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Abstract

For certain classes of problems defined over two-dimensional regions
with grid structure, minimum-perimeter domain decomposition provides
tools for partitioning the problem tasks among processors so as to min-
imize interprocessor communication. Minimizing interprocessor commu-
nication is shown to be equivalent to tiling the domain so as to minimize
total tile perimeter, where each tile corresponds to the tasks assigned to
some processor. The concepts of “slice-convexity” and “semi-perimeter”
are introduced to characterize minimum-perimeter tiles. A tight lower
bound on the perimeter of a tile as a function of its area is developed. We
then show how to generate all possible minimum-perimeter tiles. Certain
classes of domains are shown to be optimally tilable.

1 Introduction

Many computations performed on parallel processors involve a collection of tasks
which are related by a rectangular grid structure (i.e., as in figure 1, each
task has at most four “neighbor” tasks). Examples include the problem of
determining the characteristics of fluid flow [5], solving obstacle problems using
parallel successive overrelaxation [1], and edge detection in computer vision [6] .
We assume initially that all grid cells are squares of uniform size as in figure 1,
and that there is a task associated with each cell that uses only its own data
and values from neighboring cells that share an edge. For cells on the boundary
of the given region, boundary conditions may be used in the computations. If
the grid cells are assigned to the processors (that is, the computation for each
cell is done by a particular processor), then sharing data with neighboring cells
may involve communicating with other processors.

The term “tile” will refer to a connected group of cells assigned to the same
processor. We say a set of cells is connected if for every pair of cells ¢;,¢;
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Figure 1: Assigning the grid cells of a domain to processors

there is a path of cells in the set from ¢; to ¢; such that adjacent cells on the
path share an edge. (We will show that, in order to achieve the lower bounds on
perimeter derived in §3, the cells assigned to each processor must be connected.)
To measure interprocessor communication, we measure the length of the tile
borders because only across the tile borders may data pass between different
processors. In figure 1 we have placed processor identification numbers in the
cells to indicate the assignment of cells to processors. For the case depicted in
the figure there are eight processors, each assigned six cells for load balancing.
Each processor’s tile has a perimeter of ten, so the total length of the tile borders
is 80 (the results in section 3 show this is the minimum possible total border
length for any load-balanced assignment).

This paper thus investigates ways of assigning grid cells to processors so that
the total tile perimeter is minimized while the workload is balanced by assigning
an appropriate number of cells to each processor.

1.1 Overview

In §2 we present a mathematical statement of the problem. In §3, we develop a
lower bound on the optimal value. §4 develops optimal tiles of cells for individ-
ual processors, and §5 provides combinations of these tiles producing optimal
assignments that attain the lower bound on total perimeter. In §7 we investi-
gate a database application in which domain boundaries are treated differently
because a different style of communication is assumed. Qur conclusions and
future research directions are contained in §8.

2 Problem Statement

Suppose that we wish to allocate the cells of a domain among N processors.
Let A denote the number of cells (area) of the domain. Given a processor p, let
A, denote the number of cells (or area) assigned to p. (A, may also be thought
of as the workload assigned to processor p since there is an equal amount of



computation associated with each cell.) Load balancing is achieved by con-
straints specifying a value for A, for each processor. (In typical applications,
the specified processor loads are equal or differ by at most 1. It is assumed that
2o Ap = A) We use P(T) to denote the perimeter of a configuration T of
cells. The notation P(7}) is used to denote the perimeter of the tile(s) held by
processor p. (The cells held by processor p are not necessarily connected, and
therefore may comprise several tiles.) The objective function C that we wish
to minimize measures interprocessor communication and is defined as follows:
C:i= Zp P(Tp). This definition is motivated by the assumption that total inter-
processor communication may be expressed as the sum of the communication
associated with the domain boundary and the communication associated with
“Interior” borders between tiles (the total length of which is determined by the
manner in which cells are assigned to processors). With respect to communi-
cation corresponding to the domain boundary, there are at least two possible
simplifying assumptions that mesh with the models to be detailed below. One
could assume that computing the values of boundary cells is done locally by the
processors (e.g., using boundary conditions) with no communication necessary.
Alternatively one could assume some fixed amount of communication propor-
tional to boundary edges for each boundary cell. In either case the amount of
communication corresponding to the domain boundary is a constant. Thus, the
total communication is given by ki B-+kqo, where B is the total length of the do-
main boundary, o is the total length of the border between tiles (note that each
piece of the “interior” border is counted twice, once for each tile), and k; and ks
are scale factors relating boundary and border lengths to communication. Since
B is constant, minimizing this expression is equivalent to minimizing k2B + ka0,
which in turn is equivalent to minimizing B + o, the total tile perimeter, which
is given by Zp P(T,). The problem, formally stated below, is to minimize total
tile perimeter subject to load balancing constraints:

