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The grammar problem, a generalization of the single-source shortest-path problem introduced by Knuth, is to compute
the minimum-cost derivation of a terminal string from one or more non-terminals of a given context-free grammar,
with the cost of a derivation being suitably defined. In this paper we present an incremental algorithm for a version of
the grammar problem. As a special case of this algorithm we obtain an efficient incremental algorithm for the single-
source shortest-path problem with positive edge lengths. The aspect of our incremental algorithm that distinguishes it
from all other work on the dynamic shortest-path problem is its ability to handle “multiple heterogeneous
modifications™: between updates, the input graph is allowed to be restructured by an arbitrary mixture of edge inser-
tions, edge deletions, and edge-length changes.

Categories and Subject Descriptors: E.1 [Data Structures] -- graphs; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems -- computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics -- combinatorial algorithms; G.2.2 [Discrete Mathematics]: Graph Theory -- graph
algorithms

General Terms: Algorithms, Theory
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1. Introduction

Knuth defined the following generalization of the single-source shortest-path problem, called the grammar
problem [Knut77]): Consider a context-free grammar in which every production is associated with a real-
valued function whose arity equals the number of non-terminal occurrences on the right-hand side of the
production. Every derivation of a terminal string from a non-terminal has an associated derivation tree;
replacing every production in the derivation tree by the function associated with that production yields an
expression tree. Define the cost of a derivation to be the value of the expression tree obtained from the
derivation. The goal of the grammar problem is to compute the minimum-cost derivation of a terminal
string from one or more non-terminals of the given grammar.

Knuth showed that it is possible to adapt Dijkstra’s shortest-path algorithm [Dijk59] to solve the gram-
mar problem if the functions defining the costs of derivations satisfy a simple property (see Section 2). In
addition to the single-source shortest-path problem, Knuth lists a variety of other applications and special
cases of the grammar problem, including the generation of optimal code for expression trees and the con-
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struction of optimal binary-search trees.

In this paper, we present an algorithm for a version of the dynamic grammar problem—the problem of
updating the solution to the grammar problem when the input grammar is modified. As a special case of
the algorithm, we obtain a new, simple, and efficient algorithm for the dynamic single-source shortest-path
problem with positive edge lengths (the dynamic SSSP>0 problem).

The aspect of our work that distinguishes it from all other work on dynamic shortest-path problems is
that the algorithm we present handles multiple heterogeneous changes: Between updates, the input graph is
allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edge-length

changes.! Most previous work on dynamic shortest-path problems has addressed the problem of updating
the solution after the input graph undergoes either unit changes-—i.e, exactly one edge is inserted, deleted,
or changed in length——or else homogeneous changes—i.e., changes to multiple edges are permitted, but all
changes must be of the same kind: either all insertions/length-decreases or all deletions/length-increases.
(A comprehensive comparison of our work with previous work appears in Section 7.)

In general, a single application of an algorithm for heterogeneous changes has the potential to perform
significantly better than either the repeated application of an algorithm for unit changes or the double appli-
cation of an algorithm for homogeneous changes. There are two sources of potential savings: combining
and cancellation.

Combining
If updating is carried out by using multiple applications of an algorithm for unit or homogeneous
changes, a vertex might be examined several times, with the vertex being assigned a new (but tem-
porary and non-final) value on each visit until the last one. An algorithm for heterogeneous changes
has the potential to combine the effects of all of the different modifications to the input graph, thereby
eliminating the extra vertex examinations.

Cancellation
The effects of insertions and deletions can cancel each other out. Thus, if updating is carried out by
using multiple applications of an algorithm for unit or homogeneous changes, superfluous work can be
performed. In one updating pass, vertices can be given new values only to have a subsequent updating
pass revisit the vertices, restoring their original values. With an algorithm for heterogeneous changes,
there is the potential to avoid such needless work.
The updating algorithm presented in this paper exploits these sources of potential savings to an essentially
optimal degree: if the initial value of a vertex is already its correct, final value, then the value of that vertex
is never changed during the updating; if the initial value of a vertex is incorrect, then either the value of the
vertex is changed only once, when it is assigned its correct final value, or the value of the vertex is changed
exactly twice, once when the value is temporarily changed to oo, and once when it is assigned its correct,
final value. (Bear in mind that, when updating begins, it is not known which vertices have correct values
and which do not.)

The behavior of the algorithm is best characterized using the notion of a bounded incremental algorithm:
An algorithm for a dynamic problem is said to be a bounded incremental algorithm if the time it takes to
update the solution is bounded by some function of |||, where ||8]} is a measure of “the size of the
change in the input and output”. (For a formal definition of the notion of boundedness, see Section 2.) In

"The operations of inserting an edge and decreasing an edge length are equivalent in the following sense: The insertion of an edge can
be considered as the special case of an edge length being decreased from o to a finite value, while the case of a decrease in an edge
length can be considered as the insertion of a new edge parallel to the relevant edge. The operations of deleting an edge and increasing
an edge length are similarly related.



the case of the dynamic SSSP>0 problem, after an arbitrary mixture of edge insertions, edge deletions, and
edge-length changes, the algorithm presented in Section 3 updates a graph in time O (]| 81| log || 8| ).2

Dijkstra’s algorithm turns out to be a special case of our algorithm for the dynamic SSSP>0 problem:
when a collection of edges is inserted into an empty graph, our algorithm works like Dijkstra’s algorithm.
Similarly, a variant of Knuth’s algorithm for the batch grammar problem is obtained as a special case of
our algorithm for the dynamic grammar problem. Note, however, that our incremental algorithms
encounter “configurations™ that can never occur in any run of the batch algorithms. For example, in the
dynamic SSSP>0 algorithm, a vertex u can, at some stage, have a distance d (1) that is strictly less than

r;lig w {d (v) + length (v — u)}. This situation never occurs in Dijkstra’s algorithm.
verrea(u

In the paper, we describe an application of the incremental algorithm for the dynamic SSSP>0 problem
to batch shortest-path problems on graphs that have a small number of negative edges (but no negative-
length cycles). Yap proposed an algorithm for finding the shortest path between two vertices (i.e., for the
single-pair shortest-path problem) in graphs with a few negative edges [Yap83]. Yap’s algorithm is more
efficient than the standard algorithms that handle an arbitrary number of negative edges; however, the
incremental SSSP>0 algorithm can be employed in an algorithm that is even more efficient. In addition,
unlike Yap’s algorithm-—which is restricted to the single-pair problem in graphs with a few negative
edges—our algorithm can also be used to solve the single-source problem in graphs with a few negative
edges.

This paper is organized as follows. In Section 2 we define the problem to be solved and introduce the
terminology we use. In Section 3 we develop the idea behind the algorithm via a sequence of lemmas
about the problem. We present the first version of our algorithm, a proof of its correctness, and an analysis
of its time complexity in Section 4. In Section 5, we discuss an improved version of the first algorithm, and
analyze its time complexity. In Section 6 we look at some extensions of the algorithm. In Section 7 we
discuss related work. The paper ends with an appendix that covers some relevant results and their proofs.

*The concept of boundedness is interesting because it enables us to distinguish between various incremental algorithms and batch algo-
rithms. For instance, when the cost of the computation is expressed as a function of the size of the (current) input, all incremental al-
gorithms that have been proposed for updating the solution to the (various versions of the) shortest-path problem after the deletion of a
single edge run in time asymptotically no better, in the worst-case, than the time required to perform the computation from scratch.
Spira and Pan [Spir75], in fact, show that no incremental algorithm for this problem can do better than the best batch algorithm, under
the assumption that the incremental algorithm retains only the shortest-paths information. In other words, with the usual way of
analyzing incremental algorithms—worst-case analysis in terms of the size of the current input—no incremental shortest-path algo-
rithm would appear to be any better than merely employing the best batch algorithm to recompute shortest paths from scratch! In con-
trast, the incremental algorithm for SSSP>0 presented in this paper is bounded and runs in time O (]} 8]| log |} 81| ), whereas any batch
algorithm for SSSP>0 will be an unbounded incremental algorithm.

The goal of distinguishing the time complexity of incremental algorithms from the time complexity of batch algorithms is some-
times achieved by using amortized-cost analysis. However, as Carroll observes,

An algorithm with bad worst-case complexity will have good amortized complexity only if there is something about the
problem being updated, or about the way in which we update it, or about the kinds of updates which we allow, that pre-
cludes pathological updates from happening frequently [Carr88].

Thus, Ausiello ef al. [Ausi90], for instance, use amortized-cost analysis to obtain a better bound on the time complexity of an algo-
rithm they present for maintaining shortest paths in a graph as the graph undergoes a sequence of edge insertions. However, in the ful-
ly dynamic version of the shortest-path problem, where both edge insertions and edge deletions are allowed, “pathological” input
changes can occur frequently in a sequence of input changes. Thus, when costs are expressed as a function of the size of the input, the
amortized-cost complexity of algorithms for the fully dynamic version of the shortest-path problem will not, in general, be better than
their worst-case complexity.



2. Terminology, Notation and the Definition of the Problem

A directed graph G = (V(G), E(G)) consists of a set of vertices V(G) and a set of edges E(G). We denote
an edge directed from u to v by u —v. If u —v is an edge in the graph, we say that u is the source of the
edge, that v is the target, that u is a predecessor of v, and that v is a successor of u. The set of all predeces-
sors of a vertex u will be denoted by Pred (u). If U is a set of vertices, then Pred (U) is defined to be
u:JUPred (u). The sets Succ (1) and Succ (U) are defined similarly.

The Shortest-Path Problem

The input for the various versions of the shortest-path problem typically consists of a directed graph in
which every edge u — v has an associated real-valued length, which we denote by length(u —v). The
length of a path in the graph is defined to be the sum of the lengths of the edges in the path, each edge con-
tributing to the length as many times as it occurs in the path.

The single-source shortest-path problem, abbreviated SSSP, is the problem of determining for every
vertex u in a given graph G (the length of) a shortest path from a distinguished source vertex of the given
graph, denoted by source (G), to u. (In this paper, we concentrate on the problem of computing the length
of shortest paths, rather than that of finding the shortest paths themselves. We show later, in Section 6.1,
that our algorithm can be easily extended to the problem of finding the shortest paths too.) Two simpler
versions of this problem are obtained by restricting the input instances to be graphs in which every edge
has a non-negative or positive length respectively. We refer to these two problems as the SSSPz0 problem
and SSSP>0 problem, respectively.

