On-Line Processing
In
Large-Scale Transaction Systems

by
Venkatachary Srinivasan

Computer Sciences Technical Report #1071
January 1992

ON-LINE PROCESSING

IN
LARGE-SCALE TRANSACTION SYSTEMS

by

Venkatachary Srinivasan

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
University of Wisconsin-Madison
1992

© copyright by Venkatachary Srinivasan 1992
All Rights Reserved

Abstract

In this thesis, we provide techniques to adapt current database technology to account for the

following trends that can be observed in database management system (DBMS) usage:

1. DBMSs are being increasingly used in applications, like computerized stock trading, that have

_ very high transaction rates.

2. Database sizes are growing rapidly, and future databases are expected to be several orders of

magnitude larger than the largest databases in operation today.

3. Next generation DBMSs are expected to gravitate more and more towards what is referred

to as 24(hour) X 7(day) operation.

In order to handle high transaction rates, future DBMSs have to use highly concurrent algorithms
for managing often-used auxiliary data structures like indices. To better understand the perfor-
mance of concurrency control algorithms for index access, we first compare the performance of
B-tree concurrency control algorithms using a simulation model of a centralized DBMS. In our
performance study, we look at a wide range of B-tree concurrency control algorithms, including
several variants of existing algorithms as well as a new algorithm. Based on the performance re-
sults, we characterize how specific details of a concurrency control algorithm can enhance or reduce
concurrency. In particular, our results show that, over a wide range of resource and data contention
situations, the B-link algorithm of Lehman and Yao performs very well; we identify a particular
variant of this algorithm that appears especially suitable for use in practice.

On-line DBMS utilities are an important step in reaching the goal of handling large amounts
of data and achieving 24 x 7 operation. This thesis addresses issues involved in executing on-line
utilities by developing several new algorithms for on-line index construction. These algorithms each
permit an index to be built while the corresponding data is concurrently accessed for reads and
writes. The algorithms work incrementally, producing a consistent index in the end. They differ
in the data structures used for storing concurrent updates as well as in the degree of concurrency

allowed during index construction. A comprehensive performance study of the proposed on-line

ii

index construction algorithms is used to determine the best candidate for use in a DBMS. The
performance study also clearly demonstrates the superiority of on-line operation in a DBMS, even
for small data sets.

The techniques used in on-line index construction algorithms can be generalized to efficiently ex-
ecute long-running queries that are currently handled unsatisfactorily in conventional DBMSs. Us-
ing conventional concurrency control techniques for obtaining serializable answers to long-running
queries leads to an unacceptable drop in system performance. Current DBMSs therefore execute
such queries under a reduced degree of consistency, thus obtaining non-serializable answers. Ap-
plying the techniques used for on-line index construction to query processing leads to a new, highly
concurrent method of query execution called compensation-based query processing. In this new
approach to query processing, concurrent updates to any data participating in a query are com-
municated to the query’s on-line query processor, which then compensates for these updates so
that the final answer reflects changes caused by the updates. Very high concurrency is achieved
by locking data only briefly, at the tuple-level, while still delivering transaction-consistent answers
to queries. Compensation-based query processing can co-exist with conventional query processing,
and a cost model similar to that used for optimizing conventional queries can be used for optimizing
queries in the new model as well. Finally, it appears that compensation-based query processing

can be implemented efficiently in a DBMS.

iii

Acknowledgements

Mike Carey introduced me to the field of database management systems. It has been extremely
challenging and enjoyable to work with him, and he has truly taught me a great deal. David Dewitt,
Yannis Ioannidis, Miron Livny, and Jeff Mogul have taught me much as well. T would also like to
specifically thank Richard Lipton of MITL for a valuable discussion I had with him regarding a
part of this thesis. In addition, I wish to thank all of my other teachers who have been instrumental
to my success.

My colleagues, Dan, Divesh, Kurt, Manish, Manolis, Mike Franklin, Paul, Praveen, Scott, Sesh,
Seth, Sudarshan, and Tan sat through many practice talks, acted as a bouncing board for my ideas,
and read drafts of papers. I thank Lorene, Marie, Sheryl, and Susan for their valuable help with
various administrative matters.

I wish to express the deepest gratitude to my parents for the love and affection that they have
bestowed on me throughout. I would also like to thank my friends and relatives who have treated
me with kindness and affection. Most importantly, my wife Viji’s love and support encouraged me
to complete this dissertation.

I also acknowledge the support of the National Science Foundation under grant IRI-8657323,
and the Vilas fellowship provided by the University of Wisconsin.

iv

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Performance of B-Tree Concurrency Control Algorithms
1.2 On-Line Index Construction 0 o it i ittt e i et
1.3 Compensation-Based Query Processing,
1.4 Thesis Organization ittt in it

2 Performance of B-Tree Concurrency Control Algorithms

2.1 Introduction« v i it e e e e e e e e e e e e e e e e e e
2.2 B-trees in a Database Environment oo
2.2.1 B-tree Review and Terminology
2.2.2 B-tree Concurrency Control Algorithms
2.3 Simulation Model e e e e e e e
2.3.1 System Model. e e
2.3.2 Transaction Flow 0 o i i i e e
2.3.3 Workload Model i i e e
234 B-TreeModel i i i i it e e e e e
2.3.5 Performance Metrics o i i i i it e e e e e
2.3.6 Range of Experiments and Parameters
2.4 Performance Results« 0 i i it e e e e e e e e e
2.4.1 Experiment Set 1: Low Data Contention, Steady State Tree
2.4.2 Experiment Set 2: High Data Contention, Growing Tree
2.4.3 Experiment Set 3: Extremely High Data Contention
2.5 Discussion of Performance Results o oo
2.5.1 Side-Branching Technique i e
2.5.2 ThemUProtocol i i i i i et e e e e e
2.5.3 ARIES/IM Algorithm
2.6 Comparison with Related Work oo
2.7 ConcluSions . . v v v v v i e

3 On-Line Index Construction Algorithms

3.1 Introductiont o e
3.2 Primitives and Data Structures v v i i e e e e e e e e e e e e e e e
3.3 Off-Line Algorithm e

i

iv

3.4 Concurrent Updates v v i i ittt it ittt e
34.1 Impactof Updates« . i i i ittt it iiii s
34.2 Impactof Aborts i e e e e

3.5 List-Based Algorithms il e
3.5.1 The List-X-Basic Algorithm
3.5.2 The List-X-Sort Algorithm
3.5.3 The List-X-Merge Algorithm
3.5.4 The List-C-Basic Algorithm 0.
3.5.5 The List-C-Sort Algorithm
3.5.6 The List-C-Merge Algorithm,
3.5.7 System Log Versus Update-List

3.6 Index-Based Algorithms e
3.6.1 The Index-X-Basic Algorithm oL
3.6.2 The Index-X-Merge Algorithm
3.6.3 The Index-C-Basic Algorithm
3.6.4 The Index-C-Merge Algorithm

3.7 More Concurrency for Updaters i v i i it i et i e

3.8 Related Work o i i i i e e e e e e e e e e

3.9 SUMIMATY . . . v v i e

Performance of On-Line Index Construction Algorithms

4.1 IntroductiOn v v i i s e

4.2 Performance Trade-Offs o o . i i i i i it e i e e e e
4.2.1 Hidden Costs . . . v v v v v i i i e i e e e e e e e e e e e e
4.2.2 Performance MetTics & v v v v i v i i e e e e e e e e
423 Overall Cost o v v v i e e e e e e e e e e e e e e

4.3 Simulation Model e e e e e e e e

4.4 Performance Results i i e e e e e e e
4.4.1 Experiment Set 1: Small Tuple Size (20 Bytes)
4.4.2 Experiment Set 2: Large Tuple Size (2000 Bytes)
4.4.3 Other Experiments o 0 it ittt e e e

4.5 DIiSCUSSION . . . o v v i i i e

4.6 Conclusions i v i v i it e e e e e e e e e e e e e e e e e

Compensation-Based On-Line Query Processing

5.1 Introduction o . i e e e e e e e e e e e

5.2 On-Line Index Construction i i i ittt it
5.2.1 Algorithm Overview ittt
5.2.2 Inconsistencies and Their Resolution
5.2.3 Generalization e e e e e e e

5.3 Compensation-Based Query Execution o o

5.4 Single Relation Queries e e
5.4.1 Scalar Aggregates e e e e e e e e
5.4.2 Aggregate Functions L o e e
5.4.3 Aggregates with Predicates o 0 0oL
5.4.4 General Single Relation Queries o 00000

5.5 Join QUEries . . . v v v o it i e e e e e e e e e e e e e e e

vi

5.5.1 Optimizing Compensation-Based Queries 115

552 NestedLoopsJoin0 i, ..116

553 Sort-MergeJoin e e e e e 117

554 HashJoin . . . 0 v vt it e e e e e e e e e e 118

555 Index Join o v v i it e e e e e e 119

5.5.6 Multiple Joins o e e 120
5.6 Implementation Considerations 120
5.7 Pre-Specified Time Queries it it e e 121
5.8 Related Work o i i i i it e e e e e e e e e e e e e 122
5.9 Conclusions . . v v v v i vt e 123
Conclusion 124
6.1 Summaryof Results i 124
6.2 Future Work v i i i it e e e e e e e e e e e e e 126
Correctness Proofs for On-Line Index Construction Algorithms 129
A.l List-X-Basic Algorithm e e 130
A.2 List-C-Basic Algorithm e 132
A.3 Index-Based Algorithms e 134
A4 Coloring Algorithmso i e 135

vii

Chapter 1

Introduction

The field of database management systems (DBMS) has seen phenomenal growth in the last two
decades, and DBMSs have become standard software in all sorts of computer systems - from large
mainframe computers to smaller, less powerful personal computers. In spite of the widespread
use of DBMSs, much work remains to be done in order to adapt current database technology to

accommodate the following trends that can be observed in DBMS usage:

1. DBMSs are being increasingly used in applications, like computerized stock trading, that have

very high transaction rates.

2. Database sizes are growing rapidly, and future databases are expected to be several orders of
magnitude larger than the largest databases in operation today. Databases on the order of

terabytes (10'2 bytes) will soon be in active use [Silb90].

