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Abstract

This thesis concerns methods for the computational solution of smooth, block-
angular optimization problems that have very large numbers of variables. These
problems include multicommodity network flows and are currently among the
most challenging important problems in operations research and industrial math-
ematics.

After surveying relevant classical literature, we expand upon the barrier func-
tion theory of Fiacco and McCormick [1968]. These barrier functions allow us
to generate a sequence of nonlinear approximating problems which have simpler
constraints. Feasibility issues for the original problem are dealt with efficiently.
Details regarding the accuracy of the approximation provided by the barrier prob-
lems are given for some barrier functions that involve a logarithm.

Next, we describe a new decomposition method for the approximating barrier
problems that is amenable to parallel computation. This decomposition method
does not require pseudo-convexity of the objective function, allowing the theory
of this thesis to apply to local minimization problems with nonconvex objective
functions and coupling constraints. Computational results obtained by combining
the barrier approximation and the decomposition methods are given for the PDS
problems—a class of real-world multicommodity flow problems from the U.S. Air
Force Military Airlift Command. We solve PDS problems larger than are solved
elsewhere in the literature, ranging to PDS-70 which has 382,311 flow variables.

Finally, our decomposition method is generalized to include the case of flow

of information in an asynchronous computing environment. Convergence of the



generalized method is proven, and we show that the method contains, as a concrete

case, the restricted simplicial decomposition algorithm of Hearn et al [1987].

vi




Acknowledgements

I must trace the success of this work back to my widowed Mother who wished and
encouraged me to attend college. This is one wish of hers that I have carried out
to the utmost. :

The best thing that happened to me during graduate school was to marry my
best friend, Janice. She deserves a good deal of credit for any success that I might
enjoy.

There are a number of professors who have had an important positive influence
on my career in graduate school. Foremost is my advisor, Bob Meyer, with whom
I have truly enjoyed working. I thank Olvi Mangasarian and Michael Ferris for
serving as readers on my thesis committee and Renato DeLeone and Stephen
Robinson for rounding out my thesis committee. Thanks to my friend Arnold
Neumaier for countless stimulating discussions while he visited Wisconsin in 1988-
89. Thanks to Meyer, Mangasarian, DeLeone and Ferris for being receptive to my
many queries. Thanks to Robinson for teaching the most enjoyable (and quite
possibly the most difficult) courses that I took in graduate school. Thanks to John
Strikwerda for all of the help in preparing for the numerical analysis screening
exam. Finally, thanks to Howard Conner and Rod Smart for supporting my
studies during my tenure at the Mathematics Computing Laboratory.

I appreciate the friendship and companionship of my two office mates, Rob
Clark and Jonathan Yackel.

Most of all, I thank God, the Creator of the world, Jesus Christ, in whom is
my hope, and the Holy Spirit, who guides me daily. It is only by His grace that

vii



my success is possible.

Trust in the LORD with all your heart
and lean not on your own understanding;
in all your ways acknowledge Him,
and He will make your paths straight.
Proverbs 3:5,6

This research was partially funded by grants from the National Science Foun-
dation (CCR-8709952, CCR-8907671 and DCR-8512862) and the Air Force Office
of Scientific Research (AFOSR-86-0194 and AFOSR-89-0410).

viil




List of Tables

= W N e

Sizes of some of the PDS problems. . . ... ... ........ 75
Timing and objective value results for small PDS problems. . .. 81
Timing and objective value results for large PDS problems. ... 82
Timing and objective value results for very large PDS problems. 83

ix



List of Figures

12
13
14
15

16
17
18

The “tennis racket” example. . . . ... ... ... .. .. .... 21
The three phase method. . . . .. ... ... ... ........ 51
A typical decoupled resource allocation. . .. ... ........ 56
The stabilization algorithm. . . .. ... ... ... .. ... ... 66
Sparsity structure of the constraint matrix for PDS-01. . . .. .. 74
PDS-20: objective function vs. iterations.. . . . .. .. .. .. .. 78
PDS-20: —log of improvement (k) vs. iterations. . . . . .. .. .. 78
PDS-40: objective function vs. iterations.. . . . .. ... ... .. 79
PDS-40: —log of improvement (k) vs. iterations. . . . . . ... .. 79
PDS-60: objective function vs. iterations.. . . . . . .. ... ... 80
PDS-60: —log of improvement (k) vs. iterations. . . . . . ... .. 80
The stabilization algorithm for the asynchronous case.. . . . . . . 9
Restricted Simplicial Decomposition. . . . .. ... ... ... .. 100
The subproblem pseudo-code. . . . ... ... ... .. ...... 102
The coordinator pseudo-code. . . . ... ... ... .. ...... 102
Sparsity pattern of the matrixin (A5). . . .. ... .. ... ... 110
Schematic of partial factorization for (A.5).. . . .. . ... .. .. 111
Schematic factorization for (A.5). . . .. ... .. ... ... ... 112




Glossary of Symbols

The following is a list of notation that is used consistently throughout this thesis.
The order corresponds roughly to the order in which the symbols are used in the
text. The more fundamental notation introduced in §1.1 is not included in this

glossary.

& Marks the end of a proof.
@ The empty set.
¢ The cost function.

K Number of blocks of variables.

K
N = Z Ny Number of variables in the optimization problem.
k=1

b<z<b Simple bound constraints on z.

Az =a A block diagonal set of affine constraints.

K
M = Z My Number of rows of A.

k=1

D(z) £ d General coupling constraints.
Dz < d Linear coupling constraints.

J Number of rows of D.

Xi



Zk)s Ay - - The kth block of variables z, the portion of A corresponding to the
kth block of variables, etc.

B The block constraints (z € B iff < z < b and Az = a).

C The coupling constraints (z € C iff D(z) < d).

L The Lagrangian function.

p,q,r Lagrange multipliers or estimates of Lagrange multipliers.
v* The objective function value at a particular local optimum.

X* The set of local minima with the function value v*.

J
p(s) = pi(s;) A barrier function.
J=1

7 A coefficient on the barrier function.

@ A shifted barrier.

f, f» An essentially smooth real valued function of N real variables, usually of

the form f,(-) = ¢(-) + 7p(6 — D(-)).
P(r,08) The shifted barrier problem depending on 7 and 6.
{:c(‘)} Sequence of (approximate) solutions to sequence of barrier problems.
{w("’t)}t = {a:(t)} For fixed 7, a sequence tending to the solution of P (T(i), 0(")).
R = R(z) = { Yy l R(z) <y < R(2) } A decoupled resource allocation.
g®  Approximation for V f (a;(t)) used in subproblems.
G Positive semi-definite matrix of the quadratic form used in subproblems.

=@ A line segment feasible for the coordinator.

x1i




y®  Search direction computed relative to z(®).

Y®

w®

Block diagonal matrix of search directions.
Vector of weights, one scalar for each column of Y,
Un-damped vector of weights; before a line search procedure.

Set of indices of search directions in Y[,(c?

K
v® = Z v[(,:]) Sizes of Tf}g

=11

n A culling function.

F®)

w®

Set of w feasible for master problem.

Set of w feasible for coordinator problem (C F®).

Xiii



Chapter 1

Notation, Problem Definition
and Review of Classical

Techniques

1.1 Notation

We shall let IR denote the real numbers and IR" be the N-tuples (columnn vectors)
of real numbers, both with the standard Euclidean topology. Similarly, 7Z will
denote the standard ring of integers. The set of M x N matrices of real numbers
is represented by IRM*N | with row vectors denoted by IR**¥V to distinguish them
from column vectors. The transpose of a matrix or vector = is denoted by z'. If
z is a real vector, then the symbols z, and z_ represent the unique nonnegative
vectors with the properties that ¢ = z, — z_ and ziz_ = 0 (242l =0 if z is
a row vector). If the symbol IR is subscripted by a condition, it shall denote the
subset of IR satisfying the given condition. For example, IR5¢ is shorthand for
the set of positive real numbers {¢é € IR|¢ > 0}. We shall also use the standard
notation IRy to mean R>¢ and IR_ to mean IR<o.

A vector or matrix that has each component equal to 0 (or 1) is represented
by O (or 1). The identity matrix is denoted by I. The sizes of each of these will

1




be evident from the context. Often the sum of the components of z € IRY will be
written as 1z.

Ordinary subscripts will denote elements of a vector or matrix, so that z, is
the nth element of the (row or column) vector z and Ay, is the element of the
matrix A € R™*Y in the mth row and the nth column. The mth row of the
matrix A is denoted A, and the nth column of A is denoted by A,.. By analogy,
if A:IRY — IRM is a general map, we denote the component functions (rows) of
Aby Ape : IRY - IR (m = 1,...,M). This is consistent with identifying linear
mappings from IRY to RM with M x N matrices. The notation ), introduced. .
in §1.3, denotes the kth block of variables, where the blocks are disjoint subsets of
the variables.

Ordinary superscripts will denote raising to a power, so that £? is the square of
£. Superscripts of the form z() denote the ith element of the sequence {az(i)}zo.

If {w(i)} is a sequence, we let limz(*) = lim;_, £z denote its limit, if it exists.
We often write ¢ — % or () =222 3 when # = limz®, or 2 | #if # = limz®

and 7 < z9) for each . We define the set of limit points:
lim ptz® = lim pt {m(i)} = {a: = limit of some subsequence of {w(i)}} .

When using arguments which require generic subsequences of a given sequence
{:c(")}, we often thin the sequence so that z() — #. This merely means that
we extract a subsequence that converges to #. This often simplifies the notation
necessary for proofs requiring subsequences.

If ¢ is a function, Vé is its gradient with respect to all of its variables. (The
derivative of the univariate function ¢ is denoted ¢'.) The symbol V¢ will be
used to represent the gradient of ¢ with respect to only the variables named z,
which will be clear from the context. If ¢ : RN — RM and ¢ € R", then
Vé(z) € RM*N ie., the gradient of each component function is considered to
be a row vector. The symbol 0 is used for partial differentiation, differentiation

of real functions (of a single variable) and to identify the dummy variable in an
integration: e.g., [ #(£)0€.



We write f € O (g) (or f(y) € O(9(y))) if
3

lim sup
y—0

9(y)

is finite. Therefore, the Taylor expansions of the function f: RV — IR give

fz+y) - f(z) € O(llyll)
if f is continuous at z,
fz+y) - f(z) - Vi) € O (o)
if f is continuously differentiable at = and
f(@+y) — f(z) = VI(@)y — y"V2f(z)y € O (lyl)

if f is twice continuously differentiable at .

1.2 Nonlinear Programming

This section quotes some classical results about the general smooth nonlinear

programming problem:
minimize f(z) subjectto g(z) <0 and A(z)=0, (1.1)

where f : RY - R, g : RY —+ R’ and 2 : RY — IRM are continuously
differentiable. Define the Lagrangian of (1.1) as

L(z,u,v) = f(z) — ug(z) — vh(z),

where u € R and v € RY¥ are called Lagrange multipliers or simply

multipliers. The derivative with respect to z is given by

VL(z,u,v) = Vf(z) — uVg(z) — vVh(z).




The following are called the Karush-Kuhn-Tucker (KKT) conditions [Karush 1939;
Kuhn and Tucker 1951):

oz) <0 h(z)=0 (12)
u<0 V.L(z,u,v)=0 (1.3)
ug(z) = 0. (1.4)

A KKT point is either a tuple (z,u,v) that satisfies the KKT conditions, or
a point z for which there exist (u,v) that together satisfy the KKT conditions.
Condition (1.2) says that z must be feasible for (1.1) and is called the primal
feasibility condition. Condition (1.3) is called the dual feasibility condition,
because, as we shall see below, it is related to feasibility of a dual problem in the
convex case. Condition (1.4) is called the complementary slackness condi-
tion. It is well known that, if z is a local minimizer of (1.1) and some constraint
qualification holds at z, then there must exist multipliers p, ¢ and r for which
(z,u,v) is a KKT point. Many algorithms for solving (1.1) (including the ones
developed in this thesis) take their motivation from the KKT conditions and are
only guaranteed to converge to KK'T points.

The following classical theorem [Fiacco and McCormick 1968, theorem 1] says
that if no feasible descent direction emanates from the feasible point x, then z is

a KKT point.
Theorem 1.1 If z is feasible for (1.1) and

{ Vh(z)z =0

. = Vf(z)z 20,
V{j such that gje(z) =0} Vgju(z)z <0

then = is a KKT point.

The theorem itself suggests a solution technique: “search along feasible direc-
tions until no such directions exist.” The proof of the above theorem is based upon
the cornerstone of inequality theory: Farkas’ [1894] lemma. See Schrijver [1986]

for an excellent treatment of Farkas’ lemma, both theoretical and historical.



Given a point z—feasible for (1.1)—we say that the Mangasarian—Fromovitz
constraint qualification holds at £ [Mangasarian and Fromovitz 1967] if VA(z)

has full row rank, and

3{z e R} { Vh(z)z =0 } . (1.5)

gis () =0 = Vygje(z)2<0

Similarly, we say that the weakened Mangasarian—-Fromovitz constraint
qualification holds at z if (1.5) holds regardless of the rank of Vh(z). The
following result of Gauvin [1977] characterizes the boundedness of the solutions
of the KKT conditions.

Theorem 1.2 (Gauvin—Boundedness of multipliers) Letz* be a local min-
imum for (1.1). Then the solutions (u,v) to the KKT equations (1.2), (1.3)
and (1.4) form a nonempty bounded set iff the Mangasarian-Fromovitz constraint
qualification holds at z*. Moreover, the set of multipliers u are bounded iff the
weakened Mangasarian—Fromovitz constraint qualification holds at x* and the set

of multipliers v are bounded iff Vh(z*) has full row rank.

In the event that f and g are convex, and & is affine (h(z) = Az — a), (1.1)
is a convex program. There is a rich duality theory for convex programming

which may be used in this case. Therefore, the dual of (1.1) is given by
maximize L(z,u,v) subject to V:L(z,u,v)=0 and u<0. (1.6)

This is why (1.3) are called the dual feasibility conditions. When g is convex, the
weakened Mangasarian-Fromovitz constraint qualification (1.5) is equivalent to
the (global) condition of Slater [1950]:

E!{wEIRN} Az =a ; g(z) <O. (1.7)
Note that in the special case where (1.1) is a linear program:

minizmize fz subjectto Dz <d and Az =a,




& appears in the dual only in the objective function with a coefficient of f —
uD — vA, which is equal to zero by the dual constraint. Therefore, the dual (1.6)

simplifies to the usual linear programming dual

maximize ud + va
uv

subject to uD+vA=f and u<0,

which is independent of z.

1.3 Block Angular Programs

Suppose that the variables = € IR are partitioned into K (disjoint) blocks, so that
T € RMM with N = ¥, Npy. Given two continuously differentiable functions
c:RY - R and D : R¥Y — IRM, the linear maps A € RMs*Nu and the
right-hand-sides apy € IRM# for each k and the bounds b € (IR U —-—oo)N and
b € (IRU +00)N. We shall be concerned with the block angular programming

problem in the following form:

Find a local minimizer z* of ¢(z)
subject to the coupling constraints
D(z) < d,
the block constraints (1.8)
Az = a fork=1,...,K,
and the bounds

b<z<h

J

Note that the bounds may be infinite, allowing for unbounded variables as well.
We assume, without loss of generality, that b < b. The block constraints will often

be abbreviated with the notation Az = a so that (1.8) takes the compact form

minimize c(z) subject to D(z) <d, Azr=a, and b<z<b  (1.9)



We will also use the compact notation

C:={zeR"|D(z)<d} and B:={z€RV|Az=aand b<z < b}

“coupling constraints” “block constraints”
(1.10)

throughout this thesis.

If D is a convex function, then the feasible region of (1.9) is convex, and if
both ¢ and D are convex, (1.9) is a convex program. If D is a linear map, then
the feasible region for (1.9) is polyhedral, and if both ¢ and D are linear, (1.9) is a
linear program. When D is linear, the coefficient matrix takes on the traditional
block-angular form [Lasdon 1970]:

Ap

(1.11)

Ax)
\ | D )

We shall be concerned with exploiting convexity or linearity when it exists. More-

over, there are applications where still more structure exists in the Ay or D. We
consider it fair to computationally exploit any structure in the problem, so long as
it stems from considerations in the underlying real-world problem being modeled.

One special class of block angular linear program is the multicommodity
network flow problem, a block-angular linear program where each Ay is a
node-arc-incidence matrix. (The classical network flow work is the book of Ford
and Fulkerson [1962]. Another excellent book, which includes methods for solv-
ing multicommodity networks, is the book by Kennington and Helgason [1980].)
In the case where the block constraints are network constraints, the decomposi-
tion methods developed below benefit from the excellent technology available for
solving network flow problems.

Multicommodity networks typically model a a single network of infrastructure,




shared by K distinct commodities. In this typical case, the networks are topolog-
ically the same for each commodity and the coupling constraints are generalized

upper bounding (GUB) constraints;

Apy = Apg k=2,...,K
Dy = Dy k=2,...,K,

where each D,,, is either a column of the identity matrix or zero.

There are many real scenarios in which block angular optimization problems
occur. As an example of one, we shall consider a problem related to the Patient
Distribution System (PDS) problems solved in §4. Consider the problem of evac-
uating patients from a number of battlefields in the Middle East to a collection
of hospitals in the U.S. with transshipment points in between. The wounded are
then classified into K categories depending on type and severity of injury. The
interconnections between these points are also chosen to form a basic network
(represented by the node-arc-incidence-matrix Af) based on the available equip-
ment and staff as well as geography. We have a decision variable for each injury
type traveling each link in the network. For each type of injury we use the number
of injured at each battlefield and the capacity of each hospital for dealing with
that type of injury to form the divergence constraints afsj. Limits on the number
of certain types of patients in particular aircraft (e.g., an aircraft has a limited
number of respirators) may be modeled by the upper bounds by (byg = 0O in this
instance). These constraints are all block separable so far. The coupling con-
straints Dz < d are used to represent the capacity of aircraft traveling a link of
the network; the sum of the passengers—regardless of injury type—in a particular
aircraft at a particular time is bounded. Now we wish to find a feasible evacuation
schedule that minimizes the time taken, presumably weighting the time for the
more serious injuries more heavily. This is just one of the many scenarios in which

block angular problems occur naturally.



Suppose the Lagrange multipliers on the constraints are denoted as follows:

peR> . D(z)<d ge R"M . Az = (1.12)
ry ERYY : b<s2 ro e RPN+ 2 <0 '

We write the Lagrangian of (1.8) (or of (1.9), if you like) as
L(z,p,q,7) = c(z) + p(d — D(2)) + g(a — Az) + r4(b—2) +7_(z=F) , p<O.

Since ¢ and D are continuously differentiable, the (KKT) equations for (1.8) are

written
D(z)<d Az=a b<z<b (1.13)
p<0 r=Ve(z)—pVD(z)—qA (1.14)
p(d—D(z)) =0 (1.15)
ro(b—2)=0 r_(z—0)=0. (1.16)

(These are specialized versions of the general conditions (1.2), (1.3) and (1.4).)
Note that the multiplier 7, may be interpreted as a reduced cost for the primal
variable z,—which is to say that, for a KKT point, z, has a positive (negative)
reduced cost r,, only if z, is at the corresponding lower (upper) bound. If ¢ and
D are convex, the dual of (1.8) is written as

maximize ¢(z)+ p(d — Dz) + g(a — Az)+ro(b—z +r_(z—5
aximize ¢(z) + p( ) + 4 )+ri(—z)+r_(z—b) (1.17)

subject to r = Ve(z)—pVD(z) —gqA and p <0,
which simplifies to

maximize pd + qa+ryb—r_b
LXK peTd + (1.18)

subject to r=c—pD —qA and p<O0

in the event that ¢ and D are linear.
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1.4 Dantzig-Wolfe Decomposition

Suppose that the block angular program (1.8) is a linear program. We will now
survey a classical method for solving block-angular linear programs—the Dantzig-
Wolfe decomposition method (or simply the decomposition method) [Dantzig and
Wolfe 1960]). (For textbook coverage of Dantzig-Wolfe decomposition see Las-
don [1970] or—in the multicommodity network case—Kennington and Helga-
son [1980].) Suppose that the polyhedron {z € RY|Az = a;b < = < b} has
extreme points oy, ..., as and extreme rays By, ..., 8. Then a classical result of

polyhedral theory states that
B={zecR" | Az=a; b<z<b}
S T
={zeRY | e=) Nai+D pfi; A20; 1A=1; p=>0 }.

