so the load-child (ie. Hybrid-hash/node-pointer and Probe-children) algorithms must compute it using Find-

children.
Time in seconds Time in seconds
140 A (Sels.at2=0.5()) 100 ~ (Ml=300)
G-6-© Hybrid-hash/page-pointer
1201 Saca Hybrid-hash/page-pointer *x
E X%-X Probe-child
X XXX Probe-children 80 roe-chuidren f
100 - ++ Hash-loops ®6-9® Hybrd-hash/node-pointer
\ VRVESEYE
Hybrid-hash/node-pointer !
80 601
60 -
40
40 A
20 1
20 1
0 T r T v v T] 0 \ \
0 200 400 600 800 1000 1200 1400 00 0. 02 03 04 05 06 07 08 09 10
Mi selSetZ
Figure 5: Poorly Clustered Database Figure 6: Poorly Clustered Database

In Figure 5, we compare the four algorithms across a range of memory allocations. Probe-children is a step
function because node; must reread the replicated Set1-tuples sent to it once for each Set2; hash table. The
analysis actually over-estimates both the cost of the algorithm and the size of the step because it assumes that no
replicated Setl-tuples are eliminated during step (2), although some almost certainly are. Also, in reality the load-
child algorithms should perform better relative to the load-parent (i.e. Hybrid-hash/page-pointer and Hash-loops)
algorithms than the graph indicates because the load-child algorithms read Set2 pages sequentially (since Find-
children sorts the page identifiers) while the load-parent algorithms read them randomly. However, following

[WALT91), our analysis did not take the different types of I/O into account.

-20 -

Hybrid-hash/node-pointer outperforms Probe-children at low memory sizes because it must perform 1/Os for
only a fraction of the Set1-tuples sent to each node, while Probe-children must write and read them all (several
times). Probe-children and Hybrid-hash/node-pointer have the best performance at moderate memory sizes (where
all the Set2-tuples fit in a main memory hash table). Since the number of selected Set2; objects is considerably
less than the number of replicated Setl-tuples sent to node;, the hash tables for the load-child algorithms
(i.e. Hybrid-hash/node-pointer and Probe-children) require much less space than those for the load-parent algo-
rithms (i.e. Hybrid-hash/page-pointer and Hash-loops). However, the load-parent algorithms outperform the
load-child algorithms for very large memory sizes, since the load-parent algorithms then read both Setl and
Set2 once. The load-child algorithms read Set1 at least twice: once to compute the Set2 extent and once to do
the join. Hash-loops reaches optimal performance with slightly less memory than Hybrid-hash/page-pointer
because Hybrid-hash’s Set1-tuples contain one pointer each, while those for Hash-loops contain an average of

1.15. Thus, the replicated tuples for Hybrid-hash require more space.

Figure 6 demonstrates that the load-child algorithms work well if there is a fairly restrictive predicate on the
inner set. The more restrictive the predicate, the better they perform because they must reread Set 1-tuples less fre-
quently. The load-parent algorithms gain no benefit from a predicate on Set 2 because they cannot apply the predi-

cate until the Set2 page has already been read. (Hybrid-hash/page-pointer included only for reference.)
5.2. Well Clustered Database

The data in the first comparisons had poor clustering of references, so the full potential benefits of the low-
replication algorithms (i.e. Probe-children and Hash-loops) were not seen. To illustrate the effects of good refer-

ence clustering, consider a database identical to the last one except that ar was 2.65 (the number that would be
1

expected if each object at node; referenced between one and four other nodes). We compare the four algorithms
across a range of memory allocations in Figure 7. The improved reference clustering does not affect the performance
of either Hybrid-hash algorithm relative to Figure 5—they do the same amount of work because each node receives
the same number of Set1 replicas. However, the performance of the low-replication algorithms improves dramati-
cally because each node now receives 22,944 Set 1-tuples, (with an average of 2.65 pointers each) instead of 52,870
tuples (with an average of 1.15 pointers each). With good clustering, Hash-loops reaches optimal performance long
before Hybrid-hash/page-pointer because it has far fewer replicated Set1-tuples to process. Also, good cluster-
ing makes Probe-children very competitive with Hybrid-hash/node-pointer—as opposed to the situation in Figure

5 where Probe-children was the clear loser until both load-child algorithms reached optimal performance.