Given: N processors, a domain comprised of grid cells, and a load A, for
each processor.

Find an assignment that

minimizes C
s.t.  every cell is assigned to a processor,
and processor p is assigned Ap cells (p=1,2,...,N).

It is easily seen that the number of assignments satisfying the balancing
constraint is

(A.Al> (.A ;—‘2./11) (A - '.A;Xl;;- .Az) o (A - Ay - A,zA:, - -AN..1) — mng=j1£Aplj

Complete enumeration of these assignments is not feasible even for relatively
small problems. For example, given a domain consisting of 25 cells, 5 processors,



and a load of 5 for each processor, there are more than 623 x 102 possible
assignments.

The processor assignment problem is related to the graph partition problem
which is NP-complete (see Garey and Johnson, page 209 [2]). Our problem is not
necessarily NP-complete, however, since the corresponding graph partitioning
problem instances are all on graphs with grid structures (each vertex has two,
three, or four neighbors).

3 Lower Bounds

In this section we will develop a lower bound on the measure C and discuss
conditions under which this lower bound is attained. To do this we introduce
the concept of a configuration’s “semi-perimeter”, denoted by S(C), defined as
the width plus height of the smallest rectangle enclosing the configuration C.
(As discussed below, this is also half the perimeter of the tiles that are used to
develop the lower bounds.) For example, the semi-perimeter of the configuration

|is 4 4 3 = 7 and its perimeter is 14. The term “slice” is used to

refer to a row or column of either the domain or of a configuration depending
on the context. S(C) is thus equivalently the number of slices intersecting C'.
A tight lower bound on §(C) as a function of the number of cells in C will be
developed, yielding a tight lower bound on P(C), hence a lower bound on C.

3.1 Relation of Semi-perimeter and Perimeter

We introduce the notion of “slice-convexity” of a configuration.

Definition 1 A configuration is slice-convex if for any {wo cells ¢1,co of the
configuration in the same slice, the smallest rectangle containing c1 and cy lies
entirely in the configuration.

Lemma 2 For any configuration C, P(C) > 28(C). Furthermore, P(C) =
28(C) if and only if C is a slice-conver configuration.

Proof: There are at least two edges forming part of the configuration
border in each slice of C'. Therefore each slice of C' contributes at least 2 to the
perimeter of C, but exactly 1 to S(C). Since §(C) is the number of slices of C,
P(C) > 28(C). For a slice-convex configuration, each slice of the configuration
contains exactly 2 configuration borders in the dimension corresponding to the
slice, so that for a slice-convex configuration P(C) = 28(C). For a configuration



that is not slice-convex, there is a slice with more than 2 configuration borders,
therefore P(C) > 25(C). |

When considering minimum-perimeter configurations in the following sec-
tions, lemma 2 allows us to restrict our attention to those which are slice-convex.

3.2 Lower Bound on Semi-perimeter

In order to develop this lower bound, we first consider how much area can be
enclosed by a given perimeter. Let A*(S) be the function mapping S to the
maximum area achievable with semi-perimeter S.

Theorem 3 Given a semi-perimeter S, the mazimum area tile with semi-perimeler
S is an § x § square if S is even, and is an (£51) x (8%L) rectangle if S is
odd, i.e.,

2

—~~
ol
S

if § is even

(552) () if S is odd

AX(S) =

Proof: For a configuration C' let §z(C) and Sy(C) denote the number of
columns and number of rows in the configuration respectively. Given any config-
uration C with semi-perimeter S and area A, there is a rectangular configuration
C" with dimensions §;(C) x 8 (C), and area Sz(C)Sy(C) > A. Therefore we
need only consider rectangles as candidates for maximum area configurations.
To find the rectangle of maximum area with semi-perimeter S, we maximize
S;Sy subject to Sz + &, = §. Of all pairs of integers with a certain sum, the
pair with the greatest product is the one with the numbers closest together. If
S is even, this is achieved by setting S; = &y == %, and if § is odd, it is achieved
when Sy and Sy differ by 1. |