3. Next generation DBMSs are expected to gravitate more and more towards what is referred
to as 24(hour) x 7(day) operation. There exist important DBMS applications that have no
significant off-peak time, which is time when it becomes acceptable to take the data off-line
for maintenance purposes. Examples of such 24 X 7 systems include database management for
multinational companies with a global reach, hospital management systems, round-the-clock
shopping services, etc. In order to service such applications, next generation databases will

be required to keep their data on-line all of the time [Dewi90, Silb90].

The above trends affect important aspects of database design and implementation, as discussed
below.

Under very high transaction rates, contention in heavily used auxiliary data structures like in-
dices can increase tremendously, necessitating the use of highly concurrent algorithms for managing

these data structures. Concurrency control techniques that work well for records or data pages,

such as two-phase locking [Gray79], are overly restrictive when naively applied to such items as
index pages. Special techniques must be employed to prevent indices and system catalogs from
becoming concurrency bottlenecks. A number of algorithms have been proposed for accessing in-
dices concurrently [Sama76, Baye77, Mill78, Lehm81, Kwon82, Shas84, Good85, Mond85, Sagi85,
Shas85, Lani86, Bili87, Moha89, Weih90], but no performance analyses existed until recently that
compare all of these algorithms. The earlier studies [Baye77, Bili85, Shas85, Lani86, John90a]
each compare only a few algorithms and have been based on simplified assumptions about resource
contention and buffer management. As a result, the relative performance of these algorithms was
still an open question when work began on this thesis!.

The explosion in database sizes will necessitate the scaling up of all of the algorithms used in
a DBMS, including the class of database utilities. Utilities are typically used for re-organization
of data and for construction and maintenance of hidden data structures like indices. While DBMS
atilities like index construction take a few minutes to execute for relatively small amounts of data
(e.g., a gigabyte), they can take days to complete for large amounts of data (e.g., a terabyte)
due to the time it takes to scan the data itself. Current DBMSs execute utilities off-line and
hence are ill-suited to execute utilities on large amounts of data (since the data would be taken
off-line for days). In addition, on-line utilities are essential, even for smaller data sets, in order
to achieve 24 x 7 operation. With high transaction arrival rates, any off-line processing is bound
to cost heavily in terms of the number of transactions that are queued up during the associated
down-time. Techniques for executing all utilities in an on-line manner are therefore needed in next
generation DBMSs.

In addition to the need for on-line utilities in next generation DBMSs, there is also a need
for improving the execution of certain queries (used, for example, in decision support) on large
amounts of data which are not executed satisfactorily by current conventional DBMSs. We shall

explain the sort of queries of interest by using an example.

Q1: Suppose an auditor of a company wants to know the average salary of all of the employees
of the company. Assuming the existence of a relation called EMPLOYEE with a SALARY
attribute, the SQL form of the auditor’s query is given below.

SELECT AVG(SALARY)
FROM EMPLOYEE

114 should be noted that the work reported in [John90a] has been extended concurrently with this work, and
another comprehensive study of B-tree concurrency control algorithms is now available in [Tohn90b).

Current systems, depending on the details of their implementation, will handle such a query in one

of several ways:

1. One way of executing a transaction to compute Q1 using two-phase locking involves locking
the EMPLOYEE relation in Share mode, reading all the tuples of the relation, and keeping a
running sum of the salary values encountered as well as a count of the number of tuples read.
On completing the scan of the relation, the average salary is computed by dividing the sum
by the count. It is easy to see that the above method of executing Q1 makes it serializable
with respect to all other transactions using the EMPLOYEE relation. However, this method
of executing Q1 is disastrous for concurrency purposes, as no updates to the EMPLOYEE

relation are allowed during the execution of Q1.

2. A slightly more concurrent way to execute Q1 would be to lock the EMPLOYEE relation
in Intention-Share mode and then lock individual tuples as they are read in Share mode,
with all locks being held until end of transaction. This method allows execution of update
transactions on the portion of the EMPLOYEE relation that has not yet been read by Q1,
but it still locks out large portions of the EMPLOYEE relation for a significant period of
time. This strategy is roughly half as restrictive as the first one in terms of the amount of

data locked by Q1 as a function of time.

3. A third way of executing Q1 would be to lock only the SALARY attribute of the EMPLOYEE
relation in Share mode, thus allowing updates to other attributes of existing tuples of the
relation. Such selective locking of attributes may be possible, for example, in a system that
uses key-value locking of the type described in [Moha90] if an index exists on the SALARY
attribute. Still, locking the SALARY attribute would rule out inserts and deletes of new
EMPLOYEE tuples, and would block updates to the SALARY attribute of the existing
tuples.

Since each of these ways of executing Q1 involves significant concurrency restrictions for other
transactions, DBMSs currently tend to execute queries like Q1 under a weakened degree of consis-
tency. For example, IBM’s System R and DB2 offer the concept of cursor stability [Gray79], where
a query like Q1 looks only at committed updates of other transactions, but holds locks on tuples
only while their values are actually being read. Executing Q1 under a reduced degree of consistency
would involve getting an Intention-Share lock on the EMPLOYEE relation and then scanning the
relation tuple by tuple, acquiring a Share lock on each tuple before reading it and then releasing the

lock immediately after the tuple is read. The advantage of cursor stability is that there is minimal

4

delay for other transactions in the system due to executing Q1. The disadvantage is that, while
the salary values read are individually correct values, they are not from one transaction-consistent
state of the EMPLOYEE relation. The answer obtained by Q1 is therefore approximate, and in
some cases may bear little resemblance to the correct value. The deviation of the answer from the
actual value is determined by the rate and magnitude of changes to the SALARY attribute of the
EMPLOYEE relation. In some applications this may be unacceptable to the person running the
query, in this case the auditor.

The above discussion indicates that queries like Q1 are not dealt with satisfactorily in conven-
tional DBMSs. Apart from the simple query that we have used as an example, many other types
of large queries (used for decision support) on single or multiple base relations suffer from similar
concurrency problems. In current DBMSs, the size of the data and the transaction rates might be
small enough that the inefficient execution of such queries is only a minor problem. For example,
a simple solution that is likely to work satisfactorily with a conventional DBMS is to take a copy
of the database periodically (during off-peak time) and to run such large queries on the copy. As
transaction rates and database sizes increase, however, such a solution becomes unsuitable due to

the following reasons:

1. With large databases, it could take a very long time to create a copy of the database, and

the copy would also double the already large storage requirements for the database.

2. With large transaction rates and long copy-times, the copied data might become out of
date very soon after a copy is taken. This would necessitate frequent copying for obtaining

relatively recent answers to queries.

For these reasons, efficient on-line execution of long-running queries will become essential in next
generation DBMSs; any other solution that provides transaction-consistent answers will surely turn
out to have too high a concurrency overhead and/or copying overhead.

In this thesis, we provide techniques for solving the above problems, thus helping to pave the
way for DBMSs to handle applications with large transaction rates, very large database sizes, and
completely on-line (24 x 7) operation. This thesis is subdivided into three major parts, each of

which is previewed briefly below.

1.1 Performance of B-Tree Concurrency Control Algorithms

The performance of concurrency control algorithms for index access had not been satisfactorily
studied when we started working on this thesis, as mentioned earlier. Since B-trees? are the most
common dynamic index structures in DBMSs, most earlier work has concentrated on them, and
our focus is also on B-tree concurrency control algorithms. However, many of our results will lend
insight into concurrency control for other index structures also. We study the performance of var-
ious concurrency control algorithms using a detailed simulation model of B-tree operations in a
centralized DBMS. Our study considers a wide range of data contention situations and resource
conditions. Based on the performance results, we characterize how specific details of a concurrency
control algorithm can enhance or reduce concurrency. An interesting aspect of our study is that,
based on the performance of a representative set of B-tree concurrency control algorithms, includ-
ing one new algorithm, we can make projections on the performance of others in the literature.
Finally, our study is more detailed in several ways than other earlier and contemporary studies,

thus resulting in a significant set of new results as well as a corroboration of other recent results.

1.2 On-Line Index Construction

On-line utilities are an important step in reaching the goals of handling large amounts of data and
achieving 24 X T operation. This thesis addresses issues involved in executing on-line utilities by
describing several new algorithms for on-line index construction. All of the algorithms presented
build an index while the underlying data is concurrently accessed and updated, and we prove that
our on-line index construction algorithms create a consistent index. A comprehensive performance
study of the index construction algorithms is used to determine the best among the candidate on-line
index construction algorithms for use in a DBMS. The performance study also clearly demonstrates

the superiority of on-line operation in a DBMS, even for small data sets.

1.3 Compensation-Based Query Processing

The techniques used in on-line index construction algorithms can be generalized to efficiently exe-
cute large queries of the sort discussed earlier. This leads to a new, highly concurrent method of
query processing that we refer to as compensation-based query processing. In this new approach to
query processing, concurrent updates to any data participating in a query are communicated to the

on-line query processor, which then compensates for these updates so that the final answer reflects

2By B-tree we mean the variant in which all keys are stored at the leaves, also called B*-trees and sometimes
B*-trees [ComeT9)].

6

changes caused by the updates. Compensation-based query processing achieves very high concur-
rency by locking data only briefly, at the tuple-level, while still delivering transaction-consistent
answers to queries. Such a model of query processing makes it possible for long-running queries,
which usually run under a reduced degree of concurrency in current DBMSs, to obtain transaction-
consistent answers without adversely affecting system performance. Compensation-based query
processing can co-exist with conventional query processing, and a cost model similar to that used
for optimizing conventional queries can be used for optimizing queries in the new model as well. It

also appears that compensation-based query processing can be implemented efficiently in a DBMS.

1.4 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2, we present a performance study
of B-tree concurrency control algorithms. Chapter 3 describes a set of algorithms for on-line index
construction, and Chapter 4 presents a performance study of these algorithms that identifies the
best of the candidate algorithms for use in a DBMS. Chapter 5 generalizes our on-line index
construction techniques to tackle the problem of efficient and concurrent execution of large queries
in a DBMS. Finally, in Chapter 6 we summarize our major conclusions and discuss opportunities
for future work. The Appendix contains proofs of correctness for the on-line index construction

algorithms described in Chapter 3.