1=1 i=1

(1.19)

It is well known that the number of extreme points and rays S + T generally

grows as an exponential function of the problem dimension N. Suppose we define
de RS, D e R'*5, ee R and D € R via

&:=co; and D,;:=Do; fori=1,...,5, and

g:=cB; and Dy:=Dp fori=1,...,T.

Then the linear version of the original problem (1.9) is equivalent to the master
linear program
minimize &\ + cp
A B _ (1.20)
subject to DA+ Dp<d; >0 ; 1A=1 and x>0
with fewer (J + 1) rows, but very many (S 4 T') columns and non-negativity

constraints. If we introduce the artificial variable ¢ with large positive cost A and
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the slack variables o, the initial simplex tableau for (1.20) is written

A © o ¢
D D I 0 d
1 0 0 1
é c 0 A 0
1 T
p  (r+A4)

At any time during the solution via the simplex method the values of the dual
variables p and 7 may be read from the bottom row of the tableau as indicated
under the columns for ¢ and ¢&.

Because of the large number of columns of (1.20), the following column gen-
eration procedure is used to generate only a few (hopefully!) of the o and f.

The reduced costs for (1.20) are given by

(& E)—(pw)(l;) f) (1.21)

where p and 7 may be read off of the simplex tableau as shown above. The usual
steepest edge simplex pivot rule then picks the column with the minimum reduced
cost to enter the basis. Recalling that & D, @ and D depend on the extreme points
and rays, we find the next extreme point or ray by finding an extreme point or

ray of
miniymize (¢ —pD)y subjectto Ay=a and <y < b. (1.22)

If the simplex method for (1.22) terminates with the extreme point v*, then we
have computed a corresponding ¢; in the above notation, while if it terminates
with the extreme ray 4*, then we have computed one of the columns denoted
as 3; above. (This follows directly from (1.20) once we notice that the portion
depending on 7 is a fixed constant.) Termination is determined when (1.21) is
nonnegative, which is determined by the optimal value of the subproblems (1.22).

Since there is a finite (albeit very large) number of columns of the master problem,
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finite termination of this method is easily deduced. Because of the form of the
subproblems (1.22), the Dantzig-Wolfe decomposition method is called a price
directed decomposition.

Another nice property of Dantzig-Wolfe decomposition is that lower bounds

are easily obtained:

Theorem 1.3 (Lower Bounds) Let v* be the optimal objective function value
for (1.8) (hence also for (1.20)). Suppose (A, p) is feasible for (1.20) with the
simplez multipliers p and = from the tableau as shown above. If z(p) is the optimal
objective function of (1.22), then

E\tep+tz(p)—m < vt < e+ ep.

As stated above, the Dantzig-Wolfe decomposition method works for a general
A € RM*N | However, if the A is block diagonal—as it is in our formulation of
a block-angular program—then each subproblem (1.22) decomposes into K inde-
pendent linear programs. These may be solved in parallel on a parallel machine.
Moreover, the extreme points {o;}5., and rays {8:}; of the polyhedron (1.19)

are of the form

{0}y U B, = (Topn,} U (B} R) >+ x ({owa, }5 U (B 1)
where the o;, By, are the extreme points and rays of the polyhedron defined
only by the kth block of variables in (1.19). This suggests that all subproblems
may not need to be solved in order to produce an entering column for the simplex

method as applied to the master problem.

1.5 Simplicial Decomposition

Simplicial decomposition is a technique for nonlinear programming that was
developed originally by von Hohenbalken [1977] and strongly portended by Hol-

loway [1974]. Simplicial decomposition aims at solving the problem

minimize f(z) subjectto =z € B,
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where f is smooth and pseudo-convex and B is closed and convex. The theory
of simplicial decomposition is based on the fundamental dimensionality result of
convex analysis—Carathéodory’s theorem. Restricted simplicial decomposition is
a modification of simplicial decomposition that uses less memory.

Let ay,...,a, be some extreme points of B and f,...,B; be some extreme
rays of B. If the smallest affine set containing all of the an and receding in the
directions of all the 8, (i.e. the affine hull) has dimension s +¢ — 1, then we say
that the o, and the B, are affinely independent. Affine independence implies
that s+t < N + 1. In the case where the a, and f, are affinely independent, the

set

8 4
{ m:Z)\nan—l-anﬂn AeRy ; 1A=1; ;LE]R:_ }

n=] n=1
is called the generalized s + t-dimensional simplex .
Theorem 1.4 (Carathéodory) Let B be a closed conver subset of RN. Then
for any x € B, there exist affinely independent extreme points o, ..., Qs and
extreme rays P, ...,P: of B such that = is in the generalized s + t-dimensional

simplex generated by the o, and the B,.

See Rockafellar [1970, §17] for a full discussion and proof of Carathéodory’s
theorem.

Simplicial decomposition is a price directed or column generation method anal-
ogous to Dantzig-Wolfe decomposition. A general iteration of the algorithm will
now be described. Suppose that we have a set of affinely independent extreme
points {ay, ..., a,} and extreme directions {f1, . .., B} of B (so that s+t < N+1).
Furthermore, assume that our current iterate z (approximately) solves the master
problem )

minimize f (g::l Antn + Z::l ﬂnﬁn) (1.23)
subjectto A>0; 1A=1 and x>0,

in the sense that

8 t
2= Ao+ Y finfhn (1.24)

n=1 n=1
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for (approximately) optimal X, and B.. Moreover, suppose that each A, and fin is
strictly positive, since otherwise the corresponding a,, or B. may be thrown away
while maintaining (1.24). The gradient V f(z) € RV is now computed, and the
subproblem

miniymize Vf(z)y subjectto y€B (1.25)

is solved to yield j—either an extreme point or extreme ray of B. (Solution of the
subproblem is a finite procedure if B is a polyhedron.) This new column 7 is then
added to the previously generated set of a, and 3, and the master problem (1.23)
is re-solved. Carathéodory’s theorem allows us to always maintain s +¢ < N +1,
so that the number of columns that one need store at any iteration is bounded by
N + 1. This procedure is repeated until a subproblem is solved which gives the
optimal value of V f(z)§ = V f(z)z (in this case theorem 1.1 applies).

In the case where B is a polyhedron, (1.25) is a linear program with a con-
straint set that does not depend on the current point z. Therefore, the simplex
method may be used to solve (1.25), using the final linear programming basis from
the previous iteration as the starting basis for the current iteration [von Hohen-
balken 1977; Hearn et al 1987; Mulvey et al 1990]. In particular, Mulvey et al
[1990] claim that starting with the old basis—as opposed to starting with an all
artificial basis—results in a savings of about a factor of eight in the number of
pivots used to compute a new extreme point. (Mulvey et al [1990] use simplicial
decomposition specialized to generalized network problems, but their results may
easily be generalized to work with any polyhedral B.)

A generalization of simplicial decomposition, called restricted simplicial
decomposition, will be discussed in §5.3.1, where it will be considered as a

special case of a new method developed in this thesis.
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1.6 Resource Directed Decomposition

In opposition to the price directed decomposition methods of §1.4 and §1.5, are
the resource directed decomposition methods. This dichotomy among primal de-
composition methods is determined by the types of subproblems solved by each.
Price directed decomposition methods are characterized by subproblems of the
form (1.22) and (1.25), in which a modified linear functional is optimized sub-
ject to the original block constraints. Resource directed decomposition methods
are then characterized by optimizing the ({riginal objective function subject to
the original block constraints and some block-separable constraints approximat-
ing the coupling constraints D(x) < d. This approximation is interpreted as an
allocation of scarce resources. (For a more in-depth coverage of resource directed
decomposition see Lasdon [1970, chapter 9].)

Suppose we have a problem of the form

K
minixmize 2 Clk] (a:[k])
k=1
subject to V{k=1,...,K} zp € By (1.26)

K
2 Dy (o) < d.

We define the kth subproblem determined by the resource allocation yj) and its

optimal value function as

Wk (y[k]) 1= min{ ClK] (w[k]) | zix) € By and  Dpy (m[k]) < Yx } (1.27)

We define the set Vj to be such that yj) € Vi iff the subproblem (1.27) is feasible
for ypy. With our subproblems so defined, it is clear that (1.26) is equivalent to

the master problem
K

miniymize w(y) == Y wi (y[k])
k=1
subject to V{k=1,...,K} vy € Vin (1.28)
K
> ym < d.

k=1
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It is conventional to assign the value 400 to wy (y[k]) when yx) & Vix- There-
fore, the master need not explicitly contain the constraints yp) € Vi)- However,
for a non-optimal y, any optimization method for solving (1.28) will need to find a
better y, and this is typically possible only when yjy € Vjj. One way to avoid in-
feasibility of the subproblems is to modify the original problem by adding artificial
variables z. Then (1.26) is replaced by

K
mir;irznize Z [c[k] (.’l:[k]) -+ "/Iz[k]]
! k=1
subject to V{k=1,...,K} zp € By
V{k=1,...,K} 259 =>0
K
2. D (o) — 2 < d
=]
for v sufficiently large. The subproblems arising from this formulation have con-
straints
zp € By and Dy (o) — 210 < yiwy
These are feasible iff By # @ (which is a necessary condition for feasibility of
the original problem), because, given any yx, the corresponding zjx may be made
arbitrarily large to compensate. Therefore, we may take Vi = IRMH in (1.28).
Note that we have made no convexity assumptions so far in this section. The
following theorem shows that, in the context of convex programming, w possesses

certain convexity properties but still lacks differentiability.

Theorem 1.5 (Convexity and Non-smoothness of w(-)) Suppose ¢, D and
B are convez, so that (1.26) is a convez program. Further suppose that and D are
continuously differentiable, B is compact and that (1.26) has a feasible solution.

Then w(:) is a closed, proper convez function, but is, in general, not differentiable.

We point out that if D(z) < d are GUB constraints with each row having
at most one non-zero per block, then the subproblems have only modified upper

bounds. More generally, if D is linear and

V{k=1,...,Kand j=1,...,J} ,D[k]j. has at most one non-zero,
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then the modified constraints of the subproblem (D (w[k]) < yp) are modi-
fied simple bounds on the variables z}. These types of constraints are handled

efficiently by most optimization methods.

1.7 Barrier Function Methods

In this section we describe the classical barrier function methods first consid-
ered by Frisch [1954; 1955] and later analyzed in great detail by Fiacco and
McCormick [1968]. This is important background because it is the theoretical
backbone for the barrier function used later in the thesis. Occasionally we shall
consider the particular barrier function based on the natural logarithm In(-), since
it is the case most often used. It is also worth noting that the logarithmic barrier
function has gotten increased attention ever since Gill et al [1986] showed that
Karmarkar’s [1984] polynomial time linear programming method is equivalent to
a logarithmic barrier function method.

Consider a function

J
OEDWACEESEL

400 otherwise .

p : R/ = (RU+00) : s+ (1.29)

Definition 1.6 We say that p is a barrier function (for the positive or-

thant) if each p; satisfies the following criteria:
1. p;j : Ryo— IR is continuous
2. lim p;(£) = +oo
3. p; is antitone; i.e., V{0 < & < (} p;(&) = pi({)

We also wish to point out that p is L times continuously differentiable (or convez,
or strictly convezx) iff each p; is L times continuously differentiable (or convez, or

strictly convex, respectively).
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The most common example is the logarithmic barrier function, where
pi(-) = —In(-) for each j. We note in passing that Fiacco and McCormick [1968]
consider functions lacking separability and antitonicity. Many convergence results
still hold for these more general functions, but some useful results are complicated
and the gain in generality does not seem to be used in practice.

If the function D : RN — IR’ (written componentwise as Djo : RY — R)
gives the coupling constraints D(z) < d, we model these coupling constraints with

the composite barrier function
J
p(d — D(z)) = 3_ pi (dj — Djs(=)),
j=1

which, in the case of the logarithmic barrier function, reduces to
J
- In(d; — Dje(z)).
i=1

It is clear that this composite barrier function is finite-valued iff D(z) < d, thus
p(d — D(-)) is the barrier function for the set cl{z|D(z) < d}. Sometimes we
shall call p(-) or p(d — D(-)) a “barrier function” and allow the context to resolve
any ambiguities. In the case of the barrier function for the positive orthant p(+),
we say that the barrier is the boundary of the positive orthant. On the other
hand, when using the barrier function p(d — D(-)), we say that the barrier is at
the boundary of {z|D(z) < d}. This too will be clear from the context.
Suppose that we wish to

minimize c(z) subject to D(z) <d, (1.30)

where there exists some point z with D(z) < d. The classical barrier function

method would solve a sequence of unconstrained problems
minimize f(e) = ce(z) +79p(d — D(z)) (1.31)

(where 7() | 0 strictly monotonically) in the hopes that the computed sequence

of minimizers {z()} converges to a minimizer of the constrained problem (1.30).
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This may be done if the minimizing set is nice enough. We say that a set X C Y
is an isolated (sub)set of Y [Fiacco and McCormick 1968, page 46] if there
is some closed set E such that X C int E and @ = (E'\ X) NY. The following
theorem [Fiacco and McCormick 1968, theorem 7] is a key to the local convergence
theorem that will follow. It is stated in generic terms because we wish to quote it

later on.

Theorem 1.7 (Existence of Compact Perturbation Set) Suppose all func-

tions f and g defining the generic nonlinear program
minimize f(z) subject to g(z) <O

are continuous. If a set X* of local minima corresponding to a function value v*

is a nonempty, isolated, compact subset of

vi={ gw)<o | f@)=v },

then there exists a compact set S such that X* C int S, and for any feasible point
y € S\ X", f(y) >v"

The assumption that X* be isolated in Y assures that there cannot be feasible
points of the same objective function value arbitrarily close to X*. The following

convergence result is classical [Fiacco and McCormick 1968, theorem 8]:
Theorem 1.8 (Convergence of Barrier Function Minimizers) Suppose that
1. ¢ and D are continuous,
2. there is some point z with D(z) < d,

9. the set of points X* that are local minima of (1.80) corresponding to the

value v* = c(X*) is a nonempty compact set,

4. X* is tsolated in

Y={ y ’ D(y) <d and c(y) =" }a
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5. at least one point in X* is in the closure of {z|D(z) < d}, and

6. 7() | 0 monotonically.

Then

1. there exzists a compact set S such that X* C int S and for 7@ small enough,
the unconstrained minima of f. (+) in {z|D(z) < d}Nint S exist and every
limit point of any subsequence {w(i)} of such minimizers is in X*,

2. limec (w(i)) = v¥,

$~+00

3. lim r®p (d - D(a:(i))) =0,

4. lim fr (fv(i)) =v",
5. {c (:c(i))} is a monotonically decreasing sequence, and
6. {p (d - D(m(‘)))} is @ monotonically increasing sequence.

Assumptions 3 and 4 are made in order to be able to apply theorem I.7.

Assumption 5 is made to rule out possibilities where
inf{ oz) | D)<d } < mf{ o) | D)<d },  (132)

as was pointed out by Danskin [1967]. For an intuitive example where (1.32)
holds, consider minimizing z; over the “tennis racket” shape in IR? given by
{ceR | 2<m <2, ~15<2,<15 and —T(22) S22 <T(o1) J
where
0 ifzy <0
T(z) := . .

—2z3 + 327 if 2 20,
seen in figure 1. (Note that T is once continuously differentiable.) Here the
minimum is at (—2,0), while the minimum over the closure of the interior occurs

at the origin.
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1.5 T ] T T T T

Figure 1: The “tennis racket” example.

We now wish to specialize our results to convex programs, where ¢ and D are
convex. The following lemma of Fiacco and McCormick [1968, lemma 11] shows

that convex programs lead to convex barrier functions.

Lemma 1.9 (Convexity of Barrier Functions) If p is a convez barrier func-

tion and D is convez, then the mapping
z + p(d — D(z))
is convex. Furthermore, if ¢ is also convez, then f; is convez for any 7 > 0.

If ¢ and D are convex, the dual of (1.30) is

ma)gignize c(z) + p(d — D(z))
subject to Ve(z) —pVD(z) =0 and p<0.

(1.33)

The results of the last theorem may be sharpened if one assumes convexity and

boundedness of the feasible region [Fiacco and McCormick 1968, theorems 25
and 26].
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Theorem 1.10 (Primal-Dual Convergence) Suppose ¢, D and p are all con-
vez functions and p is continuously differentiable. Further assume that the hy-
potheses of theorem 1.8 hold, and that the feasible set of (1.30) is bounded. Then
each unconstrained problem (1.31) has a unique finite unconstrained minimizer
2@ every local minimizer is a global minimizer, and every limit point of the
bounded sequence {m(i)} is a global minimizer of (1.80). Furthermore, the limit
points of the sequence defined by

p = 70V)p (d -D (:c(i))) =70 ( s P (dj — Djs (x(i))) . )

are optimal Lagrange multipliers of (1.30) and at least one limit point of {p(i)}

J

c RIXJ
i=1 ’

exists.

The assumption of boundedness is made in order to bound the sequence {:c(")},
thereby guaranteeing the existence of limit points. Fiacco and McCormick [1968]
do this with a lemma (lemma 12 in their numbering scheme) that guarantees the

boundedness of f, level sets. However, they make the following assumption:

lim;eo p (s(i)) = 400 for every infinite sequence {s(")} where s > 0

and lim; .o sy) = 0 for some j.
We consider this assumption too strong for our purposes because the logarithmic

barrier function does not satisfy it: In two variables, if sgi) = 1/i — 0 and
s$) = exp (i — In(1/1)), then

: 1 1
M) = —1 <_>__' 1 (_)=__'_>__ i
P (s ) n ; 1+ In ; 1 00
It is instructive to note that, since z(!) is an unconstrained minimizer of (1.31),

the gradient

V fri (:z:(’.))” = Ve (a:(i)) +pVD (x(i))
must vanish. But since p) < 0 (by property 3 of barrier functions), this implies
that the pair (a:("), p(i)) is feasible for the dual problem (1.33). Therefore we may



23

bound the optimal solution value v* from above by ¢ (m(")) (because z() is primal

feasible) and from below by the dual function value
(s®) +p9 (¢~ D (o))
J

= ¢ (2®) + 703 g} (d; — Dy (2)) (d - Dss (=)

i=1

(1.34)

In the special case of the logarithmic barrier function this yields a particularly

nice e-optimality result [Fiacco and McCormick 1968, page 102]:

Corollary 1.11 (Logarithmic Barrier e-Optimality) Suppose (1.30) is a con-
vex program with a strictly interior feasible point. If £ is any minimizer of (1.81)
then

v*<e (w(i)) <o+ & J.

Proof: The inequality v* <c (m(i)) follows from the primal feasibility of z().

If p; = —In, we see that p}(£)¢ = —1. In this case the lower bound (1.34) for the
optimal value v* is c (a:(i)) —r®J.