By “inverting” the function A*(S), we obtain a function S*(A) which is
defined as the function mapping area A io the minimum semi-perimeler of all
configurations of A cells. We also define P*(A) := 28*(A) as the function
mapping an area A to the minimum perimeter of all configurations of A cells.
(We show below that $*(A) is attained by a slice-convex tile, so that by slice-
convexity (lemma 2) its perimeter is 25*(A).)

Theorem 4
' (A) = i [AY2] + (2 - ) [4V2]

where 1 is the smallest positive integer such that

21
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Proof: We may bound the semi-perimeter of any configuration of A cells
from below by finding the smallest semi-perimeter S that satisfies A*(S) > A,
since this implies A > A*(S — 1), which means that a semi-perimeter of § — 1
is not compatible with an area of A.

Consider the following sequence of rectangles.

Qol 0x0
Qli 1x0
Qz: 1x1
Qg: 2x1
Q42 2% 2
Q5Z 3x2

Qgi 3 x3

We call these rectangles “quasi-squares” since the dimensions of each rectan-
gle differ by at most 1. Note that the areas of the quasi-squares in the sequence
are strictly increasing after the second, the area of the ith quasi-square ¢J; for
i > 2 is A*(i), and the semi-perimeter for the quasi-squares increases by 1 at
each step. The areas of these quasi-squares are the points at which the lower
bound on the semi-perimeter increases by 1.

For an arbitrary A, there is a unique smallest quasi-square @J; whose area
is at least 4. Since the area of Q) is at least A, by selecting A cells from Q; a
semi-perimeter of at most $(Q;) is achievable for A. Since the area of Q;_; is
smaller than A, a semi-perimeter of S(Q;_1) = S(Qj) — 1 is not achievable for
A. Therefore the smallest semi-perimeter achievable for any configuration of A
cells is S(Q;). It is easy to see that each dimension of Q; is either |_A1/2J or
[Al/ ?] and that S(Q;) is exactly the semi-perimeter bound in the statement of
the theorem. |

The above argument implies a construction technique for “perimeter-optimal”
configurations, i.e., configurations with minimum perimeter. An optimal config-
uration for any A can be constructed by arranging A cells into a partial square
as follows. Start with a complete square with sides of length [Al/ 2|, Add cells
to fill in new 1l-dimensional faces (completing a face before starting on a new
one) until the total number of cells is A. The resulting partial square will have
sides of length [Al/zj and fAl/z-], and will measure [Al/z] in as few dimensions
as possible. By theorem 4, it will have minimum semi-perimeter. If the partial
squares are constructed to be slice-convex then by lemma 2 they also have min-
imum perimeter. This construction technique is a special case of a technique to
be described in §4.2 for constructing all minimum-perimeter configurations of a
given area.

In figure 2, we show some perimeter-optimal partial squares constructed in
this manner with areas ranging from one to sixteen.



Figure 2: Partial squares with minimum perimeter

In §3 of Ghandeharizadeh et al [3], we derived an alternate bound on S:
S > [2 ,41/2] :

This bound is equivalent to $*(A) (see Yackel and Meyer [7]).
Table 1 constructed via theorem 4 contains minimum perimeter values for
areas up to 56.

3.3 Lower Bound on C
Corollary 5 ZP*(AP) <cC.
P

Proof: Use theorem 4 and the fact that C =3 P(T3). X

Clearly, if the configuration for each processor has minimum perimeter (i.e.,
P(Ap) = P*(Ap) for all p), then the corresponding set of cell assignments
achieves the lower bound on the communication measure C, and is therefore an
optimal assignment.

In §5 we give classes of domains for which such assignments are possible.

In the following lemma we present a perimeter “optimality test” for any
configuration.

