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ABSTRACT

Earlier performance studies of client-server database systems have investigated algorithms for
caching locks and data at client workstations to reduce latency and offload the server. These
studies have been restricted to algorithms in which database pages that were not in the local
client buffer pool or the server buffer pool were read in from disk. In this paper we investigate a
technique that allows client page requests to be serviced by other clients, thus treating the entire
system as a single memory hierarchy. We also present techniques for efficiently exploiting this
global memory hierarchy by reducing the replication of pages between client and server buffer
pools. Global memory management algorithms that employ various combinations of these tech-
niques are then described, and the performance tradeoffs among the algorithms are investigated
under a range of workloads and system configurations using a simulation model.

1. INTRODUCTION i

Rapid improvement in the price/performance characteristics of workstations, servers, and local-area
networks has enabled sophisticated database function to be migrated from machine rooms to desktops. As
a result, networks of high-performance workstations and servers have become an important target
environment for the current generation of commercial and prototype database Systems. The workstation
environment provides a new set of performance opportunities and challenges for the design of database
systems. One important attribute of such an environment is the presence of a complex memory hierarchy
comprising local workstation memory, remote workstation memories, server memory, and disks.
Efficient exploitation of the various levels of the hierarchy is necessary in order to attain high perfor-
mance for large database systems in such an environment.

Database systems intended for a workstation environment are implemented using a client-server
software architecture. A client-server DBMS is divided into two types of processes. Client processes
execute on workstations and provide interaction with user applications. Server processes typically exe-
cute on shared server machines and provide access to the database in response to requests from multiple
clients. These requests may be high level queries or requests for specific data items. Systems that
interact via queries and results are referred to as query-shipping systems, while those that interact via
lower-level requests for data items are referred to as data-shipping systems. Most relational database sys-
tems have adopted a query-shipping approach, while object-oriented database systems (OODBMSs) have
typically been based on a data-shipping approach. A potential advantage of data-shipping approaches is
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the ability to exploit the resources of the workstations on which client processes run, since such architec-
tures execute much of the database system functionality on the clients. This is important because, while
it is likely that a server machine will have more memory and CPU power than any single workstation, the
majority of the total memory and processing power in the network is likely to reside at the workstations.
Data-shipping architectures can be further categorized into page servers, which transfer physical units
(e.g., pages or segments) of data among clients and servers, and object servers, which interact using logi-
cal units of data such as objects or tuples. Performance tradeoffs among several data-shipping approaches
are examined in [DeWi90].

Many recent client-server database systems (e.g. ObServer [Hom87], ObjectStore [Lamb91], 02
[Deux91], and client-server EXODUS [Ex0d91, Fran92b)) utilize a page server architecture. In these sys-
tems, clients interact with servers by sending requests for specific database pages or groups of pages. The
server then provides the requested pages back to the client. The server is also responsible for providing
transaction support, such as concurrency control and recovery, as well as other shared services for the
database. For concreteness, this paper concentraies on client-server database systems that utilize a page
server approach. However, many of the results presented are applicable in both the page server and
object server contexts. We also focus on systems with a single server, both in our descriptions and our
experiments.

1.1. Performance of Page Server Systems

Recently, there have been several studies of the performance aspects of caching algorithms for page
server systems [Wilk90, Care91, Wang91, Fran92a]. These studies have shown the advantages and
potential pitfalls of attempting to offload servers by caching locks and/or data at client workstations
across transaction boundaries. Such caching is referred to as inter-transaction caching. Inter-transaction
lock caching allows workstations t0 avoid sending lock request messages to the server, if a workstation
already has the proper lock cached for an object, it can access the object without first requesting permis-
sion from the server. This reduction in lock requests results in reduced workstation and server CPU
requirements for processing messages, reduced access to the lock manager on the server, and reduced
competition for the network itself. Thus, lock caching was shown to have two beneficial effects: First,
latency was improved due to the reduction in the overall pathlength for transactions. Secondly, the pro-
cessing load on the server was lessened, thereby alleviating a potential bottleneck in the system. Two
basic approaches have been studied for implementing lock caching. Algorithms with an optimistic com-
ponent allow clients to access data based on cached locks, but require a validation phase prior to commit.
Such algorithms were shown to be effective at reducing the number of messages sent by transactions, but
were prone to higher abort rates and wasted work in high data contention situations. The other approach
is to have the server "call back" cached locks when a conflicting lock request is received. Algorithms
using the callback technique were found to incur a slightly higher cost in messages than the optimistic
approach, but had fewer aborts and were more robust in the presence of higher data contention.

In addition to showing the potential performance benefits of lock caching in many workloads, the
above studies showed that inter-transaction data caching could provide even more significant performance
benefits by offloading the server disk in addition to reducing messages and CPU requirements. Data
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caching effectively increases the size of the server’s buffer pool by extending it to each client’s worksta-
tion. This extended buffer pool was found to be particularly effective in the presence of locality (i.e.,
affinity of clients for particular pages). In all of the studies mentioned above, each client used a three-
level memory hierarchy consisting of: 1) the local workstation’s memory, 2) server memory, and 3)
server disk. Thus, each client workstation had access 10 only a fraction of the total memory in the system.
As a result of this, the studies showed that in many cases, significant disk I/O was required even though
the aggregate memory of the system was as large or larger than the portion of the database being accessed
by the workstations. Furthermore, two additional inefficiencies of this type of data caching were
identified in [Care91]. First, when small numbers of workstations were present, there was often a high
correlation between the pages resident in the server buffer pool and those resident in the client buffer
pools. This correlation reduced the effectiveness of the server buffer pool, as buffer misses at clients
often resulted in buffer misses at the server. Secondly, it was shown that with large numbers of clients,
each with a fairly large buffer pool, excessive replication of pages in client buffer pools could lead to
significant overhead for updates. In some of the cases examined, this overhead even outweighed the per-
formance gains of inter-transaction data caching. Therefore, in most of the workloads examined, algo-
rithms that insured consistency by invalidating remote copies of pages on updates (hence, reducing repli-
cation) outperformed algorithms that preserved replication by propagating changes to remote copies.

1.2. Opportunities for Improvement

While the data-caching techniques used in these earlier studies were effective in many situations, they
were ultimately limited by their primarily local nature. Performance was hindered since clients were
unable to exploit a large portion of the memory available in the system and since the memory that was
available was not efficiently utilized. However, in all of the algorithms that allowed caching of both data
and locks, (which typically performed better than algorithms that cached only data), the server was
required to have knowledge of the location of all copies of pages in the system. This information pro-
vides an opportunity to improve upon the previous techniques through the use of a global approach to
memory management. In this paper we investigate the tradeoffs involved with three specific global
memory management techniques. First, the clients are allowed to exploit the entire memory of the sys-
tem by obtaining pages from other clients. Second, buffer replacement policies at the server are modified
to reduce the replication of the buffer pool contents of the server and its clients. Third, a simple protocol
between clients and servers is used to extend the client buffer pools by moving some of the pages that are
forced out of a client’s buffer pool into the server’s memory.

1.3. Overview of the Paper

In the following sections, we propose a set of algorithms that utilize these three techniques. The
implementation of these algorithms requires no additional information at clients and servers beyond what
is already required for the lock and data caching algorithms of the studies described previously. In partic-
ular, these global memory management algorithms are designed to tolerate imperfect (but conservative)
server knowledge of page copy locations. After describing these algorithms and the environment in
which they are to be implemented, we present the results of simulation experiments that investigate the
performance characteristics and tradeoffs of the three global memory management techniques.
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The remainder of the paper is structured as follows: Section 2 details the techniques used for global
memory management and a set of algorithms that utilize these techniques. Section 3 describes the simu-
lation model used to investigate the tradeoffs among these techniques over a range of system
configurations and workloads. Section 4 presents 2 series of experiments and their results. Section 5
discusses related work. Finally, Section 6 presents our conclusions and plans for future work.

2. GLOBAL MEMORY MANAGEMENT

In this section, we discuss three techniques for implementing global memory management in a page
server environment and outline five specific algorithms that use different combinations of these tech-
niques. We also provide an overview of the expected performance tradeoffs among the different tech-
niques. In order to enable a clear discussion of these techniques and algorithms, we first briefly present a

reference architecture for a page server system.

2.1. Page Server Architecture and Assumptions

An example instantiation of a page server DBMS is shown in Figure 1. The system consists of a sin-
gle server machine and a number of client workstations connected over a local-area network (e.g., an Eth-
ernet). Each client has memory that is available for use as a buffer pool by the database system. The
server typically has more available memory and more processing power than any of the clients. The
server also has disks on which the permanent COpy of the database resides and a (possibly mirrored) disk
for the recovery log. In this reference architecture, we assume that the database system does not use
client disks for logging or buffering and thus, clienis are shown as diskless. The use of client disks, if
present, is an interesting area for future work, but it is beyond the scope of the current study.

Workstation 1 Workstation n

Client Process 1 Client Process n

Application Application
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Buffer Lock Buffer Lock
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Figure 1: Architecture of a Page Server DBMS



The database system software consists of client database processes that execute at workstations and a
server database process that runs at the server machine. A client application accesses the database by
making requests to its local client database process. The method of interaction between applications and
client database process is left unspecified. They may be linked as a single process Or they may be
separate processes communicating, for example, via local IPCs or shared memory. A client database pro-
cess manages a single active transaction for its application at a time, but it is also capable of handling
requests from the server and remote transactions. The client database processes communicate with each
other and with the server database process by sending messages over the network. Such communication
can be initiated asynchronously by either party and is used to handle database access, update propagation,
concurrency control, and transaction management functions. For the remainder of the study we assume
that single pages are the unit of buffering and locking. Also, except where noted, we assume that an LRU
page replacement algorithm is used for each of the buffer pools in the system.

