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NONSMOOTH OPTIMIZATION METHODS FOR PARALLEL
DECOMPOSITION OF MULTICOMMODITY FLOW PROBLEMS

RENATQO DE LEONE!, MANLIO GAUDIOSO? AND MARIA FLAVIA MONACO?

Abstract. We develop an iterative algorithm based on right hand side decomposition for the
solution of multicommodity network flow problems. At each step of the proposed iterative procedure
the coupling constraints are eliminated by subdividing the shared capacity resource among the different
commodities and a master problem is constructed which attempts to improve sharing of the resources
at each iteration.

As the objective function of the master problem is nonsmooth, we apply to it a new optimization
technique which does not require the exact solutions of the single commodity flow subproblems. This
technique is based on the notion of e-subgradients, instead of subgradients and is suitable for parallel
implementation. Extensions to the nonlinear, convex separable case are also discussed.

1. Introduction. The multicommodity network flow problem minimizes the cost
of a set of network flows of different commodities sharing the same set of capacity
resources.

Various decomposition techniques have been proposed and intensively studied for
the solution of large-scale multicommodity flow problems. In fact, decomposition meth-
ods are particularly suitable for this class of problems because, removing the set of cou-
pling constraints, the problem decomposes into separate minimum cost flow problems,
one for each commodity.

An axcellent description of the different types of decomposition schemes considered
in the literature may be found in [9]. Two major types of decomposition schemes are
price directive, which is based on Dantzig-Wolfe decomposition approach and resource
directive, which gives rise [7] to nondifferentiable optimization problems. Recently,
Pinar and Zenios [13] and Zenios, Pinar and Dembo [17] proposed algorithms that use
a linear—quadratic penalty function to eliminate the coupling constraints. In their ap-
proach the objective function for the master problem is differentiable but non-separable.
Censor, Chajakis and Zenios [3] developed a decomposition algorithm for the quadratic
multicommodity network flow problem based on a row-action primal-dual algorithm.
Meyer and Schultz [15] and Schultz [14] proposed a decomposition method in conjunc-
tion with a shifting barrier method for the coupling constraints.

In this paper we tackle the multicommodity network flow problem by using a re-
source directive based decomposition technique. First, a set of decision variables repre-
senting a feasible sharing of the resource among the different commodities is introduced.
Then, the problem is decomposed into minimum cost single commodity network flow
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problems. Finally, a master problem is solved in order to find an improved sharing of
the resources.

Since the objective function for the master problem is nondifferentiable, we propose
an iterative technique derived from the family of bundle methods [11] for finding its
minimum. The main advantage of our approach is that the proposed algorithm does
not require at each step ezact evaluation of the objective function. The method differs
from that presented in [10], because it does not require increasing precision in the
objective function evaluation as the minimum is approached.

The decomposition scheme adopted is particularly suitable for parallel implementa-
tion, because the single commodity network flow problems can be solved independently
by different processors working in parallel. Approximate solutions of the individual
subproblems will be used to evaluate the objective function value of the master prob-
lem. Therefore, in a parallel environment, a good load balancing for the work of the
individual processors can be achieved by stopping the computation performed by the
single processors as soon as a “reasonable” approximation to the solution is obtained
by all the processors. No processor will be idle waiting for the computation for the re-
maining processors to terminate as in general happens if an exact solution of the single
commodity network flow problems is required.

The paper is organized as follows. In section 2 we state the problem. The decompo-
sition algorithm is described in detail in Section 3. In particular, Section 3.1 describes
the new bundle method for the master problem. Finally, in Section 4 we extend the
results to the nonlinear, separable case.

In our notation the scalar product of two vectors = and y in R is denoted by 27y
and e is the vector of ones of appropriate dimension. All vectors are column vectors. A
superscript T indicates transpose.

2. Problem definition and decomposition. Given a directed graph G(N, A)
represented by its nxm node-arc incidence matrix F', the multicommodity network flow
problem that we consider that we consider can be stated as follows:

. T T T i
z= min c"z' + &z + ... 4+ KK
z1,22,..,0f
1 1
Fz =7,
2 2
Fz ,
(1)
K _ K
Fz i,
2+ 22 4+ ...+ 2 <d,

where K is the number of different commodities, z¥ € IR™ is the flow vector of the
k-th commodity, d € R™, d > 0 is the shared resource vector (capacity). For each
k=1,...,K, r* € R" is the supply-demand vector for commodity £ which defines,
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for each commodity, a partition of the nodes in supply, demand and intermediate nodes
according to positive, negative or zero value of the corresponding component of rk,

A feasible capacity allocation is a set of vectors {y!,9?,...,y"}, v* € R™, y* > 0,
k=1,..., K such that

(2) Yyt=d
k=1
Foreach k = 1,..., K, we define the following single commodity min-cost flow problem:
ze(y*) = min T gk
(3) Fz* =k,
0 < zF < yh.

