CENTER FOR
PARALLEL OPTIMIZATION

SERIAL AND MASSIVELY PARALLEL
SOR ALGORITHMS FOR
LARGE-SCALE ENGINEERING PROBLEMS

by

R. De Leone and M. A. Tork Roth

Computer Sciences Technical Report #1073

January 1992

Serial and Massively Parallel SOR Algorithms for
Large—Scale Engineering Problems*

R. DE LEONE' M. A. TORK ROTH!

Abstract

In this paper we discuss the solution of several engineering problems using serial
and parallel successive overrelaxation (SOR) methods. The sparsity structure of the
problems considered here allowed us to efficiently implement the SOR algorithm on
a Connection Machine CM~-2, a massively parallel Single-Instruction-Multiple-Data
machine. Computational results are reported for three classes of problems: obstacle
problems, elastic—plastic torsion problems, and journal bearing problems. Problems
with up to 4 million variables have been solved in a few minutes on a CM-2 with
16,384 processors.

Keywords: Quadratic Programs, Successive Overrelaxation, Massively Parallel Algorithms.

1 Introduction

Our concern here is the quadratic programming problem with simple bounds:

minimize -;-mTMm + ¢z 1)

subject to [<z<u

where M is a symmetric, positive semidefinite nxn real matrix with positive diagonal entries
and ¢, [, u, and = are n—-dimensional vectors. Problems of this form arise in many physical
and engineering applications such as contact and friction problems in rigid body mechanics,
elastic-plastic torsion problems, and journal bearing lubrication [1, 2].

Various types of algorithms have been proposed and studied for the solution of these
problems; for example, algorithms based on active set strategies and, more recently, interior
point algorithms. An effective active set strategy for very large problems must add or drop
many constraints at the same time. The recent algorithm proposed by Moré and Toraldo

*This material is based on research supported by the Air Force Office of Scientific Research Grant AFOSR-
89-0410

tCenter for Parallel Optimization, Computer Sciences Department, University of Wisconsin Madison,
1210 West Dayton Street, Madison, WI 53706

MASSIVELY PARALLEL SOLUTION OF QPs

o

[10] combines a conjugate gradient method to explore a face of the feasible polytope and a
projected line search strategy to select a new face. The interior point algorithm proposed
by Han, Pardalos and Ye [4] is (at least from a theoretical point of view) one of the most
effective, Tequiring a total of O(\/nL) iterations, where L is the size of the input data of
the problem. A review of the recent algorithms based on active set strategies can be found
in [10, 9, 3]. We refer the reader to [4] for an outline of the results for interior point based
algorithms.

In this paper we show that important large-scale engineering problems can be solved using
both serial and parallel successive overrelaxation (SOR) methods [6, 7]. The effectiveness
of the SOR algorithm in solving large sparse linear complementarity problems and linear
programs derives in part from the fact that original problem data are never modified and
the sparsity structure of the matrix M is preserved throughout the algorithm.

For all the problems considered here, the matrix M is pentadiagonal. This special sparsity
structure of the matrix allowed us the effectively implement the SOR algorithm on the
massively parallel Single-Instruction-Multiple-Data (SIMD) Connection Machine CM-2.

In a previous paper [3], we concentrated on the obstacle problem and results on the Con-
nection Machine CM—2 and the MasPar MP-1 were reported. Two different implementations
of the algorithm in Fortran 90 and C* were discussed. For larger problems the C* imple-
mentation was more efficient, reducing the computing time in some cases to 40% less than
the Fortran 90 implementation. We attributed this to lower inter-processor communication
costs in the C* implementation (see [3]).

In this paper, we report computational results for three classes of problems: obstacle
problems, elastic—plastic torsion problems, and journal bearing problems. We compare the
results of our algorithm with the results for the Han, Pardalos and Ye algorithm [4] and with
the results reported by McKenna, Mesirov and Zenios in [11] for their implementation of the
Moré and Toraldo [10] algorithm on the Connection Machine CM-2.

We briefly describe our notation now. Given the vectors [and u (with | < u) and a
vector z all in IR™, z4 will denote the vector with components (z4); = min{u;, max{l;, z;}}.
The scalar product of two vectors z and y in IR™ will be denoted by z7y. The symbol :=
denotes definition of the term on the left side of the symbol.