Chapter 2

Performance of B-Tree Concurrency
Control Algorithms

2.1 Introduction

Database systems frequently use indices to access data. These systems typically operate at a high
level of concurrency, and since any transaction has a high probability of accessing an index, it
is necessary to ensure that concurrent access to indices is not a bottleneck in the system. As
we mentioned earlier, since B-trees! are the most common dynamic index structures in database
systems, we will focus on B-tree concurrency control algorithms in this chapter.

A number of algorithms have been proposed for accessing B-trees concurrently [Sama76, Baye77,
Mill78, Lehm81, Kwon82, Shas84, Good85, Mond85, Sagi85, Shas85, Lani86, Bili87, Moha89,
Weih90], but few performance analyses exist that compare these algorithms. Most earlier studies
[Baye77, Bili85, Shas85, Lani86, John90a] each compare only a few algorithmns and have been
based on simplified assumptions about resource contention and buffer management. Thus, the
relative performance of these algorithms in more realistic situations was an open question when
work began on this thesis. An extension of the work in [John90a] resulted in a more comprehensive
study of B-tree concurrency control algorithms [John90b]. That work was done concurrently with
our work, which first appeared as [Srin91], and we will compare our performance results with those
of [John90b] at the end of this chapter.

In this chapter, we analyze the performance of various B-tree concurrency control algorithms
using a simulation model of B-tree operations in a centralized DBMS. Our study differs from earlier

ones in several aspects:

1. We study a representative list of algorithms, including variations of the Bayer-Schkolnick,

1 Again, by B-tree we mean the variant in which all keys are stored at the leaves, also called B*.trees and sometimes
B*-trees [ComeT9]

8

top-down, and B-link algorithms as well as a new algorithm that allows deadlock detection at
a single node. Based on our analysis of these algorithms, we make further projections about

the performance of additional algorithms that have been proposed in the literature.

2. We use a closed queuing model that is quite detailed and consists of a B-tree in a centralized
DBMS with a buffer manager, lock manager, CPUs and disks. The results presented here
should therefore be useful to database system designers for a wide range of systems, including

single and multiple processor systems with one or more disks.

3. In our experiments, we consider tree structures with high and low fanouts, a wide range of
resource conditions, and workloads which contain various proportions of searches, inserts,

deletes, and appends.

4. We measure a wide variety of performance measures like throughput, average response time
per operation type, resource utilizations, lock waiting times, buffer hit rates, number of I/Os,
frequency of link chases in B-link algorithms, probability of splitting and merging, frequency
of restarts, etc. These measures help us to make precise statements about the performance

of searches, inserts, deletes, and appends in the different versions of the algorithms.

Section 2.2 briefly reviews the set of B-tree concurrency algorithms that have been proposed in
the literature, focusing on the ones that were chosen for our study. The simulation model and
performance metrics that we use in our study are described in Section 2.3. Section 2.4 presents
details of our experiments and results. In Section 2.5, we discuss how these results can be used
to predict the performance of other protocols. Section 2.6 compares this study with related work.

Finally, in Section 2.7, we summarize our key results.

2.2 B-trees in a Database Environment

An index is a structure that efficiently stores and retrieves information (usually one or more record
identifiers) associated with a search key. The index can be either one-to-one (unique) or one-to-
many (non-unique). The keys themselves can have fixed or variable lengths. Though we shall
restrict ourselves to unique indices with fixed length keys for this study, most of our results also

directly apply to trees with variable length keys or duplicate keys.

2.2.1 B-tree Review and Terminology

A B-tree index is a page-oriented tree that has the following properties. Firstly, it is a balanced leaf

search tree — actual keys are present only in the leaf pages, and all paths from the root to a leaf

/ nonleaf
K| -

.. Km]r)n] index

page

A A leaf ...
KZ . Kh Pn }?ggﬁ

data
D, | page -

Figure 2.1: A B-Tree Fragment

are of the same length. A B-tree is said to be of order d if every node has at most 2d separators?,
and every node except for the root has at least d separators. The root has at least two children.
The leaves of the tree are at the lowest level of the tree (level 1) and the root is at the highest
level. The number of levels in the tree is termed the tree height. A nonleaf node with j separators
contains j + 1 pointers to children. A <pointer, separator> pair is termed an index entry. Thus, a
B-tree is a multi-level index with the topmost level being the single root page and the lowest level
consisting of the set of leaf pages. Figure 2.1 summarizes these concepts.

The index is stored on disk, and a search, insert, or delete operation starts by searching the
root to find the page at the next lower level that contains the subtree having the search key in its
range. The next lower level page is searched, and so on, until a leaf is reached. The leaf is then
searched and the appropriate action is performed. Operations can be unsuccessful; for example, a
search may not find the required key.

As keys are inserted or deleted, the tree grows or shrinks in size. When an updater tries to
insert into a full leaf page or to delete from a leaf page with d entries, a page split or page merge
occurs. A B-tree page split is illustrated in Figure 2.2. B-trees in real database systems usually
perform page merges only when pages becomes empty; nodes are not actually required to contain
at least d entries, since this simplifies implementation and for practical workloads is not found to
decrease occupancy by much [John89]. We employ this approach to B-tree merges in this study.
A node is considered safe for an insert if it is not full and safe for a delete if it has more than one

entry. A split or merge of a leaf node propagates up the tree to the lowest safe node along the path

2A keyis usually meant to imply that associated information for that value exists in the index. A separator defines
one step in a search path to leaf pages that contain actual keys and associated information.

10

n-l keys
n pointers

2d+1 keys

T

d+l d+l
pointers pointers

2a) before split

n keys

n+1 pointers

P Flsudy] - |

/ d keys d keys

d+l d+l
pointers pointers
2b) after split

Figure 2.2: A B-Tree Page Split

mode| § IX SIX X

S |V v v

IX v vV
SIX | +/

X

Table 2.1: Lock Compatibility Table

from the root to this leaf. If all nodes from the root to the leaf are unsafe, the tree increases or
decreases in height. The set of pages that are modified in an insert or delete operation is called the
scope of the update.
2.2.2 B-tree Concurrency Control Algorithms
In our discussions of this section and the rest of the chapter, we shall use the lock modes S, IX,
SIX, and X. Their lock compatibility relationships are given in Table 2.1.

A naive B-tree concurrency control algorithm would treat the entire B-tree as a single data item

and use locks (or latches®) on just the root page to prevent conflicts. Readers (searches) would

3Latches [Moha89] can be thought of as fast locks. They are also less general than locks; eg., no deadlock detection
is performed for latch waits. In this chapter, latches can be used wherever locks are used.

11

get S locks on the root, while updaters (inserts or deletes) would get X locks on the root. Locks
would be held for the entire duration of an operation. This naive algorithm can be improved by
considering every index page as an independently lockable item and making use of the following
relationship between a safe node and the scope of an update.

When an updater is at a safe node in the tree, the only pages that can be present in the scope
of this update are nodes in the path from this node to the leaf. Any locks held on nodes at higher
levels can thus be released. Several algorithms use a technique called lock-coupling in their descent
from the root to the leaf, releasing locks early using the above property. An operation is said to
lock-couple when it requests a lock on an index page while already holding a lock on the page’s
parent, releasing the parent lock only after the child lock is granted.

In a simple algorithm proposed in [Sama76], all operations get an X lock on the root and then
lock-couple their way to the leaf using X locks, releasing locks at higher levels whenever a safe node
is encountered. This strategy ensures that when an update operation reaches a leaf, it holds X
locks on all pages in its scope and no locks on any other index nodes. Updaters and readers whose
scopes do not interfere can thus execute concurrently. However, a considerable number of conflicts
may be caused at higher level nodes due to the use of X locks. A class of algorithms that improves

on the above idea was proposed by Bayer and Schkolnick [Baye77].

Bayer-Schkolnick Algorithms

In all Bayer-Schkolnick algorithms, searches always follow the same locking protocol. In particular,
a search gets an S lock on the root and lock-couples to the leaf using S locks. The various algorithms
differ in the locking strategy used by updaters. We shall describe three representative algorithms:
B-X, B-SIX, and B-OPT.

In the first algorithm, called B-X, updaters get an X lock on the root and then lock-couple to
the leaf using X locks. With this simple approach, the X locks of updaters on the path from the
root to the leaf may temporarily shut off readers from areas of the tree not in the actual scope of
an update. This problem can be rectified if updaters lock-couple using SIX locks in their descent
to the leaf. This algorithm, called B-SIX, allows readers to proceed faster (since SIX locks are
compatible with S locks), but updaters, on reaching the target leaf, have to convert the SIX locks
in their scope to X locks. This top-down conversion drives away any readers in the updater’s scope.

In both algorithms above, updaters that do not conflict in their scope may still interfere with
each other at higher level nodes. Moreover, in most B-trees, especially ones with large page capaci-

ties, page splits are rare. The third algorithm, which we call B-OPT, makes use of this fact, letting

12

updaters make an optimistic descent using IX locks. They take an IX lock on the root and then
lock-couple their way to the leaf with IX locks, taking an X lock at the leaf. Here, regardless of
safety, the lock at each level of the tree is released as soon as the appropriate child has been locked.
If updaters find the leaf to be safe, the operation succeeds. Otherwise, the updater releases its X
lock on the unsafe leaf and makes a pessimistic descent using SIX locks, as in the B-SIX algorithm.
If very few updaters make a second pass, this algorithm is expected to perform well.

Updaters in the Bayer-Schkolnick algorithms essentially update the entire scope at one time,
making it necessary for them to hold several X locks at the same time. Several alternative algo-
rithms have been proposed that instead split the updating of the scope into several smaller, atomic

" operations. We consider two of these next, the top-down and B-link algorithms.