Every input instance G of SSSP induces a collection of equations, the Bellman-Ford equations, in the set
of unknowns { d(u){u € V(G) }:

du)= 0 if u = source (G)

= min [dW)+length(v —u)] otherwise
v € Pred(u)

It can be shown that the maximal fixed point of this collection of equations is the solution to the SSSP
problem if the input graph contains no negative length cycles. (See [Gond84] for instance.) It is necessary
to view the unknowns as belonging to the set of reals extended by +eo so that for every vertex u unreach-
able from the source vertex d(u) will be o in the maximal fixed point, as required. Further, if all edge
lengths are positive, then the above collection of equations has a unique fixed point. Hence, the SSSP>0
problem may be viewed as the problem of solving the above collection of equations.

The Grammar Problem

Let us now consider a generalization of the shortest path problem due to Knuth. In the rest of the paper let
(D, <,%0) be a totally ordered set with maximum element 0.3 We define an abstract grammar (with a value
domain of D) to be a context-free grammar in which all productions are of the general form

Y- g(Xy,.... %),

where Y, X4, ..., X, are non-terminal symbols, and g, the parentheses, and the commas are all terminal
symbols. In addition, each production ¥ — g(X;,...,X,) has an associated function from D* to D,
which will be denoted by g itself in order to avoid the introduction of more notation. We will refer to the

3 Knuth uses the specific totally ordered set (®,,<,0), where %, denotes the set of non-negative reals extended with the value oo, and <
is the usual ordering on reals.



function g as a production function of the given grammar.

For every non-terminal symbol Y of an abstract grammar G over the terminal alphabet T we let Lg(Y) =
{o]oe T*and Y — * o } be the set of terminal strings derivable from Y. Every string o in L (Y) denotes
a composition of production functions, so it corresponds to a uniquely defined value in D, which we shall
call val(ct). The grammar problem is to compute the value mg(Y) for each non-terminal Y of a given
abstract grammar G, where

mg(Y) =g min { val(o) | o€ La(Y) }.

Note that in general the set { val (o) | o € Lg(Y) } need not have a minimum element, and, hence, mg(Y)
need not be well defined. However, some simple restrictions on the type of production functions allowed,
which we discuss soon, guarantee that mg(Y) is well defined.

We now consider some applications and special cases of the grammar problem given in [Knut77].
Given a context-free grammar, consider the abstract grammar obtained by replacing each production
Y —>6 in the given grammar by the production ¥ —>ge(Xq,...,Xy), where Xy, ...,X, are the non-
terminal symbols occurring in © from left to right (including repetitions). If we define the production func-
tion g by

8o(X1,. .2 Xp) =g X1+ - + X+ (the number of terminal symbols in 6)

then mg(Y), the solution to the resulting grammar problem, is the length of the shortest terminal string
derivable from non-terminal Y. If we instead define g4 by

8o(X1,. . X)) =g max(xy, ..., x)+1
then mq(Y) is the minimum height of a parse tree for a string derivable from the non-terminal Y.

Let us now see how the grammar problem generalizes the single-source shortest-path problem. Every
input instance of the single-source shortest-path problem can be easily transformed into an input instance
of the grammar problem whose solution yields the solution to the original problem as follows. The new
grammar consists of one non-terminal N, for every vertex u in the given graph. For every edge u —>v in
the graph, we add a new terminal g, _,,, and the production N, —> g, _,,(N,), where the production func-
tion corresponding to g, _,, is given by g, _,,(x) = x +length (u — v). In addition, we add the production
N, — 0, where s is the source vertex, and O is a terminal representing the constant-valued function zero.

Thus, the single-source shortest-path problem (with non-negative edge lengths) corresponds to the spe-
cial case of the grammar problem where the input grammar is regular, and all the production functions g
are of the form g (x) = x+h (for some 2 >0) or g() = 0. (Strictly speaking, the grammar encoding a
shortest-path problem is not a regular grammar because of the use of the parentheses. However, this is
immaterial since the parentheses were used in the definition of the grammar problem just as a notational
convenience.) Further, the grammar problem corresponds to an SSSP problem only if contains exactly one
production of the form N —3> 0; if more than one production is of this form, then we have a “simultaneous
multi-source shortest-path problem”.

Knuth shows how Dijsktra’s algorithm for computing shortest paths can be generalized to solve the
grammar problem for a special class of abstract grammars, namely the class of SF grammars, which is
defined as follows.

A function g (x1, .. . ,x) from D* to D is said to be a superior function (abbreviated s.f.) if it is mono-
tone non-decreasing in each variable and if g (x{,...,x) = max(xy,...,x). A function g(x,,...,x)
from D* to D is said to be a strict superior function (abbreviated s.5.f.) if it is monotone non-decreasing in
each variable and if g (x;,...,x%) > max(x,,...,x). An abstract grammar in which every production
function is a superior function is said to be an SF grammar. An abstract grammar in which every produc-



tion function is a strict superior function is said to be an SSF grammar. Examples of superior functions
over (%,,<,%0) include max (x{,...,%;), x+y, and Vx2+ y2. None of these functions are strict superior
functions over the set of non-negative reals, although the later two are strict superior functions over the set
of positive reals.

Note that the abstract grammar generated by an instance of the SSSP20 problem is an SF grammar,
while the abstract grammar generated by an instance of the SSSP>0 problem is an SSF grammar.

Every instance of the grammar problem, much like every instance of the shortest-path problem, deter-
mines a collection of mutually recursive equations, which consists of the following equation for each non-
terminal Y in the grammar:

d@y=min { gdX,),...,.dEN|Y —>gX,,....X,)isaproduction ]. @)

It can be shown that the above collection of equations has a maximal fixed point if the given grammar is
an SF grammar, and that this maximal fixed point yields the solution to the SF grammar problem. Further,
as was shown by Knuth, the above collection of equations has a unique fixed point if the given grammar is
an SSF grammar. Some of these results are established in the appendix of this paper.

The Fixed Point Problem

Our approach to these problems is to view them as the computation of the unique fixed point of a collection
of equations satisfying certain properties. One of the advantages of this approach is in proving the correct-
ness of an algorithm for these problems: all we need to show is that the set of values computed by the algo-
rithm satisfy a particular set of equations.

We now define two classes of functions that generalize the class of superior and strict superior functions
respectively, which will be utilized in defining the fixed point problem. Let [i,k] denote the set of integers
{jli<j<k}. We say a function g : D*¥ —> D is a weakly superior function (abbreviated w.s.f.) if it is
monotone non-decreasing in each variable and if for every i € [1,k],

EXys e s Xy e s X)) <X = (X e Xy ey X)) =L (X e 00, LX)

We say a function g : D¥ —> D is a strict weakly superior function (abbreviated s.w.s.f.) if it is monotone
non-decreasing in each variable and if for every i € [1,k],

G, X e e X)) SX = B (K Xy e X)) = (X090 LX)
It can be easily verified that every s.f. is also a w.s.f., while every s.s.f. is also an s.w.s.f. The function
min(xy,...,x) is an example of a w.s.f. thatis not an s.f., while min (x;, ... ,x)+1 is an example of an

s.w.s.f. thatis not an s.s.f. A constant-valued function is another example of an s.w.s.f.

Now consider a collection Q of & equations in the k unknowns x; through x;, the i-th equation being
xi=gi(xl’-- .,Xk)- (T)

An equation of the above form is said to be a WSF equation if g; is a w.s.f., and an SWSF equation if g; is
an s.w.s.f.

It can be shown that if each of the equations in Q is a WSF equation then Q has a maximal fixed point.
We define the WSF maximal fixed point problem to be that of computing the maximal fixed point of a col-
lection of WSF equations. This problem generalizes the SF grammar problem, since, as we show in the
appendix, the equation (*) determined by an SF grammar is a WSF equation. An adaptation of Dijkstra’s
algorithm can, in fact, be used to solve the WSF equation problem.



However, we are interested in incremental algorithms for the fixed point problem, and it turns out to be
necessary to address a restricted version of the WSF equation problem. If each of the equations in Q is an
SWSF equation, then Q can be shown to have a unique fixed point. We define the SWSF fixed point prob-
lem to be that of computing the unique fixed point of a collection of SWSF equations. The SWSF fixed
point problem generalizes the SSF grammar problem, since each equation in the collection of equations
determined by an SSF grammar is an SWSF equation, as we show in the appendix. (The SSSP>0 problem
is obtained as yet a further special case of the SSF grammar problem; that is, when all edge lengths are
positive, the Bellman-Ford equations are all SWSF.)

Note that the expression on the right-hand side of the i-th equation (see (1)) need not contain all the vari-

ables and that the i-th equation may be more precisely written as
X = 8%y Xy 50 v+ Xy )-

We will continue to use the earlier form of the equation as a notational convenience although an algorithm
to compute the fixed point of the collection of equations can use the sparsity of the equations to its advan-
tage. We define the dependence graph of the collection Q of equations to be the graph (V,E) where V = {
x;11<i<k},and E = { x; -x; | x; occurs in the right-hand-side expression of the equation for x; }. For
the sake of brevity we will often not distinguish between the collection of equations and the corresponding
dependence graph. For instance, we will refer to the variable x; as “vertex x;”.

For convenience, we will refer to the function associated with a vertex x; by both g; and g,. Since the
function g; is part of the input, g; is also referred to as the input value associated with vertex x;. The value
that the unknown x; has in the (maximal) fixed point of the given collection of equations is referred to as
the output value associated with vertex x;.

Boundedness

Consider an input instance G of the SWSF fixed point problem. An input modification & to G may change
the equation associated with one or more of the vertices in G (simultaneously inserting or deleting edges
from G). We denote the resulting graph by G+3. A vertex u of G+ is said to be a modified vertex if the
equation associated with u was changed. The set of all modified vertices in G+6 will be denoted by
Modifiedg 5. This set captures the change in the input.

A vertex in G+6 is said to be an affected vertex if its output value in G+9 is different from its output
value in G. Let Affectedg s denote the set of all affected vertices in G+3. This set captures the change in
the output. We define Changedg s to be Modifiedg 5 v Affecteds 5. Thus, Changedg s captures the change
in the input and output.

A key aspect of the analysis of our algorithm is that we will be expressing the complexity of the algo-
rithm in terms of the “size of the change in input and output™.

The cardinality of a set of vertices K in a graph G will be denoted by |[K'|. For our purposes, a more
useful measure of the “size” of K is the extended size ||K || ¢ of K, which is defined to be the sum of the
number of vertices in K and the number of edges which have at least one endpoint in K.

Thus, the two parameters we will find useful are |Changedg 5|, which we abbreviate to |8, and
| Changedg 5 || 45, Which we abbreviate to || 8]l . The subscripts G and 6 in the above terms will be
omitted if no confusion is likely.

An incremental algorithm for the SWSF problem is said to be bounded if we can bound the time taken
for the update step by a function of the parameter || 3]s (as opposed to other parameters, such as [V (G) |



or |G1]).* It is said to be unbounded if its running time can be arbitrarily large for fixed || 8]l s. Thus, a
bounded incremental algorithm is an incremental algorithm that processes only the “region” where the
input or the output changes.