Consequently, the original problem (1) can be expressed as

K

= : k
z= _min > z(y”)

y1y2% .y 1

b
i

(4) k:d

N

y
1
>0, k=1,.., K.

ol
QQ?:- il

It is well known [9] that the function

K
oy, y% 0y ) = D a(y)

k=1
is convex and in general nondifferentiable. As any evaluation of function ® requires exact
solution of the flow problems (3), it seems reasonable to devise an iterative procedure for
minimizing ® which only requires approzimate evaluation of the objective function, i.e.
approximate solution to the single commodity flow problems. In order to define such
minimization algorithm, is helpful to study the differential properties of the function ®.
Consider the following linear program P(«) depending on the parameter vector o

which can be viewed as a perturbation on the resource vector b:

v(e) = min Tz

(5) Az =b+ «,
z2>0

where A is an nxm real matrix, b and a are n-dimensional real vectors. The multipliers
associated with the constraint Az = b in the problem P(0) will be indicated by A.

It is well known [5] that the dual optimal multipliers A* are subgradients of the
function v(a) at a = 0, i.e. that for any a € R" the following inequality holds:
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v(a) > v(0) + q.

In general, we can state the following proposition:
PROPOSITION 2.1. Let A be any feasible solution to the dual of P(0) Then X is an
e-subgradient of v(a) at a = 0 for ¢ = v(0) — bTA >0, i.e.

v(a) > v(0)+ A a—e Yae€ R™
Proof. From the definition of v(a) we have that

v(a) = Ao+ min Iz —Na
Az = b+ ¢,
>0

which can be rewritten as

v(a) = bTA + Ao+t min (e — AT 2
Az = b+«
z2>0

Hence, taking into account dual feasibility of A and nonnegativity of z, the proposition
follows by adding and subtracting v(0) to the right-hand-side of the above formula.
‘ |
Note that the function ®(y) = ®(y*, v, ..., y™) is block separable and convex. More-
over, if g* € 8, zi(y*) for k = 1,..., K the vector g defined as

9" = (g"0% -0 %)

K
is an e-subgradient for the function ® at y¥ = (y', 42, ...,y™)T with ¢ = Z €k-
k=1
3. The solution method. In this section we focus our attention on the master
problem (4). Let us consider any feasible resource allocation y = (y!,y?,...,y%) sat-
isfying (2) and let z*(y*) be any feasible solution to (3). Assume we are also able to
calculate a feasible solution to the dual of problem (3) and let x) be the correspond-
ing dual objective function value and A*¥ the components of this dual feasible solution
associated with the primal constraints ¥ < y*. From the observation

T
e =" a* — xi > 2(y") — xx 20,
and from proposition (2.1) it follows that

A€ 0, 2 (y").
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Moreover the quantity
K
T
ST ek
k=1
is an e-approximation to the objective function value ®(y?, 32, ...,y™), where

K
€ == Zek.
k=1

Therefore, we are able to calculate an approximation A to ®
K T

(6) h=>Y "2k <d(y) +e,
k=1

and an e-subgradient g of ®
(7) gT =LA € 0.0(y).

In general, the descent methods for minimizing convex nondifferentiable functions
are based on the possibility of calculating exactly the objective function and a subgra-
dient at the current point. This requirement has been relaxed in [10] and [6].

In particular the method presented in [6] requires only the evaluation at each step
of both an e-approximation to the objective function and an e-subgradient. The main
iteration of this method will be described in detail in Section 3.1

3.1. The algorithm for the master problem. Suppose we wish to solve the
following minimization problem:

min f(y) ye€ R

where f is convex and not necessarily differentiable. Assume that y;, hj, g; are respec-
tively the current point, an ¢;-approximation to f at the point y; and an ¢;-subgradient
of f at y;. We assume in particular that

(8) fy;) < hj < fly;) + ¢

As usual in bundle methods [11] we assume also that a certain amount of information
gathered at previous steps is available. In particular a set of triplets

(yis hiygi) 1€l

is given, where y;, 1 € I are the points previously considered in the iterative procedure
and h; and g¢; are respectively the estimate of the objective function value and an e;-
subgradient at y;. We assume that

(9) fy:) < hi < flyi) + &
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The following proposition is a straightforward consequence of the e-subgradient inequal-
ity and of the definition of h as an approximation to f. It provides the possibility of
transporting €;-subgradients from y;, ¢ € [ to y;.