As stated previously, the caching studies described in Section 1 all treated such a system as a three-
level memory hierarchy, thus limiting the size of the memory from which to satisfy the page requests of
any one client to a fraction of the total memory available to the database system. The goal of the global
memory management techniques investigated in this study is to exploit the remaining fraction in an
opportunistic way. That is, as in the previous caching algorithms, the contents of any one client’s
memory are dictated by the accesses made by that client, but in addition, those contents (if not
exclusively locked) can also be sent to other clients to satisfy their local cache misses. The techniques

also attempt to make better use of the server memory in light of this new capability.

The ability to exploit the contents of remote client memory results in a four-level memory hierarchy.
The level closest to the client is the local client memory, which can be directly accessed by a client data-
base process. The second level of the hierarchy is the server memory, which i8 managed by the server
database process. In terms of response time, this memory costs one small message from the client to the
server (for the page request) and one large message (containing the page itself) from the server o the
requesting client. Messages incur costs not only for their actual on-the-wire time, but also for CPU pro-
cessing at both the sender and the receiver. The third level of the hierarchy is remote client memory. The
server is the only site with knowledge of where page copies are cached in the system, SO access to this
level of the hierarchy must g0 through the server. Therefore, access to remote client memory costs two
small messages and one page-sized message: the client first sends a small message t0 request the page

from the server, the server then forwards that request to another client, and the remote client sends a large
message containing the page to the requesting client.! Finally, the fourth level of the hierarchy is the
server’s disk. An access 0 this level of the hierarchy is the most expensive, costing one small message
and one page-sized message as well as one or two disk accesses. (Two disk accesses are required if a
dirty page must first be forced from the server’s buffer pool in order to make room for the requesied page
to be read in from disk). In general, the goal of the global memory management techniques studied here

1 We do not require perfect knowledge of page copy locations at the server, and therefore, there is a small possibility that the remote site
will not be able to forward the requested page. Handling of this situation results in an extra message and possibly a disk access, as will be ex-
plained in Section 2.3.2.



is to move accesses from the lowest (and most expensive) level of the hierarchy to the higher levels. In
particular, the techniques will attempt tO convert what would have been disk accesses in a non-global
scheme into cheaper accesses 0 the server memory or to remote client memories.

Up to this point, the discussion of memory management issues has been concerned primarily with the
use of memory to avoid disk reads. However, in order to provide durability for the updates of committed
transactions, the pages containing these updates must eventually be written to stable storage. In a client-
server system, the server is responsible for ensuring the durability of committed updates and also for
ensuring that all sites see a transaction-consistent view of the database. The server implementation can be

simplified if the server always has the most recent committed copy of a page (either in its memory Or on
disk). This can be achieved by requiring all pages dirtied by a transaction to be copied to the server before

the transaction is allowed to commit.2 Dirty pages that are copied back to the server have two conflicting
characteristics that complicate the buffer replacement policy at the server. On one hand, reclaiming a
dirty page’s buffer slot requires an 1/O to write the page to disk, so keeping a dirty page in the buffer
longer can reduce /O by combining multiple writes to the same page into a single disk write [Chen84].
On the other hand, many of the dirty pages present in the server’s buffer pool may not actually be valu-
able pages, as their placement in the server buffer pool is based on considerations other than their proba-
bility of being accessed; the presence of such dirty pages may result in additional disk reads for other
pages that are relatively hotter. As will be seen in later sections, these conflicting characteristics will
have an effect on the performance of the different global memory management techniques.

2.2. Global Memory Management Techniques

As stated previously, this study concentrates on three related global memory management techniques.
These techniques were chosen on the basis of their potential for improving performance versus the com-
plexity of their implementation in a page server environment. The three techniques are outlined below
and then presented in more detail in the following section. The techniques are:

Forwarding - The main technique we investigate is to allow a request for a page that is not in the
server’s buffer pool to be forwarded to a remote client if that client has a copy of the page in its buffer
pool. Upon receipt of a forwarded request, the remote client sends a copy of the page directly to the
requesting client. The goal of this technique is to reduce disk I/O by extending the amount of memory
available to satisfy client page requests. This technique has the highest potential for performance
improvement of the three studied, but also requires the most modification to existing data caching algo-
rithms.

Hate Hints - Hate hints are a simple heuristic that can help to keep a larger portion of the database
available in memory when the forwarding technique is in use. When the server transfers a page o a
client, the server marks that page as hated (i.e., it makes it the "least recently used" page in its buffer
pool). The page will then be likely to be replaced when a buffer frame is needed for a new page. This

2 The relaxation of this restriction requires that the server keep track of the location of any committed updates that are not reflected in either
its memory or disk. Also, the server must be able to selectively recover any committed updates that are lost as the result of a client crashing {(e.g.,
using techniques similar to those for handling media recovery).



heuristic is an attempt to reduce page replication between the buffer contents of a server and its clients,
thereby allowing a larger number of distinct pages to reside in the global memory. When a page is
transferred to a client, it is known that the page is in memory clsewhere in the system, and thus, the copy
at the server does not contribute to the percentage of the database available in global memory.

Sending Dropped Pages - This technique attempts to use the server buffer pool to prevent a page from
being completely dropped out of the global memory. With this technique, a client informs the server
when it intends to drop a particular page from its buffer pool by piggybacking that information on a page
request message it sends to the server. If the server determines that the copy 1o be dropped is the only
copy of the page that resides in global memory, it asks the client to send it the page when it is replaced
from the client’s buffer pool.

2.3. Memory Management Algorithms

In this section, we describe five memory management algorithms that will be used to compare the
effectiveness of the global techniques under different workloads and system configurations. One algo-
rithm is a callback algorithm that does not use any of the global techniques. This algorithm is used as a
baseline. The other four algorithms are extensions of the baseline algorithm, each of which uses the for-
warding technique along with neither, one, or both of the other two global techniques.

2.3.1. Callback Locking (CBL)

CBL is a lock and data caching algorithm based on callback locking [Howa88, Lamb91, Wang91]. In
this algorithm, clients initially obtain locks and data by sending requests t0 the server. Once a page and its
corresponding lock are obtained, they can be cached at the client across transaction boundaries. The vari-
ant studied here allows caching of read locks but not write locks, as caching write locks was found to be
somewhat detrimental to performance for the workloads used in this study [Fran92a). The caching of a
page at a client gives that client an implicit read lock on the page at the server. From the server’s point of
view, the client then owns the read lock as long as the page is kept in its local buffer.’ Write locks, on the
other hand, are requested explicitly at the server and are released at the end of a transaction. When a
client requests a write lock that conflicts with one or more read locks that are currently cached at other
clients, the server "calls back" the conflicting locks by sending requests to the sites which have those
locks (and page copies) cached. When a client receives a callback request, it checks to see if it is
currently using the page. If not, the client removes its COpY of the page (if it indeed has one) from its
buffer pool and sends an acknowledgement to the server. If the page is currently in use, however, the
client queues the callback request and then immediately informs the server that the page is in use. This
immediate notification allows the server to perform deadlock detection using accurate information

[Lamb91]. The server grants the write lock request only after all conflicting locks have been released.
The fact that the caching of a page at a client grants the client an implicit read lock requires that the

server be informed when a page is replaced from a client’s buffer pool. Rather than send a message 1o the

server each time it replaces a page, a client simply piggybacks the page numbers of any pages it has

3 Note that this protocol must be extended if clients are allowed to retain read locks on pages that they do not have in their cache.



dropped on the next message that it sends to the server. As a result of this mechanism, the server’s lock
table represents a reasonably up-to-date picture of the location of cached data pages throughout the sys-
tem. This information is slightly conservative in that there is a window during which the server may have
an entry for a page copy that has just been dropped from a client. This conservatism does not affect
correctness, but may result in an occasional unnecessary callback request.

In the CBL algorithm the server buffer is managed using an LRU policy. Pages become the "most
recently used” (i.e., least likely to be replaced) page when they are accessed to be sent t0 requesting
clients. Dirty pages that are copied back to the server by committing transactions are marked as most
recently used when they arrive at the server.

2.3.2. The Forwarding Algorithm (FWD)

The first global algorithm, FWD, is simply the callback algorithm extended with the forwarding tech-
nique described in Section 2.2. When the server receives a request for a page (and hence, an implicit
request for a read lock) from a client, it first it obtains a read lock on the page for the requesting transac-
tion. Once the lock has been obtained, it checks to see if the page is in its local buffer pool and if so, it
sends a copy of the page to the requester. If the page is not in the server’s buffer, it checks to see if the
page is cached at another client and if so, forwards the page request to a remote client that has a copy of
the page. When a client receives a forwarded request, it checks 10 see if it has a copy of the page that it
can send to the requesting client, and if so, sends it. A client cannot forward a page if it no longer has that
page cached or if it is in the process of trying to obtain a write lock on the page from the server.? If the
client can not forward the page, it returns the request with a negative acknowledgement to the server. If
there are no sites that have copies of the page or if a server receives a negative acknowledgement from a
remote client, it reads the page into its buffer pool from disk (as is done for all server buffer misses in the
CBL, algorithm) and sends it to the requesting client.

2.3.3. Forwarding with Hate Hints (FWD-H)

The FWD-H algorithm is a simple extension of the FWD algorithm that uses the hate hints technique.
The algorithm works similarly to FWD except that when the server sends a page to a client the page
becomes "hated" (i.e., it is marked as the current "least recently used" page) at the server, making it likely
10 be replaced from the server’s buffer pool. Using the LRU mechanism to implement hate hints has two
effects: 1) a non-hated page will never be aged out of the server’s buffer pool while the buffer pool con-
tains any hated pages, and 2) hated pages are aged out in a LIFO manner.