2 The serial SOR algorithm

In this section we will discuss a serial implementation of the SOR algorithm for the quadratic
program with simple bounds (1).
A point z € R™ solves the quadratic program (1) if and only if ([6])

= (z—wE(Mz +q))s

for some positive diagonal matrix E and some w > 0. The above formula is the basis of the
SOR algorithm. The successive overrelaxation algorithm constructs a sequence of iterates
{zF} as follows:

SOR Algorithm

MASSIVELY PARALLEL SOLUTION OF QPs 3

For any initial feasible z° € [, u], generate the sequence {zF},k =0,1,2,..., as follows:

i<i 321

f+1 e (zi.’ —-LUEH (Z M;jxfll + E M,(I; + q,>) (“')
for 1 = 1727"")

In our implementation we used Ey; = M;'. Convergence of the algorithm can be estab-
lished if the relaxation parameter w is chosen in the interval (0,2) [3].

We refer the reader to [3] for more information on the serial implementation of the SOR
algorithm including the data structure used for storing the matrix M and the choice of the
relaxation parameter w. For all the problems considered here, the value of w was fixed to
1.95.

A simple but very effective “fixing-strategy” for the problem variables was implemented.
During the updating process, the algorithm recorded if (and how many times) a particular
variable remained fixed at its upper or lower bound. Based on this information, certain
variables were held fixed for a number of iterations. A resetting step was performed every
30 iterations to verify the appropriateness of fixing these variables. We estimate that a 15%
reduction in solution time was achieved by this strategy.

3 The massively parallel SOR algorithm

Although the SOR algorithm is inherently serial, two distinct components z; and z; (with
i < j) can be concurrently updated using the above formula (2) provided that M;, = 0 for all
r=1,i+1,...,75 —1. This observation is the basis of our massively parallel implementation
of the algorithm.

The quadratic programming problems considered in our parallel implementations arise
as finite element approximations to elliptic variational inequalities. These approximations
are obtained by triangulating the unit square, giving rise to a grid. In this context it is more
convenient to describe our parallel implementation in terms of an m x m matrix X. Then
n = m? and

r -

le X2m e Xmm
X:: y T = {Xn,le,...,Xml,Xlg,...,Xmg,...,Xblm,...,Xmm].
Xiz Xoz ... Xm2
X Xa ... X |

At each grid point the value of a piecewise linear function at the vertices of the triangu-
lation of the problem domain is stored (see also [10]).

To update a particular component X;;, the SOR algorithm requires the value X;;, along
with its north, south, east and west neighbors in X. This special structure allowed us to take
advantage of the NEWS (North-East-West-South) communication grid of the Connection
Machine CM-2.

MASSIVELY PARALLEL SOLUTION OF QPs 4

In our C* implementation, the processors were organized in an p X p grid and assigned
a k x k submatrix of X, where n = p? x k?. A standard red-black coloring [8] was imposed
on X so that each processor would be active at every time step; all red components were
updated simultaneously, followed by all black components.

4 Performance of the serial and parallel algorithms

The test problem's considered are instances of three classes of probiemé: the obstacle problem,
the elastic-plastic torsion problem, and the journal bearing problem. These three problems
can be posed as the following constrained variational problem:

min{g(v) : v € K}.

For the obstacle problem and the elastic-plastic torsion problem, the objective function is
given by

a(w)=1/2 [Vol dD~ f [vaD,
D =(0,1) x (0,1),

where V is the Laplacian operator, and K is the subset of all functions v with compact
support on D such that v and |Vo||* belong to the square integrable class L*(D).

For the obstacle problem, v varies between the bounds v; and v, given in Table 1 and
the force f = 1.

Problem v Uy
1 (sin(9.2z;) sin(9.3z2))? || (sin(9.221) sin(9.3z2))* + 0.02
2 sin(3.2z1) sin(3.3z3) 2000.0

TABLE 1: Lower and upper bounds for the obstacle problems.