PROPOSITION 3.1. If g; is an €;-subgradient of f at y;, then

9i € O, f(y;)
where
0< & =2¢+h; —hi— g7 (y; — wa)-

Proof. From the definition of ¢;-subgradient we have that

f@) > fy) + g5 (y—y)—e Vye R

Adding and subtracting to the right hand side of the above formula f(y;) and consid-
ering that

9Ty —v)=a"(y —y;) + o7 (yj — v3),
we have that
F) = Fu5)+ 97 — v3) = [Fws) = F) — 6" (ws — i) + €] -

But from the definition of ¢;-subgradient and (8) and (9) we have that

0< fly;) = flyi) — a7 (ys —y) & < hj—hi+e— g7 (yj — i) + & = &

B
Now we are ready to define the following problem whose optimal solution s; provides
us with a tentative step from the current point y;:

: 1 o
min v+ - |ls]

v 2> ngS — €5,

v> gls—& i€l

(10)

where t is a positive scalar. Problem (10) corresponds to finding the minimum of a
piecewise linear approximation to f, obtained as the maximum of a finite number of
affine functions which support from below the graph of f. The quadratic term —||s||?
is introduced both for stabilization purposes and to ensure that problem (10) is always
well posed. The scalar parameter ¢ plays a role similar to the trust region parameter
in differentiable optimization. It may be suitably updated as the algorithm proceeds.
Individual scaling of the quantities s; is also possible. This scaling can, for example,
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reflect a different degree of trust in the individual components of g; corresponding to
different degrees of accuracy in the solution of the individual subproblems.
Once the optimal solution (v;, s;) to (10) has been found, the new point

y T =yi+s;

is considered and a check for sufficient decrease is done. The approximate value At of
f at zt is calculated and the following descent condition is tested

(11) ht < hj + py;

where 0 < p < 1. If (11) is satisfied, then the point y* becomes the new iterate y; 1.
Otherwise, y; is unchanged and the bundle is enriched by the new triplet

(y*,ht,9%)

where gt € 8., f(y*) for the appropriate value of €, and a new problem (10), where
the set I has been enriched by including the new point y™, is stated and solved.

The termination condition which can be proved to occur in a finite number of steps
is of the type

lv; [£6

and it is analogous to the usual termination conditions of NDO methods. Of course, as
the parameter § dictates the tolerance in finding the minimum, once we have chosen 6,
we are forced to make an appropriate choice of the accuracy in evaluating f.

Of course, in applying the above described method to problem (4), we have to con-
sider that actually the problem is of the constrained type. Thus we propose projection
of the search direction s; onto the feasible set.

3.2. Solving the min-cost flow problem. Now we focus our attention to prob-
lem (3), which, by dropping for simplicity of notation the superscript & may be rewritten
as

mxm E CijTij

(i.j)eA
(12) Z-’Eij‘“zxji:ri iEN,
J J
0 <y <y (4,5) € A

The dual of problem (12) has the form

max Y orawi— D Yiifki
' €A (i,5)eA
w; —wj — pig < e (5,7) €A,

(13)
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If a primal feasible solution z and a dual feasible solution (w,p) are available, the
difference between the primal and the dual objective function values provides us with
an estimate of the approximation € in solving problem (12).

However, if, in solving the single commodity problem, a method such as the network
simplex which maintains at each step a primal basic feasible solution is adopted, no
explicit dual feasible solution is available until the algorithm reaches the optimum.

Our aim now is to show how to obtain a dual feasible solution once a primal basic
feasible solution is available. Suppose we have calculated a primal basic feasible solution
& with n basic variables associated with a rooted spanning tree [9] and (m—n) non-basic
variables fixed either at their lower bound or upper bound.

The primal-dual complementarity conditions are

zij(cij — (wi — w; — pi;)) =0 V(Z:,J:),
pi; (Y — i) =0 V(7).

Therefore, the following system of linear equations must be satisfied by the dual vari-

(14)

ables w:
(15) w; — Wy = Ci5 V(Z,j) € Np

where Npg is the set of the indices of the basic variables. Moreover, by defining N, and
N, as the sets of the indices of the (non-basic) primal variables which are respectively
at their lower and upper bounds, we have that the dual solution which satisfies the
complementarity conditions (14) may be obtained by solving (15) and letting

Hij =0 (iaj)ENBUNla
pij =—¢&; (i,7) € Ny

where ¢&; is the reduced cost defined as

(16)

(17) &j = cij — (wi — wj).