[ )

This is one of the most useful mathematical properties of the logarithmic

barrier function. For the sake of contrast, consider the barrier function based

upon p;(-) = (-)~¢ for some £ > 0. In this case we get p;(£)¢ = —£¢~¢ in the proof

above. Then the lower bound (1.34) on v* depends on the values d; — Dj, (a:(i)).

(Small components of this residual contribute large negative amounts to the lower

bound (1.34).)




Chapter 2

Interior Point Methods for
Block-Angular Problems

In this chapter we describe a scheme that allows us to deal with the block con-
straints of the block angular problem (1.8) explicitly and the coupling constraints
implicitly via a sequence of modified objective functions. One might call this kind
of a method a “partial interior point methods” due to the property that the se-
quence of points generated will be interior to the region defined by some, but not
all of the inequality constraints. The discussion that follows here is analogous to
that of §1.7, which in turn is based on the work of Fiacco and McCormick [1968].
The motivation for the Sequential Unconstrained Minimization Techniques of Fi-
acco and McCormick was the fact that the technology for solving smooth, uncon-
strained minimization problems was available and robust. We take our motivation
from the observation that solving K smaller linear programs is very easy relative
to solving one linear program, K times larger. Moreover, in the multicommod-
ity flow problem, the block constrained problems have only network constraints,
making them even easier to solve.
Recall the definition (1.10):

C:={z ¢ RY|D(z) < d} and B:={zeRN|Az =aand b< z < b}

“coupling” “block-structured”

24
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where the A has block diagonal structure. We assume that a point @ € B is

easily computable. This is the case if the problem
minimize &z subject to = € B (2.1)

is easily solvable for some ¢ € IR**N _ This problem may be (trivially) decomposed
into the K linear programs

mini{t{xize Grezp subject to zp € By for k=1,...,K,
B

where

B={ ow | Awom=om and by<ew<bhy }-
We note that if (2.1) is not easily solvable, then the original problem (1.8) is
also probably intractable. If (2.1) is infeasible, then B = @ and the original
problem (1.8) is also infeasible.

In subsequent iterations, the algorithm solves additional subproblems with
block constraints. The solutions of the subproblems are then coordinated into
a new approximation to the solution using a smaller (typically K-dimensional)
search. During this coordination problem, information about C is introduced into
the objective function by using a barrier function.

§2.1 will deal with methods for computing feasible points and §2.2 will develop
the convergence theory for minimizers of barrier problems. §2.3 then summarizes

this interior point method.

2.1 Shifting Barriers to Obtain Feasibility
Our goal is to replace the coupling region C with the barrier function
z ~ p(d — D())-

However, simply beginning with an arbitrary starting point z(© € B does not work

in general because £ is most likely not in dom p(d — D(-)). The problem here
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is that the barrier function provides no derivative information useful for finding a
feasible point. The solution that we propose is to modify the original problem by
replacing the right-hand-side of the coupling term d with the parameter 6 € R’
(0 > d). Therefore, the shifted barrier problem with which we are concerned

18

P(r,0) := {minixmize fr(z,0) := c(z) + 7p(0 — D(z)) subject to z € B} ,

(2.2)
i.e., P(7,0) represents the optimization problem with parameters 7 € R+ and
9 € IR’. The function p(§ — D(-)) is a barrier function designed to model the
constraints D(z) < 8. Thus, for 6 = d, we have dom p(6 — D(-)) = intC. Allowing
0 # d has the property of “shifting” the barrier, hence the name.

Once an initial point (® € B has been found by solving the relaxed prob-
lem (2.1), the parameters §() and () are chosen so that 7(*) > 0, 0 > D(z(®)
and 0 > d. This will have the effect of making z(®) € B an interior point of the
domain of ¢(-) + 7Wp (0(1) - D()) and the region {z|D(z) < 0} a relaxation of
{z|D(z) < d}. We then compute () by approximately minimizing the barrier
problem P (T(l),a(l)). In general, if D(z)) < d, we have produced a feasible
point and we may set §(+1) = d. If not, then we choose §(+1) as described below
while maintaining 7(+1) = 7) then set i «+ ¢ + 1 and do the process again. We
will prove that if a point € BN intC exists, then such a point is generated in a
finite number of iterations, under appropriate assumptions given below.

Suppose first that successive values of 0@) are chosen so that
D (z?) <6+) <9 and 6V > d. (2.3)

This implies that 6(°) := lim;_,, 61 is well defined. We make one more assump-

tion on our choice of the 8();

Either 6 =d or 3{j} such that liminf (9§~i) - Dj, (w("))) =0. (2.4)
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2.1.1 Properties of Shifted Barriers

We first explore the behavior of barrier functions near the barrier.

Theorem 2.1 Consider a single component j of the coupling constraints. Sup-
pose the sequence {f(i)} C Ry and that p; is L times continuously differentiable
(L>0). Then

{€9} is bounded away from 0 <= {p; (€™)} is bounded above.
Also, if inf; {0} =0, then
Sl:paepj ({£9}) = (-1)'e for£=0,...,L.
Moreover, if {£©} is bounded, then for each £=0,...,L
{e®} is bounded away from 0 < {8%; (¢9)} is bounded.
Proof: Define

{'"inf := inf £ and £5UP .= sup £W,

If {inf > 0, then properties 3 and 1 of definition 1.6 imply that
Sup (€9) = s (émf) < 4o0.

Conversely, if {pj (f(i))} is bounded from above, then properties 2 and 1 of defi-

nition 1.6 show that Emf > 0.

Suppose that, for some integer £ between 1 and L,
lim‘sup(——l)lalpj (f(i)) < 00. (2.5)

Using the fundamental theorem of calculus:

, 0)
&1, (£0) = /f B%; ()¢ + 1 = — ;..) 83 (¢) 8¢ + x,




28

for some constant k. Proceeding by induction, we see that (2.5) implies (2.5) with
¢ replaced by £ — 1. However, the first part of the theorem shows that if ﬁinf =0,
then
limsup(—1)°8°p; (6(")) = 00,
contradicting the assumption (2.5) for £ = 0, and hence for any £ =0, ..., L.
Now suppose that {6(‘)} is bounded. We already know that §inf = 0 implies
that 8%p; (ﬁ (")) is unbounded, so we consider the case where finf > 0. Then, for all
£=0,...,L, 8%p; is continuous on the compact interval [Einf__ésup] . Therefore,
the image d%p; [finf._gsup] is compact, hence bounded.
&

This componentwise result translates directly into a statement about the full

barrier function.

Corollary 2.2 (Divergence at Barriers) Suppose that the sequences {w(i)} C
RY and {9(£)} c R’ satisfy D (x(i)) < Hgi) for each i = 0,1,..., and that p is L

times continuously differentiable. Then

each component of {G(i) - D (m(i))} is bounded away from 0

¢
{p (O(i) - D (a:(i)))} is bounded from above.

Moreover, if some component of {0(*) —D (w("))} is not bounded away from 0,
then

{”V‘p (O(i) -D (w(i))> "} is unbounded for£=0,...,L. (2.6)

The norm in the preceding corollary depends on the dimension £ of the tensor.
These may be built up as one builds a matrix norm from a vector norm, from any
norm that yields the standard topology in finite-dimensional Euclidean space.

Proof: The proof follows easily from the componentwise statement of the

theorem.

&



Corollary 2.3 (Boundedness Away from Barriers) Suppose the hypotheses
of corollary 2.2. If the sequence {H(i) - D (a;("))} is bounded, then the converse of
corollary 2.2 holds, namely (2.6) implies that each component of {O(i) -D (:c(i))}
is bounded away from 0.

Proof: Again, the proof follows from the componentwise theorem.
)

We are now motivated to study properties of the composite barrier functions

¢ and v defined by
2 p(0 - D(z)) and 0% p(d — D(z)). (2.7)

To do this, we review the following concepts. A function ¢ is said to be essentially
smooth [Rockafellar 1970, §26] if dom ¢ # @, ¢ is differentiable on dom ¢, and
lim llV(/)(w(i))l = +4oo for all sequences {z()} C dom¢ converging to a point
Z € bdy dom ¢.

Theorem 2.4 Let ¢ and v be given by (2.7) where p is a smooth barrier function
in the sense of definition 1.6. Then ¢ is an essentially smooth function with
dom ¢ = {z|D(z) < 0}, and % is an essentially smooth, antitone function with
dom = {8|D(z) < 0}.

Proof: The statement about the domains of the functions clearly hold. % is
smooth on dom v and, since D is smooth, ¢ is smooth on dom ¢. Corollary 2.2
then shows that both ¢ and 4 are essentially smooth. Property 3 of definition 1.6

shows that 1 is antitone.

)

Theorem 2.5 Suppose the hypotheses of theorem 2.4 hold. If p is (strictly) con-
vez, then so is . If both D and p are (strictly) conves, then so is ¢.

Proof: The result for 1 is trivial. The result for ¢ depends on property 3 of
definition 1.6 and may be found in Fiacco and McCormick [1968, lemma 11] or
Rockafellar [1970, theorem 5.1].

)
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We shall denote the restriction of a mapping ¢ to a set S by ¢|g and if S is
a subspace of T, the quotient space of S in T' is denoted by T'/S. Where y is a
point and S is a set, we use y + S to denote {y + s|s € S}.

Theorem 2.6 Suppose the hypotheses of theorem 2.4 hold. Also suppose that p is
(strictly) convex and D is a linear map. Lety € RY be fired and let S := y+ker D
and S* = y + (RY/ker D) = y + range D", so that S and S¥ are translated

subspaces. Then ¢|s is constant and @|s+ is (strictly) convex.

Proof: By the definition of kernel, any points in S are mapped to the same

value, proving that @|s is constant. For 0 < A < 1,

p(0—D[(1—Na+Xg)) = p((1—A)[6— Da]+ [0~ Dy])
< (1= X)p(6—Dx)+Xp(6—Dy).

If p is strictly convex, then the inequality is strict in the event that Dz # Dy.

But the definition of S* guarantees that no two points z,y € S* are mapped to
the same point by D.

é

We now write out formulae for the first two gradients of ¢ and . Suppose D

and p are continuously differentiable and D(z) < 6. Then

Vip(0) = Vep(6 — D(z)) = Vp(6 — D(z)) and (2.8)
Vé(x) = Vep(d— D(z)) = Vp(0 — D(z))VD(c). 29)

If also D and p are twice continuously differentiable, then the Hessian matrices

are given by

V2h(0) = Vep(0 — D(z)) = V?p(0 — D(z)) and (2.10)
quﬁ(w) = Vaep(0 — D(:z:))
= (VD(z))"V?p(0 — D(z))VD(z) (2.11)

+Vp(0 - D(a)) * V*D(a),
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where the tensor product “+” multiplies the 1 x J vector by the J x N x N tensor
forming an N x N matrix. Therefore, (2.11) is written componentwise as
82(}5 J " a.DJ. 8.D]. / 32D].
3292, = PRTACES D(@)) 5= (2) %, (®) + pi(0 = D(@)) 5= ~(=)| -

i=1

2.1.2 Computing a Feasible Point

Theorem 2.7 (Finite Feasibility) Suppose c(-) is bounded from below on B.
Let 06+Y) be chosen to satisfy (2.3) and (2.4). If 29 € B be computed so that
sup; fr (m(i),ﬁ(i)) is finite, then a point z € BNint C exists and will be found in a
finite number of steps. On the other hand, if no such z exists, then f; (w(i), O(i)) —
+-00.

Proof: By corollary 2.2 and because c (w(i)) is bounded from below, there is
some 7 such that V{7,7} 05-") - Djs (m(i)) > 4 > 0. Therefore, for some finite i,
v{j} d; — Dj. (m(i)) > /2 >0, and a point with D (:v(f)) < d has been found in
a finite number of iterations. If no such z exists, then (2.3) and (2.4) imply that
05-0 — Dj, (:1:(")) — 0 for at least one j € {1,...,J}. Corollary 2.2 then shows that
fr (:c(i),ﬂ(‘)) — +o00.

®

The above theorem does not give us a computationally feasible test for assuring

that a point z € B NintC will be found, in the event that such a z exists. Under

the assumption of convexity, however, such a test is possible:

Corollary 2.8 (Computable Finite Feasibility) Suppose the barrier problem
P(,0) is convex for any 7 > 0 and 0. Let the optimal value function be defined

as
£7(8) = min fr (,6).

Further suppose that there exists some z € BNintC. If the 2@ are chosen so that

fr (29,09) < 57 (69) + 8 (212)
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for a constant B > 0, such a z will be computed in a finite number of steps.

Moreover, we may actually compute each z® in a finite number of steps.

Proof: Assume such a z exists. Then
Wi} f1 (69) < £+ (2,69) < f (5,d) < +oo

where the second inequality follows from antitonicity in @ (theorem 2.4). There-
fore, sup; fr (m(‘), 0(")) is finite.

The final remark is clearly true, for any convergent primal-dual sequence will
have its duality gap to to zero. We may consider the convex program solved
whenever this gap becomes less than or equal to 3.

)

Assume from now on that the z(*) are computed so that D (:c(i)) < 66), We
will now give a particular method for computing 8. This is a very simple, in-
tuitive scheme designed to satisfy the abstract conditions (2.3) and (2.4). After
computing z(© € B, set

d; if Djo (2@) < d;
8 (2.13)
Djs (z) +© if Dj () > ¢

where © > 0 is a constant. In general, after computing z(*, set
d; if Djs (z) < d;
o+ (2.14)
XoDje (29) + (1 = 2)6  if Do (+9) > &

where )y € (0,1) is a constant.

Theorem 2.9 Suppose the () are computed so that D (a:(‘)) < 09, If the 0 are
computed by the rules (2.18) and (2.14), then (2.3) and (2.4) are salisfied.

Proof: We show the result for each component j. If Dj, (:c(i)) > dj,
then 0§-H'1) = AoDje (w(i)) +(1 - )\g)9§-i). Condition (2.3) follows from this since
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Djo (20) < 09 and Xy € (0,1). If Djo (¢) < dj, then 0% = d; for all i > i
and again condition (2.3) follows. If, for some finite 2, Djo (m(i)) < dj, then
condition (2.4) follows. In the other case, (V{i} Dje (w“’) > d;) the limit

6!") := lim %"
is well defined since the sequence is monotonic and bounded. Then (2.14) shows

that for any s3° € lim pt{Dj, (m(i))} we have
0 = Xgs?® + (1 — Ag)0\™.

Therefore s = 0_$-°°), which shows that (2.4) holds.

2.2 Convergence of Barrier Minimizers

In this section we assume that § = d and that we have found some point in
BNintC. This means that the barriers are at fixed locations. Since 8 is constant,
we shall drop the dependence of f, on 6 and write f,(z) for the objective function
of P(r,d) in (2.2). We will study the convergence of (local) minimizers of the
barrier problem P(7,d) (2.2) as 7 | 0. These results will mimic the results of §1.7.

2.2.1 Convergence Without Convexity

If ¢ and D are not convex, the optimization problem (1.8) may have local optima
that are not global. In general, we are concerned only with local optimality. In

§2.2.2 we shall add the assumption of convexity.

Theorem 2.10 (Convergence of Barrier Function Minimizers) Suppose that

1. ¢ and D are continuous,

2. B is closed, C = {z|D(z) < d} and BNintC is nonempty,
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3. the set of points X* that are local minima of (1.8) corresponding to the value

v* = ¢(X™) is a nonempty compact set,
4. X* is isolated in

Yz{ yeB ‘ D(y) <d and c(y)=v" }7

5. at least one point in X* is in the closure of intC, and
6. 7¢) | 0 monotonically.
Then

1. there exists a compact set S such that X* C int S and for 0 small enough,
the minima of P (T(i),d) in BNintC Nint S exist and every limit point of

any subsequence {w(’)} of such minimizers is in X*,

2. limec (a:(i)) = v%,

=00

3. lim T(i)p (d -D (:z:(i))) =0,

; o (D) = p*
4. t1_1_}1‘3510 fr (.’B ) =v
5. {c (a:("))} is @ monotonically decreasing sequence, and

6. {p (d -D (a;(")))} is @ monotonically increasing sequence.

Proof: This proof is a modification of Fiacco and McCormick’s [1968] proof
of theorem 1.8 above.

By theorem 1.7 there is a set S such that X* C int S and ¢(y) > v* for all
y € (BNintC N S)\ X*. Define z) € BNintC N S so that

fr (29) = min{f,» (z) |o € BNintC N S},

i.e., (9 is a local (localized by S) minimizer for P (T(i),d). There is the tech-

nical point here that such a minimizer exists. This is easily taken care of by
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noting that S is compact and f,o (z) —=ggz> +° for z € intC [Fiacco and
McCormick 1968, corollary 8]. Let y be one of the limit points of the uniformly
bounded sequence {:1:(")}, so that y € BNCN S. We will now show that y € X*
by assuming that y ¢ X* and deriving a contradiction. By the basic property of
S, y ¢ X* implies that ¢(y) > v*. By assumption 5 there is a z € BN intCNS
where v* < ¢(z) < ¢(y). But then

lim inf £, () > e(y) > e(z) = lim fr9 (2).

This contradicts the assumption that z() solves P (T(i),d) locally for large :.
Therefore y € X* C int S and, for ¢ large enough, £ € BnintCNint S. Therefore
conclusion 1 is shown. Then conclusions 2, 3 and 4 follow directly.

Let ¢ denote c (:c(‘)), and p{®) denote p (d -D (w("))). Then, because each

2 is a global minimizer of f,)(z) subject to the constraints « € BN .S, we have

@ 4 r@pl) < ) 4 7@ pli+1) and (2.15)
D) D) D) < (6 g (4 o).

Adding 76+ /7() times the first inequality to the second causes all of the p terms

to drop out, and leaves one with

i+1 i1
(-5 -

() 7
Assumption 6 then verifies condition 5, and condition 6 follows from condition 5

and (2.15).
é

Theorem 2.11 (Convergence of Multipliers) Suppose
1. the hypotheses of theorem 2.10 hold,
2. ¢ and D are continuously differentiable functions,

8. p is a continuously differentiable barrier function,
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4. {w(i)} is a bounded sequence of minimizers as guaranteed in the conclusion
of theorem 2.10,

5. ¢ and r) are optimal Lagrange multipliers for P (T(i),d) associated with
¥, and ‘
p® = vy (d - D (m(i))) e RM. (2.16)

Then

1. the finite limit points of{(p(i),q(i),r(i))} are optimal Lagrange multipliers
of the original problem (1.8) (see (1.12)),

2. if the Mangasarian-Fromovitz constraint qualification (cf. 1.2) holds at the
limit point =*, then the corresponding subsequence of multipliers {(p(i), ¢, r(i))}

is bounded, and

3. if the weakened Mangasarian-Fromovitz constraint qualification (cf. 1.2)
holds at the limit point =*, then the corresponding subsequences of {p(i)}
and {r(")} are bounded.

Proof: Since z!9 is feasible for P (T(i), d), it must satisfy (1.13). Antitonicity
of p shows that p) < 0. Since ¢® and r® are optimal Lagrange multipliers to
P (T(‘), d) we know that

D = Vi (w(i)) —q¥4
= Ve (:v(i)) — VD (a:(i)) — ¢ A,
0 = 7'_(:) (b - w(i)) and

0 = 9 (0-1).

Therefore, conditions (1.14) and (1.16) are satisfied. If a finite limit point exists,
we may thin the sequence so that it converges to this limit point. We are assuming

that 7 | 0, so that theorem 2.1 shows

limp!? >0 => limd;— Djs (z) =0
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and
limpgi) =0 <= limd; — Dj, (:1:(")) > 0.