While the above definition of boundedness is applicable for the shortest-path problem, it needs to be
generalized for the SWSF problem since the cost of updating the solution to the SWSF problem after a
change in the input will depend on the cost of computing the various functions associated with the vertices.
The following definition is motivated by the observation that an incremental algorithm that processes only
the “region” where the input or the output changes will evaluate only the functions associated with vertices
in Changed v Succ(Changed). Define Cg 5 (abbreviated Cs) to be the maximum over all vertices in
Changed v Succ (Changed) of the cost of evaluating the function associated with that vertex. An incre-
mental algorithm for the SWSF problem is said to be a bounded scheduling cost algorithm if we can
bound the time taken for the update step by a function of the parameters [|3]] g and Cg 5. The algorithms
presented in Sections 4 and 5 are both bounded scheduling cost algorithms. The algorithm presented in
Section 5 is a bounded incremental algorithm for the special case of the dynamic SSSP>0 problem.

3. The idea behind the algorithm

We are given a dependence graph with n vertices xp,...,x,. Every vertex x; has an associated s.w.s.f.
function g;, and also an associated tentative output value d (x;), which denotes the correct output value of
the vertex before the dependence graph was modified. Let d* (x;) denote the actual output value that vertex
x; should have in the unique fixed point of the given collection of equations. Note that most of the follow-
ing terminology is relative to a given assignment d. The rhs value of a vertex x;, denoted by rhs (x;), is
defined to be g;(d (x1), . ..,d(x)). We say that vertex x; is consistent if

d(x)=gi(dx1),...,dx0)
and that x; is inconsistent otherwise. Two possible types of inconsistency can be identified. We say x; is
an over-consistent vertex if

d(x;) > gid(x1), ..., dx))
We say x; is an under-consistent vertex if

d(x;) < gi(dx1),...,d(x)).

A vertex u is said to be a correct vertex if d (1) = d*(u), an over-estimated vertex if d () > d*(u), and
an under-estimated vertex if d () < d*(u). Because d*(u) is not known for every vertex u during the
updating, an algorithm can only make use of information about the “consistency status” of a given vertex,
rather than its “correctness status”. The notions of over-estimated and under-estimated vertices are intro-
duced because they are needed for proving the correctness of the algorithm.

We have already seen that the SSSP>0 problem is a special case of the SWSF fixed point problem. Our
incremental algorithm for the dynamic SWSF fixed point problem can best be explained as a generalization
of Dijkstra’s algorithm for the batch shortest-path problem. To draw out the analogy, let us summarize
Dijkstra’s algorithm using the above terminology.

The collection of equations to be solved in the case of the SSSP>0 problem is the collection of Bellman-
Ford equations. In Dijkstra’s algorithm all vertices initially have a value of ce. At any stage of the algo-
rithm, some of the vertices will be consistent while all the remaining vertices will be over-consistent. The

“Note that we use the uniform-cost measure in analyzing the complexity of the steps of an algorithm. Thus, for instance, accessing the
successor of a vertex is counted as a unit-cost operation, rather than one with cost Q(log |V (G)]).



algorithm “processes” the inconsistencies in the graph in a particular order: at every stage, it chooses an
over-consistent vertex x; for which the rhs value is minimum, and “fixes” this inconsistency by changing
d (x;) to rhs (x;). The algorithm derives its efficiency by processing the inconsistencies in the “right order”,
which guarantees that it has to process every vertex at most once.

The idea behind our algorithm is the same, namely to process the inconsistencies in the graph in the right
order. The essential difference between our algorithm (for the fully dynamic problem) and Dijkstra’s algo-
rithm (for the static problem) is that we need to handle under-consistent vertices too. Under-consistent ver-
tices can arise in the dynamic shortest-path problem, for instance, when some edge on some shortest path is
deleted. We first establish via a sequence of lemmas that the inconsistencies in the graph should be pro-
cessed in increasing order of key, where the key of an inconsistent vertex x;, denoted by key (x;), is defined
as follows:

key (x;) =ay min (d(x;), 8i(dx1),...,d(xK)))-

In other words, the key of an over-consistent vertex x; is g;(d (x;), .. . ,d(xx)), while the key of an under-
consistent vertex x; is d (x;).

The following sequence of lemmas essentially establish two results concerning the order in which incon-
sistencies are to be processed. The first result addresses the concern that processing inconsistencies in an
arbitrary order may entail “unnecessary” work and lead to an unbounded algorithm. An inconsistent vertex
need not in general be incorrect; an under-consistent vertex need not in general be an under-estimated ver-
tex; and an over-consistent vertex need not in general be an over-estimated vertex. (This is not true in the
case of Dijkstra’s algorithm, where under-consistent vertices cannot exist, and every overconsistent vertex
is guaranteed to be an over-estimated vertex.) If we change the value of an inconsistent but correct vertex
to make it consistent, we may end up with an unbounded algorithm. However, as we show below in Lem-
mas 3.9 and 3.10, if u is the inconsistent vertex with the least key, then u is guaranteed to be an over-
estimated vertex if it is over-consistent, and it is guaranteed to be an under-estimated vertex if it is under-
consistent.

The second result addresses the question of how an inconsistent vertex is to be processed. We show in
Lemma 3.11 that if the inconsistent vertex with the least key is over-consistent, then its correct value can
be immediately established. No such result holds true for under-consistent vertices; however, it turns out
that an under-consistent vertex can be “processed” by simply setting its value to o, thereby converting it
into either a consistent vertex or an over-consistent vertex.

We first establish some properties of s.w.s.f. functions that will be useful later on. Thinking about an
s.w.s.f. of the form min (x+hy, . .. ,x,+h), where each &; > 0 may make it easier to understand the propo-
sition.

Proposition 3.1.

(@) Letg:D¥—>Dbeaswsf. andlet! < {1,...,k} besuch that g(xq,...,x) Sx; foreveryi e I
Then,

gU1s - Y =801, Xp)
where y; =4 if (i € I) then oo else x;.
(b) Letg :D¥—>Dbeasw.sf. andletxy,..., x besuchthat g (xy,...,x;, ... %) <x. Then,

Mgy sx) =81, o X0, XE) forally2g(xy, ... Xihe .o Xp).
Qg oy YseeanX) >y forally < g(xy,....%, ..., %)



-10-

(¢) Ifgisasw.sf.then
gy, ..., x)<gW1,. .- = Fie [Lklsuchthatx; <g(x,...,x)andx; <y

Proof.
(a) This follows by repeated applications of the definition of an s.w.s.f.

() Let xi,...,% be such that g(xy,...,x,...,%) < x;. We now prove (1). Let y 2
g1y sXiy. .. x;). Weshow that g (xy,....Y,..., %) =8{x1,....X,...,X) by assuming otherwise
and deriving a contradiction.

A ¢ 2T TN %) E_F-J 6 ST SR 79

g1,y Yre X)) #g (X1, .. .50, .., X) (since g is strictly weakly superior)
g1, nYs X)) <g(®y,...,00,...,%) (since g is monotonic)

81 s s es X)) <g(X1s. v s Xiy ... x;) (since g is strictly weakly superior)
g1y s Ysee X)) <Y (from assumption about y)

81s s Ys e X)) =g(x1,...,%,...,x%) (since g is strictly weakly superior)
gty Yree s X)=8(1,. .. X ..., %) (since g is strictly weakly superior)

Ltegeiy

The result follows. Now (2) follows as a simple consequence of (1). Suppose there exists some y <
gy, e nXiy oo X) Sx;such that g (xq,...,¥, ..., %) Sy. Thus, we have g(xq,...,y,...,%) <yand
X = g(1,...,Y>...,%). Using (1), but with the roles of x; and y reversed, we have
g1, .. X x) =81, ...,Y, ..., %) £y, which is a contradiction.

(c) We prove the contrapositive. Assume that the conclusion is false. Hence, for every
x; < g(xy,...,x) wehave x; 2 y,. Then,

g(xy,...,x) = g(z1,...,z)  where z; =4 if (; 2 g (x1,...,%)) then o else x;
(from (a))
2 g(y1,. ...y since every z; 2 y;.

(since g is monotonic)
The result follows. [

It is worth restating our goal at this point: we wish to show how the “correctness” status of some vertices
can be inferred from the “consistency” status of various vertices. In particular, we want to show that u, the
inconsistent vertex with the least key, must be an over-estimated vertex if it is over-consistent, and that u
must be an under-estimated vertex if it is under-consistent. We do so by assuming that an over-consistent
vertex u is not an over-estimated vertex and showing that there exists another inconsistent vertex v such
that key (v) < key (1), and by establishing a similar result for under-consistent vertices. We begin by show-
ing that if an over-consistent vertex u is not an over-estimated vertex or if an under-consistent vertex u is
not an under-estimated vertex then certain “local conditions” must hold true, i.e., that the predecessors of
vertex 1 must satisfy certain conditions.

Lemma 3.2. If u is any vertex such that g,(d(x,), . ..,d (x})) > d*(u), then there exists an over-estimated
predecessor v of u such that d* (v) < d*(u).

Proof.
gu(d(xl)’ e ad(xk)) > d*(u)
= g,dx),....dx) > g.d*(x),....d*(x) (by definition of d* (u))
= d*(x;) < g.(d*(x1),...,d*(x)) and d*(x;) < d(x;) for somei (from Proposition 3.1)
= d*(x;) < d*(u) and x; is an overestimated predecessor of u (by definition of d* (u))
O

Lemma 3.3. If u is an under-consistent vertex, then u must be an under-estimated vertex or 1 must have an
over-estimated predecessor v such that d* (v) < d*(u) < key (u).
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Proof. Let u be under-consistent but not under-estimated. Then, we have

g.d(x),....d(x)) > dw) (since u is under-consistent)
= g,dx),....dx)) > d*¥w) (since d (u) = d*(u) if u is not under-estimated)
= u has an over-estimated predecessor v such that d* (v) < d*(u) (from Lemma 3.2)
The result follows since d* (1) < d (u) = key (u) for an under-consistent vertex u that is not under-estimated.
O

Lemma 3.4. If u is an over-consistent vertex, then u must be an over-estimated vertex or u must have an
under-estimated predecessor v such that d (v) < key (1) < d (u).

Proof. Let u be over-consistent but not over-estimated. Then, we have

g, (d(xy), ..., d(x)) < d(w) (since u is over-consistent)
= g,dx),....dx)) < d*Ww) (since d (u) £ d*(u) if u is not over-estimated)
= gd(x1),....dx)) < gu.(@*(x1), ..., d*(x%))
= dx) < g.d(xy),....d(x)) and d(x;) < d*(x;) for some i (from Proposition 3.1)
= d(x;) < key (u) and x; is an underestimated predecessor of u.