Time in seconds (SelSetz =().50) Time in seconds

100 7 ©60 Hybrid-hash/page-pointer 100 (M;=300)
%%X Probe-children G-0-© Hybrid-hash/page-pointer
801 4+ Hash-loops g0d XXX Probe-children
L and Hybrid-hash/node-pointer
Hybrid-hash/node-pointer
60 - 60 -
404 40 -
Yo R DD
20 204
0 T " ; " ; y ; 0 I ———————
0 200 400 600 800 1000 1200 1400 00 01 02 03 04 05 06 07 08 09 10
M; selsec
Figure 7: Well Clustered Database Figure 8: Well Clustered Database

Figure 8 compares the load-child algorithms (i.e. Hybrid-hash/node-pointer and Probe-children) in the
well-clustered database where the memory size is fixed, but the selectivity of the predicate on Set2 is varied. The
performance of the Hybrid-hash algorithms is the same in Figures 6 and 8, because the same number of replicas are
received at each node whether the reference clustering is good or bad. Probe-children receives fewer so its perfor-

mance improves. By avoiding replication, its performance can exceed that of the Hybrid-hash algorithms.
5.3. Database with Tuple Placement Skew

In our next algorithm comparison, we considered a well-clustered database with tuple-placement skew
[WALT91]. Since the performance of the whole query is determined by the slowest node, we use 31 evenly balanced
nodes, each of which has 29,488 Set2 objects, and one node with 58,672 Set2 objects. Set2 has the same

number of elements as in the past comparisons—it is just differently distributed. The ar for the most heavily loaded

node was 2.65 as in the last example. The algorithms are compared across a range of memory allocations in Figure 9.
First, we note that the larger Set?2 is, the bigger the payoff of minimizing the replication of Setl1-tuples, a point
that is orthogonal to skew. If tuple-placement-skew on the inner set is significant, using the pointers is oo expensive
unless the join algorithm’s hash table data can fit in a single memory-resident table. Otherwise, it will be beiter to
replicate each Setl object once per child pointer, redecluster both Setl and Set?2 (tagging each Set2-tuple
with its 0id), and use a standard parallel Hybrid-hash algorithm [GERB8&6, SCHN89, DEWI92a] with the oids as join
atributes—in which case we would expect performance similar to Hybrid-hash/node-pointer in Figure 7 after shift-

.22

ing it up about 19 seconds everywhere to account for having approximately twice as much to read to partition Set?2
at the node with tuple-placement-skew. A hash function that ignores the node but uses the page and slot identifier
from the pointer should produce fairly uniformly sized partitions. Alternatively, a skew resistant join technique
[KITS90, WOLF90, HUA91, WALT91, DEWI92b] might be used after producing Set1-tuples. Note that the

Find-children algorithm must be used to allow either of these techniques if Set 2 is not an explicit extent.

- Time in seconds
Time in seconds

180 + (SeISeCZZO‘SO) 140 (5615et2=0.50, M,=300)
1304
160 -
. . 1204
600 Hybrid-hash/page-pointer
140 1 X%¥X Probe-children 110+
-+ Hash-loops 100
1204 Lo ad Hybrid-hash/node-pointer 901 G0 Hybrid-hash/page-pointer
XX Probe-children
100 801
70. bt Hash-loops
80 - 604 Hybrid-hash/node-pointer
60 504
40 4
40 1 30)
201
201
104
0 T T r Y r r d 0 T T T v T T T T T ?
0 200 400 600 800 1000 1200 1400 8 16 24 32 40 48 56 64 72 80 88
M,‘ n
Figure 9: Database with Tuple Placement Skew Figure 10: Speedup for a Well Clustered Database

5.4. Speedup and Scaleup

Next, we compared speedups for the algorithms; we varied the number of nodes, but kept the same number of
Setl and Set2 objects as in previous examples. The objects are uniformly distributed across n nodes, where n is

varied from 16 to 88. The references are well clustered (a;'=2.65). Figure 10 compares the algorithms’ performance.