Therefore, any finite limit point of the multiplier sequence is an optimal mul-
tiplier tuple for the original problem. Conclusions 2 and 3 follow directly from

theorem 1.2 (Gauvin’s theorem).

&

2.2.2 Convergence For Convex Programs

We now assume that ¢ and D are convex and try to sharpen the results of §2.2.1.
The first result is that the level sets of the barrier problem are bounded for any
barrier function that becomes ever more “flat” far from the barrier. The second
result is that the Lagrange multipliers are automatically bounded.

As pointed out by the example on page 22, the classical assumptions made on
barrier functions to guarantee boundedness of level sets is too strong. We will see
below that the weakest property that can be used, in some sense, is the property
to be defined below. We call a barrier function p eventually flat if all component
functions p; satisfy

Jim () = pi(¢ +1)] = . (2.17)
(Note that the antitonicity of p implies that the sequence is non-negative.) If
$ ¢ RY, we say that p is eventually flat on S if (2.17) holds for each j for
which 3?) — oo for some sequence {s(i)} cS ﬂIR‘io. Without loss of generality, we
may use SN ]R‘;D in place of S; and we will use either convention in what follows.

We make the following observations which follow directly from the definition:
e p is eventually flat iff p is eventually flat on R’
e any p is eventually flat on a bounded set

e if p is eventually flat on § C IR’, then p is eventually flat on the smallest
Cartesian product Sy X --- X Sy C IR’ containing S
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Eventually flat functions may diverge to —oo, e.g., p; = —In. However, the
following theorem guarantees that they must do so at a sublinear rate. This result

will be used subsequently to bound solutions to P(r,8) for all 7 > 0.

Theorem 2.12 If p is eventually flat and antitone on S C RL, and {s(i)} cS

s(‘)ll — 00, then

satisfies I

¥} o (s0) <o) + 4

implies that o > 0.

Proof: By the equivalence of norms on IR’ [Ortega and Rheinboldt 1970,
theorem 2.2.1], we may choose the uniform norm |-||,. We define J° to be
the set of j for which {sy)} is bounded and J to be the j for which {sg-i)} is

unbounded.

v{i} s

LB 2 p(89) = p(1) = 30 (o) = s (1)

=1

pi ([s@] +1) = p; (1)

|

= 3 Y h+)—p ().

j=1 £=1

v
M“‘

J=1

[

o,

For brevity, we define

$ 1= p; (0) = pi (£ +1)
and note that eventual flatness guarantees that limy_,.o 53(_() = 0 for any 5 € J.
Without loss of generality s¢) ¢ Ry and Is(i)
by | S(i)|

-+ 00, s0 that we may divide
o o]

o’ yielding

KO £
b
CY YT Y )-8
JET® =1 JEJO =1
bou;ded i

1
" e

V{i} a
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Therefore, to show that o > 0 it suffices to show that

] o
v{j € 7°} liminf Y o =0 (2.18)
=g I W

Antitonicity of p shows that, V{£,j} ée) > 0, and so

For any € > 0, pick L so that

vie> L} &9 < -;-
and l(')]
¢l ) € (lsg-i)j - L) I eL €
i DT S

Now, by the definition of J*°, we may pick i sufficiently large so that

L ¢

J
03; lsy)] <

oM

Then the ith term of the sequence of partial sums in (2.18) is non-negative and
<E. ’
[
The following theorem is used to guarantee that minimizers of P(7,d) exist
(assuming boundedness of X*) no matter what 7 is. This is in contrast to the
case without convexity where the 7 must be sufficiently small for minimizers to
exist. The result is the same as lemma 12 of Fiacco and McCormick [1968]. As
was pointed out earlier, the assumptions made by Fiacco and McCormick are too

strong because they exclude the log barrier function.
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Theorem 2.13 (Boundedness of f, Contours) Suppose c and D are contin-
vous and convez, the solution set for (1.8) (denoted as X*) is bounded (hence com-
pact) and p is a barrier function that is eventually flat on the image set d — D(B).
Then, for any T > 0 and any z € BNintC,

L.(2) ={ zeB l f-(z) £ fr(2) }
is a compact subset of B. Moreover, if p is also convez, then so is L.(2).

Proof: 7> 0 and any z € BNintC imply that f,(z) < co. Closedness follows
from continuity of the problem functions and convexity follows from convexity of
B and lemma 1.9. Therefore, it suffices to show that L = L,(2) is bounded. To do

this, take any sequence {y(i)} c L C B and suppose that limsup;_,, "y(i) ‘ = 00
and we shall derive, at length, a contradiction.
We first prove that:
I, > 0 and IV} ¢(v9) 2 ac |y + Be- (2.19)

By theorem 1.7, there exists some compact set S € RY such that X* C int S and
for each z € (BNC N S)\ X*, c(z) > v* := ¢(X*). We now let

ut = inf{ c(:z;) I z € bdy S } and
w* = sup{ |z — || I z€bdyS and z € X~ }

Clearly, u* > v*, w* > 0 and both are finite. Let 2 .= y® — z for some z € X*,
and let A() > 0 be defined so that = + XD 20 € bdy S so that inf; A6 > 0. Since

z + A0z ¢ bdy S, we have
V{i} w* > o+ 2020 — 2 = 2O |0] 2 A0 [JyO] - Jal]

— 00, it suffices to consider indices ¢ for which \®) < 1.

|

Note that, since ”z(")l

Convexity of ¢ now shows that

¢ (x + /\(i)z(i)) < Aie (w + z(i)) + (1 - )\(i)) c(z),
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from which we have

(0,0 — R
c(v?) =c(z+:) 2 C($+/\,\Z(i)) C(m)+c(m)'>‘y_5\:(¥"+v*
o)

finishing the proof of the claim (2.19).
Now suppose that { fr (y(‘))} remains bounded from above while y() — oo.
Then

5 (69) = <(6) 70 (4= D (1) 2 0] 870 (4D (4)

implies that
3a, < 0 and B,}¥i} p (=D (u)) < e 4] + B

Let s®) :=d—~ D (y(i)) Cc d — D(L) ¢ d — D(B) and let & be any point. Then,
since D is convex, a finite subgradient G € R7*N exists which depends only on
and D:

D (y(i)) >D(z)+G (y(i) - w) .

Therefore,
[s9] = |a— D (s?)] < Il = D @) + Gl + G o],
and, since a, < 0,
3{c!, < 0 and B,}V{i} p (s(")) < d ils(i)l| + B,

But theorem 2.12 shows that o), 2 0, a contradiction.
é
The assumption of eventual flatness is, in fact, the weakest assumption possi-

ble, as the following theorem shows.

Theorem 2.14 Suppose p is a barrier function that is not eventually flat. Then
there exists some z € RN, 7 > 0 and some problem of the form (1.8) for which
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e ¢ and D are continuous and convez,
o the optimal solution set X* of (1.8) is compact, and
e z € BNintC,

for which L.(2) is unbounded.
Proof: We may choose a sequence {sgi)} such that
i (49) = (49 41) =0 0.
Without loss of generality, suppose
V{i} 0 < sgiﬂ) _ s < s§i+2) - s§i+l).

Then the piecewise linear map from R, to R defined from z — msgi) for all z and
0 ~— 0 is uniquely determined, continuous, convex and has range IR._. This map
is our choice for Dy,. For all j # 1, set V{i} sg-i) = 1. Let —Dj, be the jth row of
the identity map for j # 1 and d = 0 so that J = N, C= lRi and z(?) is given by
wg-i) = sg-i) =1forall j # 1 and wgi) = i. We let B =IR" and ¢(-) = 1- so that the

optimal solution set is the singleton O, which is compact. Now we see that
f(29) =T =1+i+73pi(1) + 7 (s7)
J#1

so that

£ ) = £ (60) = —1r [ (58) =1 (o))
> Lt [ (4) - (80 41)]

— —1 4 70.

1—+00

Therefore, if z = 2 and 7 > 1/0, the tail of the unbounded sequence {az(i)} is

contained in L,(z), because f; (a;(i)) — —00.

®
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We now write out an expression for the dual of P (T(‘), 0) from (2.2):

maximize fo(z) + gla— Az) +r4(b—2) +r_(z = D)
subject to r = Vf(z) — qA.

(2.20)

Theorem 2.15 (Primal-Dual Convergence) Suppose that c and D are convez
and the hypotheses of theorem 2.11 are satisfied. Then the weakened Mangasarian-—
Fromovitz constraint qualification is satisfied by any limit point of the sequence of
minimizers {w(i)}. Therefore, the limit points of the bounded sequences {p(i)} and
{r(i)} are optimal Lagrange multipliers (dual variables) for (1.8). Moreover, if A
has full row rank, then the limit points of the bounded sequence {q(i)} are optimal
Lagrange multipliers for (1.8).

Proof: We are assuming that some z € B NintC exists. Since b < b, we may
choose a point z arbitrarily close to z such that z € BNintC and b < z < b.
But this is the Slater constraint qualification, which is equivalent to the weakened

Mangasarian-Fromovitz constraint qualification under convexity (cf. (1.7)).

é

2.2.3 Barrier-Linear Functions

We shall take a slight digression to introduce a technique for constructing a barrier
function that agrees with a linear function for all sufficiently large arguments.

Specifically, we wish to construct a barrier function p such that
p(v) = hu foru 2>t

where h € R!’ and ¢t € ]R‘;O are given. Such function p is called a barrier-
linear function , and, in the event that the slope A = 0, we call p a barrier-zero
function. Suppose we begin with a barrier function p that satisfies the following

assumption:
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Assumption 2.16 § is a barrier function in the sense of definition 1.6. More-
over, each component function p; is twice continvously differentiable and p(t;) <
p7(€) whenever 0 < ¢ <t;. If pff is antitone, then the above inequality holds for
all tj.

The inequality of second derivatives may seem at first to be restrictive. How-
ever, the analysis of theorem 2.1 shows that p} should go to 400 near 0. Therefore,
we think that this assumption is not restrictive, and the end of this subsection
will show that all of the standard barrier functions exhibit this behavior for any
.

We shall do the construction componentwise by perturbing the component bar-
rier functions with quadratic terms and then insisting on two continuous deriva-
tives. Let '
pie) + 2E + i+ HE<

2.21
hi€ if £ > ;. (221

pi(€) :=

The following conditions are needed for p; to be twice continuously differentiable:

pi(ts) + Lg 4 Bit; + v = ht; (p; continuous at t;)

2 7
pi(t;) + oty + B; = h; (p} continuous at t;) (2.22)
put) + o = 0 (p] continuous at t;)-

This linear system in e, B; and v; clearly has a unique solution, easily computable,
for any pj, h; and t;. The following theorem describes the important properties

of the barrier-linear function p.

Theorem 2.17 Suppose j satisfies assumption 2.16 and that p is given by (2.21)
and the coefficients a, f and vy solve (2.22). Then p is a twice continuously

differentiable, convex barrier function in the sense of definition 1.6.

Proof: We prove the theorem componentwise. p; is twice continuously differ-

entiable at ¢; by (2.22), and it is clearly twice continuously differentiable on the
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rest of IRy by definition. When ¢ > ¢;, p7(£) = 0, and when ¢ < t; we use (2.21),
(2.22) and assumption 2.16 to write

pi(€) = B{(€) + o = p5(€) — Fj(t;) 2 0,

so that p; is convex. Clearly, conditions 1 and 2 of definition 1.6 are satisfied, so

that we only need to verify the antitonicity condition 3. This is easily verified by

noting that pj(§) = h; < 0 for all £ > ¢; and that p} is monotone, because p; is
convex. Therefore, p;(£) < h; < 0 for all £ > 0, proving antitonicity.

®

We conclude this section by noting that the most common barrier functions

satisfy assumption 2.16. From our experience, the most common barrier functions

are those constructed from
pi(-) = —In(") and pi() = (_)-e for £ > 0.

(Note that if another base is used in the logarithm, the resulting function is a
scaled version of the natural logarithm, because log,(£) = log,(b)log,(¢) for any
two bases a and b.) It is clear that definition 1.6 is satisfied and that both are
twice continuously differentiable. The final property would follow for any ¢; > 0

if p and pj were antitone. This indeed is the case, as is apparent from
~ 1 _ -
pi(€) = & and pIE) = (€ +1)(€)" P for £>0.

Therefore, any of these typical barrier functions—or any non-negative combination

of them—may be used to construct a barrier-linear function.

2.2.4 e-Optimality for Special Barriers

We shall show that, for a particular class of barrier functions, there is a quantita-
tive relationship between the size of the barrier coeflicient 7 and the error in the
KKT conditions of the minimizer of P(7,d). Moreover, for convex problems, this

yields a bound on the objective function value. We then derive an e-optimality
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result which depends on the natural logarithm in much the same way as corol-
lary 1.11. This may also be done for the barrier-zero function constructed from
the logarithm.

Throughout this subsection, assume that 7 > 0 and that (9 solves P (7'("), d).
We also assume that ¢ and () are optimal Lagrange multipliers for P (T(i), d),
and that

p = r0V)p (d -~ D (.’B("))) e R/,
We already saw (in the proof of theorem 2.11) that all of the KKT conditions
except (1.15) are satisfied by (m(i), p), ¢, r(")). Therefore, the error in the KKT

conditions occurs in only one single equation:

20 i g9 (= D (49)) = 705 (4 — Do (9)) (s - Do (29)) .
j=1

Therefore, the error in the KKT conditions may be bounded if p is chosen in such
a way that p}(£)¢ may be bounded a priori for all £ > 0. We shall show that the

logarithmic barrier function and the logarithmic barrier-zero function have this

property.

Theorem 2.18 (Logarithmic Barrier KKT Error) Ifp is the logarithmic bar-

rier function (i.e., pj(-) = —In(-) for each component j), then
£ = s

Proof: Since p; = —In, we see that p}(¢)§ = —1 for all £ > 0.
)
We now consider the logarithmic barrier-zero function that is zero for all s > ¢

(where ¢ > 0 is a fixed vector). In the notation used in §2.2.3, we have p;(-) =
—1In(-), and h = 0. Therefore, (2.22) gives

1 1
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and so

1 & In(t; L if t;
pi(6) = “n(f)“§{§+ﬂ(1)+‘2‘ if & <t
0 e >t

for each j. The following e-optimality result is available:

Theorem 2.19 (Logarithmic Barrier-Zero KKT Error) Ifp is the logarith-
mic barrier-zero function (cf. §2.2.8) that is zero for all arguments =t and J* is

the number of components j for which d; — Dj, (m(")) < t;, then
27O < e < 7O,

Proof: We shall use the shorthand s®) = d—D (cc(i) to clean up the notation.
Now consider each component j separately. If sg-i) > t;, then p} (sg-i)) = 0 so that
the contribution of this component j to the sum defining e is 0. If, on the other
hand, sg-i) < t;, then

M)?
() == Bl e oy,

J
and this component contributes between —2 and —1 times 7 to the sum.
)
We now suppose that (1.8) is convex and v* is the optimal objective function

value.

Theorem 2.20 (Logarithmic Barrier Objective Error) Supposec and D are

convez and that p is the logarithmic barrier function. Then
v <ec (:(:(i)) < v*+ 70U

Proof: The inequality v* < ¢ (m(i)) follows from the primal feasibility of z@.
We already saw above that (1.14) is satisfied, so that (w(i), ), ¢, r(i)) is feasible
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for the dual problem (1.17). Therefore, a lower bound on v* is provided by the
dual objective function value

-

6(‘) 0 0 0

where the zero terms are a consequence of primal feasibility and complementary
slackness. But now the result follows easily from theorem 2.18.
[ )

A similar result holds for the logarithmic barrier-zero function.

Theorem 2.21 (Logarithmic Barrier-Zero Objective Error) Suppose c and
D are conver and that p is the logarithmic barrier-zero function (cf. §2.2.3) that
is zero for all arguments > t. If J* is the number of components j for which
dj — Dje (:c(‘)) < t;, then

v*<e (w(i)) < v* 4+ 27 J*,

Proof: Againv* <c (:I)(i)) by primal feasibility and the dual objective function

provides a lower bound on ¢ (m(i)). The result then follows from theorem 2.19.

)

2.3 The Three Phase Method

The method we have been developing fits naturally into a three phase framework.
The RELAXED PHASE finds a point z(® € B. (If no such point exists, (1.8) is
infeasible.) This is accomplished by throwing out the constraints C and minimiz-
ing some linear functional over B. This may be done in a finite number of steps
since this is nothing more than K linear programs, which should be solved con-
currently on a parallel machine. The name of the RELAXED PHASE comes from
the relaxation of the constraints C.

In the event that a point in B was found in the RELAXED PHASE, the FEA-
SIBILITY PHASE uses techniques developed in §2.1 to generate a feasible point in
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B NintC. We shall let i be the first iteration for which z® € BNintC, while
not ruling out the possibility that # = co. If ¢, D and p are convex, then so is
P(1,0) for any 7 and 0, in which case corollary 2.8 shows that a point in BN intC
may be computed (assuming such a point exists). In the absence of convexity,
theorem 2.7 still allows us to compute feasible points in practice, when the region
BNintC is “large.” This is done by choosing a finite upper bound for the sequence
of objective functions { fr (a:(i), O(i)) }, and attempting to maintain the bound. Of
course, if B NintC = @, then this will not be possible (theorem 2.7 shows that
fr (m(‘),ﬂ(")) — +o0 for any sequence {0(‘)} that satisfies (2.3) and (2.4)). We
choose 7@ = 7@ and 0@ by the rules (2.13) and (2.14) for all ¢ < i.

In the event that the FEASIBILITY PHASE is successful, the REFINE PHASE will
iteratively approximate an optimal solution of (1.8). (For each iteration ¢ > 1,
9() = d.) Since we cannot compute exact solutions to the nonlinear P(7,d), we

shall not let the sequence {T(i)} converge to 0, but we rather let
704 = max{ 7 , A7}, (2.23)

where 7@ and Ty are positive constants and A, € (0..1) is a constant. For
i sufficiently large, therefore, the problem P (i, d) remains constant. If the
2@ are chosen as one iteration of a convergent method for the nonlinear pro-
gram P (T(‘),0(‘)), then the limit points of the REFINE PHASE will be solutions
of P (Tint, d). One may use any of the g-optimality results in §2.2.4 to choose Tint
suitably small, provided, of course, that the logarithmic barrier or the logarith-
mic barrier-zero functions are used to determine p. Moreover, one may compute
the Lagrange multipliers and check the KKT equations or the objective function
bounds.