As described in Section 2.1, transactions send their dirty pages to the server when they commit.
When a dirty page arrives at the server, it is marked as the most recently used page. If a page is present in
the buffer pool when a dirty copy of the page arrives at the server, the dirty copy replaces the prior copy
in the buffer pool, and it becomes the most recently used page. Conversely, if a page that is marked as
dirty in the server buffer pool is sent to a client, it becomes a hated (and still dirty) page.

4 Tn the forwarding technique, there is a brief window during which a client may request a write lock on a page at the same time the server
is sending it a forwarded request for the page. In this situation, the write lock request will be blocked at the server; the forwarded read request
will be rejected by the client and will be satisfied by a disk /O at the server.



2.3.4. Forwarding with Sending Dropped Pages (FWD-S)

The next algorithm, FWD-S, is an extension of the FWD algorithm in which clients send some of the
pages that they drop to the server. This algorithm takes advantage of the message patterns inherent in the
baseline CBL algorithm. When a client determines that it needs to request a page from the server, it also
checks to see if the new page will force an existing cached page out of the buffer. If so, the client piggy-
backs the page number of the page it plans 0 drop on the request message that it sends to the server.
When the server receives such a page request, it checks to see if the page t0 be dropped is the only copy
of the page that is currently in the global memory. If so, the server sets a flag in the message that it uses
to respond to the page request; this flag informs the client that it should send the page (asynchronously)
back to the server rather than simply drop it. When the dropped page arrives at the server, it is marked as
the most recently used page.

There are two additional cases that the algorithm must handle. First, if the server forwards the request
to a remote client, the remote client must forward the server’s send-back decision 1o the requester along
with the page. The second case occurs when the server determines that it will have the only remaining
memory-resident copy of the page once the requester drops its copy. In this case, the server marks its
copy of the page as most recently used and informs the client that it need not send the dropped page.

2.3.5. Forwarding with Hate Hints and Sending Dropped Pages (FWD-HS)

The final global algorithm is the FWD algorithm extended with both the hate hints and sending
dropped pages techniques. Itis simply the combination of the FWD-H and FWD-S algorithms.

2.4. Performance Tradeoffs

The previous sections described three techniques for improving performance through global memory
management and presented algorithms that use these techniques to extend an algorithm that uses only
local memory management. Before presenting the detailed results from our simulation study of these
algorithms, it will be useful to consider the expected performance tradeoffs among them. CBL, the base-
line algorithm, does not exploit remote client memory and must therefore rely only on the local client
memory, the server memory, and disk. The FWD algorithm uses messages and some extra client CPU
processing in an attempt to avoid doing disk 1/O on server buffer misses. The FWD-H algorithm attempts
to further reduce disk /O by avoiding replication between the contents of the server and its clients, thus
increasing the portion of the database that is available in memory. The FWD-S algorithm also tries 1o
replace disk 1/O by messages; it attempts 10 increase the portion of the database retained in memory by
sending a copy of a page to the server rather than dropping it, if that copy is the only one resident in glo-
bal memory. In comparing the FWD-H and FWD-S algorithms, it can be noted that the hate hints and
sending techniques have similar goals in that both try to increase the portion of the database that is avail-
able in memory. Hate hints is an indirect approach which tries to accomplish its goal by reducing replica-
tion. In contrast, the sending technique is a more direct approach, as the system actively tries to keep
pages from being dropped from the global memory. Finally, FWD-HS combines all of these techniques
and, if the benefits of the hate hints and sending techniques are additive, should keep even more of the
database in memory than the other algorithms.



3. MODELING A CLIENT-SERVER DBMS

In order to study the performance of alternative global memory management techniques, we have
extended the client-server DBMS simulation model that was used in our earlier studies [Care91,
Fran92a]. In this section we describe how the model captures the database, workload, and physical
resources of a client-server DBMS that supports the proposed global memory management techniques.

3.1. Database and Workload Models

Table 1 presents the parameters used to model the database and its workload. The database is
modeled as a collection of DatabaseSize pages of PageSize bytes each. The system workload is gen-
erated by a collection of NumClients client workstations. Each client workstation generaies a single
stream of transactions, where the arrival of a new transaction is separated from the completion of the pre-
vious transaction by an exponential think time with a mean of ThinkTime. A client transaction reads
between 0.5-TransactionSize and 1.5-TransactionSize distinct pages from the database. It spends an aver-
age of PerPagelnst CPU instructions processing each page that it reads (this amount is doubled for pages
that it writes); the actual per-page CPU requirements are drawn from an exponential distribution.

An important feature of the model is its scheme for defining the page access patterns of workloads,
which allows different types of locality at clients and data-sharing among clients to be easily specified.
The workload is specified on a per client basis. For each client, two (possibly overlapping) regions of the
database can be specified. These ranges are specified by the HotBounds and ColdBounds parameters. The
parameter HotAccessProb specifies the probability that a page access will be to a page in the hot region,
with the remainder of accesses being to pages in the cold region. Within each region, pages are chosen
without replacement using a uniform distribution. The HotWriteProb and ColdWriteProb parameters

specify the region-specific probabilities of writing a page that has been accessed.

System-Wide

DatabaseSize Size of database in pages

PageSize Size of a page

NumClients Number of client workstations

Per Client

ThinkTime Mean think time between client fransactions
TransactionSize | Mean no. of pages accessed per transaction
PerPagelnst Mean no. of instructions per page on read (doubled on write)
HotBounds Page bounds of hot range

ColdBounds Page bounds of cold range

HotAccessProb | Prob. of accessing a page in the hot range
HotWriteProb Prob. of writing to a page in the hot range
ColdWriteProb | Prob. of writing to a page in the cold range

Table 1: Database and Workload Parameters
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3.2. Physical Resource Model

The model parameters that specify the physical resources of the system and their usage are listed in
Table 2. The client and server CPU speeds are specified in MIPS (ClientCPU and ServerCPU). The ser-
vice discipline of the client and server CPUS is first-come, first-served (FIFO) for system services such as
message and I/O handling. Such system processing preempts other CPU activity. For non-system pro-
cessing, a processor—sharing discipline is used. The sizes of the buffer pools on the clients and on the
server (ClientBufSize and ServerBufSize) are specified as a percentage of the database size. The client and
server buffer pools are both managed using an LRU replacement policy as a default, but facilities such as
hate hints are provided to allow the implementation of the policies described in Section 2. Dirty pages
are not given preferential treatment by the replacement algorithm but are written to disk when they are
selected for replacement. Note that on clients, dirty pages exist only during the course of a transaction.
Dirty pages are held on the client until commit time, at which point they are copied back 1o the server,
once the transaction commits, the updated pages are marked as clean on the client.

The parameter ServerDisks specifies the number of database disks attached to the server, and each is

modeled as having an access time that is uniformly distributed over the range from MinDiskTime to Max-
DiskTime. The disk used 10 service a given request is chosen at random from among the server disks, sO
the model assumes that the database is uniformly partitioned across all server disks. The service discip-
line for each of the disks is FIFO. A CPU charge of DiskOverheadlnst instructions is incurred for each
1/O request. We do not explicitly model logging, as it is not expected to impact the relative performance

of the algorithms being studied.

A very simple network model is used in the simulator’s Network Manager component: the network is
modeled as a FIFO server with a service rate of NetworkBandwidth. We did not model the details of the
operation of a specific type of network (e.g., Ethernet, token ring, etc.). Rather, the approach we took was
to separate the CPU COSstS of messages from their on-the-wire costs, and to allow the on-the-wire costs of
messages to be adjusted using the pandwidth parameter. The CPU cost for managing the protocol for a

Parameter Meaning |
CliemtCPU Tnstruction rate of client CPU

ServerCPU Instruction rate of server CPU

ClientBufSize Per-client buffer size

ServerBufSize Server buffer size

ServerDisks Number of disks at server

MinDiskTime Minimum disk access time

MaxDiskTime Maximum disk access time

DiskOQverheadlnst CPU overhead for performing disk /0
NetworkBandwidth | Network bandwidth

FixedMsglnst Fixed no. of instructions per message
PerByteMsglnst No. of addl. instructions per message byte
ControlMsgSize Size of a control message (in bytes)

Locklnst No. of instructions per lock/unlock pair
RegisterCopylnst No. of instructions 0 register/unregister a copy

Table 2: Resource and Overhead Parameters
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message send or receive is modeled as F ixedMsglnst instructions per message plus PerByteMsglnst
instructions per message byte.

Finally, the model allows the specification of several other resource-related parameters. The size of a
control message (such as a lock request Or a commit protocol packet) is given by the parameter Con-
trolMsgSize; messages that contain one or more data pages are sized based on Table 1’s PageSize param-
eter. Other costs include Locklnst, the cost involved in a lock/unlock pair on the client or server, and
RegisterCopylnst, the cost (on the server) to register and unregister (i.e., to track the existence of) a newly
cached page copy Or 10 look up the copy sites for a given page.

3.3. Client-Server Execution Model

In the simulator, each client consists of several modules. These include: a Source, which generates
the workload; a Client Manager, which executes the transaction reference strings generated by the Source
and processes requests and page receipts from the server and other clients; a CC Manager, which is in
charge of concurrency control (i.e., locking) on the client; a Buffer Manager, which manages the client
buffer pool; and a Resource Manager, which models the other physical resources of the client worksta-
tion. The server is organized similarly, except that it is controlled by the Server Manager, which acts in
response to the requests sent to it by the clients.