The load-child algorithms (i.e. Hybrid-hash/node-pointer and Probe-children) make relatively modest perfor-
mance improvements once there are more than 40 nodes. With 40 nodes, their Set2 hash tables will fit in main
memory. Hash-loops’ performance is poor until most of the Set 1-tuples at each node will fit into the hash table.
Since Hybrid-hash/page-pointer has 2.65 times as many tuples to put into it< hash table as Hash-loops, Hash-loops
is eventually able to provide better performance. It provides the best performance of any of the algorithms from n=84
on, since then all its Set 1-tuples will fit in a hash table. Hybrid-hash/page-pointer continues to have the worst

performance all the way to the point where adding more processors actually degrades performance (past n=244—not

-23.

on the graph)*.

small_system_elapsed_time

Il the speedup curves are displayed in typical , all the algorithms display super-

big_system_elapsed_time

linear speedup over part of the range if the small system is one with fewer than n=40 nodes, because having one fewer
Set 2 object at node; means that k=10 fewer Set 1-tuples are sent to node; (—2-1-(%- fewer for the low-replication

algorithms). Since, the load-children algorithms’ hash tables fit in main memory once n=40, if n=40 is used as the
small system, they have linear speedup beyond that point to at least 164 nodes. The same is true for Hash-loops if

n=84 is used as the small system.

A scaleup algorithm comparison was also run where selgo.,=0.50, |Setl;|=6080, |Set2;1=30400, and
M=300 ViB8<i<248, as was the case in several previous comparisons. As seen in Figure 11, all of the algorithms
except Hybrid-hash/node-pointer displayed near-linear scaleup over the range n=8 to 44. After that, the execution
time of Hash-loops increased rapidly. Adding a new node requires taking one page from the hash table during step
(1) of Hash-loops, and, eventually, this leads to degrading scaleup performance. Reducing the size of the initial hash
table produced smaller performance degradation for the Hybrid-hash/page-pointer algorithm, as Hash-loops is
much more sensitive to the amount of available memory than it is. The Hybrid-hash/node-pointer curve had a slope

of about 0.16 (the curve for perfect scaleup has a slope of zero) across the range. It initially had the best performance

Time in seconds

801 (selger ,=0.50)

601
P
40 1
@99 Hybrid-hash/page-pointer
%X Probe-children
+++ Hash-loops
201 44 Hybrid-hash/node-pointer

4] * v T T T . J 1
0 32 64 96 128 160 192 224 256

n

Figure 11: Scaleup for a Well Clustered Database

4Speedup performance eventually degrades as more nodes are added because adding a new node requires taking one page away from step
(1)'s hash table. Eventually, losing this page hurts performance more than having less data to process helps performance.

.24 -

but its performance became worse than Probe-children by »n=100 and worse than Hybrid-hash/page-pointer by
n=184. Initially, because most of the Set 2;-tuples fit in main memory at each node;,, its work at node; was roughly a
single read of Set2; and Set1l;. However, as adding nodes took more and more pages from the initial hash table,
Hybrid-hash/node-pointer had to write and read most of the Set 2;-and Setl-tuples. Since Probe-children and
Hybrid-hash/page-pointer read Set2; only once, eventually they achieve t.uer performance than “Iybrid-

hash/node-pointer.
5.5. Sumiaary of Algorithm Comparisons

This section demonstrated that using pointer-based join algorithms can be undesirable if there is tuple-
placement-skew on the inner set. If data is relatively uniformly distributed across nodes, however, such algorithms
can be desirable; this is because standard Hybrid-hash’s performance on replicated Set1 objects will be roughly
comparable to Hybrid-hash/node-pointer in this case—good, but not necessarily the best. This section also demon-
strated that algorithms that avoid replication can produce significant performance advantages. Hash-loops looks
much more attractive in an environment where using Hybrid-hash requires replication than it did in [SHEK90] pro-
vided that most of the Set1 objects reference Set2 objects on a small number of nodes® and that data is relatively
uniformly distributed across nodes. [SHEK90] only examined the performance of algorithms that have sets of
pointers from parents-to-children when there was a corresponding child-to-parent pointer; this gave more options and
made Hash-loops look less attractive. However, in an OODBS, child-to-parent pointers frequently do not exist, and
each child may potentially have many parents. Thus, even in a centralized system, replication may be required in
order to use Hybrid-hash algorithms—making Hash-loops a better choice more often than it was in [SHEK90]. We
also showed that using Find-children and a load-child algorithm can be a clear winner at moderate memory sizes. In
the presence of tuple-placement-skew, Find-children can be indispensable to improving performance because it

allows Set?2 to be redistributed across the nodes.