Lemma 6 A configuration of A cells with semi-perimeler S > 2 has minimum
perimeter if and only if it is a slice-convez tile satisfying

A(S -1 < A. (1)



min perimeter (P*(A)) | area (A)

4 1

6 2

8 3 - 4
10 5 - 6
12 7T - 9
14 10 - 12
16 13 - 16
18 17 - 20
20 21 - 25
22 26 - 30
24 31 - 36
26 37 - 42
28 43 - 49
30 50 - 56

Table 1: Minimum perimeters

Figure 3: translating sub-tiles to decrease perimeter

Proof: From lemma 2 it follows that only slice-convex configurations may
have minimum perimeter. To see that only tiles (i.e., connected configurations)
may have minimum perimeter, consider a configuration containing two discon-
nected sub-tiles denoted by 73 and T3. By translating sub-tile T} it is always
possible to connect 77 and Th (see figure 3), thereby decreasing the perimeter
of the configuration by at least 2. If (1) holds, then A4 is greater than the
largest area for which a smaller semi-perimeter is achievable, so the configura-
tion has minimum semi-perimeter. This, along with slice-convexity imply the
configuration has minimum perimeter.
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Figure 4: Categories of optimal configurations

4 Additional Configurations with Minimum Perime-
ter

In this section we discuss some additional characteristics of configurations which
have minimum perimeter for their area. The previous section establishes that
configurations that are square or nearly square have minimum perimeter. In this
section we will see that configurations of other shapes may also have minimum
perimeter. We may classify configuration shapes according to two independent
characteristics. Configurations are either nearly square (dimensions differing by
at most 1) or non-square. In addition, configurations are either regular (com-
plete rectangles) or irregular. Figure 4 depicts examples of minimum-perimeter
configurations in each of the four categories induced by these characteristics.
Non-square regular configurations (rectangles) with minimum perimeter are
discussed in §4.1. Irregular minimum-perimeter configurations and a technique
for constructing all optimal configurations of a given area are taken up in §4.2.

4.1 Optimal Rectangles

Using the results from the previous section, we can characterize the rectangular
blocks that have minimum perimeter.

Theorem 7 An z X (z + k) or an (z + k) X & rectangular block is perimeler-
optimal if and only if

k is even and 1+ £(2 ~1) <2
or

k is odd and 1 + (L—gl)z <z



Conversely, an z x (z + k) or an (z + k) x = rectangle is perimeter-optimal if
and only if the rectangularity increment k is af most

max{? round(z/?),2 [ml/z - 1} + 1}
where round(z) rounds x to the nearest integer.

Proof: To prove the first part of the theorem, we simply apply the optimality
test. By lemma 6, an z x (z + k) block is optimal if and only if

[2m+k—-l‘lr [Zw—kk-—l

2—7r
20k
5 5 J <z’ +kz (2)

where r = 2z + k — 1(mod 2).
If k is even, (2) reduces to
l’?x+2k—1'| ]_2$+2k_1J < a:2+km
= (z+E@+i-1) < 2?+ka
= k-1 < oz

The integrality of both sides of the inequality allow us to derive the desired
result.

If k is odd, (2) reduces to

To prove the second part of the theorem, we show that 2 |(z — 1)}/2]+1 and
2 round (2'/2) are the largest odd and even integers respectively satisfying (2).

To prove the result for the odd numbers, we start with the expression for z
in terms of odd k.

Since the LHS of the last inequality is integer, we may take the floor of the

RHS.

o2 (e

= k < 2|(z-1)Y?+1

Since the RHS of the last inequality is an odd integer, & = 2 |(z — 1)}/?| + 1 is
the largest odd integer satisfying (2).

To prove the result for the even numbers we write z!/2 in the formz = 7+ f
where 7 is the integer part and f € [0,1) is the fractional part. If f < J then

10



2 round (ml/z) =2r. If f > % then 2 round (:cl/2) = 2r 4+ 2. (For integer z, f
is never 1 so round (z!/?) is uniquely defined for integer «.)
If f < L and 2 round (2'/2) = 2r then k = 2r satisfies (2) because
k(k 2 2 2
3 5—1 =r(r—-D=r—r<r+2fr+f'=z

and k = 27 + 2 violates (2) because

g(-g——l)+l:(r+1)r+1:r2+r+l>r2+2fr+f2=m.