The result follows since key (1) = g,(d (x;), . .. ,d(x)) < d (u) for an over-consistent vertex u. [

Lemma 3.5. If u is an under-estimated vertex, then u must be an under-consistent vertex or u must have an
under-estimated predecessor v such that d (v) < d(u).

Proof. The proof is quite similar to the proof of Lemma 3.4. Let u be under-estimated but not under-
consistent. Then, we have
g.(dxy),....dx) £ du) (since u is not under-consistent)
= g,dx),...,dx) < d*w) (since d (1) < d*(u) if u is under-estimated)

= g,(d(x1),...,dx)) < gu(d@*(xy1),...,d* (%))
= d(x) < g, d(x1),...,d(x)) and d(x;) < d*(x;) for some i (from Proposition 3.1)
= d(x;) <d(u)and x; is an underestimated predecessor of u.

0

We now establish some global conditions that must be satisfied for under-estimated and over-estimated
vertices to exist, by repeated application of the previous lemmas concerning local conditions.

Lemma 3.6. If u is an under-estimated vertex then there exists an under-consistent vertex v such that
key( )< d@).

Proof.

Consider the sequence ug, 45, ..., U, of under-estimated vertices defined as follows. Let ug be the
given under-estimated vertex u.

If u; (which is guaranteed to be an under-estimated vertex by construction) is not an under-consistent
vertex, then let u;,; be an under-estimated predecessor of u; such that d(u;,,) < d(u;)—such a vertex
exists, as shown by Lemma 3.5.

If u; is an under-consistent vertex, then we have key (u;) = d (u;) < d(u;) < -+ < d{u), proving the
lemma. Such an under-consistent vertex u; will be reached eventually since the graph is finite and no ver-
tex can be repeated in the sequence since the d values decrease monotonically. O

Lemma 3.7. If u is an over-estimated vertex then there exists an over-consistent vertex v such that key (v)
<d*(u) <du).

Proof.

The proof is similar to that of the previous lemma. Consider the sequence ug, 4q,..., U, of over-
estimated vertices defined as follows. Let 1, be the given over-estimated vertex u.
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If u; is such that g, (d(xy), . . . ,d(x;)) > d*(w;) then let u;,; be an over-estimated predecessor of u; such
that d* (u; ;) < d*(u;)—such a vertex exists, as shown by Lemma 3.2.

If u; is such that g, (d(xy),...,d(x)) < d*(w) then we have d*(u;) < d(w;) (since is an over-
estimated vertex by construction), and hence, g, (d (x1), . ..,d (%)) < d(;). In other words, we have an
over-consistent vertex u; such that key (u;) = g, (d (x1), . . . ,d (%)) £ d¥*(w) < -+ < d*(up), which proves
the lemma. Again, the sequence must come to an end yielding the desired over-consistent vertex since the
graph is finite. O

We are now ready to establish our main results that establish the correctness status of certain vertices
from the consistency status of all the vertices.

Lemma 3.8. If no inconsistent vertex v exists such that key (v) < d (), then u is correct.

Proof. This follows immediately from Lemmas 3.6 and 3.7, since if u is incorrect it has to be either an
under-estimated vertex or an over-estimated vertex. [l

Lemma 3.9. If u is an over-consistent vertex and no under-consistent vertex w exists such that key (w) <
key (u), then u is an over-estimated vertex.

Proof. Let u be an over-consistent vertex. Lemma 3.4 says that if u is not an over-estimated vertex then u
must have an under-estimated predecessor v such that d (v) < key (u). But if v were an under-estimated
vertex, then, from Lemma 3.6, there would exist an under-consistent vertex w such that key (w) < d(v).
The result follows. [

Lemma 3.10. If u is an under-consistent vertex and no over-consistent vertex w exists such that key (w) <
key (u), then u is an under-estimated vertex.

Proof. Let u be an under-consistent vertex. Lemma 3.3 says that if u is not an under-estimated vertex then
u must have an over-estimated predecessor v such that d*(v) < key (u). But if v were an over-estimated
vertex, then, from Lemma 3.7, there would exist an over-consistent vertex w such that key (w) < d*(v).
The result follows. [J

The following lemma shows that under certain conditions we can compute the correct d value of an
incorrect vertex immediately.

Lemma 3.11. If u is an over-consistent vertex such that there exists no inconsistent vertex v with key (v) <
key (u) then d* (1) = key (u) (which is g,(d (x1), . . . ,d (%)) by definition).
Proof. We first show that key (u) < d*(u). It follows from Lemma 3.9 that u is an over-estimated vertex.
However, Lemma 3.7 implies that there exists an over-consistent vertex x such that key (x) < d* (u). Since
u has the least key among all inconsistent vertices key () < key (x), and hence key (1) < d*(u).

We now show that key () = d* (). For every vertex v define d*(v) as follows:

d¥(v) =g if (d(v) < key (u)) then d (v) else oo
Note that any vertex v for which d(v) < key(x) must be correct from Lemma 3.8, since there can exist no
inconsistent vertex w with key (w) <d(v). Hence,
d*(v) =if (d{(v) < key (u)) then d (v) else oo
= if (d (v) < key (u)) then d* (v) else oo

> d*(v)
It follows from the definition of d*(v) that key () = g,(d (x1), . . . ,d () = gu.(d¥(x1), . . . ,d¥ (x)) (using
Proposition 3.1(a)) = g, (d*(x,), . . . ,d*(xy)) (since g, is monotonic) = d*(u). Hence, the result follows.

O
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The above lemmas suggest that we “process” the inconsistencies in order of increasing key value. If the
inconsistent vertex with the least key value happens to be over-consistent then Lemma 3.11 shows how its
correct value may be computed. If the inconsistent vertex with the least key value happens to be under-
consistent then it follows from Lemma 3.10 that it is an under-estimated vertex. However, we have no ana-
log of Lemma 3.11 that enables us to compute the correct value of such a vertex immediately. We process
such a vertex by setting its value to be o, thereby converting it into either an over-consistent or a consistent
vertex. The algorithm described in the following section is based on this idea.

4. The Algorithm

In this section we outline an algorithm for the dynamic SWSF fixed point problem. The algorithm is
described as procedure DynamicSWSF —FP in Figure 1. We assume that a dependence graph G of a collec-
tion of SWSF equations is given, and that every vertex u in the graph has a tentative output value d (u).
We assume that the set U of vertices whose associated equations have been modified is also part of the
input to the algorithm. In other words, only vertices in U may be inconsistent. The other vertices are
guaranteed to be consistent. This is the precondition for the algorithm to compute the correct solution to
the modified set of equations.

The idea behind the algorithm was explained in the previous section. The algorithm maintains the fol-
lowing invariants, and the steps in the algorithm can be understood easier in terms of the invariants. The
algorithm maintains a heap of all the inconsistent vertices—both over-consistent and under-consistent
vertices—in the graph. An overconsistent vertex u occurs in the heap with a key (priority) of
g.(d(xy),...,d(x)), while an under-consistent vertex u occurs in the heap with a key value of d (x). The
heap is used to identify the inconsistency with the least key value at every stage. For every inconsistent
vertex u, the algorithm also maintains rhs (4), the value of the right-hand side of the equation associated
with vertex u. Let us say a vertex u satisfies the invariant if (a) u occurs in Heap with key k iff u is an
inconsistent vertex with key(w) = k, and (b) if u is an inconsistent vertex then rhs(u) =
8u(d(xy1), ..., d(xp).

The algorithm makes uses of the heap operations InsertIntoHeap (Heap,item,key) and
ExtractAndDeleteMin (Heap), which need no explanation. It also uses a heap operation
AdjustHeap (Heap,i,k) that inserts an item i into Heap with key k if i is not in Heap already, and changes
the key of item i in Heap to k if i is in Heap already.

We now verify that the algorithm does indeed maintain the invariants described above. Thus, we first
need to show that all vertices satisfy the invariant whenever execution reaches line [8]. The precondition
guarantees that all the initially inconsistent vertices must be in U. In lines [1]-[7], the algorithm creates a
heap out of all the initially inconsistent vertices in the graph, and simultaneously the value ras (1) is prop-
erly defined for every inconsistent vertex u. Hence the invariant holds when execution reaches line [8] for
the first time.

The loop in lines [8]-[31] processes and “fixes” the inconsistencies in the graph one by one, in increasing
order of key value. An over-consistent vertex u is processed (lines [11]-[19]) by updating d (u) to equal
2.(d(xy),...,d(x)), the value of the right-hand side of the equation associated with vertex u. In view of
Lemma 3.11, this converts the over-estimated vertex u into a correct vertex. As a result of the assignment
of a new value to d (1) in line [11] some of the successors of u may fail to satisfy the invariant, though any
vertex which is not a successor of u will continue to satisfy the invariant. When the loop in lines [12]-[19]
completes execution all vertices are guaranteed to satisfy the invariant. In particular, lines [13]-[18] make
sure v satisfies the invariant by computing its ras value, determinihg its consistency status, and adjusting
the heap.
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procedure DynamicSWSF-FP (G, U)
declare
G : a dependence graph of a set of SWSF equations
U : the set of modified vertices in G
u, v, w: vertices
Heap: a heap of vertices

preconditions
Every vertex in V (G)-U is consistent
begin
[1] Heap:= O
[2] foru € Udo
(3] rhs(u) = g,(d(xy), ...,d(x))
4] if rhs (u) # d (u) then
[5] InsertintoHeap( Heap, u, min(rhs (u),d (u)))
[6] fi
M od
[81 while Heap = & do
9] u := ExtractAndDeleteMin( Heap )
10} if rhs(u) < d (u) then /* u is overconsistent */
[11] d(u):=rhs(u)
[12] for v € Succ(u)do
[13] rhs(v) =g, (d(x1), ..., d(x))
[14] if rhs (v) # d (v) then
[15] AdjustHeap(Heap, v, min(rhas (v),d (v)))
[16] else
[17] ifv € Heap then Remove v from Heap fi
[18] fi
[19] od
[20] else /* u is underconsistent */
[21] d(u)=oo
[22] forv € (Succ(u)v{u})do
[23] rhs (v) =g, (d(x1), .. ., d(x))
[24] if rhs (v) # d (v) then
[25] AdjustHeap(Heap, v, min(rhs (v),d (v)))
[26] else
127] if v € Heap then Remove v from Heap fi
[28] fi
[29] od
[30] fi
[31] od
end
postconditions

Every vertex in V(G) is consistent

Figure 1. An algorithm for the dynamic SWSF fixed point problem.

An under-consistent vertex u is processed (lines [21]-[30]) by updating d (u) to equal oo, followed by an
appropriate updating of the heap. In view of Lemma 3.10, this step converts an under-estimated vertex into
either an over-estimated vertex or a correct vertex. Following the assignment of a new value to d(u) in
line [21], only u or some successor of u can fail to satisfy the invariant. These vertices are appropriately
processed in lines [22]-[29], and hence the invariant is satisfied whenever execution reaches line [8].