The four algorithms we considered must sometimes partition their join stream.® We considered a parallel ver-
sion of [SHEK90]’s pointer-based nested-loops algorithm that had each Set1 node concurrently request Set?2

pages from other nodes, since we wanted a parallel algorithm that did not require partitioning. We found that this

i » more attractive if each set-valued attribute contains a "large” number of oids relative to n. For instance, for n=32, if each set-valued
attribute co:icains 32 oids, ar is expected 10 be 1.57 even if no clustering was attempted and references are randomly distributed across the 7 nodes.

*When a join is expressed using a nested iterator and the enclosed statement $21 does not fit certain patterns described in [LIEU92b), paru-
toning is needed. The following is an example of a join expressed with a nested iterator.

for (? of CompositePart)
for (C of P->subparts) suchthat (C->cost > 180)
crintf("%s %s %d ", P->name,C->name,l~>cost)

.

offered only modest performance improvements, and only in the case where the selection predicate on Setl was
very restrictive. Thus, we concluded that the algorithm was not worth using. However, requiring partitioning does
produce a non-uniform join stream since the whole join must be computed before any result tuples can be used. If a
more uniform stream (where tuples are produced throughout the join process and not just at the end) is desired, a cen-

tralized pointer-based nested-loops algorithm may be a good choice.
6. Conclusions and Future Work

We described and analyzed several parallel join algorithms for set-valued attributes. We also presented the
Find-children algorithm which can be used to compute an implicit extent of the objects referenced in the event that

an explicit set does not exist. Using this algorithm gives the system much more flexibility in how it evaluates the join.

The comparisons demonstrate that the Hash-loops and Probe-children join algorithms can be very competitive
with parallel pointer-based Hybrid-hash join algorithms, These pointer-based join algorithms show great promise for
parallelizing a DBPL. Since some of the pointer-based joins were originally proposed for centralized relational data-
pase systems with referential integrity support [SHEK90], these algorithms should also be useful for such relational

systems.

We are currently developing techniques to parallelize a wider class of programs written in a DBPL. We are
interested in developing new parallel algorithms for processing the bulk-data structures of OODBSs and DBPLs. We
would like to simulate the algorithms described in this paper to validate our cost formulas. Finally, we would like to
build a parallel version of a DBPL. (probably O++) that employs our algorithms (and our program transformations

[LIEU92a, LIEU92b]).
7. Bibliography

[AGRA89] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The Language and the Data
Model. Proc. 1989 SIGMOD, June 1989.

[BORA90] Haran Boral, William Alexander, Larry Clay, George Copeland, Scott Danforth, Michael Franklin, Brian
Hart, Marc Smith, and Patrick Valduriez. Prototyping Bubba, A Highly Parallel Database System. [EEE
Trans. Knowledge and Data Engineering 2,1 (March 1990), 4-24.

[BUTT91] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone Object Database Management System.
CACM 34,10 (October 1991), 64-77.

[CARE90] Michael Carey, Eugene Shekita, George Lapis, Bruce Lindsay, and John McPherson. An Incremental
Join Attachment for Starburst. Proc. 1990 Conf. Very Large Databases, August 1990.

[CHIM90] Danette Chimenti, Ruben Gamboa, Ravi Krishnamurthy, Shamim Naqvi, Shalom Tsur, and Carlo
Zaniolo. The LDL System Prototype. /EEE Trans. Knowledge and Data Engineering 2,1 (March 1990),
76-90.

[DEWI84] David DeWitt, Randy Katz, Frank Olken, Leonard Shapiro, Michael Stonebraker, and David Wood.
Implementation Techniques for Main Memory Database Systems. Proc. 1984 SIGMOD, June 1984,

[DEUX91] O. Deux etal. The O, System. CACM 34,10 (October 1991), 34-48.

.26 -

[DEWI92a] David DeWitt and Jim Gray. Parallel Database Systems: The Future of High Performance Database Sys-
tems. CACM 35,6 (June 1992), 85-98.

