Efficient Race Condition Detection for
Shared-Memory Programs with
Post/Wait Synchronization

Robert H.B. Netzer
Sanjoy Ghosh

Technical Report #1084

April 1992

In 1992 Intl Conference on Parallel Processing, August 1992, St. Charles, IL

EFFICIENT RACE CONDITION DETECTION FOR SHARED-MEMORY
PROGRAMS WITH POST/WAIT SYNCHRONIZATION

Robert H.B. Netzer

Computer Sciences Department
University of Wisconsin—Madison

1210 W. Dayton Street

Madison, Wisconsin 53706

Abstract — Shared-memory parallel programs are often
designed to be deterministic, both in their final results and
intermediate states. However, debugging such programs
requires a mechanism for locating race conditions or vio-
lations of the intended determinacy when they occur. This
paper answers a previously open question by presenting
the first precise, efficient algorithm for dynamically
detecting race conditions in programs that use non-trivial
synchronization. We address Post/Wait synchronization,
the most powerful type of synchronization for which
efficient race detection is possible. Qur algorithm com-
putes the order in which synchronization operations in the
execution are guaranteed to have occurred. Using this
information race conditions can be detected either post-
mortem or on-the-fly. Previous work has addressed either
simpler types of synchronization, approximations to race
detection, or a different (and easier to detect) type of race.

INTRODUCTION

Some parallel programs are designed to be deter-
ministic, both in their final results and intermediate states.
In addition, a large class of applications naturally have
deterministic implementations (such as many scientific
programs). However, debugging these programs requires
a mechanism for detecting violations of the intended
determinacy. Points in the execution at which nondeter-
minacy is manifested are called race conditions. Race
conditions occur in shared-memory programs when dif-
ferent processes access common memory locations in an
order not fixed by the program’s synchronization. We
present the first efficient algorithm for precisely detecting
race conditions in program executions that use non-trivial
synchronization. Qur algorithm uses a trace of the
execution’s synchronization operations to locate opera-
tions whose execution order is not fixed. Race conditions
can then be detected either with an address trace (that may
also be collected during execution) or by an on-the-fly
analysis during a reexecution of the program.

Our primary goal is to dynamically detect race con-
ditions that introduce any nondeterminacy. In contrast,
other work has also addressed a different type of race[1].
We are considering races that occur when different
processes access a common memory location in an order
not guaranteed by synchronization (and at least one

Sanjoy Ghosh
CSRD
305 Talbot Lab
104 South Wright Street
Urbana, llinois 61801

process modifies the location). Such races could result in
either different results or paths of control in different exe-
cutions on the same input. These races pinpoint those
parts of the execution at which nondeterminacy is exhi-
bited. However, some parallel programs are intended to
be nondeterministic, and can exhibit a different type of
race. For such programs synchronization is usually added
to implement critical sections (sections of code intended
to execute atomically). Without proper synchronization,
shared variables accessed inside a critical section may be
modified by other processes as the section executes,
violating its expected atomicity. This type of interference
has been called a data race or access anomaly. Since
nondeterministic behavior can result, a data race is a spe-
cial case of the more general race condition considered
here. Making a distinction is necessary since these races
have substantially different properties and require dif-
ferent detection techniques[9). Henceforth, race condi-
tion means a race that introduces any nondeterminacy (in
other work[9] we have also used the term gerneral race).

Our work is novel in that it addresses Post/Wait
synchronization®, the most powerful type of non-trivial
synchronization for which precise race condition detec-
tion is efficient. Previous work has addressed either con-
servative approximations, simpler types of synchroniza-
tion, or detection of a different type of race (discussed
above). Netzer and Miller proved that detecting races in
executions that use synchronization powerful enough to
implement mutual exclusion is NP-hard[7]. Efficient
detection is possible only for weaker types of synchroni-
zation, such as Post/Wait. Pure Post/Wait synchronization
is incapable of implementing mutual exclusion because
Wait operations do not reset the event variable (resetting
requires a Clear operation). Approximate schemes for
more powerful synchronization capable of implementing
mutual exclusion, such as semaphores{4] or Post/Wait
with Clear operations[2], have already been proposed.
Precise detection schemes for programs that use no inter-

(a) In Post/Wait synchronization, each synchroniza-
tion variable (or event variable) is either set or reset. A
Wait(x) blocks until x is set; a Post(x) sets x. Although
some implementations also provide a Clear(x) operation
to reset x, we are not considering such operations.

process synchronization (but only task spawning direc-
tives such as fork and join) have also been proposed[1, 6].
In addition, a restricted form of Post/Wait in PCF Fortran
has been considered[5] (where at most one Post and Wait
on any event variable are allowed). However, the full
generality of Post/Wait synchronization has not yet been
addressed. This paper fills the remaining gap by present-
ing a precise algorithm for unrestricted Post/Wait, the
most powerful type of synchronization that allows
efficient race detection.