To understand how the algorithm makes progress towards the correct solution consider how the correct-
ness status of the vertices in the graph change. In each iteration of the loop in lines [8]-[31] the value, and
hence the correctness status, of only one vertex (namely u) changes. In particular, in each iteration exactly
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one of the following happens. (1) An over-estimated vertex becomes correct. (2) An under-estimated ver-
tex becomes over-estimated. (3) An under-estimated vertex becomes correct. In particular, the value of a
correct vertex is never changed. An initially (i.e., at the beginning of the algorithm) over-estimated vertex
changes value exactly once. An initially under-estimated vertex changes values at most twice (either to the
correct value oo, or first to e and then to the correct final value). It follows that the algorithm must ter-
minate,

Since the heap is empty when the algorithm terminates, it follows immediately from the loop invariant
that there exists no inconsistency in the graph when the algorithm halts. In particular, the computed d
values form the unique fixed point of the collection Q of equations.

Let us now determine the time complexity of the algorithm. Recall that Cg is a bound on the time
required to compute the function associated with any vertex in Changed © Succ (Changed). The initializa-
tion in lines [1]-[7] involves |U | function evaluations and |/ | heap operations (insertions) and conse-
quently takes O(|U | - (Cs+log| U |)) time, which is O (|8] - (Cs+log|d|)) time since U is Modified s.

Every vertex that is in the heap at some point during the execution must be an affected vertex or the suc-
cessor of an affected vertex. Hence, the maximum number of elements in the heap at any point is O (|3 |),
and every heap operation takes O (log||3]]) time. It follows from the explanation given earlier that lines
[111-[19] are executed at most once for each affected vertex u. In these lines, the function associated with
every vertex in Succ () is evaluated once, and at most |Succ (1) ] heap operations are performed. Hence,
the lines [11]-[19] take O(|| {u} || - (Cs+logll8]|)) time (in one iteration). Lines [20]-[30] are similarly
executed at most once for each affected vertex u. Consequently, lines [20]-[30] also take time
Ol {u} |l - (Cs+logll 811)) time (in one iteration).

Consequently, the whole algorithm runs in time O([I8]] - (logll8]l +C5s)), and the algorithm is a
bounded scheduling cost algorithm.

5. AnImproved Algorithm

The algorithm presented in the previous section is not the most efficient incremental algorithm for the
SSSP>0 problem. The source of inefficiency is that the algorithm assumes that each function g; is an
s.w.s.f. and no more. The functions that arise in the shortest-path problem (and in any SSF grammar prob-
lem), however, have a special form. The function corresponding to a vertex u other than the source is

rgind( )[d(v)+length (u —v)]. Such expressions permit the possibility of incremental computation of
v e rea(u

the expression itself. For instance, evaluating this value from scratch takes time &(|Pred (u)|), while if
the value of this expression is known, and the value of d(v) decreases for some v € Pred(u), the new
value of the expression can be recomputed incrementally in constant time. Note that this kind of incremen-
tal recomputation of an expression’s value is performed repeatedly in Dijkstra’s algorithm for the batch
SSSP=0 problem. Unfortunately, an incremental algorithm for the SSSP problem has to also contend with
the possibility that the value of d(v) increases for some v € Pred(u). The need to maintain the value of

the expression rgind( )[ d(v)+length(u —>v)] as the values of d (v) change immediately suggests the pos-
v € Frea(u

sibility of maintaining the set of all values { d(v)+length(u—>v) | v € Pred(u) } as a heap. Our
approach is to maintain a particular subset of the set { d(v)+length(u—>v) | v € Pred(u) } as a heap,
since maintaining the whole set as a heap requires unnecesary work.

In this section we present a more efficient version of algorithm DynamicSWSF —FP that utilizes the spe-
cial form of the equations induced by the SSF grammar problem. The algorithm is described as procedure
DynamicSSF -G in Figure 2. The algorithm, as presented, addresses the dynamic SSF grammar problem,
and, hence, might appear to be less general than the algorithm presented in the previous section, which
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procedure DynamicSSF-G (G, P)
declare
G : a SSF grammar
P : the set of modified productions in ¢
GlobalHeap: a heap of non-terminals
preconditions
Every production in G—P is consistent. (See Definition 5.1)

procedure recomputeProductionValue(p)

declare
p : a production

begin
[1] let p be the production ¥ — g(X,, ..., X})
[2] value = g(d(X,), ..., dX))
[3] if (value < d(Y)) then
4] AdjustHeap( Heap (Y), p, value)
[5] else
[6] ifp € Heap (Y) then Remove p from Heap (Y) fi
71 fi
[8] if (value <d(Y)) then SP(Y) :=SP(Y)uv{p) else SP(Y) =SP¥)-{p} fi
9] if SP(Y)=)then /[*Y is under-consistent */
[10] AdjustHeap( GlobalHeap, Y, d (Y))
[11] elseif Heap (Y) = @ then /[* Y is over-consistent */
[12] AdjustHeap( GlobalHeap, Y, min—key (Heap (Y)))
[13] else /* Yis consistent */
[14] if Y € GlobalHeap then Remove Y from GlobalHeap fi
[15] fi

end

begin
[16] GlobalHeap := &
[17] for every productionp € P do

[18] recomputeProductionValue(p)

[19] od

[20]  while GlobalHeap = & do

[21] Select and remove from GlobalHeap a non-terminal X with minimum key value
[22] if key (X) < d (X) then /* X is overconsistent */

{23] d(X) = key (X)

[24} SP (X) := { p| p is a production for X such that value (p) =d (X) }

[25] Heap (X) =0

[26] for every production p with X on the right-hand side do

1271 recomputeProductionValue(p)

[28] od

[29] else /* X is underconsistent */

[30] d(X) = oo

[31] SP(X) = { p|pis a production for X }

[32] Heap (X)) := makeHeap({ p | p is a production for X with value (p) <d(X) })
[33] if Heap (X)) # @& then AdjustHeap( GlobalHeap, X, min—key (Heap (X))) fi
[34] for every production p with X on the right-hand side do

{351 recomputeProductionValue(p)

[36] od

[37] fi

[38] od

end

postconditions

Every non-terminal and production in G is consistent

Figure 2. An algorithm for the dynamic SSF grammar problem.
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addresses the dynamic SWSF fixed point problem. Procedure DynamicSSF -G can, in fact, be used for the
dynamic SWSF fixed point problem with some simple modifications, though it will be more efficient than
procedure DynamicSWSF —FP only when the equations have the special form described above. We
address the less general SSF grammar problem here since it is this problem that motivates the improve-
ments to the algorithm, but emphasize that the improved algorithm is as general as the original algorithm in
terms of the class of problem instances that it can handle. (It is because of the latter reason that we refer to
procedure DynamicSSF —G as an improvement of DynamicSWSF —FP rather than merely a specialization
of DynamicSWSF —FP.)

We first explain the idea behind the algorithm, then prove the correctness of the algorithm, and finally
analyze its time complexity.

We assume that an SSF grammar is given, and that every non-terminal X in the grammar has a tentative
output value d(X). We assume that the change in the input takes the form of a change in some of the pro-
ductions and production functions of the grammar. This type of modification is general enough to include
insertions and deletions of productions as well, since a non-existent production can be treated as a produc-
tion whose production function is the constant-valued function e. The insertion or deletion of non-
terminals can be handled just as easily. So we assume that the input to the algorithm includes a set P of
productions whose production functions have been modified.

The steps given in lines [16]-[38] implement essentially the same idea as procedure DynamicSWSF —FP,
A heap, called GlobalHeap, of all the inconsistent non-terminals is maintained as before, and in each itera-
tion the inconsistent non-terminal X with the least key is processed, just as before. In DynamicSWSF ~FP a
change in the value of a vertex was followed by the complete re-evaluation of the function associated with
the successors of that vertex, in order to identify the change in the consistency status of those vertices.
This is the step that the new algorithm, procedure DynamicSSF —G, performs differently. The new algo-
rithm identifies changes in the consistency status of other non-terminals in an incremental fashion. We
now describe the auxiliary data structures that the algorithm uses to do this. These auxiliary data structures
are retained across different invocations of the procedure.

Note that the value associated with a non-terminal X is d(X). We define the value of a production
Y —>gXy,....X,) tobe gdXy),...,d(X,)). For every non-terminal X, the algorithm maintains a set
SP (X) of all productions with X as the left-hand side whose value is less than or equal to d(X). Actually
we need to maintain only the cardinality of this set, but we use the set itself since it makes the algorithm
easier to understand. The algorithm also maintains for every non-terminal X a heap Heap (X) of all the
productions with X as the left-hand side whose value is strictly less than 4 (X), with the value of the produc-
tion being its key in the heap.

Consider a production p =Y —> g(X,,...,X;). We say that the production p satisfies the invariant if
(@) p € SP(Y) iff value (p) <d(Y) and (b) p € Heap (Y) iff value (p) < d(¥). Thus, we want to maintain
SP (Y) and Heap (Y) such that all productions satisfy the invariant. However, both at the beginning of the
update and temporarily during the update, several productions may fail to satisfy the invariant.

We use these auxiliary data structures to determine the consistency status of non-terminals. Note that a
non-terminal X is under-consistent iff SP (X) is empty and d (X) < ,” in which case its key is d (X); X is
over-consistent iff Heap (X) is non-empty, in which case its key is given by min—key (Heap (X)), the key of

5In general, the condition that SP (X) be empty subsumes the condition that d (X) be less than e, The latter condition is relevant only
if no production has X on the left-hand side.
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the item with the minimum key value in Heap (X). The invariant that GlobalHeap satisfies is that every
non-terminal X for which SP (X) is empty and d (X) is less than co occurs in GlobalHeap with a key of
d (X), while every non-terminal X for which Heap (X) is non-empty occurs in GlobalHeap with a key of
min—key (Heap (X)). It follows from the preceeding explanation that GlobalHeap consists of exactly the
inconsistent non-terminals with their appropriate keys.

We now show that the algorithm maintains these data structures correctly and that it updates the solution
correctly. However, we first need to understand the precondition these data structures will have to satisfy
at the beginning of the algorithm.

Definition 5.1. A production p =Y —>g(X1, ..., X}) is said to be consistent if (a) p ¢ Heap(Y) and (b)
either value (p) =d(Y) and p € SP (Y) or value (p) > d(Y) and p ¢ SP(Y). In other words, p is consistent
iff it satisfies the invariant and, in addition, value (p) =2 d (Y).

The precondition we assume to hold at the beginning of the update is that every unmodified production is
consistent. The invariant the algorithm maintains is that whenever execution reaches line [20] every pro-
duction satisfies the invariant, and that the GlobalHeap contains exactly the inconsistent non-terminals.
The postcondition established by the algorithm is that every production and non-terminal in the grammar
will be consistent.