Top-down Algorithms

In top-down algorithms [Guib78, Care84b, Mond85, Lani86], updaters perform what are known as
preparatory splits and merges. If an inserter encounters a full node during its descent, it performs
a preparatory page split and inserts an appropriate index entry in the parent of the newly split
node. Similarly, a deleter merges any node encountered that contains one entry with its sibling
during its descent, deleting the appropriate entry from the parent. Leaf level insertion or deletion
is similar except that the preparatory operations ensure that a leaf’s parent will always be safe. As
always, a merge or a split of the root page leads to an increase or decrease in the tree height.

Based on the preparatory operations described above, we consider three top-down algorithms
that correspond to the Bayer-Schkolnick algorithms in terms of the type of locking that updaters
do. In the first algorithm, TD-X, updaters get an X lock on the root and then lock-couple using X
locks to the leaf. At every level, before releasing the lock on the parent, an appropriate merge or
split is made. The above algorithm can be improved by using SIX locks and converting them to X
locks only if a split or merge is actually necessary. This variation is called TD-SIX. In the optimistic
top-down algorithm, TD-OPT, updaters make an optimistic first pass, lock-coupling from the root
to the leaf using S locks and then getting an X lock on the leaf. If the leaf is unsafe, the updater
releases all locks and then restarts the operation, making a second descent & la TD-SIX [Lani86).
Readers use the same locking strategy as in the Bayer-Schkolnick algorithms.

The top-down algorithms break down the updating of a scope into sub-operations that involve
nodes at two adjacent levels of the tree. The B-link algorithms go one step further and limit each
sub-operation to nodes at a single tree level. They also differ from the top-down algorithms in that

they do their updates in a bottom-up manner.

13

B-link Tree Algorithms

A B-link tree [Lehm81, Sagi85, Lani86] is a modification of the B-tree that uses links to chain
all nodes at each level together. A page in a B-link tree contains a high key (the highest key of
the subtree rooted at this page) and a link to the right sibling. The link enables a page split to
occur in two phases: a half-split, followed by the insertion of an index entry into the appropriate
parent. After a half-split, and before the <pointer, separator> pair corresponding to the new page
has been inserted into the parent page, the new page is reachable through the right link of the
old page. A B-link tree node and an example page split are illustrated in Figure 2.3. Operations
arriving at a newly split node with a search key greater than the high key use the right link to
get to the appropriate page. Such a sideways traversal is termed a link-chase. Merges can also
be done in two steps [Lani86], via a half-merge followed by an entry deletion at the next higher
tree level. The B-link algorithms that have been proposed [Lehm81, Sagi85, Lani86] differ from
the Bayer-Schkolnick and top-down algorithms in that neither readers nor updaters lock-couple on
their way down to a leaf. We study three variations of the B-link algorithms: LY, LY-LC and
LY-ABUF.

In the LY algorithm (LY stands for Lehman-Yao), a reader descends the tree from the root to
a leaf using S locks. At each page, the next page to be searched can either be a child or the right
sibling of the current page. Here, readers release their lock on a page before getting a lock on the
next page. Updaters behave like readers until they reach the appropriate leaf node. On reaching
the appropriate leaf node, updaters release their S lock on the leaf and then try to get an X lock
on the same leaf. After the X lock on the leaf is granted, they may either find that the leaf is the
correct one to update or that they have to perform one or more link-chases to get to the correct
leaf. Updaters use X locks while performing all further link chases, releasing the X lock on a page
before asking for the next. If a page split or merge is necessary, updaters perform a half-split or
half-merge. They then release the leaf lock before they search for the parent node starting from
the last node (at the next higher level) that they used in their descent. That is, updaters that are
propagating splits and merges use X locks at higher levels and do not lock-couple. In the basic LY
algorithm, operations therefore lock a maximum of one node at a time.

Due to the early lock releasing strategy in the basic LY algorithm, updaters that propagate
index entries after completing half-splits or half-merges can encounter “inconsistent” situations; for
example, a deleter at a higher level may find that the key to be deleted does not exist there (yet),
and an inserter at a higher level may find that the key it is trying to insert already (still) exists.

One way to take care of this problem is to force updaters that encounter such inconsistencies to

Bl PIST] | Kot Righ] Bis—>...

3a) example B-link tree node

n-1 keys

n pointers

AR RN N g

2d+1 keys

/l . |||Ks_py_t|||' - H’"*
v v ooV
| e

L E—
d+l d+l
pointers pointers
3b) before half-split
n-1 keys
n pointers

x| L

d+1 keys d keys
pi +—-&,l |

(NS g -

d+2 d+l
pointers pointers
3c¢) after half-split
n keys
n+l pointers

[MRl 1L

/ d+1 keys d keys
~ATRaB T T

(R

d+2 d+l
pointers poinlers

3d) after key propagation

Figure 2.3: A B-Link Tree Page Split

14

15

restart repeatedly until they succeed [Lani86]. Our solution is different, however, and we modify the
LY algorithm to hold locks more conservatively, thus eliminating inconsistent situations altogether.
The modified algorithm is called the LY-LC algorithm, in which updaters hold an S lock on a
newly split or merged node while acquiring an X lock on the appropriate parent node (in essence,
lock-coupling on the way up). That is, the LY-LC algorithm differs from the LY algorithm in that
updaters release their lock on a node that is half-split or half-merged only after getting an X lock
on its current parent.

In the B-link algorithm as it was first proposed in [Lehm81], readers did not use locks at all.
Instead, they relied on the atomic nature of disk I/Os and used their own consistent copies of pages.
To account for the impact of such an approach on buffer hits, we modified this original algorithm
to use a buffer manager that provides support for such an atomic read-write model. Since readers
do not lock pages, a reader instead gets a read-only copy of the most recent version of a page.
Updaters in their first descent to the leaf behave just like readers, using read-only copies with no
locking. However, updaters do have to acquire an X lock on a page before requesting a writable
copy of the page. Finally, whenever an updater frees a writable copy, this copy is made the current
version of the page and future page requests get a copy of this new version. We implemented an

algorithm based on the above atomic buffer model called LY-ABUF.

A New Optimistic Descent Algorithm

Updaters in the optimistic descent algorithms described earlier (TD-OPT and B-OPT) restart
operations if they encounter a full leaf node rather than restarting them due to actual conflicts
with other updaters. In a new optimistic algorithm that we designed, called OPT-DLOCK, restarts
depend solely on deadlock-inducing lock conflicts. OPT-DLOCK detects such conflicts by watching
for circular waits of lock upgrade requests for the same index page. A comparison of the performance
of this algorithm with that of the other optimistic algorithms will provide interesting insights on
the efficacy of the two restart strategies under various system and workload conditions.

In the OPT-DLOCK algorithm, readers follow the same locking strategy as in the Bayer-
Schkolnick and top down algorithms. Updaters descend using S locks, keeping their scope locked
until a safe node is reached; they then take an X lock on the leaf. (Recall that updaters in the
algorithms B-X and TD-X execute similarly, but use X locks at all levels.) In OPT-DLOCK,
however, a node is considered safe only if it is both insertion safe and deletion safe. If the leaf is
safe, the update is performed and all locks are released. An updater that reaches an unsafe leaf

node will have at least all of the nodes in its scope (and possibly more, due to the new definition of

16

a safe node) locked with S locks, having the leaf itself locked with an X lock in addition. Updaters
reaching an unsafe leaf node release the leaf lock and then try to convert the S lock on the topmost
node of their scope to an X lock. If this lock is granted, updaters proceed to drive away readers by
getting X locks on the other nodes in their scope before performing the actual update.

The new definition of safe node used in the OPT-DLOCK algorithm ensures that two updaters
whose scopes intersect will always have the same top level safe node. Thus, two updaters with the
same top level safe node will both try to convert their S locks on that node to X locks, creating a
local deadlock at that node. Only one of them will succeed, with the other being restarted after
releasing all locks associated with the failed B-tree operation. A restarted updater? repeatedly tries
the protocol until it succeeds; starvation is avoided by assigning priorities to operations based on
their first start time.

Apart from the algorithms described above, several other B-tree concurrency control algorithms
have been proposed as well [Kwon82, Bili87, Moha89]. We shall discuss these other algorithms in

Section 5.

2.3 Simulation Model

Qur model is a closed queuing model with a varying number of terminals and a zero think time
between the completion of one transaction submitted by a given terminal and the submission of
the next one. Transactions in this study are “tree transactions,” each performing a single B-tree
operation (search, insert, or delete). There are three main components of the simulation model:
the system model, which models the behavior and resources of the database system; a workload
model, which models the mix of transactions in the system’s workload; and a B-tree model, which
characterizes the structure of the B-tree. Apart from these, there is the actual concurrency control

algorithm that is being executed.

2.3.1 System Model
The system model is intended to encapsulate the resources present in a database system and the
major aspects of the flow of transactions in the system.

The system on which tree transactions operate is modeled using the DeNet simulation language
[Livn90]. The system can have one or more CPUs and disks and these are modeled using a module
called the resource manager. A CPU resource can be used in several ways — it is used when
a concurrency control request or a buffer page request is processed, or when a B-tree page is

processed. Requests for the CPUs are scheduled using a FCFS (first-come first-served) discipline

“Note that a restart just involves re-trying the B-tree operation and is not a transaction abort.

17

with no preemption. A common queue of pending requests is maintained and when a CPU becomes
free, the first request in the queue is assigned to it. The disk resource is used when a B-tree page
is read into or written out of the buffer pool. Each of the disks has its own disk queue, and
these queues are also managed in an FCFS fashion®. When a new I/O request is made, the disk
for servicing the request is chosen randomly from among all disks (i.e., we assume uniform disk
utilization). Each I/O request is modeled as having three components: a seek to a randomly chosen
cylinder from the current position of the disk head, a randomly chosen time between the minimum
and maximum rotational latencies, and a fixed page transfer time.

The physical resource model also includes a buffer pool for holding B-tree nodes in main memory.
The behavior of the buffer manager is captured via a DeNet module called the buffer manager. The
buffer pool is managed in a global LRU fashion. Transactions fiz each page in the buffer pool prior
to processing it, and they unfiz each page when they are done processing it and no longer need
it to be memory-resident; pages are placed on the LRU stack at the point when they are unfixed.
The buffer performs demand-driven writes. (Fixing a page may therefore involve up to two I/Os,
one to write out a dirty page and another to read the requested page in.) Apart from the buffer
manager, there is a module called the lock manager that models the acquisition and releasing of

locks.