Our main result is an algorithm that analyzes a trace
of an execution’s synchronization operations to compute
its guaranteed orderings. The algorithm requires O (np)
time and space, where » is the number of synchronization
operations and p is the number of processes in the execu-
tion. Intuitively, the algorithm determines that two opera-
tions have a guaranteed ordering if the semantics of
Post/Wait synchronization force them to execute only in
some fixed order. A race condition exists between two
shared-memory accesses that reference common locations
(at least one of which is modified) if they have no
guaranteed ordering. No guaranteed ordering implies that
the accesses might have executed in any order, introduc-
ing nondeterminacy into the execution.

We envision our algorithm being used for program
debugging in one of two ways, as part of either post-
mortem or on-the-fly race condition detection. First, in a
pure post-mortem approach, race conditions are detected
after execution ends by analyzing the execution traces.
This approach requires tracing the shared-memory
addresses referenced by the execution as well as its syn-
chronization operations. From the trace of the synchroni-
zation operations, our algorithm can locate those portions
of the execution that had no guaranteed ordering. From
the trace of the shared-memory references, we can deter-
mine which of these portions accessed common locations
and were thus race conditions. Second, in a hybrid on-
the-fly/post-mortem approach, only the execution’s syn-
chronization operations are traced[3]. From this trace our
algorithm can locate those sections of the execution that
had no guaranteed ordering, although the shared-memory
addresses referenced by them are not yet known. This
information can then be used to instrument and reexecute
the program to perform run-time race condition checks at
these sections. Since reexecution of each process is
guaranteed to be deterministic up until the first race in that
process, this hybrid approach will detect at least these first
races. Detecting such first races is the most important
aspect of race condition detection, as subsequent races
may be artifacts and not direct manifestations of bugs[8].

An advantage of our algorithm is that it requires
only compact, efficiently obtainable traces of the
execution’s synchronization operations. Only the
sequence of operations per process need be traced. No
information about the relative execution order of opera-
tions in different processes is required. Execution traces

are kept compact because the required instrumentation
does not maintain or trace the value of any clock. Each
synchronization operation requires tracing only a 1-bit
flag indicating the operation type (Post or Wait) and the
4-byte event variable address. Preliminary experiments
show that execution-time tracing overhead is typically
less than 10%, and because the traces are compact, long
executions can be traced.

Although our emphasis is on race detection, our
algorithm can also provide information necessary for
checking assertions about the execution order of opera-
tions in different processes. For example, a programmer
may wish to check if some access must always occur after
another. Our algorithm computes such information.

EXAMPLE

As motivation, we present an example program
below and analyze its execution to illustrate guaranteed
orderings. We use the guaranteed ordering graph to
represent these orderings. In following sections we for-
mally define the guaranteed orderings, and present our
algorithm for computing the guaranteed ordering graph.

Consider the program in Figure 1(a), which spawns
three parallel processes, among which the variable “‘S”’ is
shared. Although these processes execute in parallel,
their Post and Wait operations force some operations to
execute before others. The graph in Figure 1(b) (dis-
cussed below) represents these orderings. Consider an
execution in which the Post(A) in the last process exe-
cutes before the Wait(A), causing “‘S := 1°’ to execute
before ‘i := S*’. A naive analysis of this execution might

fork

S:=2
Post(A)
| Post(B)

"V-S;ait(A)
i:=8

| Post(B)
—_Wmait(B)