The procedure recomputeProductionValue(p) makes production p consistent by evaluating its value (in
line [2]) and updating the data structures SP (¥) (line [8]) and Heap (Y) (lines [3]-[7]) appropriately, where
Y is the left-hand side of p. These changes are followed by appropriate updates to GlobalHeap in lines
[9]-[15]. Note that some of these steps can be redundant, in the sense that they do nothing. For instance, if
the value of the production does not change, then steps [2]-[15] will not make any change to the data struc-
tures.

We now show that whenever execution reaches line [20] every production satisfies the invariant, and
GlobalHeap contains exactly the inconsistent non-terminals. The lines [16]-[19] initially establish the
invariant. Subsequently, in each iteration of the loop in lines [20]-[38], whenever the value of a non-
terminal changes (either in line [23] or line [30]) procedure recomputeProductionValue(p) is called for
every production p that might have become inconsistent. Thus, the invariant is re-established.

It follows from the explanation in the previous paragraph that every non-terminal and production in the
grammar is consistent when the algorithm halts.

Let us now consider the time complexity of the improved algorithm. In Section 4, algorithm
DynamicSWSF —FP dealt with the dependence graph of a collection of SWSF equations. There, the indivi-
dual equations were treated as indivisible units in that an equation was the smallest unit of the input that
could be modified. The algorithm outlined in this section, however, specifically deals with the equations
generated by an SSF grammar. A finer granularity of input modifications is made possible by allowing
individual productions to be modified. Consequently, it is necessary to consider a refined version of the
dependence graph in analyzing the time complexity of the algorithm,

The bipartite graph B = (N,P,E) consists of two disjoint sets of vertices N and P, and a set of edges E
between N and P. The set N consists of a vertex ny for every non-terminal X in the grammar, while the set
P consists of a vertex n, for every production p in the grammar. For every production p in the grammar,
the graph contains an edge ny —» n, for every non-terminal X that occurs on the right-hand side of p, and an
edge n, — ny where Y is the left-hand side non-terminal of p. The set Affected consists of the set of all ver-
tices ny where X is a non-terminal whose output value changes, while the set Modified consists of the set of
all vertices n,, where p is a modified production. The set Changed is Affected v Modified.
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Let us first consider the time spent in the main procedure, namely lines [16]-[38]. As explained in the
previous section, the loop in lines [20]-[38] iterates at most 2 - |Affected | times. Lines [23]-[28] are exe-
cuted at most once for every affected non-terminal X, while lines [30]-[36] are similarly executed at most
once for every affected non-terminal X. Consequently, the steps executed by the main procedure can be
divided into (a) O (|| Changed || 3) invocations of the procedure recomputeProductionValue (lines [18],
[27] and [351), (b) O (| Affected |) operations on GlobalHeap (line [21]), and (c) the remaining steps, which
take time O (|| Changed | ).

Let us now consider the time taken by a single execution of procedure recomputeProductionValue. The
procedure essentially performs (a) one function computation (line [2]), (b) O (1) set operations (lines [3]
and [91), (c) O (1) Heap (Y) operations (lines [4] or [6]), and (d) O (1) GlobalHeap (Y) operations (lines
[10], [12] or [14]). The set operations on SP (¥) can be done in constant time by associating every produc-
tion Y —> g (X4, . ..,X,) with a bit that indicates if it is in the set SP (¥) or not. It can be easily verified
that each Heap (Y) and GlobalHeap have at most || Affected || 5 elements. Consequently, each heap opera-
tion takes at most log || Affected || g time.

As before, Cy 5 is a bound on the time required to compute the production function associated with any
production in Changed L Succ (Changed). Then, procedure recomputeProductionValue itself takes time
O (log || 81 3+ Cs,5). Hence, the whole algorithm runs in time O (|| Sllp- (ogliSlip+Cps)).

Let us now consider the SSSP>0 problem. Each production function can be evaluated in constant time
in this case, and, hence, the algorithm runs in time O (]| §|{log||81|). (Note that in the case of the SSSP>0
problem the input graph G and the bipartite graph B are closely related, since each “production” vertex in B
corresponds to an edge in G. Hence, |81l = 0 (lI6ll).)

We now consider a special type of input modification for the SSSP>0 problem for which it is possible to
give a better bound on the time taken by the update algorithm. Assume that the change in the input is a
homogeneous decrease in the length of one or more edges. In other words, no edges are deleted and no
edge-length is increased. In this case it can be seen that no under-consistent vertex exists, and that the
value of no vertex increases during the update. In particular, the AdjustHeap operations (in lines [4], [10],
and [12]) either perform an insertion or decrease the key of an item. Lines [6] and [14] are never executed.
Consequently, procedure recomputeProductionValue takes time O (1) if relaxed heaps [Dris88] or
Fibonacci heaps [Fred87] are used. (In the latter case, the time complexity is the amortized complexity.) It
can also be verified that the number of elements in any of the heaps is O (|6]). Hence, the algorithm runs
in time O (]|8]] + |8|log|8]). In particular, if m edges are inserted into an empty graph with n vertices,
the algorithm works exactly like the O (m +n log n) implementation of Dijkstra’s algorithm due to Fredman
and Tarjan [Fred87]. The asymptotic complexity of the algorithm can be further improved by using the
recently developed AF-heap data structure [Fred90].

6. Extensions to the Algorithm
In this section we briefly outline various possible extensions and applications of the incremental algorithm
described in the previous section.

6.1. Maintaining Minimum Cost Derivations

We have so far considered only the problem of maintaining the cos¢ of the minimum cost derivations, and
not the problem of maintaining minimum cost derivations themselves. However, the algorithm outlined in
the previous section can be easily extended to maintain the minimum cost derivations too. The set SP (X)
computed by the algorithm is the set of all productions for X that can be utilized as the first production in
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minimum cost derivations of terminal strings from X. Hence, all possible minimum cost derivations from a
non-terminal can be recovered from this information. In particular, consider the SSSP>0 problem. Every
production p for a non-terminal N, corresponds to an incoming edge u — v of vertex v, where v is a vertex
other than the source. The production p will be in SP (N, ) iff a shortest path from the source to u followed
by the edge u — v yields a shortest path from the source to v. Hence, a single shortest-path from the source
vertex to any given vertex can be identified in time proportional to the number of edges in that path, pro-
vided the set SP (X) is implemented so that an arbitrary element from the set can be chosen in constant
time. As explained earlier, the various sets SP (X) can be implemented by associating a bit with every
edge. If the set of all edges in a set SP (X) are also combined into a doubly linked list, then an arbitrary ele-
ment from the set can be chosen in constant time.

6.2. The All-Pairs Shortest-Path Problem

We have seen that the algorithm outlined in the previous section can be utilized in updating the solution to
the single-source (or the single-sink) shortest-path problem when the underlying graph undergoes
modifications. We briefly sketch how this algorithm can be adapted to update the solution to the all-pairs
shortest-path problem too. The essential approach is to make repeated use of our incremental algorithm for
the SSSP>0 problem. However, it is not necessary to update the single-source solution for every vertex in
the graph; it is possible to identify a subset of the vertices for which it is sufficient to update the single-
source solution. Let u; —v;, for 1 <i <k, be the set of modified (inserted or deleted) edges. Let d(x,y)
denote the length of a shortest path from x to y. Then, for any two vertices s and ¢, d(s,¢) can change only
if for some i € [1,k] both d(s,v;) and d(u;,t) change. Hence, by updating the single-source solution for
every u;, we can identify the set of vertices ¢ for which the single-sink solution will change. Similarly, by
updating the single-sink solution for every v;, we can identify the set of vertices s for which the single-
source solution will change. Then, we can update the single-sink solution and the single-source solution
only for those vertices for which the solution can change. However, we note that for certain special cases,
such as updating the solution to the APSP>0 problem after the insertion of an edge, this approach does not
yield the best possible incremental algorithm. (See [Rama91], for instance.)

6.3. Handling Edges with Non-Positive Lengths

The proof of correctness of our algorithm and the analysis of its time complexity both rely on the fact that
all edges have a positive length. We now discuss some types of input changes for which this restriction on
the edge lengths can be somewhat relaxed. We first consider zero-length edges. It can be shown that if the
change in the input graph is a homogeneous decrease in the length of one or more edges then the algorithm
works correctly as long as all edges have a non-negative length (i.e., zero-length edges do not pose a prob-
lem). Similarly, if the input change is a homogeneous increase in the length of one or more edges then the
algorithm works correctly as long as all edges have a non-negative length and there are no cycles in the
graph of zero length (i.e., zero-length edges do not pose a problem as long as no zero-length cycles exist in
the graph).

We now consider negative length edges. For certain types of input modifications it is possible to use a
variant of our incremental algorithm to update the solution to the SSSP problem (with arbitrary edge
lengths), as long as all cycles in the graph have a positive length. The idea is to adapt the technique of
Edmonds and Karp for transforming the length of every edge to a non-negative real without changing the
graph’s shortest paths [Edmo72, Tarj83]. Their technique is based on the observation that if fis any func-
tion that maps vertices of the graph to reals, and the length of each edge a —b is replaced by
f (@) + length (a — b) — f (b), then the shortest paths in the graph are unchanged from the original edge-
length mapping. If f satisfies the property that f (a) + length(a —b) — f (b) 2 0 for every edge a—b in
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the graph, then the transformed length of every edge will be positive.

Now consider the incremental SSSP problem. Let d,;(u) denote the length of the shortest path in the
input graph G from source (G) to u before G was modified. Consider the effect of the above edge-length
transformation if we simply define f (1) to be d,(1). First note that the transformation is well-defined
only for edges a — b such that d,;;(b) is not co. For every edge a — b in the original graph we have d,;;(b)
< d,u(a) + length, (a—b). Consequently, dyu(a) + length,a(a—>b) — dya(b) 2 0. Hence, the
transformed length of an edge a — b will be non-negative as long as lengthy,,(a — b) 2 length,y(a — b)
(i.e., as long as the length of the edge a — b was not decreased during the input modification), and d,..(b)
is not e,

In particular, this idea can be used to adapt our incremental algorithm to update the solution to the SSSP
problem when the lengths of a collection of edges are increased (possibly to o), and no edge is inserted or
no edge-length is decreased. This will work since the length of an edge a — b is relevant only if a can be
reached from the source vertex and, hence, only if both d,,(a) and d,(b) are finite. The transformed
length of all such edges are non-negative, and our incremental algorithm is applicable as long as there are
no cycles of zero length in the graph. Note that it is not necessary to compute the transformed length for all
edges at the beginning; instead, the transformed length of an edge can be computed as and when the length
of that edge is needed. This is essential to keep the algorithm a bounded one.