Unless the primal solution is optimal, such a dual solution is not feasible. In fact
it may happens that é&; < 0 for some (7,7) € N; and/or é&; > 0 for some (7,7) € N,.

To get a feasible solution “as close as possible” to the above defined solution we
operate in the following way. First, the dual variables w are chosen to satisfy the system
of linear equations (15). Then, we define the variables p in the following way:

(18) i = 0 (7‘>.7) € Np,
pij =max(0,—&;) (i,7) & Np.

Obviously, dual feasibility is achieved but complementarity is lost. It is easy to

verify that the corresponding value of ¢, obtainable as the difference between the dual

“complementary” solution and the dual feasible one is the following:

(19) e= D, Gy~ ). Gy

(4,)ENu,Ei; >0 (6,7)ENLEi; <0
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4. Extension to the nonlinear case. In this section we extend some of the
results obtained for the multicommodity network optimization problem with linear ob-
jective function to the nonlinear case. We will focus our attention to nonlinear convex,
differentiable objective functions.

First of all we extend Proposition 2.1 to the nonlinear case. We define the problem

P(a) as
v(a) = min f(z)

T

(20) Az =b+a,
z>0

where f : z € IR" — IR is a convex, differentiable function. The dual of the above
problem is [12]:

max f(z) =M (Az —b—a)— Tz

z,A\v
Vi(z)— ATA —v =0,
v 2> 0.

PROPOSITION 4.1. Let (Z,),) be a feasible solution to the dual of P(0) Then A
is an e-subgradient of v(a) at a = 0 for e = v(0) — f(2) + AT(AZ — b) + 8Tz >0, i.c

v(e) >v(0) + M a—¢ Yae R
Proof. Following similar steps as in the proof of Proposition 2.1 we have:

(@) = Ma+ [f(z) - N (Az - b)— 77| +
min  f(z) — ATa~ f(z) + AT (AZ - b) + 377
Az = b+ o
x>0

Observe now that

f(z) = Ma— f(z)+ 3 (Az - b))+ 572 = f(z)— f(3) -2 (b+a)+\TAz+5

(21) = f(e) - f(@) - (A"2) (2 —3) + "z
(22) = ()~ 10 - (916) 5) (e - 3) + 97
(23) = f(z) ~ f(&) = Vf(z)"

(z—z)+97z>0
(

where (21) follows for the primal feasibility of z, (22) follows from the dual feasibility

of (2, ,9) and (23) from the convexity of f.
Therefore exactly as for Proposition 2.1, taking into account that

¢ =v(0) — [f(z) - MT(Az — b) - 573| > 0,
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we have:

v(a) > Ma+v(0) —e

The nonlinear multicommodity network flow problem can be stated as follows:

T grgrzlinxk AEY 4+ ) + .+ fr()
Fgt = Tl:
Fz? - 2a
(24)
F(L’K — T'I\,
CIIl + 5172 + + -’EK S d7
xk Z 0 k = 1, . ,I(,

where fi(z*) is nonlinear differentiable and convex.

Problems of this form appear in several areas of applications including logistic,
transportation planning, water distribution, financial modeling and air-traffic control
(see [9] and [8, Chapter 11] )

Recently, various nonlinear programming algorithms for the nonlinear case have
been proposed. In particular, relaxation methods ([1]) and row-action-type algorithms
have been studied (see [16]) for problems with objective functions that belong to the
Bregman class [2] as characterized by Censor and Lent [4]. These method are well suited
for massively parallel implementation.

The decomposition technique discussed in the previous sections for the linear case,
applies also to the nonlinear separable case. Proposition 4.1 allows us to calculate e
subgradients of the K subproblems corresponding to the different commodities once a
dual feasible solution for each subproblem is available. Dual ascent methods (see [1]),
applied to the single commodity nonlinear subproblems, iteratively construct a sequence
of primal-dual pairs of vectors satisfying slackness conditions until primal feasibility is
obtained. Therefore, at each iteration of a dual ascent method for the subproblems, an
e-subgradient is available to the master program and the bundle method as discussed
in Section 3.1 can be used to detect optimality or determine a new feasible capacity
allocation.

5. Conclusions. We presented an iterative algorithm based on right hand side de-
composition for the solution of linear multicommodity network flow problems. The cou-
pling constraints are eliminated and the shared capacity resource is subdivided among
the different commodities. The master problem that determines the the sharing of the
resources is solved by using a new nondifferentiable optimization technique based on the
bundle method. Extensions to the nonlinear, convex separable case are also discussed.

10
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