S:=1
&st(A)

join
(@ (b)
Figure 1. (a) program, (b) guaranteed ordering graph

suggest that no race condition exists between these refer-
ences to S, because synchronization caused “*S = 1"’ to
precede ‘i :=S”’. However, this particular ordering is not
guaranteed to occur, because this Post(A) can execute
after the Wait(A). We can determine this by noticing that
all operations in the first process (which includes another
Post(A)) could execute first, allowing all operations in the
other processes to proceed. Thus, there is a race condition
between ‘S := 1’ and ““i := S because they could exe-
cute in either order, introducing nondeterminacy into the
execution. However, no such race exists between ‘S :=
2’ and ‘i := §”°. Unlike the Post(A) in the last process,
the Post(A) in the first process is guaranteed to precede
the Wait(A). We can determine this by noticing that nei-
ther the Wait(A) nor Wait(B) operations can proceed until
after the Post(A) is issued by the first process. The
assignment *‘S := 2"’ is thus guaranteed to always precede
“i:=8"" and ‘S := 1"’; no race involving ‘S := 2"’ exists.

Analyzing each synchronization operation in the
execution in this way is the problem of computing
guaranteed orderings that we are addressing. The algo-
rithm presented later computes these orderings by consid-
ering each operation, a, and locating the set of operations
that could execute before a. Then, any operation not in
this set is guaranteed to execute after a.

We will represent an execution’s guaranteed order-
ings with the guaranteed ordering graph, as illustrated in
Figure 1(b). Each node represents the execution instance
of a synchronization operation or one or more (consecu-
tively executed) program statements. Edges represent the
guaranteed orderings. Edges always exist from each node
to the next node in the same process. An edge also exists
between nodes in different processes if one is guaranteed
to precede the other. The graph has a path from node a to
another node & iff a is guaranteed to preced¢ b. For
example, the edge in Figure 1(b) from Post(A) in the first
process to Wait(A) and Wait(B) indicates that Post(A) is
guaranteed to precede Wait(A) and Wait(B). In addition,
the absence of a path between ‘i := §”” and *‘S = 17
indicates that no guaranteed ordering between them exists.

PROBLEM STATEMENT

Given a trace of the execution’s synchronization
operations, the algorithm presented later determines
which operations do not have guaranteed orderings.
Below we formally characterize what it means for the ord-
ering between operations to be guaranteed. We define a

must-have-happened-before relation, 22>, on the
execution’s synchronization operations. Intuitively, an
operation @ must happen before another operation b iff the
semantics of Post/Wait synchronization could not allow b
to complete before a begins execution.

We base the guaranteed orderings on the
execution’s explicit synchronization, and assume that
shared memory is not used to implement implicit syn-

chronization. For programs that contain implicit syn-
chronization, we might omit some orderings that are in
fact guaranteed. In addition, Netzer and Miller have
shown that unintentional implicit synchronization can oc-
cur when shared values are used in conditional expres-
sions[8]. They present techniques to estimate additional
orderings introduced by intentional or unintentional impli-
cit synchronization. These techniques are complementary
to our algorithm, so we will not address this issue here.

Consider the synchronization operations performed
by the single program execution being analyzed. We for-
malize how the semantics of these operations might allow
various orderings to occur. Different orderings can occur
because of variations in the execution speed of each pro-
cess. Intuitively, the guaranteed orderings are those that
always occur regardless of these variations. Two factors
influence orderings:

(1) The i™ operation in process p (denoted €,,;) cannot
execute until after the /1% operation (e, ;).

(2) The execution order of operations belonging to
different processes is influenced by Post and Wait
operations: a Wait(x) cannot complete until after
the execution of a Post(x) has begun.

We capture these factors by defining for a synchronization
operation S the maximal set of other operations in the exe-
cution that could possibly execute before S. Any opera-
tion that satisfies these two points (without requiring S to
first begin execution) could complete before S. Any
operation that does not meet these requirements must wait
until after S begins before proceeding. We capture this
latter set of operations by defining a maximal valid execu-
tion for §, denoted MVE (S):

Definition 1
MVE (S) is a maximal sequence of operations in the
execution that the semantics of Post/Wait synchron-
ization could allow to execute before S, and con-
tains every operation e, ; such that

(1) ep;isnotS, and

(2) all events preceding e, ; in process p also
precede e, ; in MVE (§), and

(3) e, iseither a Post, or is a Wait(x) and a
Post(x) precedes it in MVE (§). &

We could compute an MVE(S) by mimicing the
way an actual execution would advance. The next opera-
tion not yet executed in each process is eligible to
proceed; Post operations can always proceed (and can
thus be added to MVE(S)), but Wait(x) operations must
block until a Post(x) has been issued. Since MVE (S) is
maximal, it contains as many operations as possible sub-
ject to these constraints. Although the order in which
operations can be added to MVE (S) is not unique (since
we can pick the next operation in any process to consid-
er), all MVE (S) contain the same, unique set of opera-
tions. Our algorithm (presented below) computes this set

to determine the guaranteed orderings.