2.3.2 Transaction Flow

Figure 2.4 shows the various states of a tree transaction in the system. Once a terminal submits
a transaction, we say that the transaction is active. An active transaction is always in one of four
states. The first state, the “request lock” state, is entered when it needs to set a lock, to convert
the mode of an existing lock to a different lock mode, or to release a lock. A concurrency control
CPU cost is associated with processing such a request. The second state, “wait for lock,” is entered
when a transaction requests a lock that is already held by another transaction in a conflicting
mode. Transactions waiting for locks on a B-tree node are queued in order of arrival, and waiting
transactions are awakened when a transaction holding a conflicting lock releases it. A transaction
locks and unlocks index pages according to the locking strategy of a particular concurrency control
algorithm. The third state, “access page,” is entered when a transaction wants to fix or unfix a
B-tree page. In this state, in the event of a buffer pool miss, a transaction will either do the 1/0
itself or wait for an already pending I/O for the page to complete. The time associated with a page

access consists of two components — the CPU cost in the buffer manager, and the time for any disk

5We also ran experiments with an elevator disk scheduling algorithm, and the results of these experiments will be
briefly described later.

18

Terminal & o
(Note: ixxx} = use of resource type xxx)
S— S
Riqo‘éist Process
fopu|] Page
|]
Access
¢ Page
‘ r’ Tcpul ,7;;7
L | Wait for
Lock

Figure 2.4: Transaction states

I/0. The fourth possible state for an active transaction is the “process page” state shown in Figure
2.4. This state models the processing of a B-tree node (e.g., search, insert, delete, split, merge),
and it has a CPU cost associated with it that depends on the type of operation being performed.
The particular path that a given transaction follows through these four states therefore depends on
the type of operation that it performs, the locking protocol employed, the size of the pool of pages
for buffering B-tree nodes, and the degree of lock conflicts experienced by the transaction during

its execution.

2.3.3 Workload Model

One component of the workload is the number of terminals in the system, referred to as the multi-
programming level (MPL) of the system. A given terminal can submit any one of four types
of B-tree operations (search, insert, delete, or append). Another component of the workload is
therefore a set of probabilities that define the proportion of searches, inserts, deletes and appends
in the workload. A terminal submits transactions one at a time. As soon as a transaction completes,
it returns to the terminal. The terminal immediately generates another operation whose type is
randomly determined using the set of probabilities given for the workload.

Keys for the search, insert, and delete operations are chosen from a key space that consists of
integer values between 1 and 80,000. Inserts use even keys from the key space, while deletes use
odd keys, thus ensuring that inserts and deletes do not interfere at the level of key values. To
ensure that deletes are always successful, an initial tree is built using a random permutation of all
of the odd keys in the key space. In contrast to updaters, searches can use both odd and even

integers as key values. Finally, the keys for appends are chosen sequentially from 80,001 onwards.

19

The actual series of keys for inserts and deletes are chosen from random permutations of their

respective portions of the key space.

2.3.4 B-Tree Model

Transactions in our simulation model concurrently operate on the same B-tree. The B-tree model
describes the characteristics of this index. An important parameter of the B-tree is the maximum
fanout of a B-tree page, the page capacity. This gives the maximum number of <pointer, separator>
entries in a page. In our model, the physical size of a B-tree page is always the same (in bytes), so
a variation in fanout should be viewed as being due to different key sizes. For simplicity, all keys
(and therefore separators) are of the same size, and no duplicates are allowed. Another parameter
of the B-tree model is the particular locking algorithm in use. The B-tree and its locking protocols
are both modeled by the B-tree manager module. There are several versions of the B-tree manager,

each corresponding to a different locking algorithm.

2.8.5 Performance Metrics

We use the above system, workload, and B-tree models as a platform for studying the performance
of the B-tree concurrency control algorithms described in Section 2. The main performance metric
used for the study is the throughput rate for tree operations, expressed in units of tree transactions
per second (TPS). We also monitored several other performance measures, including operation-
specific measures like tree operation response times, waiting times for locks at various levels, buffer
hit rates, I/O service times, frequency of link chases for B-link algorithms, restarts for optimistic
protocols, etc. These measures will be used to explain the results seen in the throughput curves
and also to compare and contrast protocols that perform similarly in terms of throughput.

In addition to concrete performance measures such as transaction throughput, it would be nice if
the level of concurrency provided by the protocols could be somehow characterized. For this study,
we have adopted the throughput of the protocols under infinite resources [Fran85, Tay84, Agra87]
as a measure of the level of concurrency that they provide. The resource manager simulates such
a condition by replacing the CPU and disk scheduling code with pure time delays. Transactions
then proceed at a rate limited only by their processing demands and locking delays, so proto-
cols that reduce locking delays (i.e., permit higher concurrency) provide significant performance

improvements.

num-cpus
num-disks
disk-seek-time
cpu-speed

cc-cpu

buf-cpu
page-search-cpu
page-modify-cpu
page-copy-cpu
num-init-keys
fanout

cc-alg

num-bufs
num-operations
mpl

search-prob
delete-prob
insert-prob

Number of CPUs (1..00)

Number of disks (1..00)

Min: 0 msec; Max: 27 msec

20 MIPS

CPU cost for a lock or unlock request (100 instructions)
CPU cost for a buffer call (1000 instructions)

CPU cost for a page binary search (50 instructions)
CPU cost for a insert/delete (500 instructions)

CPU cost to copy a page (1000 instructions)

Number of keys present in the initial tree (40,000)
Number of index entries per page (200/page, 8/page)
Concurrency control protocol (LY, B-X, TD-SIX, etc.)
Size of the buffer pool (see text)

Number of operations in the simulation run (10,000)
Multiprogramming level (1..300)

Proportion of searches (0.0 .. 1.0)

Proportion of inserts (0.0 .. 1.0)

Proportion of inserts (0.0 .. 1.0)

20

append-prob

Proportion of appends (0.0 .. 1.0)

Table 2.2: Simulation Parameters

2.3.6 Range of Experiments and Parameters

In our experiments, three factors will be varied — the workload (the percentage of searches, inserts,
deletes, and appends), the system (the number of CPUs, disks, and buffers), and the structure of
the B-tree (the fan-out and the initial number of keys). These factors determine the data and
resource contention levels of the system. The simulation parameters for our experiments are listed
in Table 2.2.

The B-tree can have one of two fanouts, a high fanout (200 entries/page) or a low fanout (8
entries/page). In all of our experiments, we started with a tree containing 40,000 keys. In the
high fanout case, the initial tree is a three-level tree containing 3 non-leaf index pages and 260 leaf
pages. The initial tree in the low fanout case has six levels (seven for the top-down algorithms®)
with around 1500 non-leaf pages and 7000 leaf pages.

For each of the high and low fanout trees, we consider two buffer pool size settings — one where
the tree fits entirely in memory, and the other where the number of buffer pages is less than the
number of pages in the B-tree. For the high fanout case, the two buffer pool sizes are 200 pages
and 600 pages. A 200 page buffer pool results in around 75% of the tree being in memory, while
the 600 page setting leads to an in-memory tree (even if the tree grows in size). The corresponding

sizes for the buffer pool in the low fanout tree are 600 pages (7% of the tree in memory) and 12,000

$Pre-splitting in the top-down algorithms leads to early splits for nonleaf pages, and this causes the trees built
using these algorithms to sometimes have a greater height than those built using bottom-up strategies. This effect is

significant only for low fanouts.

21

pages (memory-tesident tree). In cases where the buffer pool size is smaller than the size of the
tree, the system will be disk bound due to the large difference between the per-page CPU and disk
service times.

In an actual database system, it is difficult to predict exactly what the operation mix is going
to be. Furthermore, any system is bound to undergo changes in workload from time to time. In
order to capture a wide range of operating conditions, we used four different workloads in our
experiments: a search dominant workload (80% searches, 10% deletes and 10% inserts), an update
dominant workload (40% inserts, 40% deletes and 20% searches), an insert workload (100% inserts),
and an append workload (50% each of searches and appends).

Like the workload, the system resources in our experiments also span a wide range of conditions.
For the in-memory tree case, we study three different resource settings: one CPU, eight CPUs, and
infinite resources. In this case, the number of disks is immaterial since the tree is always in memory
and no I/Os are performed. For the case where the buffer pool size is smaller than the size of the
B-tree, where the system is disk-bound, we again study three situations: one CPU and one disk,
one CPU and eight disks, and infinite resources.

A system configuration consists of a fixed value for each of the following parameters: the
workload, the number of CPUs, the number of disks, the B-tree fanout, and the buffer pool size.
Using the parameter values described above, there are twelve system configurations possible for
each workload. In each configuration, we varied the MPL and conducted one experiment for
each concurrency control algorithm. At the start of each experiment, the buffer pool is initialized
with as many B-tree pages as will fit; higher level pages are given priority in this initialization.
The experiment is stopped after 10,000 operations have completed. Batch probes in the DeNet
simulation language are used with the response time metric to generate confidence intervals. For

all of the data presented here, the 90% confidence interval is within 2.5% (i.e., £:2.5%) of the mean.

2.4 Performance Results

The relative performance of the various B-tree algorithms depends on characteristics like the work-
load composition, the system resources available, the B-tree structure and the multiprogramming
level. We divide the algorithms into four classes and analyze the performance of these classes. The
groupings of algorithms into classes are indicated in Table 2.3. When presenting data on perfor-
mance measures, we will provide the curve for a representative algorithm of a class rather than
reproduce all curves for all algorithms. We reproduce the actual curve for an algorithm only when

it differs from the others in its class. The classes SIX-LC and X-LC are referred to collectively as

22

Class Algorithms How Related
B-LINK | {LY, LY-ABUF, LY-LC} B-link algorithms
OoPT {OPT-DLOCK, TD-OPT, B-OPT} | Optimistic descent algorithms
SIX-LC | {B-SIX, TD-SIX} SIX lock coupling algorithms
X-LC {B-X, TD-X} X lock coupling algorithms

Table 2.3: Algorithm Classification

pessimistic algorithms in the following discussion. We discuss the results of our experiments in a

manner organized by workload.