Figure 2 gives the three phase algorithm in detail. (Note that i is defined only
to relate to the above discussion and is not actually used in the algorithm.) For

the time being, we shall let the statement:

“(Jenerate z(9) as an approrimate solution of P (T(i), 0(‘))”
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remain vague. The next chapter will give methods for computing the particular

2@,



Assume that the parameters
0>0 Xg € (0..1)
M>0 Tint > 0 Ar € (0..1)
are given and that we wish to solve (1.8)
RELAXED PHASE
10
Compute z(® as the solution of the “relaxed” problem (2.1)
If we determine that B = @ then quit
Set 6 as in (2.13)
If z© € intC
Then go to the REFINE PHASE
Otherwise go to the FEASIBILITY PHASE
FEASIBILITY PHASE
1 —14+1
Generate z() as an approzimate solution of P ('r("), H(i))
Set 0t1) as in (2.14)
70+ £0)
If z() € BNintC
Then % « ¢ and go to the REFINE PHASE
Otherwise repeat the FEASIBILITY PHASE
REFINE PHASE
te—1+1
Set () «— d
Generate (¥ as an approzimate solution of P (T(i), H(i))
() max{ Ting 5 ArTO) } (cf. (2.23))
Repeat the REFINE PHASE until 2@ is “suitable”

Figure 2: The three phase method.
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Chapter 3
Decomposition of P(r,0)

The previous chapter generates a sequence of block-constrained nonlinear bar-
rier problems {’P (T(i), 0(‘))} for which we must compute approximate minimizers
{x(i)}. However, we are only concerned with approximating a local minimizer of
the original problem (1.8). Therefore, we may interpret “approximate minimizer
of P (T(i), O(i))” quite loosely, so long as the three phase method of figure 2 com-
putes a point that is suitable in practice. Suppose that we have an approximate
solution of P (T(i_l), H(i”l)), namely (-1, from the last iteration. The method of
this chapter will produce a sequence {w(i't)}t, with z(9 := £(-1, the limit points
of which are solutions to P (T(i),O(i)). At some point the sequence is truncated
and the last point is taken to be the “approximate solution of P (T(i), 0(")),” ie.,
20 1= g6:TE) for some T(i). For the remainder of this chapter, the outer itera-
tion s is irrelevant and we shall drop dependence on ¢, so that we are generating
a sequence {m(t)}, the limit points of which are solutions of P(r,0).

For convenience, we restate the definition of the barrier problem from (2.2)

with the objective function f:

minimize f(z) := c(z) + 7p(6 — D(z)) (3.1)
subject to z € B ’ -

P(r,0) = {
where f : B — IR U +0o is essentially smooth (by theorem 2.4) and the block

52



53

constraints B are given by (1.10), i.e.,
B::{ z e RN l V{k=1,...,K} Az =ax and b<z <5 }

Moreover, we are assuming that we know some z©® € BNndomf. The KKT

conditions for (3.1) are written as

Az =a b<z<b (3.2)
r=Vf(z)—qA (3.3)
ry(d—2z)=0 r_(z—0)=0. (3.4)

We point out that the (restricted) simplicial decomposition of §1.5 may be
used on this problem if f is pseudo-convex. This will surely be the case if ¢ is
pseudo-convex and D and p are convex (cf. lemma 1.9). Another difficulty with
any method that solves a nonlinear coordinator problem is that it must be able
to handle the case where B ¢ dom f.

We propose a method for obtaining approximate solutions of P(7,0) that con-
sists of approximating the objective function to allow the computation of search
directions separately for each block, and then solving an coordinator problem to
produce a new approximation to the solution. It uses a linear or convex quadratic
approximation of the objective function along with a simple trust region to pro-
duce descent directions. The coordinator takes advantage of the block structure
of the constraints by using a multi-dimensional search rather than a line search.
Analyzing this decomposition method in terms of descent allows us to avoid the

assumption of pseudo-convexity.

3.1 Concurrent Block Search Directions

This section will show how to design subproblems that will form the basis for our
decomposition method. A key point is that the subproblems are linear programs

with block separable feasible region B = By x -+ x Bixy. Each subproblem
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is, therefore, K independent linear programming subproblems. Since solution of
subproblems is typically the computational task that takes most of the time, we
may expect parallel computing to become an important tool for the solution of
such problems. In fact, much recent work in decomposition methods [Medhi 1987,
Ho et al 1988; Lee et al 1989; Pinar and Zenios 1990] is motivated by parallel

computing technology.
Suppose we are given a current \point z® € BNdom f. Then the linearization
of P(r,0) around z® is

miniymize Vf (w(t)) y subjectto Ay=a and b<y<b (3.5)

The form of this subproblem shows that we shall are working with a price directed
decomposition. That this is exactly the form of subproblems in Dantzig-Wolfe

decomposition (1.22) and (restricted) simplicial decomposition (1.25).

3.1.1 Resource Allocation Techniques

From a computational point of view, subproblems of the form (3.5) are not made
much more difficult if the bounds are changed. In particular, if f has finite poles

(i.e., f(z) = +oo for some finite z), we would like the solution to the subproblem

to stay closer to dom f.

Definition 3.1 A decoupled resource allocation for B is an interval-valued

map

R Ba{intervals inIRN} : mH{ ze RN i R(z) <z < R(z) }
that also satisfies the following criteria:

1. ¥{z € B} b< R(z) <z < R(z) <b,

2. for any bounded sequence {w(t)} cB

G R (m(t)) is bounded,
=0

and
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3. for any z € B and any bounded sequence {x(t)} C B with
o) = max{ o I 0<a<l and z® +« (z - :c(‘)) €ER (m(i)) },
lim inf;—., a® > 0.

If a decoupled resource allocation R is given, the subproblems that we solve

are the linear programs

minimize, Vf (z(t)) Yy

subject to Ay=a and R (w(f)) <y<R (w(t)) _ (3.6)

For computational ease we limit ourselves to decoupled resource allocations, 1.e.,
interval valued R. Condition 1 guarantees that the feasible region of (3.6) is a
subset of B. The subproblems (3.6) are feasible (z(*) is a feasible point) and
bounded (by condition 2). Condition 3 is used to guarantee that the boundary
of R (a:(i)) cannot constrain z() from moving toward to any other feasible point
z. This condition is very important, because the convergence proof of the de-
composition method is based only upon the price directed ideas; this condition is
included so that the price directed proof continues to work. Therefore, decoupled
resource allocations are heuristic in nature and designed to achieve a practical
improvement in the computational efficiency of the method without altering the
theoretical convergence properties.

Now suppose that the function f is given by f(-) = ¢(-) + 7p(¢ — D(-)) from
P(r,0). Then z® + 8y € dom f iff

0<6-D (29 +8y)~0-D(z¥) VD (20) 6y.

(If D is convex, the “~” may be replaced by a “<”.) Suppose that only one
component—the nth component—of 8y is different from 0. Then we would want,

in some sense,

VD(z®) onby, < 0 — D(z9).
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B is represented by the solid polygon.

Figure 3: A typical decoupled resource allocation.

Suppose that we wish to relax this constraint by multiplying the right-hand-side by
the scaling factor w > 0. Further suppose that we want none of these constraints
active to within some constant > 0 at §y = 0. We can obtain these by defining
b<z®4+6y<b
R (a:(t)) =4 z® 4 by —kl1 < éy <kl , (3.7
V{n=1,...,N} VD(z®)eby, < ¥
for
\Ilzma,x{Ql, w(H——D(:v(t))) }>O

and & a, positive real number. In this case the values of R, and R, are then

computed by the following “ratio test”:

R.(z) = max[ b, , Thn— K ,

Tn + max{ mex {Q,gl(f(;;;fj.(w))} l VD(z)jn <0 } ]

R.(z) = min[ b, , Ttk ,

xn+min{ max{ﬂ,;l()e(;-)—;fj.(z))} I VD(z)jn >0 } }
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Note that, if b and b are both finite, £ may be chosen large enough to be effectively
ignored. In this case, if D is monotonic (e.g., if D is a non-negative matrix), then
only the upper bounds will be modified, which is to say that B = b. We now

verify that the definition in (3.7) produces a decoupled resource allocation.

Theorem 3.2 Suppose R is defined by (3.7) where Q, w and & are positive real
numbers. Then R is a decoupled resource allocation for B in the sense of defini-

tion 3.1.

Proof: Condition 1 is true because © > 0 and condition 2 follows from the
finiteness of k. Suppose that z € B, {w(t)} C B and o(*) is defined as in condition 3
of definition 3.1. We suppose that lim inf; a® = 0 and will show that this implies
that the sequence {m(t)} is unbounded, which will finish the proof.

We may thin the sequence so that lim; . o® =0, V{t} o <1 and there is

some particular n such that
v{t} z® + o (Zn — a;ff)) = R} (x(t)) ,
where R is either R, or R,. Then o® < 1 implies that z, — z) # 0, so that

o R, (2%) —o® R (s9) — o] .

(3.8)

In the case that R} (m(t)) is equal to b, or b,, we know that

o = of0] <[5 () =1

because z € B. But then o® > 1, so that R} (m(t)) can never take on the values
b, or b, for our chosen subsequence. If R? (:D(t)) = z{®) £ x, then the numerator
of (3.8) becomes «, in which case {m(t)} must be unbounded. If B! = R, then

Q
R (:0) -0 <mer| TH(A)

Jn

Jn

VD (z®) <0 }<0,
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while if R}, = R,, then

0
R (z) — 29 > max { TICON
im

VD (:c(t))jm >0 } > 0.

If {:Bsf)} is bounded, then so is {VD (:c(t))} (D is continuously differentiable
on RY), so that the numerator of (3.8) is bounded away from 0. This then
implies that the denominator of (3.8) is unbounded, so that {mﬁf)} must be at
once bounded and unbounded. This contradiction shows that {w,(f)} cannot be
bounded.

®

For such a decoupled resource allocation, R(z®)) ¢ dom f even when z® €
dom f. But constraints of this form in the subproblems tend to limit extreme
violation of this “domain constraint.” Enforcement of “domain constraints” and

convergence of the overall process is ensured by the coordinator, discussed below.

3.1.2 Convex Quadratic Subproblems

We will, in fact prove that a more general subproblem may be used. Suppose that

we solve the subproblem

miniymize g® (y — x(t)) + (y - x(t)) T q® (y _ :v(t))

N (3.9)
subject to Ay =a and R (w(t)> <y<R (w(t)) ,
where the approximate gradients g(*) satisfy
. t N\l — :
-1 ()] =0 o0
and the symmetric matrices G satisfy
B > 0}V{t,z} 0<z"GWz < B=|*. (3.11)

Note that the subproblems (3.6) are of the form (3.9) with ¢ = Vf (m(t)) and
G® = 0. (3.10) means that the gradient of the subproblem’s objective function
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at the current point tends to the gradient of the original problem at the current
point, while (3.11) requires that the G® are symmetric, positive semidefinite with
bounded eigenvalues.

There are two reasons why it is reasonable to generalize the subproblems al-
lowed from (3.6) to (3.9). First, inexact gradient values ¢® mean that an inexact
solution of (3.6) will still produce convergence. Second, in a massively parallel
context, the methods for solving problems of the form (3.9) are most effective
when G®) are positive definite diagonal matrices [Zenios and Lasken 1988; Bert-
sekas and Tsitsiklis 1989, §5.5 and §6.6; Tseng 1990] with mild condition numbers
[Hager and Hearn 1990].

The following theorem says that any subproblem sequence defined by such a
quadratic approximation and a decoupled resource allocation allows the coordi-

nator (cf. §3.2) to guarantee convergence.

Theorem 3.3 (Sufficiency of Search Directions) Suppose that {w(t)} cBn
dom f has z® — & € BNdom f, that y® are solutions to (3.9) for some decoupled
resource allocation R and that (3.10) and (3.11) hold. If there exists some § €
lim pt {y(t)} with
V@) (-5 20, (3.12)
then
V{zeB} Vf(%)(z—-%)20,

which implies, by theorem (1.1), that & is a KKT point.

Proof: Without loss of generality, we may thin the sequence so that y® — .
Then (3.10), (3.11) and (3.12) imply that

V{e > 0}3{to > 0}V{t > to}

g® (y(t) _ x(t)) + (y(t) _ m(t)) a® (y(t) _ :c(t)) S e (3.13)

Now if there is some z € B with

Vi#)(z-8)=-(<0,
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we shall contradict (3.13). Without loss of generality, we may further thin the
sequence so that G — G (the sequence is bounded by (3.11) and the finite
dimensional space of N x N real matrices is complete). We also define al®) as the
maximal step sizes in condition 3 of definition 3.1 and & := lim inf; o) > 0. We
may then pick a A € (0..1) (independent of t) such that

NGV f(3) (2 — 5) + N& (2= 5)T Gz - 7) < _A—Cz-‘i <0,

But then, for the subsequence in question,

A{t, > 0}V{t > t1} ~
g® [/\at (z - m(t))] + [/\at (z - m(t))]T G® [x\at (z - x(t))] < -i\—ig- <0,

and the quantity in the square brackets gives

Aot (z - :c(t)) = At (z —_ :zz(t)) +z® _z®,

~

o)

Note that v is feasible for (3.9) (by the definition of &® and X € (0..1)) and the
objective function values of (3.9) at v®) are bounded from above by —A(&/4 < 0
for ¢ (in the subsequence) sufficiently large. This contradicts (3.13) because y®

is the minimizer of (3.9).

)

3.2 The Master Problem and Coordination

The line search procedure used in classical nonlinear programming algorithms is
a method for turning suitable descent directions into suitable descent, guaran-
teeing convergence. However, the block structure of our problem makes a multi-
dimensional search quite natural. We will determine a master problem for this
decomposition method and use it to motivate a multi-dimensional search that we

will call the coordinator problem. This coordinator has the property that it
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may be solved in a finite number of steps and its solution at each iteration will
allow us to apply theorem 3.3.

Let y® be any solution of the subproblem (3.9), which typically is in the
form (3.6). The definition of R shows that y® € B, and that one would ezpect to
have

V{k=1,...,K} Vf (w(t))[k] (y[(,:]) - :1:83) < 0.
That is to say that y® — z(® is expected to be a descent direction for P(7, 0) at
z®. Let
Vi — ot
Y® .= . : (3.14)

(t) (®)
Yix1 — TK)

so that each column of Y® is a search direction that is nonzero in only one block.
Furthermore, note that AY® = 0 for all , because A[k]y[(,:]) = A[k]mgg = ap) for
all k and t. This property enables us to ignore the affine constraints Az = a
in constructing the master problem. Therefore, the master problem for this

decomposition method is
minimize f (a:(t) + Y(t)w) subject to b < z® 4+ Yy <B. (3.15)
The following proposition shows that the constraints of 3.15 are quite simple.

Proposition 3.4 The constraints of (3.15) are simple bounds computable by a

ratio test.

Proof: The columns of Y® are complementary, so that the linear inequality
constraints on w have no coupling, i.e., they are simple bounds. The lower bounds

are given by

2 — max { . (—29) | (5—<®)_ }

max ® max ®
{niy{f)>0} Yn,k {nly;{) <0} Yn,k




62

and the upper bounds by

h— ® —z®
o =min (=), bosk |

ety Y enlo Y

&

1f w solves the master problem (3.15), then we could solve the master problem
and take 2D = 20 +Y®{ for the next iterate. However, the nonlinearity of f
makes exact solution of (3.15) impossible. Therefore, we will consider coordinator
problems that are finitely satisfiable and yet retain the convergence properties.
We will not attempt to prove any finite termination results analogous to those
of simplicial decomposition, because the finite termination results of simplicial

decomposition assume the exact solution of the master problems (3.15).

3.2.1 A Coordination Method for Convex Problems

In this section, we consider the case when f is convex. This implies that (3.15)
is also convex for all . Rather than solving (3.15) exactly, we will specify in
this section and §3.2.2 sets of approximate optimality conditions that we wish the

result of the coordinator to satisfy. Define
20:={ z=(1-Na® )0 | 0<A<T

to be the line segment from the current point z® to the subproblem solution y(®.
Note that any z € =) may be written as z = z® + Yy for some w = Al
feasible for (3.15). Our coordinator problem computes ) = 20 4 YO that
satisfies the conditions (3.16), (3.17) and (3.18) as follows:

v 1) 1) 2o 106 g
for a constant g € (0..1) independent of ¢
vit} |[V7 (at) —u] YO < |V (20) YO 6.17)

for a constant pu' € (0..00] independent of ¢
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ug) (:1:(“'1) - Q) =0 and u® (m(t“) - 5) =0 (3.18)

The u® above may be interpreted as Lagrange multiplier estimates in the
following manner. If z(*1) is optimal for (3.15) and the Lagrange multipliers are
u®, the KKT conditions for (3.15) may be written

Vf (m(m)) YO — y®0Y® =0 |

u(;) (a:(t'H) — Q) =0 and u® (m(i+1) — 5) = 0. (3.19)

Therefore, the quantity inside the norm on the left-hand-side of (3.17) is a “re-
duced gradient” for (3.15). Thus, the conditions (3.17) and (3.18) may be consid-
ered to be approximate optimality conditions for (3.15). Clearly, condition (3.16)
is also true at the optimum of (3.15), so that the coordinator conditions (3.16)
and (3.17) are approximate optimality condition for the master problem (3.15).
Using an active set method [Fletcher 1987; Gill et al 1981], we may generate

(for fixed t) sequences z*%) = z® 4 Y ) and u®?) that maintain
ufﬁ’i) (m(t’i) - _b) =0 and u®®) (m(t’i) - 5) =0

and such that any limit point of {w(t’i)}i is an optimal solution for (3.15). There-
fore, we may computationally check satisfaction of (3.17), and (3.17) will be true
for alli sufficiently large (by the optimality conditions (3.19) and because x' > 0).
To check satisfaction of (3.16), suppose O is not optimal for (3.15). For the mo-
ment, let f&(w) := f (:c(t) + Y(t)w). Using a linear underestimator for the convex
function f® and the fact that a linear functional over a line segment attains its

minimum at one end, we have
u [min £(2) — £ (=0)] = 4 [min £(e) - 19 )]
. [ 7O () — £9 (0)
min{ VO (09 (0—w®) , VO () (1-w) } ]

- p[¢9 -9 (0)]
> -9 (0)

Vv
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where ¢ is the minimum value of (3.15). Therefore, we have a computable
sufficient condition for (3.16) which is always true for all i sufficiently large. Once
we have verified (3.16) and (3.17), we may truncate the sequence w(t) (at iteration
3, say) to produce our choice of gt = 2 4 Yy, The reader should note
that this is the step where convexity is crucial; without convexity, there is no way
of bounding the global minimum of f along the segment =(® without some global
information.

The convergence proof of our coordinator is modeled after the standard proof
of the Frank-Wolfe method [Frank and Wolfe 1956; Craven 1978].

Theorem 3.5 (Convergence of Decomposition Method) Suppose
1. f is convex and essentially smooth,

2. z® ¢ BNdom f,

3. y® are solutions to (3.9) (where (8.10) and (3.11) hold) for some decoupled

resource allocation R,
4. Y is given by (3.14),

5. z(t+) = £ 1 YO® ¢ B satisfies the coordinator conditions (3.16), (3.17)
and (3.18) for all t.

Then either f (w(t)) A2, oo or limineo f (w(t)) = f > —o0, and in the latter

case the limit points of £®) are optimal solutions of (3.1).

Proof: From (3.16) we may deduce that the algorithm is monotonic, i.e.,
f (m(“’l)) <f (a;(i)). Therefore, either the function values diverge to —co or else
they have a finite limiting value f. Suppose the latter is the case and that there is
an limit point #. We see that lim f (w(“‘l)) —f (x(t)) = (0. Consider a subsequence
{a:("(t))} C {m(t)} that has z°®) — %. We may also assume, by condition 2 of
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definition 3.1, that y@® — § (further thin the sequence). Now, for all A € (0..1]

we have

£ (1= Nale® 4 2yl — f (ate®) > Lmin f(z) - f (m(a(t»)]

eZ(e()
> Ly (aeom) - 5 ().

Since the right-hand-side — 0 as t -+ oo, we have f((1 — A)Z + A§) — f(&) = 0.
Now take the limit of this as A | 0 to get Vf (&) (§ — &) = 0.
Now, for any subsequence z(?®) — z, the hypotheses of theorem (3.3) are

met, so that # is a KKT point, and hence optimal for the convex problem (3.1).
®

We may note that the condition (3.17) is not needed in the convergence proof.
However, we have noticed in practice that the use of (3.17) tends to force con-
vergence more robustly than using (3.16) alone. Convergence is still assured if

¢’ = 400 and (3.17) is a null condition.