We can now define those orderings that are
guaranteed to occur regardless of timing variations.
MVE (S) contains exactly those synchronization opera-
tions that could execute before S, but are not guaranteed
to do so. Thus, operations not in MVE (S) are exactly
those that are guaranteed to follow S. We define the

must-have-happened-before relation, 222>, on the syn-
chronization operations to represent these orderings.
Definition 2
For any two synchronization operations @ and b in
the execution,

aX25 p o be MVE(d). B

ALGORITHM

We now present our algorithm and show that it re-
quires O (np) time and space (where n is the total number
of operations and p is the number of processes in the exe-
cution). For simplicity, we assume that only Post and
Wait operations are issued by the execution. The algo-
rithm can easily be extended to handle task spawning and
destruction operations (such as fork and join). A correct-
ness argument for the algorithm appears in the Appendix.

Algorithm 1 analyzes a trace of the execution’s syn-

chronization operations to compute the ~22-> relation.
The traces must contain the sequence of operations per-
formed by each process, and indicate the operation type
(Post or Wait) and the event variable. As discussed ear-
lier, because the relative order of operations in different
processes is not required, these traces are compact and
can be efficiently collected even for long executions.

Algorithm 1 constructs the guaranteed ordering
graph (illustrated earlier). Recall that this graph contains
one node for each operation performed during execution,
and edges to represent the guaranteed orderings. By
definition, an edge always exists from each operation to
the next operation in the same process (these edges are
not added by the algorithm). The algorithm adds edges
between different processes to show the guaranteed order-
ings. The resulting graph has a path from an operation a

to another operation b iff a =22 b. This graph is a con-

venient representation of == as it requires only O (np)
space (each of the n nodes has at most p out-edges), and it
allows vector timestamps to be computed that allow
constant-time determination of whether any two opera-
tions have a guaranteed ordering[4].

Algorithm 1 computes this graph by considering
every operation in the execution and visiting the opera-
tions in its MVE. Visiting operations consists of simulat-
ing their execution by honoring the semantics of
Post/Wait synchronization. After visiting the MVE for an
operation e, ;, an edge is added from e, ; to the first opera-

1: ComputeGuaranteedOrderings:

2: First = the set containing the first op in each process;
3: for p=1 to the number of processes {

4: Visitable = the set of Post ops in First,

5: for each event variable, x

6: Untrig (x) = the set of Wait(x) ops in First;

7: IsTrig (x) = FALSE;

8: for i = 1 to the number of ops in process p {

9: VisitMVE(e,,;);

10: add an edge in the graph from e, ; to every op
11: in each Untrig set;

12: }

13:]}

14: VisitMVE(e,,;):
15: while (Visitable contains ops other than e,,;) {

16: remove any op, e, from Visitable (except e, ;);
17: if ¢ is a Post(x) then

18: move all ops in Untrig (x) to Visitable;
19: IsTrig (x) = TRUE;

20: if an op, e’, follows ¢ in the same process
21; if e’ is a Wait(x) and IsTrig (x) = FALSE
22: then

23: add e’ to Untrig (x);

24: else

25: add e’ to Visitable;

26:)

Algorithm 1. Compute guaranteed ordering graph
(‘‘op’’ means ‘‘operation’’)

tion not in MVE (e, ;) in each process. Such edges estab-
lish paths from ¢,; to every operation not in MVE (e, ;),

which exactly captures the definition of 2223

During the p™ iteration of the outer for loop,
*“VisitMVE’’ (line 14) is iteratively called to visit the
MVE’s for all operations in process p. In VisitMVE,
operations belonging to the same process are visited in
intra-process order, and a Wait(x) operation is not visited
until it is triggered by a Post(x) operation. The set Visis-
able contains operations eligible for visitation. An opera-
tion is visited after it is removed from this set (line 16).
The set Untrig (x) contains Wait(x) operations that are
ready to be visited but are not yet triggered. The Boolean
array IsTrig records which event variables have been trig-
gered. When a Post(x) is visited, all untriggered Wait(x)
operations are moved from Untrig (x) to Visitable.