2.4.1 Experiment Set 1: Low Data Contention, Steady State Tree

In our first set of experiments, we used a workload that consists of 80% searches and 10% each of
inserts and deletes. The use of an equal proportion of random inserts and deletes ensures that a
negligible number of splits and merges take place. The presence of relatively few updaters and a
small number of splits creates a low data contention situation, and we use this workload as a filter
to eliminate bad algorithms. We shall first discuss experiments conducted on the high fanout tree
(200 keys/page), followed by the results for the low fanout tree (8 keys/page). For each subset of
experiments, we shall compare the performance of alternative B-tree locking algorithms at various

resource levels starting with a single CPU and disk.

High Fanout Tree Experiments

The throughput curves for the case with a single CPU and disk are shown in Figure 2.5. The buffer
pool in this experiment has 200 pages, or about 75% of the B-tree size. It is seen from the figure
that the throughputs for all algorithms are only slightly greater at higher MPLs than at an MPL of
1. This is because there is only one CPU and disk, and the disk rapidly becomes a bottleneck. We
found that for all algorithms, the disk is around 90% utilized at an MPL of 1, thus making some
I/0 and CPU parallelism possible. The left-over bandwidth is used up when the MPL is increased,
and the disk becomes fully utilized by an MPL of 4 for all algorithms. After that, no improvement
in throughput is possible.

With low data contention, the only performance difference visible in Figure 2.5 is that LY-
ABUF performs worse than the other B-link algorithms at high MPLs. On further investigation,
we found that while the number of I/Os performed by the other algorithms does not change much
with the MPL, the number of I/Os in LY-ABUF increases. In fact, at an MPL of 200, LY-ABUF
performs about 12% more I/Os than the other algorithms. This is due to the fact that the atomic
read-write model used by LY-ABUF causes multiple copies of pages to exist in the buffer pool,

23

h})gh fanout:80% search:1 CPU:1 Disk:200 bufs 01610gh fanout:80% search:1 CPU:8 disks:200 bufs
11 10001

100 8 -

T 8 0 900

h 907 h .

r ; 800 o

o 807 0]

707

% ﬁ 600°

p 607 B——8 B.LINKOPT,SIXLCXIC P

u o—o LY-ABUF u 5007

t 507 t

) . 4001 4

i 401 i

n n 4 O ©

301 300

T T

P 20 P 200 HV-—-V S’I:{LL:

S 101 S 100 % £ B-LINK&OPT
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Mult?programngng level (SMPLz Mult?progxamm?ng Level (MPL)

Figure 2.5: High fanout, single disk Figure 2.6: High fanout, 8 disks
g g g g

while all other algorithms have just one copy of a page in the buffer pool. These extra copies cause
the buffer pool to be used inefficiently in LY-ABUF, especially at higher MPLs, leading to more
disk I/Os and extra waiting at the bottlenecked disk. Also, the LY-ABUF algorithm handles the
cases when (i) a requested buffer page is not in memory, and (ii) the page is in memory but is being
modified by another transaction, in the same way; it must perform a disk I/O in both cases. In
this experiment, case (ii) is more likely due to the size of the buffer pool being a sizable fraction of
the B-tree. Note that this phenomenon should not occur when the buffer pool is much smaller or
much larger than the B-tree size, and we indeed found that there was essentially no performance
difference between LY-ABUF and the other B-link algorithms in those cases. We will drop the
LY-ABUF algorithm from future graphs since we found that it never performed better than the
other two B-link algorithms.

The throughput curves for the case with 1 CPU and 8 disks is given in Figure 2.6. Due to
the additional system resources, the throughput of all algorithms increases to a higher level before
leveling off than in Figure 2.5. In this case, the SIX-LC and X-LC lock-coupling algorithms only
reach a maximum throughput of about half that of the optimistic (OPT) and B-link (B-LINK)
algorithms. In trying to explain this, we found that this is because the pessimistic algorithms
(SIX-LC and X-LC) have a peak utilization of less than half of the available disk capacity, while the
optimistic algorithms utilize the disk completely at high MPLs. This suggests that the throughputs

24

fanout;:80% search:1 CPU:8 Disks:200 bufs high fanout:80% search:1 CPU:8 Disks:200 bufs

30001 30007
I
n o
S 25001 0 25007
r t
t L
20001
R 0
- k
> 1500
o W
n a
s { 1000°
e
T T
i 1 5007
m m
e e
e £)
50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
MulnprogrammmgLe vel (MPL) Mulnsprogramm?ng Legel (I(\)/[P 7)
Figure 2.7: Insert times, 8 disks Figure 2.8: Wait at root (insert), 8 disks

for the pessimistic algorithms level off due to data contention rather than resource contention. It
is evident from the corresponding response time curves (Figure 2.7) and lock waiting times at the
B-tree’s root page (Figure 2.8) that the lock waiting time at the root is a significant fraction of the
insert operation response time for the X-LC and SIX-LC algorithms; this indicates that locking and
searching the root is the bottleneck. In contrast, for the OPT and B-link algorithms, the response
time increases at higher MPLs are due only to contention for the disks.

The bottleneck that the X-LC and SIX-LC algorithms form at the root can be understood
intuitively by considering a system in which operations have to execute in several stages with the
restriction that no two operations can execute the first stage simultaneously (though any number
of operations can execute subsequent stages in parallel). Assume that it takes exactly 1 second to
run through all stages, and that the first stage takes a fraction k (0 < k < 1) of the total time
to execute. Now, at an MPL of 1, the throughput will be 1 operation/second. At an MPL of 2,
both operations may be phase-shifted and may not collide at the first stage. In that case, they will
both have a response time equal to 1. However, the worst case is when both operations arrive at
the first stage simultaneously, and one of them has a response time of 1 while the other has 1+ k.
Assuming equal probability for the collision and non-collision cases, we get an average response
time of (14 k/2) and an average throughput of less than 2. At higher and higher MPLs, more and

more collisions will occur. In fact, it can be shown that the asymptotic throughput at very high

25

MPLs is 1/k. Consequently, a bottleneck will form at very high MPLs in front of the first stage.

Searching the root page in the X- and SIX-locking algorithms is analogous to the first stage
in the example system, and at high MPLs a bottleneck forms at the root. The bottlenecks are
accelerated at higher MPLs due to the lock-coupling overhead of waiting for the lock at the next
level. Notice that if k is very small, then bottlenecks will first form at much higher MPLs than
if k were large. We indeed noticed that in the memory-resident tree experiments, the bottlenecks
formed earlier than in the experiments where the response time includes I/0. This is because the
overhead of searching the root (and waiting for a lock at the next level) in the memory-Tesident
experiments is a significant proportion of the actual response time, while in situations that require
disk I/Os for non-root nodes, it is a much smaller fraction of the response time.

The bottleneck at the root can affect the response time of operations either symmetrically or
asymmetrically. In the X-LC algorithms, the bottleneck affects all types of operations equally; the
X-LC search response times in Figure 2.9 are very close to the corresponding insert response times
in Figure 2.7. On the other hand, in the SIX-LC algorithms, the response time for searches increases
only slightly with MPL (Figure 2.9), while the response time for updaters increases steeply with
MPL (Figure 2.8). This is because, in the SIX-locking algorithms, searches can overtake updaters on
their way to a leaf and hence escape the bottleneck at the root. However, the system then gets filled
with slower updaters, and the contention levels are much higher than in X-locking (where searches
and updaters take approximately equal times to complete). In fact, the increase in response time
for updaters is so large that the throughput of the SIX-locking algorithms is only slightly better
than that of the X-locking algorithms (Figure 2.6) in spite of the almost constant search response
times of the SIX algorithms. It should be noted that the phenomenon of a bottleneck at the root
for pessimistic algorithms has been mentioned in earlier papers [Bili85, John90a]; our contribution
is to the understanding of how bottlenecks affect the response times of different operation types.

Finally, to get an idea of the extent to which the different algorithms can take advantage of
the concurrency available in the workload and the high fanout B-tree structure, we present their
throughput curves for the case of infinite resources in Figure 2.10. Note how the pessimistic
algorithms level off at around the same maximum throughput as in the 1 CPU and 8 disks case
(Figure 2.6), while the optimistic and B-link algorithms make excellent gains in throughput with
increasing MPL. The reason that the optimistic and B-link increases are slightly less than linear is
due to contention at the buffer pool which results in increased buffer access times at higher MPLs.

In addition to the above experiments, we also performed experiments in which the entire tree
is in memory. The only difference between the disk bound experiments described above and the

experiments with the memory-resident tree was that the CPU resource became the bottleneck at

26

high fanout:80% search:1 CPU:8 Disks:200 bufs 10000 high fanout:80% search:INF res:200 buf
7007 1

6001
5001
4001

3001

cwvwHOoOTWnoOoRX DToOmpOW

2001

1001

o8~

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Mulnsprogzgmm?ng Level (MPL) Multiprogramming Level (MPL)

Figure 2.9: Search times (msec), 8 disks Figure 2.10: High fanout, oo resources

4 4

earlier MPLs than the disks did in the disk-bound experiments, as would be expected. However,
the qualitative results were similar to those for the disk bound case. Thus, we omit these graphs
to conserve space.

Notice that in the above experiments, there was no significant performance difference between
the top-down algorithms and the corresponding Bayer-Schkolnick algorithms. This is to be expected
since the tree has only three levels; the number of exclusive locks held at one time on the scope of

an update is hardly different in the two cases (due to the rarity of splits and merges).

Low Fanout Tree Experiments

Recall that the initial B-tree index in the low fanout case has 40,000 keys, 7,000 leaf pages and
1,500 non-leaf pages. The tree has 6 levels (7 in the top-down algorithms, as explained earlier). As
in the high fanout experiments described above, the interesting cases are experiments in which the
size of the buffer pool is less than the B-tree size. Here the buffer pool size is 600 pages, or about
7% of the B-tree size.