For the elastic—plastic torsion problem, f = c for some constant c, and the bounds on v
are given by
{|v(z)| < dist(z,dD),z € D}.
where dist(-,dD) is the distance function to the boundary oD.

We considered the three cases ¢ = 5, ¢ = 10, and ¢ = 20.
The journal bearing problem has an objective function given by

q(v) =1/2 /D(l + ecos) ||Vo||*dD — € . sin fvdD,

where

’D={(0,y):0<0<27r,0<y<?.b},

MASSIVELY PARALLEL SOLUTION OF QPs 5

{v>0}.

In our tests, we set b = 10, and used e = 0.1 and ¢ = 0.5.

Finite element approximations give rise to a quadratic minimization problem with a
finite number of variables. For all three classes of problems, the matrix M is a pentadiagonal
matrix. For the obstacle problem and elastic—plastic torsion problem, M has diagonal entries
of 4 and off-diagonal entries of —1. While the matrix M for the journal bearing problem has
the same pentadiagonal structure, diagonal and off-diagonal entries are more complicated
to compute, © - - , . . ST TR

In tables 2 to 11 the computational results for the serial and parallel version of the SOR
algorithm are reported. The serial results were obtained on an IBM RISC 6000 POWERsta-
tion 550 while the massively parallel results were obtained on a Connection Machine CM-2
using 8K and 16K processors. All numerical computation was carried out in double precision.

The results for the obstacle problem are reported in Tables 2 to 5. Table 2 shows the
number of iterations, solution time (in seconds) and number of free variables at the optimum
(i.e., the number of variables neither at the at the lower or upper bound) for the first of two
obstacle problems. The number of variables ranges from 10,000 to 490,000 which corresponds
to a grid with the number of points varying from 100x100 to 700x700. The fifth column
contains solution accuracy defined as:

Accuracy := “:1:* —(z" — (Mz* + q))#noo :

The column labeled HPY reports solution times for the same problems with the Han-
Pardalos-Ye interior point algorithm [4] on a IBM 3090-600S supercomputer with Vector
Facilities. In their implementation they took full advantage of the special pentadiagonal
structure of the matrix M to solve the system of linear equations arising at every iteration.

For the problems we tested, the solution time for our serial SOR algorithm was lower than
the time required by the Han-Pardalos-Ye algorithm. The solution time ratio for the two
algorithms is shown in the last column. The time per iteration for the SOR algorithm grows
linearly with the number of variables while the number of iterations grows sublinearly. For
Problem 1, about 1/5 of the variables were at their lower or upper bound at the optimum,
and for Problem 2, almost 60% of the variables were at bound at the optimum.

In Table 4 we compare the massively parallel results obtained with our Fortran 90 im-
plementation with the results obtained by McKenna, Mesirov and Zenios for their imple-
mentation of the Moré and Toraldo [10] algorithm. Their results are reported in the column
labeled MMZ.

Table 5 reports the solution time for the faster C* implementation of SOR for both types
of obstacle problems using 8K and 16K processors. The number of variables ranged from
16,384 to 1,048,576. The final solution accuracy for all was at least 107, In all instances,
the speedup efficiency was always very high: always above 84% and in many cases over 90%.
We also note that, using 16K processors, we were able to reduce the solution time by a factor
of 30 over the serial algorithm on the IBM RISC 6000 POWERstation 550.

Tables 6 to 9 report the serial and parallel results for the elastic-plastic torsion problems
for different values of c. Two starting points are considered: z° = 0 and z° = u. Tables 6
and 7 show the serial results for the two different starting points. All problems were solved
within an accuracy of at least 1077.

MASSIVELY PARALLEL SOLUTION OF QPs 6

Once again in Table 6 we compare our results with the results reported for the Han-
Pardalos—Ye interior point algorithm. In all instances, the solution time for our serial SOR
algorithm is substantially lower than the time required by the Han-Pardalos-Ye method.
The time ratio is bigger for the “easier” problems. For the case ¢ = 20, the solution time
was reduced 10—fold when n = 490,000, z° = u, while a maximum reduction of only 2.8 was
achieved for the case ¢ = 5.

The results for z° = 0 are reported in Table 7. The same starting point was also used
in [4]. However; no results for problemsin this class with mrore than 160,000 variables were
reported and their algorithm failed to converge for the case n = 160,000 and ¢ = 20.