VisitMVE visits as many operations as possible
without visiting e, ;, the operation passed as the parame-
ter. To visit the MVE for the first operation in some pro-
cess p (i.e., MVE (e, 1)), the sets Visitable, Unirig, and Is-
Trig are initialized (lines 4—7) to reflect the initial state of
the execution’s synchronization: the first Post operation in

each process is eligible for visitation, and all Waits are
untriggered (because event variables are initially reset).
To visit the MVE of subsequent operations in process p
(i.e., MVE (e, ;) for i > 1), we notice that MVE (e, ;) is a
superset of MVE (e, ;1) so it is unnecessary to start the
visit from scraich. After VisitMVE is called with e, ;, it
will return when Visitable contains only e, ;, indicating
that as many operations as possible have been visited
without visiting e, ; (which is exactly MVE (e,;)). Then,
when VisitMVE is called with e, ;,, €,; will finally be
visited, possibly causing more operations to be added to
Visitable, until finally MVE (e, ;,1) has been visited.

To analyze the algorithm’s running time, assume
that the sets Visitable and Untrig are implemented as
linked lists, allowing constant-time set operations, such as
checking the emptiness of Visitable (line 15), adding or
removing operations (lines 16, 23, 25), and moving all
operations in Untrig (x) to Visitable (line 18). Each itera-
tion of the while loop thus requires constant time. Next
consider a single iteration of the outer for loop (line 3).
The first inner for loop (line 5) performs O (¢) work
(where e is the number of event variables) to initialize the
sets. The second inner for loop (line 8) performs O ()
work by calling VisitMVE for each operation in process
p, causing every operation in the execution to be visited
once (except the last operation in p, which is not visited).
Each iteration of the outer for loop thus performs
O (n+e)=0(n) work. Since the outer for loop iterates p
times, O (np) total work is performed. As mentioned
above, the graph requires O (np) space.

CONCLUSION

Our algorithm pinpoints parts of the execution at
which nondeterminacy is introduced. Identifying these
points is essential for debugging programs that are intend-
ed to be deterministic. The algorithm is an essential com-
ponent of either a post-mortem or hybrid on-the-fly/post-
mortem race detection tool for programs with Post/Wait
synchronization. The algorithm also provides information
useful for checking assertions about the order in which
operations are expected to execute. In addition, the core
of the algorithm, which visits the MVE for an operation,
can be used to derive other algorithms. For example, we
can determine in O (n) time and constant space whether a
guaranteed ordering exists between two given operations.
We can also locate all pairs of operations that have no
guaranteed ordering in O (np?) time and O (p) space.
Moreover, when applied to more powerful synchroniza-
tion (such as semaphores), our algorithm conservatively
computes the guaranteed orderings.

ACKNOWLEDGEMENTS

Robert Netzer was supported in part by NSF grants
CCR-8815928 and CCR-9100968, ONR grant NO0014-
89-J-1222, and by Sequent Computer Systems. Sanjoy

Ghosh was supported by grant AFOSR 90-0044 FY92
from the Air Force Office of Scientific Research.

REFERENCES

[1] Dinning, A. and E. Schonberg, ‘‘An Empirical
Comparison of Monitoring Algorithms for Access
Anomaly Detection,”” 2nd ACM Symp. on Princ.
and Practice of Parallel Prog., pp. 1-10 Seattle,
WA, (March 1990).

[2] Emrath, P.A., S. Ghosh, and D.A. Padua, ‘‘Event
Synchronization Analysis for Debugging Parallel
Programs,”” Supercomputing '89, pp. 580-588
Reno, NV, (November 1989).

[3] Emrath, P.A., S. Ghosh, and D.A. Padua, *‘On-
the-fly Race Detection for Parallel Programs with
Events,”’ 1992 Intl. Conf. on Parallel Processing,
St. Charles, IL., (August 1992),

[4] Helmbold, D.P., C.E. McDowell, and J.-Z. Wang,
““‘Analyzing Traces with Anonymous Synchroni-
zation,”” 1990 Intl. Conf. on Parallel Processing,
pp. 70-77 St. Charles, IL, (August 1990).

[5] Hood, R., K. Kennedy, and J. Mellor-Crummey,
‘‘Parallel Program Debugging with On-the-fly
Anomaly Detection,”” Supercomputing 90, pp.
74-81 New York, NY, (November 1990).