Client transactions execute on the workstations that submit them. When a transaction references a
page, the Client Manager must lock the page appropriately and check the local buffer pool for a cached
copy of the page; if no such copy exists, the client sends a request for the page to the server. Both locking
and buffer management are simulated in detail based on referenced page numbers. Once a local copy of
the page exists, the transaction processes the page and and decides whether or not to update it. In the
event of an update, the client obtains a write lock on the page locally, and then requests a write lock from
the server. The server may be required to callback read locks from other clients before it can grant the
write lock request. Once the write lock is obtained, further CPU processing is performed on the page. At
commit time, the Client Manager sends a commit request together with copies of any updated pages to
the server, which performs the commit processing for the transaction (e.g., placing the copies of the dirty
pages in its buffer and releasing locks) and then informs the client that the commit was successful. The
server performs deadlock detection based on the information in its lock table and the responses received
to its callback requests if a callback is involved in a potential deadlock. If the server decides that it must
abort a transaction, it chooses a victim and informs the victim’s client manager that the transaction must
be aborted. If the victim has an outstanding callback request, the other clients participating in the call-
back are also informed. When a transaction’s client receives an abort request, its Client Manager
arranges for the abort, asks the Buffer Manager to purge any updated pages, and then resubmits the same
transaction.

4. EXPERIMENTS AND RESULTS

In this section, we present the results of a simulation study of the global memory management algo-
rithms described in Section 73. We describe the experiments and results following a discussion of the
performance metrics and the parameter settings that were used.
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4.1. Metrics and Parameter Settings
The primary performance metric employed in this study is the throughput (i.c., transaction completion

rate) of the system.5 A number of additional metrics are also used to aid in the analysis of the experi-
mental results, including the server buffer hit rate, the client and server resource utilizations, the average
number of messages required to execute a transaction, and several others. One special metric that we use
is the "database portion available in memory". This is the percentage of the pages of the database that are
available to a client without performing a disk I/O. For the forwarding algorithms, this metric is the
union of the contents of the server buffer pool and all client buffer pools, whereas for the callback algo-
rithm it is the union of the server buffer pool contents and the contents of only a single client. The vari-
ous metrics that are presented on a "per commit" basis are computed by dividing the total count for the
metric by the number of transaction commits over the duration of a simulation run. To ensure the statisti-
cal validity of our results, we verified that the 90% confidence intervals for transaction response times
(computed using batch means [Sarg76)) were sufficiently tight. The size of these confidence intervals
was within a few percent of the mean in all cases, which is more than sufficient for our purposes.
Throughout the paper we discuss only performance differences that were found to be statistically
significant.

Tables 3 and 4 present the database and workload parameter settings used in the experiments reported
here. Table 3 contains default settings that are common across all of the experiments (except where oth-
erwise noted). The database size is 1,250 pages, with a page size of 4 kilobytes. The number of client
workstations is varied from 1 to 25 in order to study how the various algorithms scale, and the think time
at the client workstations is zero. The default per-page CPU processing time is 30,000 instructions.

Parameter Setting

DatabaseSize | 1,250 pages (5 megabytes)
PageSize 4,096 bytes

NumClients 1 to 25 client workstations
ThinkTime 0 seconds

PerPagelnst 30,000 instructions

Table 3: Database and Workload Parameter Settings

Parameter RO-HOTCOLD | RW-HOTCOLD PRIVATE UNIFORM
TransactionSize 20 pages 20) pages 16 pages 20 pages
HotBounds p to p+49, p to p+49, p to p+24, —
p=50(n—1)+1 p=50(n—1) +1 p=25(n-1)+1

ColdBounds rest of DB rest of DB 626 to 1,250 whole DB
HotAccessProb 0.8 0.8 0.5 —
ColdAccessProb 0.2 0.2 0.5 1.0
HotWriteProb 0.0 0.2 0.2 —
ColdWriteProb 0.0 0.2 0.0 0.2

Table 4: Workload Parameter Values for Client n

5We use a closed quening model, so the inverse relationship between throughput and response time makes either a sufficient metric.
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Table 4 describes the workloads considered in this study. These workloads and their motivations will
be explained as their corresponding experiments are presented. Briefly, the HOTCOLD workloads have a
high degree of locality per client as well as a moderate amount of sharing among clients. Two variants of
HOTCOLD are studied: RO-HOTCOLD, a read-only variant, and RW-HOTCOLD, which has a moderate
write probability (20%). The PRIVATE workload has high locality per client and only read sharing
among clients; there are no read-write or write-write conflicts in this workload. It is intended to model
situations such as large, CAD-based engineering projects, in which engineers might work on disjoint por-
tions of an overall design while read-sharing a standard library of components or a previous version of the
design. UNIFORM is a moderate write probability workload with no client locality. We used a relatively
small database in conjunction with these workloads in order to make simulations involving fractionally
large buffer pools and transactions feasible in terms of simulation time; moreover, our intent is to capture
that portion of the database which is of relatively current interest to the client workstations, rather than to
model the entire database.

Table 5 shows the settings used in our experiments for the system overhead parameters and the
resource-related parameters. In setting these parameters we attempted to choose values that are reason-
able approximations to what might be expected of systems today or in the near future. The experiments
that we describe here were run with 15 MIPS client workstations and a 30 MIPS server. We ran experi-
ments with two network bandwidths, one corresponding roughly to current Ethernet speeds (referred to as
the slow network in the following sections) and one corresponding roughly to FDDI technology (referred
1o as the fast network). The bandwidth values used (8 Mbits/sec and 80 Mbits/sec respectively) represent
slightly discounted values of the stated bandwidths of those networks.

Parameter Setting

ClientCPU 15 MIPS

ServerCPU 30 MIPS

ClientBufSize 5% or 15% of database size
ServerBufSize 30% of database size
ServerDisks 2 disks

MinDiskTime 10 millisecond
MaxDiskTime 30 milliseconds

DiskOverheadlnst 5000 instructions
NerworkBandwidth | 8 or 80 megabits per second

FixedMsglnst 20,000 instructions

PerByteMsglinst 10,000 instructions per 4 kilobyte page
ControlMsgSize 256 bytes

Locklnst 300 instructions

RegisterCopylnst 300 instructions

Table 5: Resource and Overhead Parameter Settings

4.2. Experiment 1: Read-Only HOTCOLD Workload

The first set of resulis that we will examine uses a version of the HOTCOLD workload that performs
no updates. Although such a read-only workload is not expected to be common, we analyze it first in
order to examine the buffering behavior of the various algorithms in the absence of the complications that
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are introduced by dirty pages. In the RO-HOTCOLD workload, as shown in Table 4, each client has its
own 50 page region of the database to which 80% of its accesses are directed. The hot region of one
client is contained in the cold regions of all other clients, so there is substantial sharing of pages in this
workload in addition to high per-client locality.

4.2.1. Read-Only HOTCOLD, Small Client Buffer Pools

The aim of each of the global memory management techniques is to reduce the need for disk 1/0 by
increasing the portion of the database that is available in memory. However, there are two reasons why
such an increase may not translate into a performance improvement: 1) the resources used to increase the
portion of the database available in memory may be more expensive than the resources saved by the
increase, and 2) in a skewed workload such as RO-HOTCOLD, some pages are more valuable than oth-
ers, so a higher portion of the database available in memory does not necessarily imply a reduction in disk
1/O. In the following, we first compare the algorithms based on the portion of the database that they keep
available in memory, and then examine the resulting resource demands. Finally, we examine how these
demands translate into throughput, given the system parameters of Section 4.1.

4.2.1.1. Portion of Database Available In Memory

Figure 2 shows the percentage of the database available in memory for each of the algorithms when
running the Read-Only HOTCOLD workload with small client buffer pools (5% of the database size).
The dotted line shows the highest in-memory percentage that could be obtained ideally (based on the
amount of memory in the system). Algorithms typically have less than the ideal amount of the database
in memory due to replication among the contents of the system’s buffers pools. There are two types of
replication that can arise: server-client correlation, and client-client replication. Server-client correlation
can arise when the server and the client buffer managers use the same page replacement policy (LRU). In
this situation, when the ratio of the number of pages resident in the server buffer pool to the number of
distinct pages that are resident in client buffer pools is high (e.g., greater than one), a page that is in a
client’s buffer pool is also likely to be in the server’s buffer pool. Server-client correlation is most prom-
inent with small client populations. As clients are added to the system, the ratio of pages at the server to
pages at the clients becomes smaller, and as this ratio decreases, the server can replicate fewer of the

pages that are kept at clients. Client-client replication arises from overlapping client requests. The
amount of client-client replication increases as clients are added to the system,

Turning to Figure 2, we first note that CBL has the smallest portion of the database available in
memory. CBL does not use forwarding, so the addition of clients does not increase the amount of
memory that can be used to service a particular client’s requests. CBL has a slight increase the percen-
tage of the database it has available in memory as clients are added to the system, which is due to the
reduction in server-client replication. CBL is unaffected by client-client replication, as each client has
access only to the contents of the server’s buffer pool and its own buffer pool. In contrast to CBL, the
forwarding algorithms can capitalize upon the buffer pools brought to the system by additional clients and

§ In this experiment the aggregate size of the client buffer pools becomes larger than the size of the server buffer pool when more than 6
clients are in the system.
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thus, they all show a significant increase in the portion of the database available in memory as clients are
added. However, as seen in Figure 2, none of the forwarding algorithms are able to attain the ideal in-
memory percentage. The forwarding algorithms are affected by both types of replication described
above. However, all of the forwarding algorithms incur the same level of client-client replication, as the
global memory management techniques they use do not alter the buffering behavior at clients. Therefore,
the differences among the forwarding algorithms shown in Figure 2 are the result of differences in their
server-client correlation.