3.2.2 Coordination using a Stabilization Method

We will let the vector @) be the unique minimizer of the positive definite quadratic
form

QW(w) :=Vf (m(t)) Y®w 4w HOw (3.20)
subject to the constraints that @) be feasible for the master problem (3.15). Here

the symmetric matrix H®) satisfies
3BV {t,w} [w' HOw| < Blw|l® (3.21)
and
H® s positive definite. (3.22)

The condition (3.21) merely says that all eigenvalues of the sequence of matrices
{H (t)} are bounded in absolute value by some 8. This leaves much latitude as to

how one would choose the H®), but as long as

A V{t,w} [0 YOV (2®) Y Ou| < B flw],
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Given the constants 71,72 and 73 (independent of t)
WithO<’)’1<’72S’)’3<1
if V£ (20) Y®B® 2 0
Then set o) = 0
Else
Set a =1
Repeat until explicitly stopped
if f (x(t) + ay(i)@(t)) <f (m(t)) +yaVf (w(t)) YO
Then choose o) = o and stop
Else reset a € [y;a..y3¢] and continue

Figure 4: The stabilization algorithm.

one may use the reduced Hessian matrix Yo vef (:z:(t)) Y®) or a quasi-Newton
approximation. To satisfy (3.22), non positive definite matrices may be perturbed
via a modified Cholesky factorization [Gill and Murray 1974; Gill et al 1981, pp.
109-111]. Such a modification will not destroy the property (3.21), although the
minimal value of § may increase.

Now suppose that we choose the step length a® via the stabilization algorithm

in figure 4 and choose
w® = @M,

Note that, by setting 72 = 73 = 1/2, this stabilization algorithm reduces to the

familiar Armijo rule. The new primal point is produced by the rule
) = 20 4 YO = 20 4 YOG,
We shall prove that limit points of the resulting sequence {:c(t)} are KKT points.

Theorem 3.6 (Convergence of Decomposition Method) Suppose that

1. f is essentially smooth and B is closed and convez in (3.1),



7.

8.

Then

1.

2.

3.
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z© ¢ B is given,

y®) are solutions of the subproblems of the form (3.9), for the decoupled
resource allocation R, where (3.10) and (3.11) hold,

Y® is defined by (3.14),
the sequence H® satisfies both (3.21) and (3.22),
@ is defined as the unique minimizer of QW(w) (cf. (8.20)) subject to

b< W4+ Y®yw <3,

a®) is computed via the stabilization algorithm of figure 4, and

m(t+1) — x(t) ..|... Y(t)w(t) — x(t) + a(t)Y(t)Qﬁ(t)_

the stabilization algorithm always terminates finitely, producing al € [0..1],
the procedure produces an infinite sequence {:z:(t)} C B, and

either f (m(t)) — —00 or each # € lim pt z® is a KKT point for (3.1).

Before proving the theorem, we note that it is possible that lim ptz® = @, in

which case the sequence is unbounded. In practice one usually includes very large

box constraints in the definition of the feasible region, so that limit points must

exist. Note also that an essentially smooth function is bounded from below on

any bounded set, so that if the sequence is bounded, not only must a limit point

exist, but all limit points are KKT points.
Proof: 1. If the stabilization algorithm terminates, it does so with o) €]0..1],

so we must show that the algorithm must terminate. Suppose the algorithmn is in
an endless loop, which means that V f (m(t)) Y®O@® < 0, and the value of o > 0
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becomes arbitrarily small (because y3 < 1). In a neighborhood of 0, the function
of a given by f (m(t) + aY(t)z'E(t)) is continuously differentiable, so that

7 (20 + a¥®a0) — f (s0) - aVf (2©) Y0 € O (e?).

But 71 < 1, so that the algorithm is not in an endless loop and will eventually
terminate with positive a/?).

2. By induction, if z®) € B, then #® is chosen so that z(® + Y®a® ¢ B.
Therefore, since o) € (0..1), z*1) € B.

3. The stabilization algorithm ensures that f (a;(t“)) <f (:c(t)). If f (m(t)) —
—00, the minimizer is ill defined, so that we may assume that this is not the case.
Then lim f (a:(“'l)) - f (w(t)) = 0 and the stabilization algorithm shows that

lim inf &'V f (=) Y@a® > 0.
Clearly, if a®) are bounded away from 0, then
lign inf V f () Y®a® > o. (3.23)

We shall show that (3.23) holds in any event by considering only subsequences for
which o) — 0. The stabilization algorithm shows that

f ($(t+1)) > f (m(t)) + .:%a(t)v f (a:(t)) Y®OF®

from which we may derive

f (x(tﬂ)) ~ f (a:(t))

o0

941 ~
> Ly (2®) yOp®, 3.24
VI () yOa (3:24)

We may further thin this subsequence so that ¢® — % Y® 5 ¥ and o - @
(the decoupled resource allocation bounds the Y® sequence and the boundedness
of H® and z(® sequences bounds the sequence of @(*)). Because o) — 0, (3.24)
shows that

Vi) Vo> % v (5) Y,

<1
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which implies that Vf () Y& = 0 and proves that (3.23) holds in any case. We

claim that
lim inf V f (m@)) Y®W1>0 (3.25)

too. To prove the claim, suppose that it is not true and we shall derive a con-
tradiction. Assume that lim pt z(® # @, for otherwise the proof is complete. We

thin the sequence so that

z{) - & by assumption

y® — j by boundedness imposed by resource allocation
Y® — ¥ by definition in terms of z® and y®
H® - H by (3.21)

and

Jim V£ (s®) Y91 = Vf(#) V1=~ <0.
Now choose A € (0..1] (independent of ¢) so that

AVF(#) Y1+ M1H1 < —i\2£.

Then A1 is feasible for the master problem (3.15), so that the definition of @®

gives, for ¢ sufficiently large and in the subsequence under consideration,

\Zi (z(t)) YOO 50T HOG® < Vf (w(t)) YO A1)+ HOOL) < _2\5 <o
This contradicts (3.23) and proves the claim (3.25). Since Y1 = y® — 20, we

may apply theorem 3.3 for every & € lim pt z(® to see that % is a KKT point.
[ )




Chapter 4
Computational Results

This chapter describes our test problems and documents the results produced by
our decomposition algorithm. In §4.1 we describe the problems that motivated this
decomposition algorithm. These problems are linear, multicommodity network
flow problems, so that ¢ and D are linear functions. The results of the previous
chapters are, therefore, somewhat more general than we needed for solving these
problems, but may be applied to other important problems. §4.2 describes our
code and the key parameters used. Finally, §4.3 shows the timing results on the

large-scale problems.

4.1 The Patient Distribution System (PDS)

The test problems we used were obtained from the CINCMAC analysis group of
the Military Airlift Command (MAC) at Scott Air Force Base [Chmielewski 1989].
The model is called the Patient Distribution System (PDS) and is a logistics
model designed to help make decisions about how well MAC can evacuate patients
from Europe. The PDS problems are a class of problems; PDS-D denoting the
problem that models a scenario lasting D days, for integers D e [1.85]. As D
becomes larger, the size of PDS-D grows quite large, as may be seen in table 1.

The PDS problems are linear multicommodity network flow problems, which are
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block angular linear programs where each Ay is a node-arc-incidence matrix. (See
figure 5.)

These PDS problems have received considerable attention lately, partly be-
cause they are a real-world application, and partly because they seem to be quite
challenging. Carolan et al [1990] used the KORBX system at Scott AFB to solve
numerous problems, including some of the smaller PDS problems. It took the
KORBX system (using default parameters) between 3.3 hours and 4.5 hours to
solve PDS-10. Only one out of the four KORBX codes finished within 24 hours
on PDS-20. Setiono [1990] has solved small and medium-sized PDS problems
using a dual proximal point linear programming algorithm, solving the resulting
linear systems with the preconditioned conjugate gradient method. Setiono solved
PDS-20 in 25.5 hours on an Astronautics ZS-1 computer. (For reference we note
that Smith and Klinger [1988] claim that the ZS-1 achieves 3.0 Mflops on the 24
Livermore loops and 6.3 Mflops on the 100 x 100 Linpack benchmark.) Using a de-
composition technique, Pinar and Zenios [1990] solved many of the PDS problems.
The largest problem they report on is PDS-30, taking slightly more than 2 hours
to solve on a CRAY Y-MP. Cheng et al [1989] report the solution of problems
as large as PDS-50 in 10.2 hours using the KORBX system (apparently not the
same version as Carolan et al [1990] use). In unpublished work, De Leone [1990]
has solved PDS-40 using an SOR-based technique in approximately 27 hours on
a DECstation 3100.

4.2 Description of the Code and Parameters

We ran our code on two machines: a DECstation 3100 running the ULTRIX
operating system, and a 20 processor Sequent Symmetry S81 running the DYNIX
operating system. Most of the code was written in C, with the portion used to
solve the network subproblems being written in FORTRAN (see further discussion
below). The C programming language was chosen primarily because of its ability

to work properly with modern data structures. The code was compiled with the
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default code optimization (-01). Double precision was used for all calculations.

To construct the barrier problem approximations (§2) we used the logarithmic

barrier function (p;(£) = —In¢ for all j) and the following parameter values (see
figure 2):
e O=1 cf. (2.13)

Assumes right-hand-side of moderate size (d; € [-10°, 10%], for example).

e N\ =09 cf. (2.14)
We found that if this parameter is smaller, the method does not find feasible- -
solutions as quickly. Such seemingly large values of Ag do not seem to cause

numerical problems for our test problems.

e T1=10 cf. (2.23)
We normalize the cost coefficients so that |||, = 1, making 7' ten times

the maximum absolute value of the cost coefficients.

& TingJ = 1078 cf. (2.23) and theorems 2.18 and 2.20
Eight places of accuracy in the objective function is a fairly ambitious goal
for problems as large as our test problems. This was not always achieved in

50 iterations.

e A, =05 cf. (2.23)
Smaller values tend to introduce the problems of ill-conditioning earlier, so
that convergence is hampered. Larger values require too many iterations

until 7* is sufficiently small.

The code takes full advantage of the network structure of the Ay, since solving
multicommodity networks was the initial goal of this work. The code also takes
advantage of the special structure of the matrix D. Typically for multicommodity
networks, a constraint Dj,z < d; represents a physical situation where the flow of
a given “topological arc” (an arc appearing at most once in each commodity) can

only handle a certain capacity of flow. In this case D[k]jn € {0,1}, and for each j
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and k, there is at most one 7 such that Dy, . = 1. Our code has a J x K array
of pointers to this 7 (it stores 0 if no such # exists). This saves space because J
and K are usually much smaller than N.

For our decoupled resource allocation R(z) defined in §3.1, we used (3.7) with

the following parameter values:

o () =108 cf. (3.7)
Somewhat to our surprise, we found that using smaller values for {2 seemed
to make the algorithm perform better. Using a smaller {2 means that we let
the current point get closer to the boundary of the trust region, possibly at
the expense of being able to move less within the null space of D. We found
that 2 = 0 (in which case our convergence proof fails) does work in practice

(on these problems).

e w=0.7 cf. (3.7)
We found that w € [0.5..0.9] worked reasonably well.

o k=101 cf. (3.7)
This bound on I‘y(i’t) — gt "oo turned out to be redundant on these prob-

lems.

To solve the network subproblems we use a modified version of RNET, written
in FORTRAN by Grigoriadis and Hsu [1979]. RNET is an implementation of the
network simplex method. (Lustig [1990] shows that the C programming language
is typically much better for network codes because of the lack of pointer arith-
metic in FORTRAN.) This code was modified by the authors to work in double
precision rather than integer arithmetic, and to use parameters to specify input
data. Because of the addition of the decoupled resource allocation R(z), each
subproblem is a network with the cost and the bounds modified. Since no primal
or dual feasible solution is immediately available from the previous iteration, we
begin RNET with an all artificial basis at each iteration. The parameters given to
RNET are mostly determined by the suggestions in Grigoriadis and Hsu [1979].

We allow for a large number of pivots.
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Figure 5: Sparsity structure of the constraint matrix for PDS-01.

The coordinator algorithm uses an active set method in conjunction with the
steepest descent direction. We stop when both the function and the norm of
the projected gradient have been sufficiently decreased, as is explained at the
end of §3.2. The code uses p = 0.4 and g’ = 0.03. If we stop when the function
values have been sufficiently decreased, but ignore the projected gradient, then the
method converges in theory, but in practice it seems somewhat problematic. Using
a larger p' would allow the algorithm to terminate, when in fact the coordinator
could probably find a significantly better point at low cost. We run the coordinator
algorithm for at most 15 iterations within each major iteration.

As part of this coordinator method we need to use a one-dimensional line search
method. The one-dimensional line search algorithm we used is (2.6.4) in Fletcher
[1987]). Special structure of the objective function allows us to use Newton’s
method in place of the usual minimization of a quadratic or cubic interpolant.

Parameters were set to attain a line search of medium accuracy.

4.3 Results of Numerical Experiments

We shall now present performance results of our codes on a subset of the PDS

problems. We were interested in two things when beginning these tests. First we



Problem max size of block coupling | dimension of A
Name maxy M(k) | max; N(k) J M | N
PDS-01 126 339 87 1,386 3,729
PDS-02 252 685 181 2,772 7,535
| PDS-03 390 1117 303 4,290 | 12,287
PDS-05 686 2,149 553 7,546 | 23,639
PDS-06 835 2,605 696 9,185 | 28,655
PDS-10 1,399 4,433 1,169 15,389 | 48,763
PDS-20 2,857 10,116 2,447 31,427 | 105,728
PDS-30 4,223 15,126 3,491 46,453 | 154,998
PDS-40 5,652 20,698 4,672 62,172 | 212,859
PDS-50 7,031 26,034 5,719 77,341 | 270,095
PDS-60 8,423 31,474 6,778 92,653 | 329,643
PDS-70 9,750 36,262 7,694 | 107,250 | 382,311

Each PDS problem has eleven blocks (i.e. K = 11).

Table 1: Sizes of some of the PDS problems.
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wanted to develop algorithms that compute approximate solutions to multicom-
modity network flow problems quickly. Second we want our method to compute
accurate solutions. Although our solution is primal feasible (always b < z < b,
Dz < d and ||Az — a|, / ||a]|., & machine epsilon), our method does not provide
good bounds on the gap between the objective value obtained and the optimal
value. We compute duals (see (1.12)) on the network constraints and the dual
estimates p() (defined in (2.16)), and these will give convergent lower bounds as
in theorems 2.11 and 2.20. When we have computed these lower bounds, how-
ever, they are not even as good as the lower bound given by solving the relaxed
problem (2.1). We believe that this occurs for two reasons. First, we are using lin-
earizations for the subproblems and the p() may converge very slowly; a suitable
quadratic approximation may improve this situation, but in the interest of speed
we prefer solving the linear problems. Second, an inaccurate p® will lead to inac-
curate estimate r*) for the optimal r in (1.18). Since the bounds b are quite large,
the value of (1.18) may differ significantly from its optimum. However, when we
compare our final objective values with those obtained by others, they typically
match to between 5 and 7 significant figures. We further point out that highly
accurate solutions are not needed for planning models like the PDS problems,
where the models are already very rough approximations of reality. This may be
contrasted to problems in mathematics [Varga 1990] where very accurate models
require highly accurate floating point approximations of the solution.

We ran the code for 50 iterations in all cases. Figures 6, 8 and 10 show the
original objective functions cz() as a function of iteration 7 for three of the larger
PDS problems. Note that the objective function increases during the FEASIBILITY
PHASE and then decreases steadily during the REFINE PHASE. Figures 7,9 and 11

graph the improvement

(i-1) _ »p(® ) )
(u) if ca;(“‘l) > cw(z)

£ =

undefined otherwise .
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as a function of the iteration : for the same three problems. (One might say
that “the «(th digit of the objective function changed from iteration ¢ — 1 to
iteration 1.”) These figures show that the improvement in the objective function
cz(® tends to become small after 50 iterations. The large improvement for PDS-60
in iteration 49 illustrates that convergence is not always predictable from objective
functions alone. The primal objective function values we obtained matched the
optimal values of De Leone [1990] and Setiono [1990] to between 5 and 7 digits.

Tables 2, 3 and 4 contain timings and optimal objective function values for
the PDS problems we solved. The column of the table labeled “Relaxed” contains
statistics for computing the solution to (2.1). The column labeled “Feasible” con-
tains statistics for computing a feasible point. The number of iterations required
to obtain a feasible solution via the shifted barrier approach varied between 11
and 16. The column labeled “Final” contains statistics for computing the final
approximation of the optimal solution. The row of the table labeled “Total iter-
ations” is the total number of iterations the method has taken to attain a given
phase. The row labeled “Objective x10~1°” is the value of 10~*%cz) where z(®
is the current point and c is the original cost vector (||c||,, is not necessarily 1).
A row labeled “DECstation” shows the performance on the DECstation 3100 . A
row labeled “Sequent(p)” shows the performance on the Sequent Symmetry using
p processors. All times reported are wall clock time.

The version of the code on the Sequent Symmetry uses the most obvious
parallel strategy; at each iteration a separate subproblem for each commodity is
solved on a separate processor. While there are other possibilities for parallelism
in the program (e.g. parallel function evaluation in the coordinator problem or
overlapping coordinator and subproblems in a chaotic fashion as in §5), most of
the work is done in solving the (large scale) subproblems. Speedups of 4 or 5
are typical with 11 processors (and 11 commodities). This corresponds to perfect
(linear) speedup of the subproblem solutions if between 80% and 90% of the work

is done in solving the subproblems.
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| PDS-01 |
I Phase || Relaxed | Feasible | Final ]
Total iterations 0 11 50
Objective x10~1° [ 2.9033 2.9096 2.9084
DECstation 1.4sec 18sec 1min 30sec
Sequent(11) || 1.lsec 12sec 1min 4sec
l PDS-02 [
I Phase || Relaxed | Feasible |  Final |
Total iterations 0 12 50
Objective x10~1¢ || 2.8758 2.8876 2.8858
DECstation 2.9sec 42sec 3min 1Tsec
Sequent(11) || 1.5sec 22sec 2min 9sec
|| PD5.03 u
| Phase || Relaxed | Feasible |  Final |
Total iterations 0 13 50
Objective x10~1° || 2.8442 2.8622 2.8597
DECstation 4.7Tsec | 1lmin 20sec | 5min 47sec
Sequent(11) 2sec 39sec 3min 38sec
I PDS-05 |
| Phase || Relaxed | Feasible | Final ]
Total iterations 0 16 50
Objective x1071°0 || 2.7824 2.8125 2.8054
DECstation 15sec | 3min 14sec | 11min 28sec
Sequent(11) || 4.2sec | lmin 33sec | 6min 43sec
I PDS-06 I
l Phase || Relaxed | Feasible |  Final |
Total iterations 0 16 50
Objective x1071° || 2.7526 2.7846 2.7761
DECstation 17sec | 4min 17sec | 15min 4sec
Sequent(11) || 4.6sec | lmin 56sec | 8min 44sec

Table 2: Timing and objective value results for small PDS problems.
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I PDS-10 |
l Phase | Relaxed | Feasible | Final |
Total iterations 0 16 50
Objective x10~1° 2.6333 2.6857 2.6727
DECstation 30sec 8min 15sec | 28min 31sec
Sequent(11) 9sec 3min 57sec | 16min 39sec
| PDS-20 ||
Phase |] Relaxed | Feasible | Final l
Total iterations 0 14 50
Objective x10~° 2.3342 2.4069 2.3822
DECstation || 2min 22sec | 33min 19sec 2hr 12min
Sequent(11) 40sec 9min 44sec | 50min 43sec
[ PDS-30 |
[ Phase || Relaxed | Feasible | Final [
Total iterations 0 12 50
Objective x10~10 2.0284 2.1818 2.1390
DECstation || 4min 38sec 1hr 9min 5hr 23min
Sequent(11) || 1min 40sec | 16min 43sec | lhr 48min
I PDS-40 |
| Phase || Relaxed | Feasible | Final |
Total iterations 0 14 50
Objective x 1010 1.7188 1.9452 1.8866
DECstation || 8min 53sec | 2hr 39min 10hr 27min
Sequent(11) || 3min 45sec | 32min 32sec | 2hr 54min

Table 3: Timing and objective value results for large PDS problems.
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|| PDS-50 n
| Phase " Relaxed } Feasible | Final ]
Total iterations 0 13 50
Objective x10~1° 1.5002 1.7336 1.6625
DECstation | 13min 28sec | 3hr 50min | 16hr 46min
Sequent(11) || 4min 35sec | 54min 2sec | 5hr 30min
[ PDS-60 |
| Phase | Relaxed | Feasible | Final |
Total iterations 0 13 50
Objective x10~1° 1.2159 1.5288 1.4462
DECstation || 18min 40sec | 5hr 27min | 24hr 6min
Sequent(11) || 5min 38sec | lhr 19min | 6hr 55min
l PDS-70 |
| Phase | Relaxed | Feasible |  Final |
Total iterations 0 16 50
Objective x10~1° 0.9309 1.3191 1.2311
Sequent(11) || 8min 12sec | 2hr 9min | Shr 24min

Table 4: Timing and objective value results for very large PDS problems.
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Chapter 5

Multiple Updates and
Asynchronous Parallel Methods

This chapter will extend the results of §3 to a more general setting in which
many updates—computed with regard to different basepoints—are considered
asynchronously. For example, if one has a computational environment that has
K + 1 independent CPUs, one could assign the coordinator problem to CPU 0
and the kth subproblem to CPU k. The method that we develop in this chapter
allows the programmer to let each CPU execute without waiting for any other

CPU to finish execution, thus enhancing the load balance.