If f > 1 and 2 round (2'/?) = 2r + 2 then k = 2r + 2 satisfies (2) because

—g(g——l) =(r+Dr=rl4+r<r?+2fr+fi=z

and k = 2r + 4 violates (2) because

g (%-1) =+ +D)=r+3r+2>r2+2fr+ A=z
Therefore k = 2 round (z!/?) is the largest even integer satisfying (2). |

Note that the first part of the theorem shows that if a particular rectangle is
optimal, then by increasing both dimensions by the same amount, the resulting
larger rectangle is also optimal. Theorem 7 is addressed graphically in figure 5,
which shows the dimensions of all rectangles with z < 30 that have minimum
perimeter. The integral points on the diagonal line in the figure represent the
squares, and the outer boxes represent the most-skewed rectangles with optimal
perimeter. All integer points between (and including) the boxed points corre-
spond to rectangles with minimum perimeter. Table 2 lists dimensions of the
most skewed optimal rectangles corresponding to the boxed points above the
diagonal.

4.2 Optimal Irregular Tiles

In order to characterize irregular optimal configurations we prove a simple
but powerful theorem giving another necessary and sufficient condition for the
perimeter optimality of any configuration.

Theorem 8 A configuration of A cells has minimum perimeter if and only of it
is slice-convez and its minimum circumscribing rectangle has perimeter P*(A).

Proof: The theorem follows from the fact that a rectangle has the same
perimeter as any slice-convex configuration of cells it minimally circumscribes.

Theorem 4.2 suggests a way to find all the minimum-perimeter configura-
tions for a given area A. In this discussion we consider two configurations to be

11
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Figure 5: Dimensions of rectangles with optimal perimeter

equivalent if one can be transformed into the other by rotation and/or reflec-
tion. Using the theorem, all the possible circumscribing rectangles for perimeter-
optimal configurations of area A can be specified. For each of these rectangles,
any slice-convex subset of A cells forms a minimum-perimeter configuration.
We say a cell is a corner cell of a configuration if it is not between two cells in
any slice. By removing a corner cell from a slice-convex configuration, convexity
is maintained. Therefore, starting from a rectangle, a minimum-perimeter con-
figuration can be constructed by iteratively removing corner cells. For example,
given an area of 10, the minimum-perimeter configurations are generated as
follows. §*(10) = 7, so the rectangles of semi-perimeter 7 are considered. The
possibilities are 1 x 6, 2 x 5, and 3 x 4. A 1 x 6 rectangle can’t enclose 10 cells,
so all minimum-perimeter configurations are circumscribed by either 2 x b or
3 x 4 rectangles. Therefore all minimum-perimeter configurations of area 10 are
equivalent to the following configurations:

12



Most-skewed perimeter-optimal rectangles

k z X (z+k)
2 1x3

3| 2x5

4 | 3x7 4x8

5 5x10 | 6x11

6 | 7Tx13 | 8x14 | 9x1b
7 110x 17|11 x18 |12x19
8§ |13 x21|14x2215x23|16x 24
9 117x26|18x27|19x28]20x29
1021 %x31122x32123x33|24x34|25x35
11126 37|27 x38(28x%x39]29 x40 30x41

Table 2: Some most-skewed perimeter-optimal rectangles

The first five configurations above represent all the possibilities for configu-
rations enclosed by 3 x 4 rectangles: the first two are constructed by removing
two corners from the same column, the next two by removing two corners from
the same row, and the fifth by removing two corners from different rows and
columns. There is only one possible configuration of area 10 contained in a 2x 5
rectangle.

By examining the above technique, we are able to identify the cases in which
there is a unique minimum-perimeter configuration of given area. Given an
area A, if there is a unique rectangle with semi-perimeter $*(A) and area > A,
then all minimum-perimeter configurations of area A are circumscribed by that
rectangle. Furthermore, if the area of that unique enclosing rectangle is A or
A1 then there is a unique optimal configuration of area 4, because all removals
of either zero or one corner result in equivalent configurations. We also show
that all other cases lead to non-uniqueness.

Lemma 9 There is a unique minimum-perimeler configuration of area A if and
only if A can be expressed as A = k2, k(k+1), or k(k+1)—1 for positive integer
k.