FWD, the simplest forwarding algorithm, initially shows very little improvement over CBL. Thisis
due to the correlation between server and client buffers — the contents of the additional client buffers are
replicated in the server’s buffer pool. As clients are added, the impact of the server-client correlation
decreases, until at 25 clients, FWD has access to almost 90% of the database in memory. The other three
forwarding algorithms employ techniques that attempt to increase the percentage of the database available
in memory. Compared to FWD, the FWD-H algorithm attains a relatively high in-memory percentage
with small numbers of clients. This is because hate hints manage to reduce the server-client correlation.
However, beyond 15 clients FWD-H’s advantage over FWD begins to dissipate; at 25 clients, FWD-H is
only slightly better than FWD. This is because as clients are added to the system, the fraction of FWD-
H’s page requests that are serviced by forwarding increases. Requests serviced by forwarding do not go
through the server’s puffer pool, so the hate hints become less effective at reducing the server-client
correlation.

FWD and FWD-H both have somewhat less than the ideal in-memory database percentage at 25
clients. FWD-S, on the other hand, comes close to having the entire database in memory at this point.
The success of FWD-S is due to its effective use of the server buffer pool — it uses the server buffer pool
to retain pages that would otherwise have been dropped from the global memory. However, with small
client populations, the sending technique has little effect. When server-client buffer correlation is high,
pages that are aged out of clients are likely to be in the server buffer pool, so few dropped pages are sent
to the server. The sending technique is quite effective for larger client populations but less effective for
smaller populations, while the hate hints technique has the opposite characteristics. For this reason, the
available in-memory percentages for the two algorithms eventually cross.

EWD-HS, which combines the hate hints and sending techniques, keeps the largest portion of the
database available in memory throughout the range of 1 to 25 clients. At 25 clients, FWD-HS has almost
100% of the database available in memory. The interaction of the two techniques is effective throughout
the range of client populations, as it tends to keep a copy of a page in memory at either a client or at the
server, but not at both.

4.2.1.2. Resource Requirements

We now turn our attention to the resource requirements of the five global memory management algo-
rithms. As expected, the general trend is that in most cases, an increase in the percentage of the database
available in memory results in a decrease in disk 1/O (since more requested pages are found in memory)
and an increase in messages (for serving such requests and for managing the contents of global memory).
Figure 3 shows the total number of disk 1/0s per committed transaction (in this workload, all disk 1/0s
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are reads) for the various algorithms. The message requirements are shown in Figure 4, which shows the
average number of messages sent per committed transaction, and Figure 5, which shows the total number
of message bytes sent per committed transaction. The latter two metrics can differ because some mes-
sages are control messages (256 bytes), while other messages contain one or more 4K byte pages. The
message and disk 1/O requirements for transactions depend on the client buffer hit rate (not shown), the
server buffer hit rate (shown in Figure 6), and the percent of server misses that are forwarded to other
clients (shown in Figure 7). The sending algorithms also incur additional page-sized messages for send-
ing dropped pages back to the server. All of the algorithms have the same client buffer hit rate (slightly
over 65%) because they are all based on CBL and because the global techniques do not affect buffering at
the clients. As a result, for all of the algorithms, clients send the same number of page requests to the
server. Overall, CBL sends the fewest messages per commit, because it never forwards requests to other
clients. For the same reason, its disk I/O requirements are inversely proportional to its server buffer hit
rate. CBL initially suffers a steep decrease in the server hit rate (as explained below) as clients are added
to the system. Its ultimately low server hit rate and its inability to forward requests cause CBL. to have
the highest disk I/O requirements at 10 clients and beyond. Note that beyond 10 clients, CBL is the only
algorithm for which disk requirements do not decrease as clients (and hence, more buffers) are added to
the system.

CBL.’s server buffer hit rate drops from 589 to 24% (where 30% is what would be expected with a
uniform access pattern). This drop is due to the combination of the skewed nature of the RO-HOTCOLD
workload and the small client buffer pools. Due to the small client buffer pools (62 pages), the LRU
mechanism at each client frequently ages out pages that belong to the client’s hot range (at the clients, the
hit rate for hot region pages is about 81%). With small numbers of clients in the system, the server buffer
pool can hold all of the hot region pages for all of the active clients, and therefore, client misses due 10
aged-out hot pages are likely to be found at the server (e.g., with two clients, the hit rate for hot pages at
the server is nearly 97%). However, as clients are added, the server can hold fewer of the active clients’
hot region pages, so the server hit rate for each client’s hot region pages drops; in this case, to below 18%
at fifteen clients and beyond (compared to over 28% for cold region requests). The lower hot region hit
rate is due to another correlation phenomenon: ihe server tends to keep only the hot region pages that
were most recently requested by a client. Unfortunately, these pages are the wrong pages to keep, as hot
region pages tend to reside in a client’s buffer pool for a long time before they are finally aged-out and
subsequently re-requested.7 ,

As shown in Figure 6, FWD has a similar overall server hit rate to CBL. Forwarding has only a
minimal effect on the server hit rate in this case — slightly lowering the hot region hit rate and raising the
cold region hit rate. However, despite this similarity, FWD’s resource requirements are different than
CBL’s. FWD is able to satisfy a significant number of server buffer misses by forwarding requests t0
other clients (see Figure 7). Therefore, as clients are added, there is an increase in messages but a

7 1n fact, the 18% hit rate obtained for hot region pages is due primarily to requests for hot region pages that were recently accessed as cold
region pages by other clients. If there were no overlapping cold region accesses, the hot region hit rate would approach zero.
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decrease in disk 1/O. In contrast to FWD, the other forwarding algorithms take a more active role in
affecting the server’s buffering behavior. FWD-H has a server buffer hit rate that remains around 30%.
The hate hints reduce the impact of the skewed workload on the server buffer hit rate, and thus, the hot
region and cold region hit rates both remain close to 30%. Unfortunately, for small numbers of clients,
FWD-H has a much lower hit rate than those obtained by the other algorithms. In its attempt 0 reduce
server-client correlation, FWD-H removes hot pages from the server’s buffer pool. Many of those pages,
while replicated for a brief time, will be eventually aged out of the client’s buffer pool and re-referenced
at the server. Thus, with small numbers of clients, the reduction in server-client correlation causes a
lower server hit rate, and as a result, FWD-H has the highest disk requirements up (o 5 clients (Figure 3).
However, at 10 clients and beyond, FWD-H’s server hit rate becomes better than that of CBL and FWD
because it avoids the server-client correlation that causes those algorithms to have a low hit rate for hot
region pages. The reduction in server-client correlation also allows FWD-H to be more successful than
EWD at forwarding requests missed at the server to other clients (Figure 7). As a result of the server hit
rate and forwarding behavior, FWD-H sends more messages than CBL and FWD, but beyond 5 clients,
performs fewer disk 1/Os.

The sending technique provides a substantial improvement in the server hit rate. As shown in Figure
6, FWD-S has the same initial hit rate as FWD and CBL but it does not suffer as severe a drop in hit rate
as clients are added. The high server hit rate is due to the sending technique’s ability to keep hot region
pages in memory. The influence of the sending technique can be seen in Figure 4, which shows the
number of messages sent by FWD-S increasing uniil 10 clients are in the system. The number of dropped
pages sent to the server (not shown) increases due to the reduction in server-client buffer correlation —
hot pages that are aged out of client buffers become less likely to be in the server’s buffer pool as clients
are added. Beyond 10 clients, the number of pages sent by FWD-S begins to decrease, as it becomes more
likely that a page dropped by a client is resident in the memory of another client. Despite the reduction in
sent pages, FWD-S’s message count remains fairly constant due 1o an increase in forwarded requests.
However, its per transaction network bandwidth demands actually decrease (see Figure 5). As shown in
Figure 7, at 10 clients and beyond, FWD-S forwards a larger percent of its server misses than the non-
sending algorithms. It is important o note that the crossover point of the forwarded percentages of
FWD-S and FWD-H occurs with fewer clients than the crossover of their respective in-memory percen-
tages shown in Figure 2. This is because FWD-S does a better job of keeping hot range pages at the
server so a miss at the server is likely to be for a cold range page. Such cold range pages are typically in
the hot range of another client, and will often be cached in that client’s local buffer pool.

The combination of hate hints and the sending technique gives FWD-HS the best server hit rate of the
five algorithms. FWD-HS also has the highest forwarded percentage of all of the algorithms. In fact, at
20 clients and beyond, FWD-HS reads a page from disk only once; all subsequent fransactions can access
the page in memory. Asa result, FWD-HS has the lowest disk /O requirements and the highest message
count of the five algorithms. FWD-HS also exhibits an interesting, and potentially expensive, behavior
with small client populations: hot region pages are "hounced" between clients and the server. With 2
clients in the system, over 95% of the pages dropped by the clients are sent back to the server. This
occurs at a large cost in messages and network bandwidth, and provides only a small savings in disk I/O.
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As with FWD-S, the number of dropped pages sent to the server decreases for FWD-HS as clients are
added to the system. This reduction, combined with an increase in forwarded requests, results in a slight
decrease in message count and a significant drop in network bandwidth requirements.