5.1 Subproblems and Current Information

The subproblems, as discussed in §3.1, remain of the form (3.9) where (3.10)
and (3.11) hold and R is a decoupled resource allocation (cf. definition 3.1).
Again, we let y® be the solution of (3.9), so that y® depends upon the basepoint
£® used in the subproblem (3.6).
We say that a set
T c{o,... .t} CZ

determines the current information for the kth block at iteration ¢ if the
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information that the algorithm has stored for the kth block at iteration ¢ is
{ y[Z) I Le T(t) }

The assumption here is that the vectors { y[(k]) ' L¢ T(t) } have been discarded
( )

to limit the memory usage of the algorithm. We shall let vy represent the number

of elements of the current information set T{k% andlet v® := K v ) The results

of this chapter subsume those of §3, which may be seen by lettmg T i = {t} for
all blocks k£ and iterations ¢.
We will need some assumptions on T[k] to rule out cases where Tfk] consists

entirely of information that is too old for all large t. This will be done by making

another assumption in §5.2.2.

5.2 The Master Problem and Coordination
Define the Ny x v[(,:]) matrix Y[g) as that matrix having columns
(t
{ vfd-of | eexly )
the N x v matrix

Y® .= : (5.1)

Each column of this N x v(® matrix corresponds to a feasible search direction,
non-zero in precisely one block. As in §3 we have AY®) = 0 for all ¢ so that the

constraints Az = a may be ignored in defining the master problem:
minimize f (m(t) + Y(t)w) subject to w € F®), (5.2)
with the feasible set defined by

F® .= { w | b<z® 4+ YWy <B } (5.3)
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Note that this is exactly the same master problem as (3.15) in §3.2 except that
Y® is more general and the corresponding set of step-size variables w is allowed
to have cardinality v® > K. In the case where v[(;]) > 1 for some k, the columns
of Y® need not be complementary, implying that F® is not a box. This causes
us to look at inner approximations of F®, i.e., approximations W® of F®)

with W® ¢ F@),

5.2.1 Inner Approximations for the Master

Clearly, F® is block separable, so that we may consider these constraints as K
independent sets of constraints. However, (5.2) has the property that the con-
straint matrix Y(*) has unstructured blocks Y( ). We shall consider the structure
of the constraints of (5.2) in order to approx1mate them with simple constraints

useful in developing a suitable coordinator.

Proposition 5.1 We may use a simple ratio test to compute (possibly infinite)
bounds w® < 0 and WY > 1 such that

vi{e=1,...,09} [ wf) <w <@ = b<a®+YPuw, <t ], (54)

Proof: The bounds are given by
— z® B — @
w(t) = max max —(—%————f——)—’-‘- ———-—-—(b v )”
= - () () IO (t)
) 2P S A {n|¥,')<0} Y.

and

b — (0 — 2®
w = min min (b i )” min (b N )”
AN B O (t) () '
iy Y, fly{<oy  You

Note that, to show that L_vét) <(< ?Eﬁ) it suffices to show that (e, € F(), where
e; is the fth unit vector. We then see that w) < 0 because 0 € F ® . Also,
w® > 1 because the kth block of the right-hand set of inequalities in (5.4) with

w = ey either reduces to

) t T
by < i + vl — 2 < By or by < ) +0 < By,
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(for some i € T[k]) depending on whether column £ of Y9 is or is not associated
with the kth block. Either option is true because all z(® and y® are contained in

B.
é

The following theorem gives a class of useful inner approximations for the

feasible region of (5.2).

Theorem 5.2 (Inner Approximation) Suppose w® and W) are given by (5.4)
in proposition 5.1. Then w is feasible for (5.2) (i.e., w € F®) if

V{E =1,... ,v(t)} }\gw( )+ mwff) where (5.5)
A>0, p>0 and (5.6)
V{k=1,...,K} 1 (ma,x{)\[k],u[k]}) <L (5.7)

(The mazimum in (5.7) is taken componentwise.)
Proof: We begin by defining
wi = { w l A\ u} (5.5), (5.6) and (5.7) are satisfied }

Suppose that w € Wét) with the corresponding vectors A, p € R, 1), = pe =0,
we have w; = 0 and we define w}, = 0. If, on the other hand, max {As, pe} > 0,
define w) = wy/ max {A¢, pe}. Then, for wy # 0,

()

Aoty ()
. AR
o — Aewd) + pewy) max { g, fte} e
©7 max {Ag, pe} < pewy) <
max {s, e} ~

which is to say that w' satisfies the simple bound constraints in (5.4). Therefore,

by (5.4),
v{e=1,...,00} b— z® < YOu, <b— 2,
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After multiplying each of these by max {)\¢, ¢} and summing over £, we get, for
each block k
(¥ o)

[K] . {k]
(.Il[k] - ””53) D _max {’\[klv ﬂ[kle} S Yp(c?w[k] < (b[k] - wf}g) D max {)\[kw F‘[k]e}’
\—-—\f'—-—/£=l . \———v——’£=1

<0 ~- >0 ~- g
€l0..1] €lo..1]

U,

which implies that w € F®.
®
Note that the converse of the theorem is false, for consider the case where
v[(lt]) = 2 and the two columns Y[ﬁ).1 and Yig?.z happen to be complementary.

Then the constraint ,
Y max { Mg, g} < 1

£=1

could be replaced by the less restrictive
rnax{)\p]l, #[1]1} <1 and max {)\[1]2, #[1]2} <1
The constraints (5.7) may be written as
A<y, p<y (5.8)

and
V{k} 1y = 1. (5.9)

Then the representation of theorem 5.2 is a system of v + K simple equality
constraints (one could eliminate the first v® by an easy change of variables), 2v(®)

nonnegativity constraints and 20 other inequality constraints in 4v(*) variables.
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If we add the slack variables A and fi, then the constraint stytem for this is

(w ) ’
I —diagw® —diagm® 0 0 0 A 0
0 I 0 I 0 I wl |0
0 0 I 01 -I X1 o]’
] 0 0 00 T i 1 > (5.10)
\ 7/
w unrestricted, A >0, u >0,
v > 0 (implicitly), A>0 and >0,

where T® ¢ {O,l}Kx“(') is derived from (5.9). E.g., if K = 2, v[(lt]) = 2 and

vi(zt])=3,then
s _ (11000
“\oo0111)

Special basis partitioning techniques or general sparse matrix techniques may be

used to handle such constraints. In summary,
Wét) = { w | 3{,\,/1,5\,[1,7} (5.10) is satisfied } c FO,

and the containment may be strict.

We may approximate the feasible region of (5.2) with simple bounds in the
following way. Choose a v € ]R’j_(t) that satisfies (5.9). Then it is clear that w
satisfies (5.5) for some X and g as in (5.6) and (5.8) iff

we W (y)={ w | v{t= 1., 00} el <w, < yawy) }. o (5.11)

Note that W?(y) C W c FO if y satisfies (5.9).
Any of these results will hold if w(® is replaced by 0 and @' is replaced by 1.

In particular, the product of simplices
{ w20 | ¥{k=1,...,K} lwy<1 }CFO. (5.12)

These are a few of the more interesting inner approximations to the feasible region

of (5.2).
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5.2.2 The Culling Function
(®)

At a given iteration ¢ and for each block k the columns of Y}’ contain information
about updates ypq @ for £ € T% ). In order to prove convergence, we must guarantee
that this Y contalns information about acceptable descent directions about the
current point. This will be guaranteed by selecting or culling one special column
in each block. This special column will give us the up-to-date information needed

to show convergence. Now the technical details:

Definition 5.3 We say that

7]:{1,...,[(})(%.*_-—*%.{, (513)
is a culling function if
V{k,t} n(k,t) € T (5.14)
and
R e o1

Therefore, in each block we are choosing the information y[("]( ’)), computed
with respect to mf"]( %)) which becomes arbitrarily close to the current point x% }

Condition (5.15) is holds in certain reasonable situations.

Proposition 5.4 Each of the following implies that (5.15) holds:

1. {a:(t)} converges and v{k} lim n(k,t) = o0
2. lim |2+ - 20| =0 and HTIV{k,t} t —n(k,t) <T

Proof: 1. If the sequence converges, it is Cauchy and so

il - 3] =0

t,n(k,t)-—o0

g -] < B e -] < St )
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which converges to 0 because T is a constant.
®
The above proposition showed, in the first instance, that if the sequence con-
verges and the culling function satisfies a “totally asynchronous” assumption
[Bertsekas and Tsitsiklis 1989, §6.1], then (5.15) holds. In the second instance,
if successive iterates become arbitrarily close, then a “partially asynchronous”
assumption [Bertsekas and Tsitsiklis 1989, §7.1] suffices.

The following lemma will be used in the convergence theorem below.

Lemma 5.5 Suppose that (5.15) holds and that y*) solve subproblems of the
form (3.9) with basepoint z®) where (3.10) and (3.11) hold, and where the G®
are block diagonal with blocks corresponding to the original blocks, i.e., no cou-
pling whatsoever between blocks in the subproblems. Then, fort sufficiently large,

(n(k,1))

the subproblem solutions with kth block given by yp solve subproblems of the

form (8.9) with basepoint z® where (3.10) and (5’.11) hold.

The lemma says that, so long as "a:[k] — :cf,?(k t))" — 0, the old information

y[("}( ) may play the role of new information computed relative to the current
point mf,g .

Proof:  First, we see that the same decoupled resource allocation R may
be used relative to the current point. Conditions 2 and 3 of definition 3.1 follow
clearly from (5.15). The condition 3 and (5.15) then show that, for ¢ large enough,
z® ecR (:f:(t)), where (! denotes the vector with kth block equal to :v%,f](k't)).

Now, we consider the objective function. For simplicity of notation, we let §®
denote that vector having kth block equal to g[(,?](k’t)) and G® denote that block-
diagonal matrix having kth block equal to G’EZ](k’t)). Using the word “constant” to

denote any constant that does not depend on the argument y, we have

k, ) k, kit i
9[(1?]( t)) (y[k] _ mf”](k t))) + (y[k] _ wEn( t))) G(n( t)) (y[k] _ mf”](k t)))

[[(n(kt)) 2m§:}(k.t))TG(n(k,t»] TG

= constant + Yie + Yk

— constant + [g[(&(k,t))_;z(m%z](k,t)) 20) " Gl t))] (v — ={3)

Y[k]
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+@W"%ﬂ Gt (ypa — o) -

Since these functions differ by a constant, their minimizers over the same con-
straint set are the same, so that y[("](k ) minimizes the latter. Then the choice of

G(,g = Gf,:'](k ) satisfies (3.11) and the choice of

(@) | k) (n(kD) _ )T lnteit)
9 = [ g 2 (aff*? — =fg) " G ]
satisfies (3.10).
é
We now discuss the culling function’s relationship with the inner approxima-
tions W, Suppose that we have a culling function » and a constant £ > 0

(independent of ). We define the line segment =) blockwise by
=0 = { g =+ A (W —2) | o<a<e }. (5.16)

We are interested in inner approximations W® that satisfy both
=0 c wt c F® (5.17)

and

B {t,wew®} |vOu|<p. (5.18)
We shall consider modifications of the inner approximations of §5.2.1 for this
purpose.

First, consider the inner approximation Wét) given by theorem 5.2. It may
be shown that, by taking w equal to any unit vector e;, we may produce a point
(w, 7, A, ) feasible for (5.10) (cf. the proof of proposition 5.1). Therefore, by
choosing ¢ = 1, for any w € =), there exists (v, ), p) such that (w,v, A, p) is
feasible for (5.10). Therefore, the choice W® = W satisfies (5.17). To show
that (5.18) holds, We may need to further restrict W® by modifying w® and
@w®. This could be done by assuring that
ﬂ’
Yy

2

IBI

we Wt =

(5.19)
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for columns Y}}) not chosen by the culling function. Note that (5.15) and condi-
tion 2 of definition 3.1 imply that the vectors y[(,:'](k’t)) - m%}g are bounded indepen-
dently of ¢. Therefore, the bound

weW? — —f<w<p

will suffice for columns Y,(lt) that are chosen by the culling function. This final
point is important because, if these artificial bounds were allowed to restrict we
too much, the first containment of (5.17) might no longer hold.

Second, consider the simple bound inner approximation Wo(t)(fy) of (5.11). Say
that n(k,t) corresponds to column £(k,t) of Y ). Then it is easy to see that (5.17)
holds for the choice W) = Wo(t)('y) (where v satisfies (5.9)) so long as

V{t,k} £ < 'Yézl)c,t)wggc,t)'

A similar modification made to w(Y and W® may again be done to satisfy (5.18).
As the third possibility, consider the inner approximation given by the product
of simplices (5.12). If the maximal cardinality of the information sets is bounded
uniformly, i.e., if
SR} [XE| <6,
then we may let £ = 1/6 to force =) to be contained in the inner approxi-
mation (5.12). Artificial bounds of the form (5.19) will need to be imposed for

columns Y,(f) that grow arbitrarily large.

5.2.3 Asynchronous Coordination using a Stabilization
Method

This section generalizes the results of §3.2.2. In particular, we use the new defini-
tions of Y® and =® and make use of the convex inner approximation W that

satisfies (5.17) and (5.18). Suppose that Q) is defined by (3.20) where (3.21)
and (3.22) are satisfied. Then we define

@ = arg min{ Q®(w) | wew® }. (5.20)




Given the constants 71,72 and 73 (independent of t)
with0<y<land <y <vy<1
If V£ (z0) Y030 > 0
Then set o) =0
Else
Set o =1
Repeat until explicitly stopped
if f (:,;(t) + ay(t)@,(t)) —f (x(t)>

<m [aV () YO0 — ey ©20|]

Then choose o) = a and stop
Else reset a € [y2¢..y3a] and continue

Figure 12: The stabilization algorithm for the asynchronous case.
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(The argmin is unique by (3.22).) The stepsize a® is computed by the stabi-

lization algorithm in figure 12. We will show that this converges subsequentially

under reasonable assumptions.

Theorem 5.6 (Partially Asynchronous Convergence) Suppose that

1.

2.

3.

f is essentially smooth and B is closed and convez in (3.1),

z© € BNdom f is given,

y® are solutions of the subproblems of the form (3.9) relative to the base-
points ®, for the decoupled resource allocation R, where (3.10) and (3.11)

hold,
Y is defined by (5.1),
n satisfies (5.13) and (5.14)

there is some T for which V{k,t} t —n(k,t) <T,
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7. 0 is defined as in (5.16),
8. W satisfies (5.17) and (5.18),
9. the sequence H® satisfies, both (3.21) and (3.22),
10. ®® is defined by (5.20)
11. a9 is computed via the stabilization algorithm of figure 12, and
12, (D) = () L Y Oy(®) = £ 4 oY OGH®),
Then
1. the stabilization algorithm always terminates finitely, producing o) €10..1],
2. the procedure produces an infinite sequence {:c(t)} C B, and
3. the limit f := tl_l_glo f (:c(t)) exists.
Moreover, if f is finite, then
i g e —<0] <o
5. n is a culling function, and

6. each % € lim ptz(® is ¢ KKT point for (3.1).

The theorem is called partially asynchronous because of assumption (6) [Bert-

sekas and Tsitsiklis 1989, §7.1].
Proof: 1. Assume that the stabilization algorithm is in the loop. We know

that
”aY(t)ﬁ)(t) Hz +f (a:(t) n a‘y(t)@(t)) . (ma)) —aVf (m(t)) y®z® ¢ 0 (az)

by Taylor’s theorem. Therefore, with 71 < 1, the stabilization algorithm will

terminate for a sufficiently small.
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9. By induction, if z® € B, then @ € W® C F® so that z® 4+ YO0 ¢ B.
Therefore, since ol € [0..1], 2D € B.

3. The stabilization algorithm shows that f (:c(“‘l)) <f (m(t)), so that either
f (w(t)) — —00 Or { f (:c(t))} is bounded below. In either case f exists.

4. The rest of the proof assumes that f is finite. For the subsequence char-
acterized by al) = 0 the result follows from hypothesis (8). If o) > 0, then the

stabilization algorithm guarantees that
£ (5 = £ (a9 + oY O0)
”a(t)y(t)@(t) ”2 VO (mw) yOH0

0<y < (5.21)

Since f is finite, the numerator of the fraction in (5.21) converges to 0, and so
the denominator also converges to 0. Since the denominator is the sum of two

positive terms, both terms converge to zero. That is to say that
Oy Og® = zt+D _ 20 0 (5.22)

and
—aOVf (w(t)) yO5® 0.

5. We see that 7 is a culling function from part 2 of proposition 3.4.
6. The rest of the proof assumes that there is a limit point of {z®}, for

otherwise the theorem is proven. We will first show that
lim inf V f () YO > 0. (5.23)

The stabilization algorithm shows that (5.23) is true for the subsequence char-
acterized by o® = 0. For all subsequences o for which lima*® > 0, (5.23) is
implied by (5.22). Consider, therefore a subsequence ¢ for which a®®) > 0 and
a®) —s 0. Then the stabilization algorithm shows that

7 (=€) - 1 (w(a(t» 4 %;%y(o(t))@(a(t»)
@)
(o(2))

<, (5.24)
NE0)

2
ye®) 5o
@)

Vf (s0) Y@ gw)

r)/
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(ot

for some 7 € [y2..73). If lima®(®) = 0, then (5.24) shows that
)
) y(o(t))@(a(t)))

@) _ 5 [glow) 4 &
f(a®) — 1 (‘” N CO)
NE0) (5.25)

—("%')')' {g‘;:g':‘))‘ "Y(o(t))ﬁ)(a(t))"2 _vf (x(a(t))) Y("(t))ﬁ)("(t))] '
Ay

We may further thin the subsequence o to have

ze®) — % e limptz® by assumption
yle@®gple®) — 3 by hypothesis 8
Ae®) 5 F € [ye..73)] by compactness.