[6] Mellor-Crummey, J.M., ‘‘On-the-Fly Detection of
Data Races for Programs with Nested Fork-Join
Parallelism,”” Supercomputing '91, pp. 24-33 Al-
buquerque, NM, (November 1991).

7 Netzer, R.H.B. and B.P. Miller, “‘On the Com-
plexity of Event Ordering for Shared-Memory
Parallel Program Executions,”” 1990 Intl. Conf. on
Parallel Processing, pp. 11-93-11-97 St. Charles,
1., (August 1990).

[8] Netzer, R.H.B. and B.P. Miller, ““Improving the
Accuracy of Data Race Detection,” 3rd ACM
Symp. on Princ. and Practice of Parallel Prog.,
pp. 133-144 Williamsburg, VA, (April 1991).

9] Netzer, R.H.B. and B.P. Miller, ‘“What are Race
Conditions? Some Issues and Formalizations,”’
ACM Letters on Programming Languages and
Systems 1(1)(March 1992).

APPENDIX

In this appendix we argue that our algorithm is
correct. We first make the following observations about
the algorithm. For brevity, we will let Visited (e, ;) denote
the sequence of operations that have been visited at the
end of the i™ iteration of the inner for loop (line 10), dur-
ing the p™ iteration of the outer for loop.

Observation 1. If a node s is in Visited (ep;), then all
preceding operations in the same process also precede it
in Visited(e,;). This follows since if s is not the first
operation in its process, s is added to Visitable (line 23)
only after the preceding operation is removed (line 15).

Observation 2. If a Wait(x) operation is in Visited (e, ;),
then a Post(x) precedes it in Visited (e, ;). This follows
since a Wait(x) is added to Visitable (line 23) only after
IsTriggered (x) becomes TRUE, which occurs only after a
Post(x) is removed from Visitable (lines 16-18).

Observation 3. If s is a Post(x) and all preceding opera-
tions in the same process precede it in Visited (e, ;), then s
is also in Visited(e,;) (or s =e,;). This follows since
Post operations are always added to Visitable (line 23).

Observation 4. If s is a Wait(x), and all operations
preceding it in the same process, and a Post(x), precede it
in Visited (e,,;), then s is also in Visited (e, ;) (or s =¢,;).
This follows since Wait(x) operations are added to Visit-
able if IsTriggered(x) is TRUE (line 21), and the prior
visit of the Post(x) would have set IsTriggered(x) to
TRUE.

Lemma 1
For all operations e, ;, Visited(e,;) always con-
tains the same unique set of operations as any
MVE (e, ;).

Proof.

We prove that any MVE (e, ;) contains an operation
iff Visited (e,,;) always contains the same operation. The
uniqueness of the set of operations they contain then fol-
lows.

If Part. We must show that every operation in
Visited (e,;) is always in any MVE (e,;). Consider any
MVE (e, ;), denoted M. M and Visited (e, ;) will share a
(possibly empty) common prefix. We will show that each
operation in the suffix of Visited (e, ;) exists somewhere in
M, by induction on the position, n, in the suffix.

Basis (n=1). We are considering the first element, s, in
the suffix of Visited(ep,;) that differs from M. If s is a
Post(x) operation, then all preceding operations in the
same process also precede s in Visited (e, ;) (Observation
1) and are thus in M. By part (2) of the definition of MVE,
s must also be in M. If s is a Wait(x) operation, all
preceding operations in the same process precede s in
Visited (e,;) (Observation 1), and a Post(x) precedes s in
Visited (e,,;) (Observation 2). These operations are thus
also in M, so s must be in M (by parts (2) and (3) of the

definition of MVE).

Induction. Assume that the first » operations in the suffix
of Visited (e, ;) exist somewhere in M. We must show
that the n+1" operation, s, is also in M. As above, if sisa
Post(x) operation, then all preceding operations in the
same process precede s in Visited (e, ;). By the induction
hypothesis, these operations are in M, and by part (2) of
the definition of MVE, s must also be in M. If s is a
Wait(x) operation, all preceding operations in the same
process, and a Post(x), precede s in Visited (e, ;). By the
induction hypothesis, these operations are in M, and by
parts (2) and (3) of the definition of MVE, sis also in M.,

Only if part. We must show that each operation in
any MVE (e,,;) always belongs to Visited (¢,;). As above,
consider any MVE (g, ;), denoted M. M and Visited (e, ;)
will share a (possibly empty) common prefix. We will
show that each operation in the suffix of M exists some-
where in Visited (e, ;), by induction on the position, », in
the suffix.