The next two tables report the results for our massively parallel implementation. Due
to memory limitation we were unable to run large problems with 8K processors. Using 16K
processors a 30—fold time reduction was achieved over the serial counterpart. Problems with
over 4,000,000 variables were solved with solution times varying from 7 minutes (c=120,2° =
u) to less than 50 minutes (¢ = 5,2° = u).

Finally Tables 10 and 11 report the solution times for the journal bearing problem for the
serial and parallel implementation, respectively. Two problems were considered here with
¢ = 0.1 and € = 0.5. Results for these problems were reported in [10] for n varying from
5625 to 15625. However only the number of iterations and number of function evaluations
per iteration were reported. Once again on the IBM RISC 6000 POWERstation 550, we
solved problems with up to 490,000 variables and on the 16K Connection Machine CM-2,
problems with over a million variables. Due to memory limitation we were unable to run
problems with more than 1,048,576 variables even with 16K processors.

5 Conclusions

We have implemented both serial and massively parallel SOR algorithms to solve several
large scale engineering problems. On a 16,384-processor Connection Machine CM-2, we
were able to solve problems with over 4,000,000 variables in less than 50 minutes. To the
best of our knowledge, these are among the largest problems in this class ever attempted.

References

[1] G. CIMATTI, On a problem of the theory of lubrication governed by a variational in-
equality, Applications of Mathematical Optimization, 3 (1977), pp. 227-242.

[2] G. CiMATTI AND O. MENCHI, On the numerical solution of a variational inequality
connected with the hydrodynamic lubrication of a complete journal bearing, Calcolo, 15

(1978), pp. 249-258.

[3] R DE LEONE AND M.A. TORK ROTH, Massively parallel solution of quadratic pro-
gram via successive overrelazation, Tech. Report TR # 1041, University of Wisconsin,
Computer Sciences Dept., August 1991.

MASSIVELY PARALLEL SOLUTION OF QPs 7

[4] C. HAN, P.M. PARDALOS, AND Y. YE, Solving some engineering problems using an
interior-point algorithm, Tech. Report C5-91-04, Department of Computer Science, The
Pennsylvania State University, Pennsylvania, 1991.

[5] Z.-Q. Luo AND P. TSENG, On the convergence of a matriz splitting algorithm for
the symmetric monotone linear complementarity problem, Tech. Report LIDS-P-1884,
Laboratory for Information and Decision System, Massachusetts Institute of Technology,
Cambridge, 1990. to.appear SIAM Journal on. Control and Optimization.

(6] O.L. MANGASARIAN, Solution of symmetric linear complementarity problems by itera-
tive methods, Journal of Optimization Theory and Applications, 22 (1977), pp. 465-483.

. Sparsity-preserving sor algorithms for separable quadratic and linear programming,
Computer and Operations Research, 11 (1984), pp. 105-112.

[7]

(8] J.J. Mobl, Parallel Algorithms and Matriz Computation, Clarendon Press, Oxford,
England, 1988.

[9] J.J. MORE, On the performance of algorithms for large-scale bound constrained prob-
lems, Tech. Report MCS-P140-0290, Argonne National Laboratory, Argonne, Illinois,
1990.

[10] J.J. MORE AND G. TORALDO, On the solution of large quadratic programming prob-
lems with bound constraints, SIAM Journal on Optimization, 1 (1991), pp. 93-113.

[11] Mc KENNA M.P., MEsiroV J.P., AND S.A. ZENIOS, Data parallel quadratic pro-
gramming on boz—constrained problems, Tech. Report 91-04-01, Decison Sciences De-
partment, The Warton School, Philadelphia, PA 19104, October 1991.