Then taking the limit of (5.25) shows that
Lo riavs o Moprans
-V (%) < =V f(Z)Z,
5 1@z = ZVf (%)

but because 7; < 1, this implies that V f(#) = 0. Therefore, in any case, (5.23)
holds.
Define §® as that vector having the kth block equal to y[(,:’](k’t)). We claim that

liminf V £ (=) (5 - z®) >0 (5.26)

in the case when {w(t)} has a limit point. To prove the claim, suppose that it is

not true and we shall derive a contradiction. We thin the sequence so that

z® — F by assumption

§® — § by lemma 5.5 and condition 2 of definition 3.1

and
lim Vf (29) (5 — ) = Vf (&) (- &) = —( < 0.

t—+00
Define u® to be that vector in {0, 1}“0) for which Y®u® = §® — z(®_ Now,
because of (3.21) and (3.22), we may choose A € (0..£] independent of ¢ so that

I{to > 0}V{t >t} AVS (m(ﬂ) YOy 4 2207 Fo® < —%.
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Then Mu® € = ¢ WO, so that the definition of ©() gives, for ¢ sufficiently large

and in the subsequence under consideration,

vf (w(t)) YO0 4 5OT HOG®
< VF(a®) YO (0u®) + (u®)" HO (u®)
A

< —'§'<0.

This contradicts (5.23) and proves the claim (5.26).
Lemma 5.5 now allows us to apply theorem 3.3 for every & € lim pt z() to see

that all limit points are KKT points.
&

5.3 Specific Instances of the Algorithm

The methods of §5 are general and include many of the known decomposition
methods. It is easy to see that the methods of §3 are contained in the more
general methods of this chapter: let 'I‘f,g = {t} and n(k,t) =t for all £ and ¢ and

use the inner approximation given by the entire feasible set for the master
wO={ v | u®<w<a® }=FO

We now consider a few other special cases of the methods developed so far in §5.

5.3.1 Restricted Simplicial Decomposition

Recall the simplicial decomposition method, discussed in §1.5. One may further
restrict the number of columns to be stored by insisting a priori that the method
store no more than L + 1 columns—L of the form y® in addition to (). This
method is called restricted simplicial decomposition and was developed by
Hearn et al [1987]. As one would expect, a trade-off occurs as the parameter L

varies. When L = N + 1 the simplicial decomposition algorithm results. When
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L ~ N the excellent convergence properties of simplicial decomposition are re-
tained at the expense of large storage requirements. On the other hand, for L = 1,
the storage requirements are reduced, but the speed of convergence is adversely
effected. This is consistent with the slow convergence of the Frank-Wolfe method
[Frank and Wolfe 1956}, which corresponds to the special case L = 1. Hearn et
al [1987] show that the convergence rate is still good so long as L is at least the
dimension of the facet containing the optimal solution (assuming B is polyhedral
and the optimal solution is unique).

We shall now see that a very close relative of the restricted simplicial decompo-
sition algorithm of Hearn et al [1987] is a particular instance of the method of this
chapter. In order to eliminate some of the complexities of the notation, we shall
. consider a problem with only one block (i.e., K = 1) and eliminate all reference
to block indices. The version where K > 1 merely does the same bookkeeping for
each block in the obvious way. We will also choose the culling function 7(t) = ¢
implicitly in this section.

Suppose B is bounded and the decoupled resource allocation R is given by the

simple bounds

R=-x1 and R=kl where > sup |z —yl|.
z,y€B

(This removes the effect of R on the updates y®) while still retaining the bound-
edness properties needed in the convergence proofs above.) Therefore, if the sub-
problems have linear objective functions, the y® may be computed as extreme
points of B. Moreover, we shall choose the coordinator constraints W) to be
those given by the simplex (5.12). Since we are assuming that B is bounded, we_
need not modify W) in order to guarantee that {Y(t)@(t)} is bounded.

Consider the restricted simplicial decomposition algorithm of figure 13 where
at most L updates are kept. The element of “least weight” is that for which the
component of w(®~1) is nearest to zero. The algorithm of figure 13 differs from the
method of Hearn et al [1987] in that:

e Hearn et al [1987] allow the algorithm to keep old points @ (for £ < t) as
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Given z® € B and Y-V =@
Fort=0,1,...
Solve the linear subproblems to get y(*) and construct y®)
If [T¢e-D| < L
Then set T® = TtV y {t}
Else construct T by replacing the element
of “least weight” in T(-1 with ¢
Solve the coordinator subject to the constraints (5.12)
to get w® and set £¢t1) = £ 4 Yyp®)

Figure 13: Restricted Simplicial Decomposition.

well as points y(¥. However, when the number of updates nears L, only z®

is retained from this set at iteration t.

e The coordinator of Hearn et ol [1987] must find an exact minimizer of
f (:z:(t) + Y(t)w) subject to the constraints (5.12). Our method solves a com-

putable coordinator problem.

Hearn et al [1987, §6.2] give an extension using a convex quadratic program as
a coordinator. The basic technique is to majorize [Ortega and Rheinboldt 1970,
§8.3(d)] the function f by a quadratic function gz + z "Gz where the smallest
eigenvalue of the real symmetric matrix G is larger than the maximal curvature
of f over some level set. One problem with this approach is that the maximum
curvature is a non-local quantity that is in general impossible to compute. Even
if we were able to compute the maximal curvature of f, this property of G makes
convergence very slow because the steps taken are very small.

Mulvey et al [1990] introduce truncated simplicial decomposition, where
the coordinator problem (the same coordinator as Hearn et al [1987] use) is solved
more and more accurately, as determined by a forcing sequence ¢® | 0. Contrary

to this situation, the coordinator methods in this thesis do not need to be solved
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more and more accurately.

Hearn et al [1987] show that the sequence {x(t)} converges in a finite number of
iterations. However, each iteration of their coordinator requires the exact solution
of the master problem. For general functions, this exact solution requires an
infinite number of steps, so this result is primarily of interest in the case where
the original problem is quadratic.

Hearn et ol [1987] also give an extension of their basic method to handle
cases where B is unbounded. This extension involves computing extreme rays
of the feasible region when necessary and modifying the coordinator constraints
appropriately. An alternate method of dealing with unboundedness is given by
our decoupled resource allocation R, which forces the sequence {y(t) — :c(t)} to be
bounded. Therefore, we may handle unbounded problems by solving a sequence

of bounded subproblems.

5.3.2 A Simple Asynchronous Model

We will consider an instance of the asynchronous decomposition algorithm and
how it might be implemented in a distributed computing environment. Specifi-
cally, if we have an environment with p processors, labeled 1,...,p, we wish to
consider mapping the asynchronous algorithm onto this system. First, we will des-
ignate processor 1 as the processor that does the coordinating phase of the work
and we will use processors 2, ..., p to solve the subproblems. Processors 2,...,¢
will each execute the pseudo-code given in figure 14. This does nothing more than
receive subproblems (waiting for a message if necessary), solve subproblems and
report the answer back to processor 1.

Processor 1 will execute the pseudo-code in figure 15. (In this figure, the
dependence on the iteration counter ¢ is implicit for the current data z, T and
n.) This algorithm begins with a single update y(© and the information sets
Ty corresponding to this update. At each iteration all of the other processors -

2, ..., p are checked for outstanding messages. If there is a message from a certain
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Repeat forever

Receive a subproblem “k,t,G, g, R, R, A}, ap)” from processor 1
a

. A
Compute y] € argmin 3y Gy+gy | B2 y < R }

Send the message “k t,y[k])” to processor 1

Figure 14: The subproblem pseudo-code.

Given z = z® € BN dom f and y© € B
Foreach k=1,...,K set Ty = {0} and n(k) =0
For t =0,1,... ad infinitum

Forp=2,...,p
If there is a message “k',t/, y(t ])” from processor p

If lT & | = [, then remove some element ¢ from Tz
and delete y[(k,] from memory

Set T[kl] = T [k Y {t'} and n(k') =t

Find k" with n(k") < n(k) for all k

Compute an appropriate subproblem and
send it to processor p in the form

¢ ¢ ’
ck,ll 1 G[k”]’ g k" R%,?,], —R}]g:], A[ku], QA 3

Solve the coordinator and update the primal point z

Figure 15: The coordinator pseudo-code.
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subproblem processor, the message is read and the update vector incorporated into
the current information. Note that the current information for a given block will
have at most L members. The culling function 5(&’) is then reset to ¢’ so that the
last update yf,::]) to arrive is chosen. The algorithm then sets up a subproblem and
sends it to the idle processor for solution. We are assuming, of course, that the
subproblem is set up to satisfy all of the hypotheses of the convergence criterion
and we are using the notation R = R(z) and R = R(z) for a decoupled resource
allocation R.

Let us suppose that the amount of time (measured in terms of iterations by
processor 1) for any subproblem to be solved by a subproblem processor (including
the time for data transfer) is bounded by T iterations. Then we have T' > ¢ - n(k)
for each block k, showing that assumption (6) holds. (This is a reasonable assump-
tion to make in practice and may always be forced to occur if the programmer is
willing to make processor 1 do some extra checking.)

It is beneficial in this context to use a coordinator that is as fast as possible,
so that the subproblem processors are not waiting long periods of time for useful
work. In particular, the coordinator in §5.2.3 seems suitable for this. This coordi-
nator involves solving a quadratic program with simple constraints in at most KL
variables, and then doing a line search. If the quadratic programming problems
are suitably chosen, the number of iterations in the line search will be reasonable,
leading to a very fast coordinator method. (For example, the quadratic term could

approximate the Hessian matrix, perhaps including a proximal point term.)




Chapter 6 “

Conclusions

6.1 The Motivation for This Work

This work began when the author’s principal advisor obtained the PDS problem
suite of §4.1. Based on experience solving pure network flow problems, we realized
that a decomposition method requiring the solution of each pure network block
(commodity) approximately one hundred times would be a reasonable solution
procedure for the entire problem. From this empirical calculation, we developed
a rough decomposition method and experimented with it computationally. This
thesis contains the results of the final product of this endeavor, placed on a theo-

retically sound foundation.

6.2 A Summary of the Earlier Chapters

The barrier function theory of Fiacco and McCormick [1968] was enlarged to
facilitate the removal of some, but not all, constraints. In as much as the meth-
ods of Fiacco and McCormick [1968] are “sequential unconstrained minimization
techniques,” the methods of §2 might be called “sequential less-constrained mini-

mization techniques.”
A theory of shifted barriers was needed to produce points feasible for the

104
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original problem, since barrier functions are ill-defined off of the interior of the
feasible region. We have shown that, if a point interior to the barrier exists and if
the barrier problems are solved in an approximate sense, it is possible to generate
a point feasible to the original problem in a finite number of steps.

We also showed that some barriers which use the logarithm have excellent ap-
proximate optimality properties. In particular, the KKT conditions of the original
problem are approximately satisfied in a quantifiable way by barrier problem so-
lutions. For convex problems, this yields feasible solutions at which the objective
function value differs from the optimal by some arbitrarily small parameter.

We chose barrier functions, instead of penalty functions, because of the excel-
lent feasibility properties of the approximate solutions generated. Indeed, in our
computational experience with the PDS problems, all of the inequality constraints
are satisfied perfectly, while the affine (network) constraints are satisfied to the
floating point tolerance. This is an important consideration when the user of the
optimization software needs feasible solutions.

Considering the excellent properties of the barrier problems, we then devel-
oped a class of decomposition schemes to handle this problem structure. These
decomposition methods use the block structure of the barrier problems to bring
to bear the technology of large-grained concurrent computing. These schemes
are applicable for the computation of KKT points because they do not require
convexity of the objective function or the coupling constraints. However, special
structure within each block—such as network structure—may be exploited by the
method.

Computational results are given for a subset of the PDS problem suite, in-
cluding the largest problems of this suite that the author is aware of having been
solved. Our source code was compiled on both a DECstation 3100 (a workstation
running ULTRIX) and a Sequent Symmetry S81 with 20 processors. The results
show not only the benefit of using parallel processing, but that decomposition
methods themselves can be very efficient on large-scale problems.

The decomposition method was then generalized to include multiple updates
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in an asynchronous manner. This very flexible scheme contains the restricted
simplicial decomposition algorithm of Hearn et al [1987] as a concrete case. In
particular, we have generalized restricted simplicial decomposition to the non-
pseudoconvex case. This asynchronous convergence theory holds great promise

for asynchronous parallel implementations of decomposition methods.

6.3 Future Directions

An asynchronous implementation of the decomposition method is yet to be con-
structed. This is an important open problem because of the enhanced opportu-
nities for more even load balancing. Moreover, the theory developed here is quite
flexible, so that it could map effectively to many different concurrent computa-
tional environments. We hope that these avenues will be explored in the future.
Another open problem is suggested in the appendix to this thesis. The barrier-
zero functions introduced earlier in the thesis are shown to possess some inter-
esting properties when applied to the standard interior point methods for linear
programming in standard form. In particular, these new barrier functions allow
one to use a partial basis factorization to compute the Newton direction. This
suggests that the Cholesky factorizations needed for the final iterations of the in-
terior point method need only be done on smaller matrices. This technique should

also be considered in conjunction with methods for guessing an optimal basis.



Appendix A

The Logarithmic Barrier-Zero
Function and Interior Point

Methods for Linear

Programming

In this section, we consider the logarithmic barrier-zero function of §2.2.3 applied

to the linear programming problem in standard form:
minizmize cx subjectto Az=a and z2>0, (A.1)
where A is M x N with full row rank. Recall that the dual problem is
ma,x;mize pa subject to pA <ec.

Suppose that the complement of the index set B C {1,...,N} is represented as
N. Then we use the notation Ap and Ay to denote the corresponding columns of
A and zp, cB, etc. to denote the corresponding components of the vectors. Let
#B and #N denote the sizes of the respective index sets.

We say that the set B is a basic (optimal) solution of (A.1)if

Ap is invertible , Aﬁla >0 and CBAEIAN < en.
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Clearly, if B is a basic solution of (A.1) then #B = M. The following lemma
provides the motivation for calling the set B the solution to (A.1).

Lemma A.1 (Basic Solutions) IfB is a basic solution to (A.1), then one may

construct optimal primal and dual solutions to (A.1) by
B = Aﬁla , etN=0 and p= CBAﬁl.

Proof: The reader may easily verify that = and p are primal and dual feasible
with the same objective function values.

[ )

Recall the logarithmic barrier-zero function discussed in general in §2.2.3 and

in particular in §2.2.4. For any fixed ¢ € IRI>VO we define the function

N
p(();1) = RYp =R i p(z;t) = D pal(Tnitn)

n=1

with components defined by
Inz fz‘-%—lnt +l ifz, <t
pu(@nitn) = "o "2 " "
0 fz, >t,.
We have already seen that p((+);%) is a twice continuously differentiable, convex
barrier function. We also point out that the logarithmic barrier function (with
pn(*) = —In(-)) is the limiting case as t — ool in the sense that the gradient and
Hessian values take on the corresponding values in the limit. Therefore, p(();t)

may be considered a perturbation of the logarithmic barrier function.

Define the barrier problem
minimize cz + 7p(z;t) subject to Az =a (A.2)

(z > 0 implicitly) where 7 and ¢ are parameters. The Newton step for (A.2) at
the point z is then defined to be the solution of the quadratic program

miniymjze (c+7Vp(z;t))y + %yTvzp(m;t)y subject to Ay = 0.
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Since V2p(z;t) is positive semi-definite and the quadratic program is affine con-
p g

strained, y is optimal for the quadratic program iff y and some p satisfy the linear

TV2p(z;t) —AT y \ [ —<" - TVp(z;t)" (A3)
—A 0 T ) 0 . .

Therefore, for given values of the parameters 7 and t, solving the linear sys-

equations

tem (A.3) for y and p yields the Newton step y for the barrier problem (A.2)
along with the associated Lagrange multiplier estimate p. The theory in §1.7 says
that, for fixed ¢ > 0, the minimizers of (A.2) approach the minimizers of (A.1) as
710

Suppose that we are given a set B with Ap of full column rank, i.e., rank Ap =
#B. Let t be given by

(A4)

- Ty ifneB
"7 | 2, +T ifn¢gB.

Since the corresponding component of the barrier function is zero in such an

instance, we see that
Vpp (zg) =0 , V’pp(zp) =0 and V?pn (zn) is positive definite.

Using this information, and letting Hy denote V2pn (zn), we see that (A.3) may

be written as

0 0 A} YB —cp
0 rHx —-A§ || v~ |=| —k—7Ven(en) |- (A.5)
—-Ap -An O p' 0

The sparsity pattern of this matrix is given in figure 16 for the situation where
M = 500, N = 1000 and #B = 300.
Recall that we are assuming that Ap has full column rank. Then we may use

Gaussian elimination to construct a factorization of the form

(E)-GoEw)
—A% z1/\ow
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____________________

_AE

THN — A7

Figure 16: Sparsity pattern of the matrix in (A.5).

where L and U are, respectively, lower and upper triangular nonsingular matrices

and
L is #B x #B, U is #B x #B,
Vis #B x (M — #B), Wis (N —#B)x (M - #B),
and Zis (N — #B) x (N — #B).

This factorization may then be used to construct a partial triangular factorization
for (A.5) as shown pictorially in figure (17). Note that the partial factorization of
figure (17) is trivial to update if B does not change, but 7HN does.

Given the partial triangular factorization shown in figure (17), we see that the

problem is reduced to solving a linear system with the symmetric, positive definite

THy W
() o

constraint matrix

(Clearly the matrix is symmetric and positive semi-definite, so it is positive definite
if it is nonsingular. Since 7Hy is positive definite factorizing (A.7) reduces to

factorizing W7 [ Hn]™' W, which is positive definite because (A.6) shows that W

has full column rank.)
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Figure 17: Schematic of partial factorization for (A.5).

Tt is worthwhile to point out what is going on in some special instances. If
B = O, so that N is the entire set of variables, then W = --AT and (A.7)
is exactly the form of the matrix of the linear system which the familiar affine
scaling methods must solve at each iteration. That is because V2p(z;t) has no
zero diagonals to exploit. If #B = M so that an entire basis is chosen, then W has
06 columns. In this case the matrix (A.7) is diagonal. In cases when #B~ M,
then the size of W7 ['rHN]'1 W is small and a dense Cholesky factorization may
be efficiently computed.

The linear system with matrix given by (A.7) may be solved by any method;
there is some good computational evidence that the method of conjugate gradients
is very effective on very large sparse problems [Setiono 1990]. However, we will

consider factoring (A.7) by computing the Cholesky factorization
W [rHn|"'W =CCT. (A.8)

Then a full triangular factorization is represented by figure (18).
Assumning that all of the factorizations are computed in this way, the compu-

tation of the solution (yT,p)T of (A.5) is accomplished by forward and backward
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Figure 18: Schematic factorization for (A.5).

substitutions involving the triangular factors in figure 18. Moreover, if the set
B does not change too drastically from one iteration to another, the factoriza-
tion (A.6) may be efficiently updated. Once this factorization is updated, the
partial factorization depicted in figure 17 is known. Then only the linear system
with coefficient matrix (A.7) needs be solved, which may be done by comput-
ing the Cholesky factorization (A.8) from scratch during each iteration. For best
efficiency, this barrier function should be used with a method for heuristically
guessing an optimal basis [Kojima 1986; Megiddo 1988; Tapia and Zhang 1989;
Gay 1989; Ye 1990].
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