Basis (n=1). Consider the first element, s, in the suffix of
M that differs from Visited (e, ;). If s is a Post(x) opera-
tion, then all preceding operations in the same process
also precede s in M (part (2) of the definition of MVE) and
are thus in Visited (e, ;). By Observation 3, s must also be
in Visited (e, ;). If s is a Wait(x) operation, all preceding
operations in the same process precede s in M (part (2) of
the definition of MVE), and a Post(x) also precedes s in M
(part (3) of the definition of MVE). These operations are
also in Visited (e,,;), and by Observation 4, s must also be
in Visited (e, ;).

Induction. Assume that the first n operations in the suffix
of M exist somewhere in Visited(e,;). We must show
that the n+1" operation, s, is also in Visited(e,;). As
above, if s is a Post(x) operation, all preceding operations
in the same process precede s in M, and by the induction
hypothesis these operations are in Visited (e, ;). By Ob-
servation 3, s must also be in M. If s is a Wait(x) opera-
tion, all preceding operations in the same process, and a
Post(x), precede s in M. By the induction hypothesis,
these operations are in Visited (e,,;), and by Observation
4, s must also be in Visited (e, ;). W

Lemma 2
For all operations e, ; and e ;, if Algorithm 1 adds
an edge frome,; toe, ;, thene, ; ¢ MVE(e, ;).

Proof.

From Lemma 1 we know that during the p™ itera-
tion of the outer for loop, after the i™ iteration of the
inner for loop, exactly MVE (e, ;) has been visited. Since
Algorithm 1 adds (in line 10) an edge to the first operation
not visited in each process, every edge from e, ; is to an
operation e, ; ¢ MVE (¢, ;). W

Lemma 3
If ae¢ MVE() and
a & MVE(c).

b¢ MVE(c), then

Proof.

For a contradiction, assume that a € MVE (c).
Consider the last operation in each process that belongs to
MVE (c). Since the subsequent operations are not in
MVE (c), they are not needed to trigger a (which we know
since a € MVE (¢)). Let b’ be the last such operation in
b’s process (b’ € MVE (¢) but b ¢ MVE(c)). Since no
operation following b’ in this process is needed to trigger
a, a € MVE (b"). Because b follows b’ in the same pro-
cess, we must also have a € MVE (b), contradicting the
assumption. Thus, we musthave a ¢ MVE (c). B

Theorem 1.
Algorithm 1 is correct. That is, for all operations
ep,; and e ;, a path exists from e, ; 10 e, ; after the

algorithm terminates iff e,; ——=> e, (or
€4j € MVE(QP,,')).

Proof.

If part. We must show that for all e,; and e, , if
eq; € MVE (e, ;), then a path exists from e, ; to e, ;. From
Lemma 1 we know that during the p™ ‘iteration of the
outer for loop, after the i™ iteration of the inner for loop,
exactly MVE (e, ;) has been visited. Algorithm 1 adds an
edge to the first operation not visited in each process, so
every edge from e, ; is to an operation e, ; ¢ MVE(e,;).
Because there is an edge from each operation to the sub-
sequent operation in the same process, there will be a path
from e,; to all events not in MVE(e,;). Since
eq,; € MVE((e,;), a path will exist from e, ; to ¢, ;.

Only If part. We must show that for all e, ; and e, ;,
if a path exists from e, ; to ¢, ; then ¢, ; ¢ MVE (e,,;). We
use induction on the length of the path.

Basis (path of length 1). Follows directly from Lemma 2.

Induction: Assume that the hypothesis holds for paths of
length n. We must prove that if a path of length n+1 ex-
ists from e,; to e, (because of a path of length n from
€, t0 e,; and an edge from e,; 10 e,;), then
€1 € MVE (e,;). The path of length n from ¢,; 10 €, ;
implies that e,; & MVE(e,;) (by the induction hy-
pothesis). The edge from e,; to e,, implies that
e, € MVE (e, ;) (by Lemma 2). Since e, & MVE (e, ;)
and e,;¢ MVE(e,;), by Lemma 3 we have
e & MVE (ep,,-). |