[DEWI92b] David DeWitt, Jeffrey Naughton, Donovan Schneider, and S. Seshadri. Practical Skew Handling Algo-
rithms For Parallel Joins. Proc. 1992 Conf. Very Large Databases, August 1992, to appear.

(FISH87] D. Fishman, D. Beech, H. Cate, E. Chow, T. Connors, J. Davis, N. Derrett, C. Hoch, W. Kent, P. Lyng-
baek, B. Mahbod, M. Neimat, T. Ryan, and M. Shan. Iris: An Object-Oriented Database Management
System. ACM Trans. Office Information Systems 5,1 (January 1987 48-69.

(GERB86] Robert Gerber. Ph.D Thesis. Dataflow Query Processing using b...tiprocessor Hash-partitioned Algo-
rithms. University of Wisconsin (1986).

(GHAN90] Shahram Ghandeharizadeh. Ph.D Thesis. Physical Database Design in Multiprocessor Database Sys-
tems. University of Wisconsin (1990).

(HUA91] Kien Hua and Chiang Lee. Handling Data Skew in Multiprocessor Database Computers Using Partition
Tuning. Proc. 1991 Conf. Very Large Databases, September 1991.

[KHOS86] Setrag Khoshafian and George Copeland. Object Identify. Proc. 1986 OOPSLA, September 1986.

(KIM90] Won Kim, Jorge Garza, Nathaniel Ballou, and Darrell Woelk. Architecture of the ORION Next-
Generation Database System. [EEE Trans. Knowledge and Data Engineering 2,1 (March 1990), 109-
124,

[KITS90] Masaru Kitsuregawa and Yasushi Ogawa. Bucket Spreading Parallel Hash: A New, Robust, Parallel
Hash Join Method for Data Skew in the Super Database Computer (SDC). Proc. 1990 Conf. Very Large
Databases, August 1990.

[LAMB91] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore Database System.
CACM 34,10 (October 1991), 50-63.

(LIEU92a] Daniel Lieuwen and David DeWitt, A Transformation-based Approach to Optimizing Loops in Database
Programming Languages. Proc. 1992 SIGMOD, June 1992,

(LIEU92b] Daniel Lieuwen. Ph.D Thesis. Optimizing and Parallelizing Loops in Object-Oriznted Database Pro-
gramming Languages. University of Wisconsin (1992).

[OMIE89] Edward Omiecinski and Eileen Tien Lin. Hash-Based and Index-Based Join Algorithms for Cube and
Ring Connected Multicomputers. /EEE Trans. Knowledge and Data Engineering 1,3 (September 1989),
329-343.

(RICH92] Joel Richardson, Michael Carey, and Daniel Schuh. The Design of the E Programming Language. ACM
Trans. Programming Languages and Syst. (1992), to appear.

[SCHN89] Donovan Schneider and David DeWitt. A Performance Evaluation of Four Parallel Join Algorithms in a
Shared-Nothing Multiprocessor Environment. Proc. 1989 SIGMOD, June 1989.

(SHEK90] Eugene Shekita and Michael J. Carey. A Performance Evaluation of Pointer-Based Joins. Proc. 990
SIGMOD, June 1990.

[SHEK91] Eugene Shekita. Ph.D Thesis. High-Performance Implementation Techniques for Next-Generation Data-
base Systems. University of Wisconsin (1991).

(VALDS87] Patrick Valduriez. Join Indices. ACM Trans. Database Syst. 12,2 (June 1987), 218-246.

[VAND91] Scott Vandenberg and David DeWitt. Algebraic Support for Complex Objects with Arrays, Identity, and
Inheritance. Proc. 1991 SIGMOD, May 1991.

[WALT91] Christopher Walton, Alfred Dale, and Roy Jenevein. A Taxonomy and Performance Model of Data
Skew Effects in Parallel Joins. Proc. 1991 Conf. Very Large Databases, September 1991.

(WOLF90] Joel Wolf, Daniel Dias, Philip Yu, and John Turek. An effective algorithm for parallelizing hash joins in
the presence of data skew. IBM T... Watson Research Center Technical Report RC 15510, 1990.

[YAO77] S.B. Yao. Approximating Block Accesses in Duwbase Organizations. Comm. of the ACM 20,4 (April
1977), 260(-261.

.27.