4.2.1.3. Throughput Results

The last two sub-sections examined the effectiveness of the algorithms in keeping pages available in
memory and studied their resource requirements. With these results in mind, we now turn to the resulting
performance of the algorithms. Figure 8 shows the throughput results for this experiment with the slow
network setting (NetworkBandwidth = 1 MByte/sec). All of the forwarding algorithms eventually outper-
form CBL, showing the potential advantages of avoiding I/O — even at the cost of additional messages.
FWD-H has the highest throughput through much of the range, with FWD equaling it at 25 clients.
Beyond 10 clients, the sending algorithms perform below the level of FWD and FWD-H. In this case, all
of the forwarding algorithms eventually become network-bound and their relative performance becomes
inversely proportional to their message bandwidth requirements. With small client populations, however,
the relative performance results are somewhat different. The forwarding technique provides no clear per-
formance improvement over the baseline CBL algorithm; in fact, FWD-H and FWD-HS perform slightly
worse than CBL up to 5 clients.

The CBL algorithm initially performs well because it has low message requirements and its disk
requirements are in line with the other algorithms. However, the other algorithms soon produce a
decrease in I/O requirements, while CBL does not. CBL approaches a disk bottleneck at 10 clients and
ultimately has the lowest performance. FWD performs similarly to CBL up to 5 clients, but decreasing
I/O requirements allow it to eventually perform much better than CBL, approaching a network bottleneck
at 25 clients. FWD-H initially suffers due to high I/O requirements with small client populations. How-
ever, as clients are added to the system, its I/O requirements diminish and, because it has moderate mes-
sage requirements, it becomes the best performing algorithm. FWD-S has the best performance at 5
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clients due to its very low 1/O requirements. Beyond 5 clients, however, the increase in dropped pages
sent by FWD-S causes its performance to suffer relative to the FWD and FWD-H algorithms, which have
lower bandwidth requirements. FWD-S is network-bound at 10 clients and beyond; its throughput
improvement beyond this point is due to the reduction in network bandwidth requirements as fewer
dropped pages are sent to the server. FWD-HS has the lowest I/O requirements throughout the range of
client populations, but due to its high message requirements and the slow network, it performs poorly
compared to FWD and FWD-H. FWD-HS is the first algorithm to hit the network bottleneck; it becomes
network-bound at 5 clients. Its network bandwidth requirements cause it to perform below FWD-S prior
to 15 clients, and only slightly better than FWD-S thereafter.

Figure 9 shows the throughput results for the same workload and buffer pool sizes as the previous
case, but with a faster (e.g., FDDI) network. The faster network has the effect of reducing the cost of
using network bandwidth, and thus, the trade-off of messages for disk I/O becomes a better bargain. In
this case, therefore, FWD-HS has the best performance, followed by FWD-S, FWD-H, and FWD. CBL,
the non-forwarding algorithm, has the lowest performance. The sending algorithms both become CPU-
bound at the server due to the cost of processing large messages, while the other algorithms are negatively
impacted by their greater I/O requirements.

4.2.2. Read-Only HOTCOLD, Large Client Buffer Pools

We now turn our attention to the Read-Only HOTCOLD workload with the client buffer pool size
increased to 15% of the database size. The larger client buffers have two important effects for this work-
load: 1) more of the database is available in memory with smaller numbers of clients than in the cases
previously studied, and 2) the client buffers are large enough so that hot region pages are very rarely
dropped from a client’s buffer pool. Figure 10 shows the throughput results for this case using the slow
network. As can be seen in the figure, the forwarding algorithms all converge at 20 clients and beyond,
while the CBL algorithm has lower performance than the forwarding algorithms at five clients and
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beyond. The CBL algorithm is once again disk-bound (although at a higher performance level than in the
previous cases), and the forwarding algorithms all become network-bound at 15 clients and beyond. Prior
to converging, the sending algorithms perform somewhat worse than the other forwarding algorithms.
This is because they incur large message costs for sending dropped pages back to the server, and in this
case most dropped pages are cold region pages, SO there is litfle benefit to having these pages at the
server. FWD-H has a slight performance advantage up 1o 10 clients due to its effectiveness at reducing
server-client correlation with small client populations. Unlike in the small buffer case, this reduction pro-
vides an improvement in the server buffer hit rate, as clients tend to request only cold region pages from
the server. FWD-HS has a slightly better initial server hit rate than FWD-H, but its performance is penal-
ized by its high message requirements.

The forwarding algorithms eventually converge in Figure 10 for three reasons: First, all of the for-
warding algorithms have access to the entire database in global memory at 20 clients and beyond, so they
perform no disk I/O at that point. Second, the large buffer pools cause the sending algorithms to send
fewer pages back to the server as clients are added to the system — it becomes less likely that a client has
the only copy of a cold region page. Third, at 20 clients and beyond, all of the forwarding algorithms have
the same server hit rate (around 30%). This is because with a large number of clients, the potential over-
lap of each client’s buffer contents with the server is small, and since most page requests sent to the
server are for cold region pages, the server sees a non-skewed access pattern.

The performance results for the faster network case (shown in Figure 11) are similar to those seen
with the slower network, in that all of the forwarding algorithms converge at a performance level much
higher than the CBL algorithm (in this case, by a factor of about 5 at 25 clients). However, in this case,
the fast network allows FWD-HS and FWD-H to capitalize on their high server hit rates prior to the con-
vergence.

4.2.3. Summary of the Read-Only HOTCOLD Results

The study of the HOTCOLD workload in the absence of updates revealed a number of important
aspects of the performance of the global memory management techniques. Most importantly, it was
shown that forwarding page requests to remote clients can provide significant performance improve-
ments. Forwarding a request saves a disk 1/O while requiring no extra CPU work at the server, thus
offloading an important shared resource. The cost of forwarding is an extra control message plus the
latency due to message handling at the remote client. Even in network constrained situations, forwarding
was found to be beneficial.

The hate hints technique was found to improve the performance of forwarding by reducing the corre-
lation of buffer contents between clients and the server. An important exception to this was in cases with
small client buffer pools and small numbers of clients. In such cases, the hate hints were found to hurt the
server hit rate by removing valuable hot region pages from the server buffer pool. As a result, there were
cases in which the FWD-H algorithm had a larger portion of the database available in memory, but had
higher disk requirements than other algorithms. In contrast, the sending technique was found to be effec-
tive at keeping hot region pages in memory. However, the sending technique was found to pay a large
price in message bandwidth to avoid disk T/Os, often causing the slow network to become a bottleneck
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while the disk became underutilized. Furthermore, when the size of the client buffer pools was large
enough to keep hot region pages from being replaced at the clients, the sending technique was detrimental
to performance because it used valuable network bandwidth to keep cold region pages in memory.

The FWD-HS algorithm, which uses a combination of the hate hints and sending techniques, was able
to keep more of the database available in memory than any of the other algorithms studied due to its abil-
ity to make effective use of the server buffer pool. However, this did not always translate into better per-
formance. With small buffer pools, the combination of the techniques resulted in hot region pages being
bounced between clients and the server across the network, resulting in heavy network traffic. With
larger buffer pools, its performance was negatively affected by the tendency of the sending technique to
waste network bandwidth on cold region pages. Message costs hurt the throughput of FWD-HS in the
slow network cases, but when the fast network was used, FWD-HS was the best performing algorithm.

In general, the experiments showed that the global memory management techniques were effective in
offloading the server’s disks by increasing the amount of the database available in memory. However, it
was also seen that while offloading the disk in this manner can provide substantial performance gains,
doing so is not a guarantee of improved performance. In particular, if the wrong pages are kept in
memory, or if the price paid to keep pages available in memory is too high, performance can suffer.

4.3. Experiment 2: Read-Write HOTCOLD Workload

The previous section analyzed the five memory management algorithms in the absence of writes in
order to examine their behavior without the complications introduced by dirty pages. In this section, we
investigate the performance of the algorithms using the HOTCOLD workload with a write probability of
20% (HotWriteProb = ColdWriteProb = 0.20). In the following discussion, we concentrate on those
aspects of performance that are caused by the introduction of writes.

4.3.1. Read-Write HOTCOLD, Small Client Buffer Pools

Figure 12 shows the percentage of the database available in memory for the Read-Write HOTCOLD
workload with small client buffer pools and the slow network. Compared to the read-only case (Figure 2)
CBL remains largely unchanged, FWD and FWD-H initially have a slight degradation but eventually
have an improvement at larger client populations, and FWD-HS suffers degradation throughout the range
of clients. Most strikingly, the large benefit of FWD-HS observed in the earlier experiment is not present
here. With small client populations, the server-client buffer correlation is increased by the dirty pages that
are sent to the server by committing transactions. This particularly hurts the FWD-H and FWD-HS algo-
rithms, which gained by reducing this correlation in the read-only case. However, as more clients are
added, callback requests begin to reduce the replication among client buffer contents; before a page is
updated at one client, it is removed from the buffers at any other clients that have it cached. Therefore,
the result of the addition of writes is to increase server-client correlation while slightly decreasing client-
client replication.

Figure 13 shows the total number of disk 1/Os (shown as solid lines) and the number of disk writes
(shown as dotted lines) performed per committed transaction. The most noticeable change in overall disk
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requirements is that the FWD-HS and FWD-S algorithms no longer enjoy the large advantage that they
had in the read-only case (shown in Figure 3). The disk requirements of the algorithms are affected by
the need to perform disk writes for dirty pages that are aged out of the server’s buffer pool and by the
changes in the client and server buffer contents caused by the handling of dirty pages. Disk writes are an
additional cost that is incurred by all of the algorithms, however, with 1 to 5 clients the FWD-H and
FWD-HS algorithms write more pages than the other algorithms. This is because the hate hints cause
requested dirty pages to be moved to the head of the LRU chain, reducing their residence time in the
server’s buffer pool and thereby reducing the opportunity for combining multiple client writes into a sin-
gle disk write. As more clients are added, the other algorithms also incur an increase in disk writes due to
additional traffic through the server buffer pool. This traffic is caused by disk reads for the FWD and
CBL algorithms, and by dropped pages that are sent to the server for FWD-S.