13



Proof: If A = k? then S*(A) = 2k. The unique enclosing rectangle with
semi-perimeter 2k and area at least .4 has dimensions k x k (any other rectangle
with semi-perimeter 2k has area less than k?). Similarly, if A = k(k + 1), or
k(k+1)—1and k > 2, then §*(A) = 2k + 1, and the unique rectangle with
semi-perimeter 2k + 1 and area at least A has dimensions k x (k + 1).

To show that these are the only classes of areas which have unique optimal
configurations, consider the fact that such an area .4 must have only one pos-
sible enclosing rectangle with perimeter $*(A). Since $*(A) corresponds to an
enclosing square or quasi-square, it follows that the unique enclosing rectangle
must be this square or quasi-square. This means that the area A is expressible
as either k? — j or k(k + 1) — j for positive integer k and non-negative integer j.
For areas expressed as A = k?—j with 7 > 1, a (k+1) x (k—1) rectangle is a sec-
ond enclosing rectangle with semi-perimeter 2k because (k+1)(k—1) > k? — j.
For areas expressed as k(k+1)—j with j > 2 there can not be a unique optimal
configuration because there are at least two ways of removing j corners from a
k x (k+ 1) rectangle. |

The preceding argument proves that squares, quasi-squares, and quasi-squares
minus one corner are the unique optimal configurations for their areas and that
all other areas have alternate optimal configurations. Similar reasoning can be
used to show that for areas of the form k? — 1 with k > 2, there are exactly two
optimal configurations: a k x k square with one corner removed and a complete
(k—1) x (k + 1) rectangle.

Another interesting fact about the set of optimal configurations of a given
area is that there can be at most one rectangular configuration in the set. To
prove this we make use of the following lemma.

Lemma 10 For (unordered) pairs of positive numbers, two distinct pairs with
identical pair sums have different pair products, i.e., for positive numbers =z,
Y1, T2, Y2, if €1+ Y1 = 22 +yo and {z1, 51} # {22, 92} then z1y1 # @2ys.

Proof: Write z9 as 1 + k. Then y3 = y; — k. Now assume z;y; = Tay2.
Substituting into this last equation, we get

z1y1 = (21 + k) (v ~ k).

Simplifying, we get
k(yl - Ty — k) = 0:

in other words k = 0 or k = y1 — z;. In the first case 1 = 25 and y; = ya, and
in the second case z, = y2 and y; = x2, a contradiction.

The lemma tells us that all rectangles with a given semi-perimeter have
different areas and implies that if a rectangular configuration of area A is optimal
then it is the only optimal rectangular configuration with area A (any other
optimal configurations will be irregular).

14



5 Optimal Tilings

In order to achieve the lower bound for C, each configuration must have perime-
ter exactly P*(A,). Thus, we wish to interleave perimeter-optimal configura-
tions for all processors in order to fill the domain exactly. In this section we
exhibit classes of domains for which such tilings can be constructed.

5.1 Optimal Tilings with Rectangles

One class of problems that have easily obtainable optimal solutions are instances
in which the domain is a M; X My rectangular grid that can be tiled with
perimeter-optimal rectangles. In particular, if N can be factored as fi fo where
f1 divides My, fp divides My and My Mo rectangles are perimeter-optimal,
then such a tiling is possible when all processors have equal loads. Below we
demonstrate an optimal assignment for such an instance: a 6 x 18 grid with 6
processors, each of which has a load of 18.

11y 24i21212(21213(313[3|3]3
1frj1rfry1f1)2f(2)2(2[212)31313]3(3]3
1j1rfryrp1rjy1ry2j212|2{2(2(3|13{3|3[{3]3
414|4|414]4|5|5|5|5|5|5|6|6|6|6|6]|6
41414(4[4]4)5]|5|5|5]|5|5]|616|[6[6|6]6
41414141414 |55[5]|5|5|5]|6]6]6]6]6]6

However, it is not necessary that all the tiles be oriented in the same way. An
alternate optimal assignment for the same problem is shown below.

1fry1(212(2)22|2|3[33|4(4|4|4|4]4
1fr)1y2)2{212(2(2|3[3|3|4|4|4]4|4]4
1122121212233 (3|4|4(4]|4(4]4
1111555555313 |3|6[6|6|6]|6]6
1/1(1{5|5|5|5|5|5}3|3|3]6|6|6[6|6]6
11115655 }5]|5]5]|3]|3]3|6|6|6]6|6]6

Figure 1 in §1 is an example of a non-rectangular domain optimally tiled
with rectangles.