The technique of edge-length transformation can also be used in a special case of edge insertion or
edge-length decrease. Assume that the length of a set of edges F, all directed to a specific vertex u that was
already reachable from the source, are decreased (possibly from eo). The above edge-length transformation
makes the lengths of all relevant edges non-negative. The transformed length of the edges in F are not
guaranteed to be non-negative; however, this causes no difficulties because edges directed to u are in a
sense irrelevant to the updating algorithm. We leave the details to the reader.

6.4. The Batch Shortest-Path Problem in the Presence of Few Negative Edges

Yap [Yap83] describes an algorithm for finding the shortest path between two vertices in a graph that may
include edges with negative length. This algorithm works better than the standard Bellman and Ford algo-
rithm when the number of negative length edges is small. An algorithm with a slightly better time com-
plexity can be obtained by making use of the incremental algorithms for the SSSP problem. The latter
algorithm in fact solves the single-source or single-sink problem rather than just the single-pair problem.

We first consider the time complexity of Yap’s algorithm. Let G be the given graph. Let n denote the
number of vertices in G and let m denote the number of edges in G. Let & denote the number of edges
whose length is negative, and let k denote min (h,n). Yap’s approach reduces a single-pair shortest path
problem on the given graph G to min(k+1,n) SSSP20 problems on the subgraph of G consisting of only
non-negative edges, and a single pair shortest path problem on a graph consisting of O (k) vertices and
O (k?) edges of arbitrary (that is, both positive and negative) lengths. This yields an O (k[m +nlogn]+k?)
algorithm for the problem, which is better than the standard O (mn) algorithm for sufficiently small k.
(Actually, Yap describes the time complexity of the algorithm as O (kn 2y, since he makes use of Dijkstra’s
O (n?) algorithm. The above complexity follows from Fredman and Tarjan’s [Fred87] improvement to
Dijkstra’s algorithm. The complexity of the above algorithm can be improved slightly by utilising the
recent O (m + nlogn /loglogn) shortest path algorithm due to Fredman and Willard [Fred90]).

We now consider how our incremental algorithm for the shortest-path problem can be used to solve this
problem better. Let uy, ... ,u be the set of all vertices in the graph that have an incoming edge of nega-
tive length. Thus k” < k. First replace all the negative edges in the given graph G with zero weight edges.
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Compute the solution to this graph by using, say, the Fredman-Tarjan improvement to Dijkstra’s algorithm.
Now process the vertices u, . . . , 4y one by one. The vertex y; is processed by restoring the length of all
the edges directed to u; to their actual value and updating the solution using the adaptation of our incremen-
tal algorithm explained in Section 6.3.

The updating after each insertion step takes O (m +n logn) time in the worst case. Hence, the algorithm
runs in time O (k’[m+nlognl). In general, the algorithm can be expected to take less time than this
bound, since all the update steps have bounded complexity.

7. Related Work

In this paper we have presented an incremental algorithm for the dynamic SWSF fixed point problem. The
dynamic SWSF fixed point problem includes the dynamic SSF grammar problem as a special case, which,
in turn, includes the dynamic SSSP>0 problem as a special case. Thus, we obtain an incremental algorithm
for the dynamic SSSP>0 problem as a special case of algorithm DynamicSSF -G, which was described in
Section 5. We have also described how the algorithm can be generalized to handle negative edge lengths
under certain conditions, and how the algorithm for the dynamic single-source shortest-path problem can
be utilized for the dynamic all-pairs shortest-path problem as well.

Knuth [Knut77] introduced the grammar problem as a generalization of the shortest-path problem, and
generalized Dijkstra’s algorithm o solve the batch SF grammar problem. We know of no previous work
on incremental algorithms for the dynamic grammar problem.

Previous work on algorithms for the dynamic shortest-path problem include papers by Murchland
[Murc, Murc67], Loubal [Loub67], Rodionov [Rodi68], Halder [Hald70], Pape [Pape74], Hsieh ez al.
[Hsie76], Cheston [Ches76], Dionne [Dion78], Goto et al. [Goto78], Cheston and Corneil [Ches82],
Rohnert [Rohn85], Even and Gazit [Even85], Lin and Chang [Lin90], Ausiello et al. [Ausi90, Ausi9l1], and
Ramalingam and Reps [Rama91]. These algorithms may be classified into groups based on (a) the infor-
mation computed by the algorithm (such as the whether the all-pairs or single-source version of the prob-
lem is addressed), (b) the assumptions made about the edge lengths, and (c) the type of modification that
the algorithm handles. What distinguishes the work reported in this paper from all of the work cited above
is that it is the first incremental algorithm that places no restrictions on how the underlying graph can be
modified between updates. This work addresses the single-source shortest-path problem, with the restric-
tion that all edges be positive. Section 6 discusses several extensions and refinements of this work.

The remainder of this section provides a brief overview of the different groups of dynamic shortest-path
algorithms, the different techniques utilized by the various algorithms, and a brief comparison of the dif-
ferent algorithms. The table in Figure 3 summarizes this discussion. We remind the reader that our com-
ments about the cases of an edge-insertion or an edge-deletion apply equally well to the cases of a decrease
in an edge length and an increase in an edge length, respectively.

We begin with the version of the problem that has been studied the most, namely the all-pairs version.
Given a graph G and a modification & to the graph, let dyyu(x,y) and dy,,,(x,y) denote the length of a shor-
test path from x to y in the graphs G and G +§ respectively. The pair (x.y) is said to be an affected pair if
d,,,(x,y) is different from d,,(x,y). A vertex x is said to be an affected source if there exists a vertex y
such that (x,y) is an affected pair; similarly x is said to be an affected sink if there exists a vertex y such that
(y,x) is an affected pair.

Let us now consider the problem of processing the insertion of an edge u —v. This problem is in some
sense the easiest among the various versions of the dynamic shortest-path problem; at least, it is fairly
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Problem Modifications Best bounded Other bounded Unbounded

algorithm(s) algorithms algorithms

APSP Single Edge Insertion [Lin90], [Ausi91] | [Rama91], [Dion78], [Rodi68],

[Rohn85], [Even85] [Loub67], [Murc67]

APSP Single Edge Deletion [Rohn85], [Even85],
[Dion78], [Rodi68],
[Murc67]

APSP-Cycle>0 | Single Edge Deletion [Rama91]

APSP>0 Single Edge Deletion [Hald70]

APSP>0 Arbitrary Modification This paper Repeated applications
of algorithms for unit
changes

Multiple SSSP | Multiple Edges Insertion [Goto78]

SSSP>0 Arbitrary Modification This paper

$SSP-Cycle>0 | Multiple Edges Deletion | This paper

SSSP Restricted Edge Insertion | This paper [Goto78]

Figure 3. Various versions of the dynamic shortest-path problem and incremental algorithms for them. Note that
APSP>0 and SSSP>0 refer to problems where every edge is assumed to have positive length, while APSP-Cycle>0 and
SSSP-Cycle>0 refer to problems where every cycle is assumed to have positive length, with no restrictions on edge
lengths. The modification referred to in the last item of the table, namely “restricted edge insertion”, is the insertion of
one or more edges, all directed to the same vertex, a vertex that must already be reachable from the source.

straight-forward to determine d,,,(x,y) in constant time, for any given pair of vertices (x,y) since

dnew(x’y) = min ( dold(x,y)’ dold(x7u) + lengthnew(u - V) + dold(vvy) ) (i)

Computing d,,,(x,y) for every pair of vertices (x,y) using the above equation takes time O (n?), which is
better than the time complexity of the best batch algorithm for APSP. Most of the known algorithms for
this problem do even better by first identifying an approximation A to the set of all affected pairs and then
updating d(x,y) only for (x,y) € A. The best algorithm currently known for this problem, developed
independently by Lin and Chang [Lin90] and Ausiello et al. [Ausi91], restricts the set of pairs of vertices
for which the d value is recomputed by a careful traversal of the shortest-path trees of the graph before the
modification. The algorithm due to Even and Gazit [Even85] is similar and identifies the same set of pairs
of vertices but is slightly less efficient since it does not maintain shortest-path trees. The algorithms due to
Rohnert [Rohn85] and Ramalingam and Reps [Rama91] are based on similar ideas, though they are not as
efficient as the algorithms of [Lin90] and [Ausi91]. All of the above algorithms are bounded algorithms. It
is worth mentioning that the improved efficiency of the algorithms described in [Lin90] and [Ausi91] is
obtained at a cost: these algorithms make use of the shortest-path-tree data structure, the maintenance of
which can make the processing of an edge-deletion more expensive. The algorithms due to Murchland
[Murc67], Dionne [Dion78], and Cheston [Ches76] are all based on the observation that x is an affected
source [sink] iff (x,v) [(,x)] is an affected pair. These algorithms identify the set of affected sources S,
and the set of affected sinks S, in O (n) time using equation (%), and use S, X §, as an approximation to
the set of affected pairs. Consequently, these algorithms are unbounded.

Let us now consider the problem of processing the deletion of an edge u — v from the graph. Edge dele-
tion is not as easy to handle as edge insertion. As Spira and Pan [Spir75] show, the batch all-pairs
shortest-path problem can, in some sense, be reduced to the problem of updating the solution to the all-
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pairs shortest-path problem after an edge deletion. An incremental algorithm that saves only the shortest-
paths information cannot, in the worst-case, do any better than a batch algorithm, which is not true in the
case of edge insertion.

Most algorithms for processing an edge deletion follow the approach of first identifying an approxima-
tion A to the set of all affected pairs, and then computing the new d value for every affected pair.
Ramalingam and Reps [Rama91] show that it is possible to identify the set of affected pairs exactly if the
graph does not have zero-length cycles, and describe the only known bounded incremental algorithm for
this problem. This algorithm is based on the repeated application of a bounded algorithm for the dynamic
SSSP>0 problem (see below). The set of all affected sinks is identified by using the algorithm for the
dynamic SSSP>0 problem with u as the source, since x is an affected sink iff (u,x) is an affected pair. The
APSP solution can then be updated by updating the single-sink solution for every affected sink.

The algorithms due to Rohnert [Rohn85] and Even and Gazit [Even85] can also be viewed as consisting
of the repeated application of an algorithm for the dynamic SSSP problem, though they are not described as
such. These algorithms, however, do not identify the set of affected pairs exactly. A vertex pair (x,y) is
treated as a possibly affected pair iff u — v is in the current shortest path from x to y that the algorithm
maintains. (Note that an alternative shortest path from x to y that does not contain edge u — v might exist
in the original graph, and hence (x,y) might not be an affected pair.) However, these algorithms have the
advantage that they work even in the presence of zero-length cycles.