In the single CPU and disk case, there was little difference between the various algorithms, so
we omit these results here. The throughput curves for the 1 CPU and 8 disks case is shown in
Figure 2.11, where there is still not much difference in throughput between the various algorithms.

In particular, the throughput of the pessimistic algorithms differs little from the throughput of the

27

low fanout:80% search:1 CPU:8 disks:600 bufs 4000 low fanout:80% search:INF res:600 buf:

1351
- 2]
T 1201 } }
h © o
r 1051
0
u 901
g
h C
p & G—£] B-LINK & OPT
u ¥—V¥ BSIX
t 60 o——0 X-LC
+——t TDSIX
i]
n 45
T 307
P
S 5%
50 . 100 150 200 250 300 50 . 100 150 _200 250 300
Multiprogramming Level (MPL) Multiprogramming Level (MPL)
Figure 2.11: Low fanout, 8 disks Figure 2.12: Low fanout, co resources

optimistic and B-link algorithms, unlike in the high fanout tree (Figure 2.6). This is because the
bottleneck at the root forms at higher MPLs here due to the fact that a lesser proportion of the
response time is spent searching the root than in the high fanout case described earlier.

An interesting point to note is that the peak throughput for the top-down algorithms in Figure
9.11 is somewhat less than that of the corresponding Bayer-Schkolnick algorithmns, i.e., the peak
throughput of TD-SIX is slightly lower than that of B-SIX in Figure 2.11. This is because early
splitting in the top-down trees results in less occupancy for pages at the non-leaf levels. In the
low fanout case, with more than a thousand non-leaf index nodes, this reduced occupancy causes
a significant increase in the number of pages in the tree; the result is a reduced hit rate for index
pages in the buffer pool. This reduced hit rate translates into more I/Os and, since the disk is
a bottleneck in this experiment, the top-down algorithms perform slightly worse. The relatively
small difference is due to the fact that the top-down buffer hit rates, though uniformly lower than
those for the other algorithms, are still fairly close to the other hit rates since the leaf node hit rate
dominates (the number of leaf nodes is approximately four-fifths of the total number of nodes).

Figure 2.12 shows the throughput curves for the infinite resources, low fanout case with the
600 page buffer pool. Note that the optimistic and B-link algorithms perform much better than
the pessimistic lock-coupling algorithms. Among the pessimistic lock-coupling algorithms, the top-
down algorithms perform better than the corresponding Bayer-Schkolnick algorithms, i.e., TD-X

28

is better than B-X and TD-SIX is better than B-SIX. These differences are due to the varying
amounts of lock waiting at the root, as the lock waiting at all other levels is very small. The
top-down algorithms benefit from having to lock less of the scope in exclusive mode at any one
time than the Bayer-Schkolnick algorithms, and therefore perform much better in Figure 2.12 in
spite of a slightly lower hit rate for non-leaf index pages. As before, search operations are favored
by the SIX-locking algorithms and, since searches are in the majority, the SIX-locking algorithms
outperform the X-locking algorithms.

Summary

In a relatively low data contention situation, except for the single CPU and disk case, the optimistic
and B-link algorithms performed much better than the pessimistic lock-coupling algorithms. Even
in a system with relatively few resources, the throughputs of the optimistic and B-link algorithms
were better than those of the pessimistic ones. This is because the pessimistic algorithms are unable
to take advantage of the low data contention of the workload due to their exclusive locking of the
root. Using a SIX policy that allows readers to overtake updaters does not alleviate this problem,
as even the few updaters that are present take a long time to complete; the overall throughput
is therefore not increased much beyond the X-locking situation. The differences between the top-
down and Bayer-Schkolnick algorithms were greater in the low fanout case, but the high fanout
tree is much more likely to occur in practice. In future graphs, we will represent the performance
of the pessimistic algorithms by that of the best lock-coupling algorithm, as they will be seen to
consistently perform much worse than the optimistic and B-link algorithms.

To see how a larger percentage of updaters affects the above results, we also experimented
with a workload of 20% searches and 40% each of inserts and deletes. Since these results differ
only in a few respects from the first set of experiments, we omit the graphs and summarize the
key results. The pessimistic algorithms performed even worse for this workload than in the search-
dominated workload. For all conditions except the low fanout, infinite resources case, the optimistic
algorithms performed quite close to the B-link algorithms. In the low fanout case under infinite
resource conditions, the algorithms TD-OPT and B-OPT performed somewhat worse than OPT-
DLOCK and the B-link algorithms; this was due to their relatively larger probability of restarts.

We shall characterize this restart behavior in the next set of experiments.

29
2.4.2 Experiment Set 2: High Data Contention, Growing Tree

To further study the performance differences between the optimistic algorithms and the B-link
algorithms, our next set of experiments uses a workload consisting only of inserts. This 100%
insert workload differs from the one used in the first set of experiments in that it creates higher
data contention due to the significant number of splits required to accommodate the new keys
being inserted. In particular, the nodes at the level above the leaves (i.e., their parent nodes) are

modified frequently under this workload.

High Fanout Tree Experiments

The results in this section are based on the subset of the experiments that were performed on
high fanout trees. We first consider experiments that were conducted with a buffer pool size of
200 pages, or about 75% of the initial B-tree size. We omit the curves for the single CPU and
disk case, since there is again not much difference between the algorithms. Figure 2.13 contains
the throughput curves for the 1 CPU and 8 disks case. As in the earlier set of experiments,
the pessimistic algorithms (Best LC) again perform much worse than the optimistic and B-link
algorithms. In addition, for the first time we see significant differences between the B-link and
optimistic algorithms. We shall comment on three important aspects of these differences.

Firstly, the optimistic algorithms perform worse than the B-link algorithms here. The reason
is that the optimistic algorithms are only able to utilize a maximum of 80% of the disk resources
due to data contention under this workload, while the B-link algorithms are still able to saturate
the disks at high MPLs. As with the pessimistic algorithms in the first set of experiments, the
algorithms TD-OPT and B-OPT lose their performance here due to lock waiting at the root.

Seéondly, we notice in Figure 2.13 that the algorithm TD-OPT achieves a peak throughput
higher than B-OPT. This is because the lock waiting time for the B-OPT algorithm increases faster
than that of TD-OPT, so TD-OPT performs better than B-OPT. Recall that, in both algorithms,
inserters make a second pass with SIX locks if they encounter a full node. Since SIX locks are
incompatible with each other, two updaters in their second phase interfere with each other if both
try to lock the root at the same time. Furthermore, in B-OPT, an inserter in the second pass
can also interfere with an inserter in the first pass’. This extra interference causes the average
waiting time at the root for B-OPT to be greater than that of TD-OPT. Moreover, in the TD-OPT

algorithm, inserters in their first pass can overtake those in their second pass. Such overtaking,

"The first pass in TD-OPT is done by lock-coupling with S locks, while in B-OPT, the initial lock-coupling is done
with IX locks. IX locks are compatible with other IX locks but not with SIX locks, while S locks are compatible with

both.

30
%h fanout:100% inserts:1 CPU:8 disks:200 bufs high fanout:100% inserts:1 CPU:8 Disks:200 bufs

50 12007

h 00
] 10007

Y 400
0
‘g‘ R 8001
h 3007 €
p]
a A—=B TD-OPT L 6001
t +——+ BOPT a

2001 G—8& B-LINK I
i O——OBest LC(TD-SIX) t]
n XX OPT-DLOCK s 400
T

100
IS’ o o 2001

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Multiprogramming Level (MPL) Mulusprogramm?ng vel (MPL)
Figure 2.13: High fanout, 8 disks Figure 2.14: Restarts (per 10,000 ops.)

while leading to less waiting time at the root, could also increase the number of restarts since
overtaking will allow more than one transaction to reach the same full node. A look at the restart
counts for the TD-OPT and B-OPT algorithms (Figure 2.14) indeed shows that TDOPT at high
MPLs performs about 4 times as many restarts as B-OPT. However, these restarts are inexpensive
in this disk bound case, as all pages needed after a restart are most likely in memory.

Thirdly, we find that the throughput of OPT-DLOCK increases quickly at low MPLs and then
more slowly at high MPLs. Unlike the other optimistic algorithms, however, its throughput does
not quickly saturate. The reason for this behavior is the difference in OPT-DLOCK’s handling
of restarts. Since the conflict level is high, OPT-DLOCK performs many restarts (Figure 2. 14).
However, while restarts in TD-OPT and B-OPT result from conflicts at the root node, those in
OPT-DLOCK result from conflicts at the level above the leaf. Recall that there are two nodes at
this level in the high fanout tree, so conflicts in OPT-DLOCK are divided between the two non-leaf
index nodes at this level. Thus, the waiting times for deadlock resolution in OPT-DLOCK increase
more slowly than those for B-OPT and TD-OPT, and hence the throughput of OPT-DLOCK
increases slightly even at high MPLs. The presence of more nodes at the level of the tree above
the leaf would make this algorithm perform even better due to shorter waiting times for deadlock
resolution.

In the infinite resources situation (Figure 2.15), OPT-DLOCK performs better at high MPLs

31

high fanout:100% inserts:INF res:200 bufs high fanout:100% inserts:INF res:in mem.

8000 500000
1 T—+ BORT.
= b
r] HBMLC(TD—SIX) T 400000
o
u
g
h 300000 1
p
u
t
; 200000
n
B 1000001
S
e e e e e)
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Mulnsprogramm?ng Level (MPL) Multlsprogramm?nog Level (MPL)
Figure 2.15: High fanout, co resources Figure 2.16: High fanout, in-mem. tree

than the other optimistic algorithms since its restarts become more inexpensive due to the in-
crease in the number of CPUs from 1 (in Figure 2.13) to infinity (i.e., due to the lack of resource
contention). As before, the B-link algorithms perform much better than all of the other algorithms.

Just to give a flavor of the in-memory tree results for this workload, we reproduce the throughput
curves for the in-memory infinite resources case in Figure 2.16. We find that TD-OPT performs
worse than B-OPT here due to the greater number of restarts, as the overhead of a restart is now
comparable to the response time of a successful tree operation itself. The number of restarts here

are essentially the same as in the earlier disk bound case (Figure 2.14).