MASSIVELY PARALLEL SOLUTION OF QPs 8

n # iter | # free | time accuracy HPY | time ratio
10,000 306 7,588 6.30 | 0.1848 x 10~7 16.3 2.59
40,000 |- 323 | 31,239- 26.86 | 0.1643 * 10-7 4 131.1 4.88
90,000 361 | 70,896 | 68.10 | 0.2027 x10~" | 437.6 6.43
115,600 393 | 91,363 | 95.89 | 0.1900 =10~ | 700.3 7.30
160,000 449 | 126,904 | 148.54 | 0.6603 x 1072 | 1035.8 6.97
250,000 608 | 198,759 | 314.58 | 0.5813 x10~7 | 2110.5 6.71
360,000 872 | 286,712 | 750.58 | 0.1171 x10~7 | 4090.3 5.45
490,000 851 | 390,736 | 848.79 | 0.9143 x 10~" | 8977.8 10.58

TABLE 2: Comparison of serial SOR algorithm on the IBM RISC 6000 POWERSstation 550 and the HPY
algorithm on the IBM 3090-600S. Obstacle Problem 1.

n # iter | # free | time accuracy HPY | time ratio
10,000 191 3,843 3.53 | 0.2056 x 107° 25.4 7.20
40,000 417 | 15,880 32.03 | 0.1244 1077 | 203.9 6.37
90,000 459 | 36,160 80.44 | 0.1288 » 107% | 699.9 8.70
115,600 535 46,528' 124.15 | 0.7085 % 10~7 | 1018.7 8.21
160,000 780 | 64,639 | 241.42 | 0.6745 % 107% | 1534.7 6.36
250,000 || 1114 | 101,242 | 560.28 | 0.5935 * 1077 | 3141.9 5.61
360,000 1594 | 146,167 | 1357.48 | 0.5659 * 1077 | 5312.4 3.91

TABLE 3: Comparison of serial SOR algorithm on the IBM RISC 6000 POWERstation 550 and the HPY
algorithm on the IBM 3090-600S. Obstacle Problem 2.

MASSIVELY PARALLEL SOLUTION OF QPs 9

n # iter | time | MMZ
90,000 480 83| 19.27
- || 160,000 620 | . 18.6 | 40.31.
250,000 980 | 57.4| 73.05
360,000 || 1460 | 87.0 | 110.55
490,000 || 2000 | 139.7 -
640,000 || 2620 | 264.2 -
810,000 || 3330 | 546.9 -

TABLE 4: Comparison of parallel Fortran—90 SOR algorithm and MMZ algorithm on the Connection Machine
CM-2 with 8K processors. Obstacle Problem 2.

n Problem 1 Problem 2
iter 8K 16K || # iter 8K 16K
16,384 320 3.39 2.00 360 3.66 2.16
65,536 320 3.40 2.00 440 4.51 2.68
262,144 540 | 17.58 | 10.14 || 1040 | 32.04 | 18.57
1,048,576 || 2280 | 253.77 | 143.36 || 4240 | 472.47 | 249.86

TABLE 5: Solution time in seconds for the parallel C* SOR algorithm on the Connection Machine CM-2
with 8K and 16K processors. Obstacle Problems 1 and 2.

MASSIVELY PARALLEL SOLUTION OF QPs 10

n c=3d c=10 c=20

iter time | HPY | # iter | time| HPY | #iter| time| HPY
10,000 475 9.09 | 124 469 6.54 | 88| 467 5.14 5.4
40,000 672 50.68 | 104.9 548 | 29.71 71.0 539 | 22.74 43.0
90,000 | 1763 | 291.68 | 354.5 654 | 77.98 | 236.7 656 | 58.99 | 146.1

160,000 || 1526 | 501.61 | 911.5 724 | 149.87 | 597.5 703 | 109.72 | 381.1

250,000 || 2288 | 1034.80 | 1810.5 563 | 190.78 | 1128.6 300 | 99.46 | 722.5

360,000 || 3157 | 2404.78 | 3338.4 815 | 439.45 | 2141.1 373 | 190.04 | 1280.7

490,000 || 2302 | 1964.54 | 5528.3 819 | 508.49 | 3405.8 292 | 190.56 | 2052.4

TABLE 6: Comparison of serial SOR algorithm on the IBM RISC 6000 POWERSstation 550 and the HPY
algorithm, z° = u. Elastic-Plastic Torsion Problem.