All the above-mentioned algorithms use an adaptation of Dijkstra’s algorithm to solve the dynamic SSSP
algorithm. The algorithms can, however, be adapted to handle negative length edges using the technique
outlined in Section 6.3. The algorithms due to Rodionov [Rodi68], Murchland[Murc67], Dionne [Dion78],
and Cheston [Ches76], are all based on a different, and less efficient, technique of computing the new d
value for every pair in A, the approximation to the set of affected pairs, using an adaptation of Floyd’s
algorithm for the batch shortest-path problem. A vertex pair (x,y) is considered to be possibly affected and
is included in A iff d,;5(x,y) = doa(x,u) + length,s(u —v) + dya(v,y). The adapted version of Floyd’s
algorithm differs from the original version in that in each of the n iterations only the d values of vertex
pairs in A are recomputed. This algorithm runs in O (|A | - ) time.

Let us now consider the problem of updating the solution to the APSP problem after non-unit changes to
the graph. This problem has not received much attention. The algorithm outlined in Section 6.2 for the
dynamic APSP>0 problem is the only known incremental algorithm for any version of the dynamic APSP
problem that is capable of handling insertions and deletions of edges simultaneously. Goto and
Sangiovanni-Vincentelli [Goto78] outline an incremental algorithm for updating the solution to multiple
SSSP problems on the same graph when the lengths of one or more edges in the graph are decreased.
Rodionov [Rodi68] considers the problem of updating the solution to the APSP problem when the lengths
of one or more edges all of which have a common endpoint are decreased.

Versions of the shortest-path problem other than the all-pairs version have not received much attention
either. Goto and Sangiovanni-Vincentelli [Goto78] consider the dynamic version of the problem of solving
multiple single-source shortest-path problem: given a graph G and a set of source vertices S, determine the
length of the shortest path between s and u for every source vertex s and every vertex u. Hence, the algo-
rithm in [Goto78] applies to the single-source problem as a special case. The only other results concerning
the dynamic SSSP problem appear in [Rama91] and this paper.

Loubal [Loub67], and Halder [Hald70] study a generalization of the all-pairs shortest-path problem,
where a subset S of the vertices in the graph is specified and the shortest path between any two vertices in S
have to be computed.
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In conclusion, the work described in this paper differs from the previous work in this area in several
ways. First, the incremental algorithm we have presented is first algorithm for any version of the dynamic
shortest-path problem that is capable of handling arbitrary modifications to the graph (i.e., multiple hetero-
geneous changes to the graph). Second, the version of the dynamic shortest-path problem we address,
namely the single-source version, has been previously considered only in [Goto78]. The algorithm
described in this paper is more efficient and capable of handling more general modifications than the algo-
rithm described in [Goto78]. (However, the latter algorithm, unlike our algorithm, can handle negative
edge lengths.) Finally, we have generalized our algorithm for a version of the dynamic fixed point prob-
lem.

Appendix

In this appendix we prove the claims made in Section 2 concerning the relationship between the various
versions of the grammar problem and the various versions of the fixed point problem. We show how the
SF grammar problem can be reduced to the problem of computation of the maximal fixed point of a collec-
tion of WSF equations, and how the SSF grammar problem can be reduced to the problem of computing
the unique fixed point of a collection of SWSF equations. We begin by showing that the class of w.s.f. and
s.w.s.f. functions are closed with respect to function composition.

Proposition A.1.
(@I g(xy,...,x)isasw.s.f. then so is the function A (x4, . . . ,x,) defined by

h(xl,. .o ,Xm) “def g(xjx,. . .,le)

where every j; € [1,m]. Similarly, if g is a w.s.f. then so is h.
(b)Y Let f (xq,...,x) beaw.sf.,and let g;(xy,...,%,) be asw.s.f. forevery j € [1,k]. The function
h(xq,...,X,) defined as follows is a s.w.s.f. too.

h(xl’ e ’xm) “def f(gl(xli v ’xm)’ s ’gk(xla e wxm))
Further, if each g; is a w.s.f., then so is 4.

Proof.

(@) Let g be a s.w.s.f. The monotonicity of g directly implies that 4 is monotonic. Now,

h(xy, .. %) <X

8WXj s sX) S X

g(xj,,....x;)<x; forevery p such that j, =i

801, Y =8, ... x;) where y, =g if (j, = 1) then e else x;
using Proposition 3.1(a)

N TP R 3 1 62 TIPS < N o)

LUl

It similarly follows that if g is a w.s.f. then A is a w.s.f. too.

(b) The monotonicity of s follows immediately from the monotonicity of fand g,, ..., g. Now,

B, aXye X)) SX;
= f(yl, e ,yk) <x whereyj Zdef gj(xl, N ¢ N ,xk)
= fO1,....00<y; foreveryy;>x;
= fWi, e oW =F Q1,000 where w; =g4 if (y; > x;) then oo else y;
(using Proposition 3.1(a))
= f(wlv s awk)::f(yl: oo ’yk)
where w; =g if (g;(x1, ..., % ..., %) > x) thencoelse gj(xq, ..., %, . .., X)
= if(gi0xy, .. i Xy X) > x) then oo else gi(xq, ... ,00, ..., %)
since g; is strictly weakly superior
b4 gj(xl,...,oo,...,xk)
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=4 f(Zl,... ,Zk)Sf(yl,...,yk) WheI'CZj Zdef gj(xl,... ,W,...,Xk)
=y h(xl,...,oo,...,xk)Sh(xl,...,xi,...,xk)
= A(XL, s X ) =R e Xy e s XE)

since A{xy,...,%0, ..., %) 2 h(X1,...,%,...,X) by monotonicity

The result follows. [
‘We now look at how the grammar problem can be reduced to the maximal fixed point problem.

Definition A.2. The collection of equations Q determined by an abstract grammar G consists of the fol-
lowing equation for each non-terminal Y in the grammar:

d¥)= min { g(dX,),...,dX )Y —>g(X,,...,Xy is aproduction }

We now characterize the set of equations determined by SF and SSF grammars.

Theorem A.3. If G is a SF grammar, then Qg is a collection of WSF equations, while if G is an SSF gram-
mar, then Qg is a collection of SWSF equations.

Proof. Every equation in Qg is of the form
d¥)=min (g,dX;, ), ... dXi ;) -+ Eu(d X, 1), d K, L D)

Now, min is an w.s.f. It follows from Proposition A.1 that if each g; is an s.f. then the above equation is an
WSF equations (since a superior function is also a weakly superior function). Similarly, if each g; is an
s.5.f., then the above equation is an s.w.s.f. (since an s.s.f. is also an s.w.s.f.). The result follows. [

We now relate the solution mg(Y) of an instance G of the grammar problem to the maximal fixed point
of the collection of equations Q.

Lemma A.4. If G is an SF grammar then (m(Y) | Y is a non-terminal) is a fixed point of Q.

Proof. First observe that if G is an SF grammar then (m;(Y) | Y is a non-terminal) is well-defined as con-
structively established by Knuth’s algorithm to compute this collection of values.

mg(Y) = Y@j}r}aval (o) (from the definition of mg(Y))

= min min val (o)
Y=g, ... X)) gX,....X))—>0o

= min min{val(g(oy,...,0 X — o
Y —>g(X,,....X) {val(g(y 1)) | X; ;)

= min min{g (val (o), .. .,val (¢, X —> o
Y=g Xy X)) {g (val (o) (o) | X; 2

(from the definition of val (g{(a,...,0%)))
= min g(x min val(0y),..., min val(0y)) (since g is monotonic)

_Y-">g(X, ..... X)X, =0, x50,
= min me(X1),....,mgX from the definition of m
Y—ég(Xx,,‘.,xk)g( c(X1) cXi)) ( )

O

Lemma A.5. Let G be an SF grammar, and let {f (Y) | Y is a non-terminal) be a fixed point of Q;. Then,
[ (Y)Y £mg(Y) for each non-terminal Y.

Proof. Itis sufficient to show for every terminal string o that if ¥ is a non-terminal such that ¥ —>7 ¢, then
F(Y) £val(o). The proof is by induction on the length of the string «. Assume ¥ —>" .. Then we must
have Y — g(X1,...,.X) = g(0y,...,04) = o Since each o is a smaller string than o and X; —>"
o, it follows from the inductive hypothesis that f (X;) < val (o). It follows from the monotonicity of g that
g K 1)sewnf X)) < g (val(ay),...,val (o)) = val (o). Since (f (¥) | Y is a non-terminal) is a fixed point of
Q wehave f(Y) < g(f X1),....f (X1)). The result follows. [

Theorem A.6. Let G be an SF grammar. Then (mg(Y) | Y is a non-terminal) is the maximal fixed point of

.
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Proof. Immediate from lemmas A.4 and A.5. [0

Theorem A.7. Let Q be a collection of k equations, the i-th equation being
X =gi(x1s -+ k)

If every g; is an s.w.s.f. then Q has a unique fixed point.

Proof. The existence of a fixed point, in fact, follows from the algorithm outlined in the Section 4, which
computes this fixed point. The uniqueness of the fixed point may be established as follows.

Assume, to the contrary, that (g; | 1<i<k) and (b; | 1 <i<k) are two different fixed points of Q.
Choose the least element of the set { @; | a; #b; } v { b; | a; #b; }. Without loss of generality, assume that
the least element is ¢;. Thus, we have a; < b;, and also a; = b; for all a; < a;. Now, we derive a contradic-
tion as follows.

a;=giay,...,a) since(g; | 1<i<k)isa fixed point of Q0
=gi(c1,...,¢r)  where ¢; =4 if (a;<a;) then g; else e
(since g; is a strict w.s.f.)
=gi(cy,...,cr)  where ¢; =4 if (aj<a;) then b; else o
(since a; = b; whenever a; < a;)
>gi(by,...,by) sincec; 2 b;forevery j € [1,k]
2 b; since (b; | 1 i £ k) is a fixed point of Q.
The contradiction implies that Q has a unique fixed point. [

We now summarize the above results. Theorems A.3 and A.6 show how the SF grammar problem can
be reduced to the WSF maximal fixed point problem. Theorems A.3, A.6, and A.7 establish that the SSF
grammar problem can be reduced to the SWSF fixed point problem.

It is worth mentioning at this point that the above results hold in somewhat more general form. Define a
WSF grammar to be an abstract grammar in which every production function is a w.s.f., and an SWSF
grammar to be an abstract grammar in which every production function is an s.w.s,f. The grammar prob-
lem for a WSF grammar that has no useless symbols—a context-free grammar is said to have no useless
symbols if each non-terminal in the grammar can derive at least one terminal string—can be solved by
reducing it to the WSF maximal fixed point problem. It is straightforward to show that, conversely, the
WSF maximal fixed point problem can be reduced to the grammar problem for a WSF grammar with no
useless symbols. Similarly, the grammar problem for an SWSF grammar with no useless symbols is
equivalent to the SWSF fixed point problem.
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