The disk read requirements of the algorithms are changed by the introduction of writes in two ways.
First, dirty pages sent to the server by committing transactions impact the server hit rate (shown in Figure
14) in an algorithm-dependent manner. For FWD-H, these pages improve the server hit rate significantly
for small client populations (e.g., with 2 clients the server hit rate is 43%, as compared to 30% in the
read-only case). The pages dirtied by a client are likely to be hot region pages for that client, so sending
those pages to the server helps overcome FWD-H’s tendency to remove hot pages from the server’s
buffer pool. The beneficial effect of the dirty pages is reduced as clients are added to the system. In con-
trast, FWD-S and FWD-HS suffer a reduction in server hit rate due to dirty pages. A page that is sent to
the server because it is dirtied is not necessarily the only copy of the page in the system. Such dirty pages
therefore reduce the effective use of the server buffer pool that was exhibited by the sending algorithms in
the read-only case. The second way that writes affect the disk read requirements is via callbacks. Cali-
backs reduce client-client buffer replication, which increases the effectiveness of forwarding, thereby
reducing disk read requirements. Therefore the disk read requirements for the FWD algorithm at 15
clients and beyond are somewhat lower than in the read-only case.

Figure 15 shows the number of messages sent per commiited transaction. The differences among the
algorithms are much smaller here than those seen in read-only case (shown in Figure 4). This occurs for
two reasons. First, writes increase the message requirements of all of the algorithms by introducing four
new kinds of messages: 1) write lock requests, 2) callback requests for cached read locks, 3) subsequent
re-requests for pages and locks that were called-back and 4) messages for dirty pages sent to the server
prior to commit. Secondly, the relative message requirements of the FWD-HS algorithm are reduced for
small client populations because the dirty pages sent to the server (which are sent by all algorithms)
reduce the number of dropped pages that FWD-HS must send to the server.

Figure 16 shows the throughput for the RW-HOTCOLD workload with small client buffer pools and
the slow network. The forwarding algorithms all outperform CBL. at 10 clients and beyond. This is due
once again to CBL’s high disk requirements. All of the forwarding algorithms have similar throughput at
25 clients. FWD-H attains the highest throughput at 10 clients and beyond, but has poor throughput with
small client populations due to high disk read and write requirements. The sending algorithms, which
reach a network bottleneck at 20 clients, perform close to FWD-H due to the reduction in differences in
message requirements. FWD-H and FWD both approach, but do not quite reach, a network bottleneck at
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25 clients. FWD-HS initially performs poorly due to message COStS and disk writes caused by the sending
of dropped pages that force dirty "hated" pages out of the server’s buffer pool. When the faster network
is used, the throughput results (shown in Figure 17) display similar trends but smaller differences com-
pared to what was observed in the read-only case (Figure 9). One difference is that here, all of the algo-
rithms become disk-bound so FWD-H and FWD-HS are impacted by their increased disk requirements
(compared to Figure 9).

4.3.2. Read-Write HOTCOLD, Large Client Buffer Pools

Figure 18 shows the throughput results for the Read-Write HOTCOLD workload run with larger
client buffer pools and the slow network. Once again, CBL performs at a much lower level than the for-
warding algorithms due to its high disk requirements. The forwarding algorithms all have similar
throughput; their performance is primarily dictated by their message behavior (not shown), which
becomes nearly identical at 15 clients and beyond. This convergence is similar to what was observed in
the read-only case (Figure 10) and occurs for the same reasons. The sending algorithms perform closer to
the others in this case because the sending of dirty pages and the effect of callbacks result in fewer
dropped pages being sent to the server. When the fast network is used in conjunction with the larger
client buffer pools (Figure 19), the relative performance of the algorithms is driven by disk demands, and
an interesting effect occurs: at 10 clients and beyond, the forwarding algorithms separate into two distinct
classes — the algorithms that use hate hints, and those that do not. FWD and FWD-S outperform the
other forwarding algorithms because hate hints lead to more disk writes by reducing the amount of time
that dirty pages are retained in the server buffer pool. The sending technique has no differentiating effect
in this case because few pages are sent back to the server beyond 10 clients.
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4.3.3. Summary of the Read-Write HOTCOLD Results

The introduction of writes to the HOTCOLD workload was found to have a number of complex
effects on the message and disk requirements of the global algorithms; however, the relative performance
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of the algorithms was not greatly affected in most of the cases studied here. When the slow network was
used, the most important impact of the writes was a reduction in the differences among the message
requirements of the algorithms. This reduction was the result of additional messages incurred by all algo-
rithms and a decrease in the number of dropped pages sent to the server by the sending algorithms. When
the fast network was used, the effects of updates on disk requirements played a greater role in determin-
ing the relative performance of the algorithms. These effects varied greatly among the algorithms. All
algorithms had increased disk requirements due to disk writes. The sending algorithms incurred an addi-
tional increase in disk requirements due to a reduction in server buffer hit rates caused by dirty pages sent
to the server by committing transactions, which increased the server-client buffer correlation. FWD-H and
FWD-HS paid a high price in disk writes when few clients were present because the hate hints reduced
the residency time of dirty hot region pages in the server buffer pool. The FWD-S, FWD, and CBL algo-
rithms all saw a slight decrease in disk reads because the dirty pages sent to the server increased their
server buffer hit rates. (This was due to dirty pages being re-referenced by clients from which they were
previously called-back). Also, the utility of forwarding was slightly improved by the callback mechan-
ism, which reduces client-client buffer replication.

As the preceding discussion indicated, the impact of sending dirty pages to the server on commit
varies depending on the memory management algorithms, workload characteristics, and system resources
used. In general, however, the sending of dirty pages to the server at commit had a negative impact on
performance — requiring additional messages, increasing the cost of hate hints, and interfering with the
strategies used for managing the server’s buffer pool. The sending of dirty pages to the server at commit
time helps to simplify the recovery system in a client-server DBMS [Fran92b], but it could be avoided or
reduced at the expense of increasing recovery complexity. As will be discussed in Section 5.2, a similar
issue (forcing dirty pages to disk) has been investigated for shared-disk environments [Moha91, Dan92].
As future work, we plan to further investigate policies for handling dirty pages in the client-server
environment.

4.4. Experiment 3: PRIVATE Workload

The third experiment that we report here uses the PRIVATE workload. In this workload (see Table
4), each client has a 25-page hot region of the database to which 50% of its accesses are directed; the
other 50% of its accesses are directed to a 625-page read-only area of the database. Clients do not access
pages in each other’s hot regions, so there is no read/write sharing of data in this workload. Thus, the
PRIVATE workload has updates and high locality but has no data contention. Figure 20 shows the
throughput results for the PRIVATE workload with small client buffer pools and the slow network. In
this case, the relative performance of the algorithms is similar to what was seen for the RW-HOTCOLD
workload (Figure 16). There is however, an important difference — the relative performance of the send-
ing algorithms is worse here. This is due to higher message requirements resulting from sending more
dropped pages to the server. Each client has a private hot region, and thus, when a client drops a hot
region page, it will be sent back to the server unless the server already has a cached copy of the page;
there is no chance that a copy of such a page will exist at another client. In the fast network case (Figure
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21), the FWD-HS algorithm performs much better than the others because it is effective at keeping more
of the database available in memory and thus has lower disk requirements.

Figure 22 shows the throughput results when the client buffer size is increased to 15%. In this case,
the client buffer pools are large enough to contain the entire hot region for each client. As a result, any
hot region pages that are kept in the server’s buffer pool are detrimental to performance because they will
not be accessed by any clients and thus, they wasie space that could be used for cold region pages. In this
situation, the hate hints will tend to remove cold region pages from the server’s buffer pool while retain-
ing dirty hot region pages, resulting in the poor server hit rates shown in Figure 23. The other forwarding
algorithms (FWD and FWD-S) also have poor server hit rates due to the presence of dirty hot region
pages in the server’s buffer pool. The sending technique gives FWD-S a slightly better server hit rate
thann EWD with small numbers of clients, as it causes some cold region pages to be sent back to the
server. The CBL algorithm has the best server hit rate at 10 clients and beyond due to the presence of
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cold region pages that are read in from disk. The other algorithms do not read as many cold region pages
from disk since they are able to satisfy many server misses by forwarding requests.

While the interaction of the workload with the handling of dirty pages results in the interesting buffer-
ing effects just described, the net effects on performance are not as great as might be expected. In the
slow network case (Figure 22), there are only small differences among the performance of the algorithms.
In this case the performance results for the forwarding algorithms are primarily dependent on the message
behavior of those algorithms, and they all eventually have similar message behavior. The CBL algorithm
becomes disk-bound despite its superior server hit rate, while the forwarding algorithms perform virtually
no disk reads at 15 clients and beyond. In the fast network case (not shown), the forwarding algorithms
become server CPU bound at 15 clients and converge shortly thereafter, at about 3.5 times the throughput
of the disk-bound CBL algorithm.