n c=29 c=10 c=20

free | # iter time || # free | # iter time || # free | # iter | time

10,000 7016 464 8.96 3632 469 6.54 1768 467 5.15
40,000 || 28112 832 63.82 || 18416 570 31.24 7432 561 | 23.53
90,000 || 63336 | 2109 | 362.77 || 35328 698 88.39 || 16976 651 | 60.71
160,000 || 112630 | 2125 | 668.14 | 59736 | 1040 232.04 | 30384 766 | 125.48
250,000 || 176040 | 3224 | 1582.09 | 93540 | 1164 436.74 || 47696 550 | 173.41
360,000 || 253540 | 4512 | 3189.77 || 134804 | 1676 1055.16 || 68338 649 | 357.98
490,000 || 345114 | 5981 | 5787.66 || 183640 | 2263 1640.34 || 93952 827 | 531.67

TABLE 7: Solution time in seconds for the serial SOR algorithm on the IBM RISC 6000 POWERstation
550, z° = 0. Elastic-Plastic Torsion Problem.

MASSIVELY PARALLEL SOLUTION OF QPs 11

n c=39H c=10 c=20
#-iter | - 8K J16K || #iter] 8K |. 16K | #iter| 8K 16K
16,384 300 | 2.98 1.61 300 | 2.86 1.58 280 | 2.52 1.67
65,536 400 | 3.78 2.13 320 | 2.70 1.71 280 | 2.52 1.48

262,144 1860 | 49.94 28.73 400 | 10.69 6.14 260 | 6.95 3.99
1,048,576 6320 | NEM | 324.75 1700 { NEM 87.28 360 | NEM | 18.43
4,194,304 9980 | NEM | 2836.75 5700 | NEM | 1678.15 1540 | NEM | 432.14

TABLE 8: Solution time in seconds with 8K and 16K processors on the Connection Machine CM-2, accuracy
=10"7, £° = u. Elastic-Plastic Torsion Problem.

n c=29 c=10 c=20
#iter | 8K 16K || # iter | 8K 16K || # iter | 8K | 16K
16,384 320 | 3.30 1.69 320 | 3.05 2.07 320 | 2.88| 1.68
65,536 320 | 6.62 4.21 360 | 3.39 2.01 340 | 3.06 | 1.82

262,144 2700 | 73.57 | 41.43 920 | 24.75 | 14.20 480 | 12.83 | 7.37
1,048,576 9630 | NEM | 520.44 || 3740 | NEM | 193.51 1440 | NEM | 75.13

TABLE 9: Solution time in seconds with 8K and 16K processors on the Connection Machine CM-2, accuracy
=10"7, £° = 0. Elastic-Plastic Torsion Problem.

MASSIVELY PARALLEL SOLUTION OF QPs 12

n e=0.1 e=0.5
free | # iter time | # free | # iter time
. 5625 -§f 3808 255 | - 2874 3359 289 3.24
10000 6768 264 5.33 6040 290 5.81
15625 10564 255 8.01 9426 288 8.94
40000 27082 378 30.58 || 24174 290 23.27
90000 60940 908 | 254.55 || 54402 582 | 107.16
1l 160000 || 108438 | 1573 | 436.24 || 96742 | 1066 | 300.13
250000 || 169472 | 2371 | 987.66 || 151156 | 1648 | 672.42
360000 || 244032 | 3292 | 1928.65 | 217684 | 2328 | 1310.18
490000 || 332137 | 4328 | 3445.18 || 296314 | 3102 | 2319.78

TaBLE 10: Solution time in seconds for the serial SOR algorithm on the IBM RISC 6000 POWERstation
550, accuracy = 10~7. Journal Bearing Problem.

free | # iter | 8K 16K || # free | # iter | 8K 16K
16,384 11072 300 | 3.53 2.87 9892 320 | 3.95 2.18
65,536 44410 480 | 5.67 3.49 || 39598 340 | 4.01 2.32
262,144 || 177682 | 2000 | 72.53 | 40.91 || 158438 | 1380 | 49.62 | 28.33

1,048,576 6920 | NEM | 485.09 5080 | NEM | 354.06

TABLE 11: Solution time in seconds with 8K and 16K processors on the Connection Machine CM-2, accuracy
=z 1077, Journal Bearing Problem.