5.2 Optimal Tiling with Irregular Tiles

Irregular tiles can fit together to tile many grids. The example below shows how
irregular optimal tiles of area 10 fit nicely together.

15



1111111444 |4{5|5]|6]|6]|6
1{1(1]1]|4|4])]4,4]5|5]|6|6]|6
1(1(2]23(3|4,4|5|5|5|6]|6
212121213133 |3|5|5[6(6]6
212121213313 [3|8|8{8|7)7
818877
818|777
818|777

This example also demonstrates the technique of optimally tiling by decom-
posing the domain into subdomains which can each be optimally tiled by a
proportional subset of the processors. The domain above can be split into four
5 x 4 rectangles, each of which can be tiled optimally with two processors. Such
a divide and conquer approach to tiling is a method of constructing optimal
tilings for large domains with complex shapes.

6 Non-uniform Grids

Dy Dy

Figure 6: A non-uniform grid

Under certain assumptions, the tiling approaches discussed above can also
be used to deal with non-uniform grids which are important in many applica-
tions (see e.g., Gropp and Keyes [5]). Considering the case shown in figure 6,
suppose that that N processors are available, that the amount of computation
per cell (regardless of cell size) is uniform, that total computing loads are to
be nearly balanced among processors, and, finally, to ensure relative simplicity
and uniformity of the computational procedure implemented on each proces-
sor, we impose the constraint that the cells assigned to each processor be of
uniform size (i.e., that the tile associated with a processor lie entirely in sub-

16



domain D or D). In order to first set up load balancing constraints, we
would then partition the given number of processors between the two domains
so that the number of cells per processor (rather than the area spanned by the
processor) was approximately equal. In the second stage of this process, com-
munication would be independently minimized for each subdomain by tiling
(using its pre-determined appropriate number of processors) according to the
procedures described above for minimum-perimeter tilings. The shared bound-
aries of the subdomains, across which communication would be required, would
be automatically included in the objective function via the boundaries of the
individual subdomains. Of course, this two-stage approach is easily general-
ized to provide a decomposition of arbitrary unions of subdomains into single
subdomain problems of the type previously considered.

7 Toroidal Domains

So far, the boundary of the domain has contributed a constant term to the ob-
jective function since it has always formed part of the tile borders. In some ap-
plications, however, such as the database problem discussed in Ghandeharizadeh
et al [4], the boundary of the domain is irrelevant to the communication mea-
sure. In this database application, we wish to assign grid cells of a rectangular
domain to processors in order to minimize the number of distinct processors
that appear in the slices of the grid. A typical computation in the database
system accesses all the data in a particular slice of the grid, and the processors
assigned to cells in the slice must participate by communicating with a coor-
dinating processor. We assume a communication overhead is associated with
initiating and terminating a query on each of the processors associated with a
slice. The goal is to minimize overhead while balancing the workload between
the processors. If we define v, to be the number of distinct processors in slice
s of the grid, then our objective is to minimize 6;,4,) = >, ¥s. In Ghande-
harizadeh et al [4] we showed that this is equivalent to minimizing the sum of
the “D-perimeters” for the processors, where the D-perimeter for a processor is
defined to be the number of slices that a processor appears in. In two dimen-
sions, the D-perimeter of a configuration of cells is therefore the semi-perimeter
of the configuration in its most “compact” form (a configuration is compact if
its slices are adjacent — see figure 7). Because 0y, is not affected by a permu-
tation of the rows or columns of the grid, the cells belonging to a processor do
not have to be slice-convex or even connected in order to form a configuration
with minimum D-perimeter (see again figure 7). However, minimum-perimeter
tiles are examples of configurations that have minimum D-perimeter.

We present an optimal solution to the database problem for a certain class
of grids. Because of the nature of the problem, the tiles can “wrap around”
the top or side of the grid without incurring any extra overhead since they
remain in the same slices. We can therefore think of the domain as lying on the
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Figure 7: Compact and non-compact forms of a minimum D-perimeter config-
uration

surface of a torus, ¢.e., the top row of the grid is adjacent to the bottom row,
and the left-most column is adjacent to the right-most. So, using the concept of
connectedness in the toroidal sense, the closest analogy to the preceding model is
obtained by tiling toroidal domains with slice-convex minimum perimeter tiles.
Tilings of this form provide optimal solutions to the above database application
(see Yackel and Meyer [7]).