4.5. Experiment 4: UNIFORM Workload

As described in Table 4, the UNIFORM workload has no locality and has a write probability of 20%.
With small client buffers and the slow network (shown in Figure 24), FWD-H performs the best until it is
matched by the FWD algorithm at 25 clients. Initially, FWD-H’s advantage is due to a high server buffer
hit rate. In this case, the hate hints improve the server buffer hit rate for small client populations by
reducing server-client correlation. In contrast to what was observed in the skewed workloads, decreasing
server-client correlation actually improves the server buffer hit rate here, since all pages are equally likely
to be accessed. As more clients are added, FWD-H’s advantage is the result of it having lower message
requirements than the sending algorithms. The lack of locality reduces the importance of the sending
technique, so FWD-S keeps a smaller portion of the database in memory than FWD-H until 25 clients (at
which point they are equal). FWD keeps the smallest portion of the database in memory among the for-
warding algorithms in this case, but its lower message requirements allow it to perform relatively well
with larger numbers of clients.
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With larger client buffer pools and the fast network (shown in Figure 25), the forwarding algorithms
begin to approach the bifurcated state that they reached in the RW-HOTCOLD case (Figure 19). How-
ever, there are two noticeable differences in the trends compared to the RW-HOTCOLD case. First, prior
to 20 clients, the FWD-HS algorithm performs better than FWD-H, and second, prior to 25 clients, the
FWD-S algorithm performs better than FWD. At 25 clients, all of the forwarding algorithms have access
to the entire database in memory. However, prior to this point, FWD-HS keeps a larger portion of the
database available in memory than FWD-H, and FWD-S keeps a larger portion of the database available
in memory than FWD. In this case, the ability to keep more of the database available in memory results
in noticeably better performance. Once all of the forwarding algorithms have the entire database avail-
able in memory, FWD-H and FWD-HS pay a slight penalty due to additional disk writes caused by hate
hints.

5. RELATED WORK

In this section we briefly discuss work related to global memory management in client-server DBMSs,
data sharing DBMSs, and other distributed systems.

5.1. Workstation-Server Database Systems

Several recent papers have investigaied issues of global memory management for DBMSs in a
workstation-server environment. In [Leff91], the problem of replica management for efficient use of the
global memory resources of a distributed system was addressed. In particular, an analytical model was
used to investigate the tradeoffs between a "greedy” algorithm, where each site makes its own caching
decisions to maximize its own performance, and two algorithms where caching decisions are made (stati-
cally) in order to maximize overall system performance. The latter two algorithms were intended to pro-
vide an upper bound on the potential performance improvement that could be expected due to global
memory management, and not as practical algorithms for implementation. The key tradeoff found was
that without coordination, all sites chose to cache the hottest objects, while the coordinated strategies
were able to keep many different pages in memory, thereby replacing disk I/Os with (cheaper) messages.
The study did not consider updates and all sites had the same database reference patterns. Our algorithms
also attempt to keep more pages available in memory, but they focus on using the server buffer as a
mechanism for achieving this rather than modifying client buffer replacement policies. Algorithms for
using the memory of underutilized workstations (called mutual-servers) to keep more of the database in
memory were proposed and studied in [Pu91]. The algorithms included variations in which the sender
and/or the receiver played active roles in initiating the caching of a page at a mutual-server. All of the
algorithms were broadcast-based, and the study did not consider concurrency control or data contention
issues.

5.2. Transaction Processing Systems

Issues related to some of the global memory management techniques discussed here are addressed in a
data-sharing context in several papers from IBM Yorktown. In one paper [Dan91] an analytical model
was used to study a two-level buffer hierarchy. The paper investigated policies for placing pages in a
shared buffer based on when pages are updated, read in from disk, and/or aged-out of a private buffer.
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The study identified a number of buffer correlation effects similar to those discussed in Section 4, espe-
cially those dealing with the relative sizes of the shared (server) and private (client) buffers. There are
several important differences between the two studies, however. First, the IBM study did not investigate
global algorithms that allowed shared-buffer misses to be serviced by private buffers. Second, it com-
pared the techniques based on their buffer hit rates but did not investigate the impact of the algorithms on
actual transaction throughput. Many of the experiments discussed in Section 4 showed that the buffer hit
rates often did not determine the performance of the algorithms. Third, due to the nature of the shared-
disk environment, the IBM study investigated workloads in which there was no difference among the
access pattemns at the various private buffers. Therefore, the complex interaction of server-client correla-
tion and server hit rates that arose here in the HOTCOLD workloads were not identified.

A more recent paper [Dan92] studies callback-style shared-disk caching algorithms and investigates
the performance gains that are available by avoiding disk writes for dirty pages when transferring a page
between sites. Adding this optimization to a shared-disk system results in more complex recovery
schemes, as described in [Moha91]. An algorithm which avoids replicating copies at multiple sites was
studied and was found to have tradeoffs similar to some of those seen for our forwarding techniques.
However, there are significant differences between the client-server environment and the data-sharing
environment (e.g, the use of the server for logging and recovery [Fran92b], and the expense of messages
in a client-server system). Thus, many of the tradeoffs that we have identified in a client-server context
differ from those observed in data-sharing systems.

Another recent paper [Rahm92] studies the use of several types of extended memory to improve the
performance of transaction processing systems. Extended memory adds a new memory hierarchy level
between main memory and disk. An added dimension is the use of non-volatile memory to avoid data
and log disk writes. The paper also investigates other types of extended memory such as solid-state disks
and disk caches. Many of the correlation issues found in our study (and in [Dan91]) also arise in this
environment. In particular, the correlation caused by forcing dirty pages to the extended memory (similar
to our copying of dirty pages back to the server), was shown 1o reduce the effectiveness of the extended
memory. This study differs from ours because of fundamental differences in the system architecture;
these include the use a single main memory buffer (versus multiple clients), lower communication costs
between the levels of the hierarchy, and differences in the types of workloads studied.

5.3. Non-DBMS Approaches

Issues related to global memory management have also been addressed in distributed object systems
such as Emerald [Jul88], where methods for allowing objects to migrate among sites were addressed.
Migration in this case was intended to improve performance by bringing objects to the sites where they
were being accessed, and also to simplify the programming of distributed applications, rather than to
avoid disk I/O. The idea of using the memory of idle workstations as a backing store for virtual memory
was investigated in [Felt91]. This paper raised several policy issues and presented a simple queueing
model study that indicated that the approach has potential for significant performance gains over swap-
ping to disk, even with current networking and OS technology. Finally, work in Non-Uniform Memory
Access architectures, in which the memories of nodes in a multiprocessor system are viewed as a single
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memory hierarchy, is relevant as well. This work includes [LaR090], which studied the performance of a
wide range of proposed memory management policies and [LaRo91], which investigated dynamic poli-
cies that can be adapted to particular page reference behaviors.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied performance tradeoffs for global memory management in page-server
database systems. Three different memory management techniques were presented. Each of the pro-
posed techniques can be implemented within the context of existing client-server DBMS data and lock
caching algorithms, and they require no information to be kept at the server or at the clients beyond what
is already required by such algorithms. The primary technique, forwarding, attempts to avoid disk I/O at
the server by forwarding page requests to remote clients that have a requested page in their buffer pool.
Forwarding allows the buffer pools of remote clients to be treated as an additional level in a global
memory hierarchy. Accesses to this additional memory level incur a cost of one control message and
some additional client processing beyond the cost of a request made to0 the server, so it lies between the
server memory and the disks in the hierarchy.

The two other techniques are intended to increase the utility of forwarding by more efficiently manag-
ing the global memory of the system. These techniques attempt to exploit the server’s buffer pool in
order to keep a larger portion of the database available in the global memory. One technique, called hate
hints, is a simple heuristic which tries to reduce replication between the buffer pool contents of the server
and its clients. In this technique, the server’s buffer replacement policy is modified to "hate" a page when
it sends a copy of that page to a client. The other technique, called sending dropped pages, attempts to
retain pages in memory by keeping a client from simply dropping a valuable page from its buffer pool.
By piggybacking information on other messages, a client informs the server of its intention to drop a
page. If the server then determines that the page to be dropped is the only copy of that page in global
memory, it asks the client to send the page back rather than drop it.

These three techniques were compared under a range of workloads and system configurations using a
simulation model. The results of the performance study show that, as expected, forwarding can provide
significant performance gains over a non-forwarding cache management algorithm. The study also
showed that the hate hints and sending techniques were indeed effective in keeping a larger portion of the
database in memory. However, while these techniques achieved their objectives, they did not always
yield performance improvements and in some cases were even detrimental to performance. For example,
the hate hints technique was successful at reducing replication, but in some situations it removed valuable
pages from the server buffer pool — thereby increasing I/O demands. The sending technique was found
to be expensive in network-constrained situations in which using messages to avoid disk I/Os is the
wrong approach to take. However, in many situations the sending and hate hints techniques were both
shown to provide substantial performance gains. The study also investigated the impact of updates on the
buffering behavior and performance of the algorithms, and it identified issues in the interaction of global
memory management and the management of dirty pages for supporting transaction durability.

A number of areas for future work were raised by this study. First, the experiments identified situa-
tions where the global techniques caused the system to become unbalanced or perform extra work. For
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example, there were cases in which the disk became underutilized while the network became saturated
due to the effectiveness of the forwarding technique. Another example was the interaction of hate hints
and dirty pages in the server buffer, which caused an increase in the number of disk writes performed per
transaction. These situations demonstrate the need for algorithms that can adapt to the resource and
memory usage patterns of the system. Several extensions along these lines could be easily added to the
existing techniques. Another important area for future study is the recovery and performance implications
of techniques that would avoid having clients send dirty pages to the server prior to committing a transac-
tion. Finally, we also plan to investigate global memory management algorithms that take a more active
role in determining where pages should reside in the system. Such algorithms could control issues such
as the amount of replication allowed at various levels in the system and the placement of page copies in
the memories of idle or under-utilized workstations.
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