Consider an N x N toroidal domain, with equal areas assigned to N pro-
cessors so that A, = N, (p = 1,2,..., N). Under these constraints it is always

possible to tile the domain with minimum-perimeter tiles. Let r = [\/N J,

s =max{k|rk < N} and N = rs+1, 0 <t < s. Note that s — r is either 0 or 1.
Consider the partial square tile of area N (having minimum perimeter), made
up of an r X s block and a “tail” of length ¢.

t

tail

block

S

We describe how to tile the grid with these partial squares. If the tail is of
length 0, then the grid can be tiled as described at the beginning of section 5.1
by 7 x s rectangular tiles. (This is true because N = rs+ 0.)

If the tail length is not 0, then diagonal tiling (with wrap-around) partitions
the grid into tiles as follows. The first tile in the grid’s upper left corner is made
up of the set of cells:

tiley ={ (1,1),(L,2),...,(1,1),
(2,1),(2,2), ...,(2,9),
(P4 1,1, (r41,2), ..., (r+1,8)} .
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The coordinates of the cells in the (i + 1)st tile are obtained by adding 7 to all
the row coordinates and is to all the column coordinates of the cells in tiley
modulo N, as shown below.

L

tiley

L

tﬂez

tileg

Theorem 11 The N tiles tile;, tiles, ..., tileny cover the grid completely with
no overlap.

Proof: Since each tile contains N cells and the grid has N2 cells, it suffices
to prove that each each grid cell belongs to at least one of tiley, tiles,. .., tiley,
i.e., for any grid cell (z,y)

=z + ¢ (modN)

and
Y= +is (modN)

for some 0 < i < N — 1, and some (z1,¥1) € tile;. Assume by way of contradic-
tion that there exists some grid cell (z,y) such that for any (z1,7:) € tile;

zZ x + 1 (modN)

or
yZ y +1is (modN)

fori=0,1,...,N — 1. For each (z1,y1) € tiley, ¢ = 21 + (z — 1) (N) so our
assumption forces the incongruence

yZ y1 + (z —z1)s (mod N).

Therefore the following set of N incongruences (one for each cell in tile
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moving from right to left, starting in row 1) must hold:

<

y

4

#
%

F
#

”

t+ (z—1)s (modN)
t—1+(z~1)s (modN)

1+ (z —~1)s (modN)

s+ (z — 2)s (modN)
§—1+(z—2)s (modN)

14 (z —2)s (modN)

s+ (z—7r~1)s (mod N)
s—1+(z~7r—1)s (modN)

1+ (z —7r—1)s (modN).

The right hand sides of the above incongruences form a sequence of N con-

secutive integers.

Thus, we have y Z¢ (mod N), ¢ = 1,2,..., N, a contradiction. 1
Figure 7 illustrates diagonal tiling on a 7 x 7 grid with 7 processors.

1166|6777
11y 207|1717
1{111412)2(2]3
3131412121213
3(3|4]4(4]5]3
5(16|4|4[4|5]5
5|6|6|6|7]5]|5

Figure 8: Diagonal tiling of a toroidal domain

8 Conclusions and Future Work

We have formalized the problem of partitioning tasks among processors for par-
allel domain decomposition computations in order to minimize interprocessor
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communication. A lower bound on the objective function has been developed
and we have demonstrated how the bound is attained when the domain can
be tiled with minimum-perimeter tiles. We have presented characteristics of
minimum-perimeter tiles and systematic techniques for generating all minimum-
perimeter tiles with a given area. Finally, we have shown how certain domains
can be tiled with minimum perimeter tiles, therefore providing optimal solu-
tions to the communication problem. Continuing work in this area includes de-
veloping algorithms to generate optimal or near-optimal solutions for arbitrary
domains and numbers of processors. Lower bounds on the objective function
taking into account the shape of the domain would allow verification of opti-
mality for solutions to a wider range of problems and sharpen the results in this
paper. Extensions of the results to three-dimensional domains and other data
partitioning problems is also a goal.
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