Low Fanout Tree Experiments

The second subset of experiments using the 100% insert workload is performed on a low fanout
tree. Just as in the low fanout experiments of experiment set 1, we first consider configurations in
which the buffer pool contains 600 pages,

The 100% insert throughput curves with 1 CPU and 8 disks are given in Figure 2.17. As in the
high fanout experiments discussed for this workload, TD-OPT and B-OPT perform worse than the
B-link algorithms. However, the OPT-DLOCK algorithm performs close to the B-link algorithms
at low MPLs and actually does slightly better here at high MPLs. OPT-DLOCK is better than the

other optimistic algorithms because the number of restarts in the case of OPT-DLOCK decreases

32

low fanout:100% inserts:1 CPU:8 disks:600 bufs 3000 low fanout:100% inserts:INF res:600 bufs

1001
o= B-1INK
T G——© Best LC(TD-SIX)
h +—t B-OPT
r X3 OPT-DLOCK
o H—A TD-OPT
u
g
h
p
u
t
i
n
T
P
S

50 . 100 150 200 250 300 50 100 150 200 250 300

Multiprogramming Level (MPL) Multiprogramming Level (MPL)
Figure 2.17: Low fanout, 8 disks Figure 2.18: Low fanout, co resources

drastically (to just 100 from the maximum of 1200 in Figure 2.14) due to a reduction in lock
conflicts from the earlier high fanout case. On the other hand, due to the increased probability of
finding a full leaf page, the restarts for B-OPT and TD-OPT increase to a maximum of around
1600 from the much smaller values (100 and 600 respectively) found in Figure 2.14. The reason
that OPT-DLOCK performs better than the B-link algorithms at high MPLs is that it is able to
better utilize the buffer pool than the B-link algorithms. Specifically, the B-link algorithms have
to reacquire buffers for propagation of splits, while OPT-DLOCK always keeps them pinned. The
B-link algorithms therefore perform more buffer calls, resulting in somewhat more I/Os at high
MPLs.

To further illustrate the above concepts, the results for the infinite resources case (Figure 2.18)
show that the B-link and OPT-DLOCK algorithms keep making gains in throughput, while the
throughputs of the B-OPT and TD-OPT algorithms saturate at MPLs of 100 and 200 respectively.
At even higher MPLs (not shown in the figure), both the TD-OPT and B-OPT algorithms end
up performing close to (but slightly better than) their respective pessimistic versions. This is a
surprising result, and the explanation is as follows: The probability that an operation will undergo
a restart in the optimistic algorithms is the same at all MPLs, and is equal to the probability
of finding a full leaf page. Therefore, at high MPLs, more restarters are active in their second

(pessimistic) descent at the same time than at low MPLs. In B-OPT, as discussed earlier, restarts

33

slow down operations in their first descent also, and this causes a bottleneck much like that of the
X-LC case discussed in Section 4.1.1.

In the TD-OPT algorithm the loss in throughput occurs for a slightly different reason. Recall
that in TD-OPT, only operations in their second pass interfere with each other; operations in the
first pass are allowed to overtake those in their second pass. Operations that succeed in their
first descent at high MPLs execute much faster than operations which have to restart, much like
searches and inserts behaved in the SIX-LC algorithms (Section 4.1.1). As a result, the system
eventually becomes filled with updaters in their second pass, which causes a bottleneck so serious
that the throughput starts to fall. We verified that this was indeed the case by looking at the
standard deviation of the insert response times at low and high MPLs for TD-OPT. As expected, we
found a significant difference between the standard deviations at low and high MPLs (the standard
deviation varied from 50% of the value of the mean at low MPLs up to 120% the value of the mean
at high MPLs), indicating that the response times for restarted and non-restarted updaters vary
widely at high MPLs. For B-OPT, there was no such variation in standard deviation, as expected.
Both optimistic algorithms achieve a final throughput slightly greater than that of their pessimistic
counterparts for exactly the same reason that the SIX-LC algorithms performed slightly better than
the X-LC algorithms in the high fanout tree experiment with a search dominant workload (Figure
2.6); the average of the fast and slow response times for the optimistic algorithms is slightly less
than the average for the pessimistic cases.

Just as the optimistic algorithms perform restarts, the B-link algorithms also involve extra
overhead in high contention situations due to link-chases. The numbers of link-chases for the B-
link algorithms in the 100% insert workload for both high and low fanout trees are presented in
Figure 2.19. (The figures for a particular tree do not differ significantly with the resource level.)
Unlike the optimistic algorithms, where the number of restarts varied widely with the fanout of an
index node, the number of link-chases is not very different between trees with high and low fanout.
In the case of low fanout trees, splits are more frequent, but the probability of an operation visiting
a leaf that is being split by an earlier operation is very small due to the presence of thousands of
leaf nodes. In trees with high fanouts, even though the probability of an operation visiting a leaf
node while it is being split is fairly high, splits are relatively infrequent, thus keeping link-chases
down. These two effects seem to balance each other and keep the number of link-chases fairly
independent of the fanout. It should also be noted that a link-chase in the B-link algorithms is

much less expensive than a restart in the optimistic algorithms.

34

B-LINK alg:100% inserts:1 CPU:8 Disks

1001
+-—+ HIGH FANOUT
807
A4 LOW FANOUT
L
i
n
k 607
C
h
a 401
S
e
[
207

25 50 75 100 125 150 175 200
Multiprogramming Level (MPL)
Figure 2.19: Link-chases (per 10K ops.)

Summary

To summarize the results of this section, in the experiments with a 100% insert workload, the
pessimistic algorithms performed worse than the other algorithms, as in experiment set 1. The
optimistic algorithms TD-OPT and B-OPT performed worse than the B-link algorithms for all
system conditions except the single CPU and single disk case. Surprisingly, however, the OPT-
DLOCK algorithm performed as well as the B-link algorithms in the low fanout tree, but was again
worse for trees with high fanout. Link-chases for the B-link algorithms were too infrequent in both
the high and low fanout cases to affect their performance significantly.

So far, we have found the B-link algorithms to be consistently quite a bit better than the other
algorithms in their ability to exploit the concurrency available in the workload and the B-tree
structure. The only exceptions have been restricted resource situations and situations with a low
percentage of updaters, where there is simply very little difference in performance between any of
the algorithms. The B-link algorithms therefore appear to be strong candidates for use in a practical
system. Since there have been several variations proposed for B-link algorithms, it is interesting to
see how these perform among themselves. We already determined that the algorithm LY-ABUF
makes inefficient use of the buffer pool, and hence is not a suitable alternative. We are therefore
interested in performance differences between the algorithms LY and LY-LC, which performed

identically in both the first two sets of experiments. Our next set of experiments uses a workload

35

that generates a large amount of localized data contention so as to measure any performance

differences between these two B-link algorithms.

2.4.3 Experiment Set 3: Extremely High Data Contention

In our third and final set of experiments, we use a workload that consists of 50% appends and 50%
searches. Such a workload may arise, for example, given a history index to which appends are being
made all the time while searches are being done to find old entries. The appends create extremely
high contention for the few right-most leaf nodes in the tree. The searches are random, however,
and do not interfere with the appends that are taking place. In situations with the buffer space
being less than the tree size, the searches serve to keep the system disk bound. In such disk bound
situations, only the searches perform I/Os, as the appends always find the pages that they need
in the buffer pool. Thus, in this workload we have a situation where two operations with widely
varying response times are interacting in the system.

In our graphs for the set of experiments in this section, we compare LY and LY-LC with the
best optimistic algorithm (Best OPT) and the best pessimistic algorithm (Best LC). As usual, we

divide the results into the high fanout and low fanout cases.

High Fanout Tree Experiments

The first subset of experiments are for the high fanout tree with a buffer pool size of 200 pages.
We found little or no difference in throughput between the algorithms in the single CPU and single
disk case, or even in a system with 1 CPU and 8 disks. In both these cases the resource contention
at the CPU was the dominating factor, and all the algorithms rapidly attained the same maximum
throughput. We therefore omit the graphs for those experiments.

In the infinite resource situation with a 200-page buffer pool, (Figure 2.20), the B-link algorithms
perform better than all of the other algorithms, and their throughputs continue to increase at high
MPLs. Notice that there is still not much difference between the LY and LY-LC algorithms,
however.

We now switch to experiménts where the entire tree is in memory. One of the few cases where
a pessimistic algorithm actually performs better than the B-link and optimistic algorithms is the
case of a 1 CPU and 1 disk system with the entire tree in memory (Figure 2.21). The reason is
that the very high level of data contention among the appends causes the number of link-chases
to increase enormously at high MPLs for the B-link algorithms (Figure 2.22). Also, notice that

the optimistic algorithms perform an increasing number of restarts. Due to the very fast response

36

high fanout:50% appends:INF res:200 bufs high fanout:50% append:1 CPU:1 disk:in mem
240001 3000 o o ©

T T

h 20000° h 2500

r r

0 0

u u |

g 16000 g 2000

h h

p P

u 12000 u 1500

t t

. . EG—£ B-LINK&OPT

111 80001 111 10001 O—© Best LC(TD-SIX)
T T

P 1 P .

S 4000 S 500

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Multiprogramming Level (MPL) Multiprogramming Level (MPL)
Figure 2.20: High fanout, oo resources Figure 2.21: High fanout, in-mem. tree

time of operations on a memory-resident tree, the overheads for a link-chase or a restart are of the
same order as the response time of an operation, and the B-link and optimistic algorithms show
thrashing behavior at high MPLs. When more CPU resources are available in the system, however,
the B-link and optimistic algorithms once again perform better than the pessimistic algorithms.

We find from Figure 2.22 that the B-link algorithm’s rate of increase of link-chases at high
MPLs is about half of that at lower MPLs. Since searches do not interfere with appends, all link-
chases are due to appends. Recall that a link-chase has a high probability of occurring when a split
happens, and a reduction in the number of splits will reduce link-chases. The rate of increase of
link-chases reduces at high MPLs due to a randomization of the actual sequence of the appends and
a consequent reduction in the number of splits®. The reduction in the number of splits occurs for the
optimistic algorithms TD-OPT and B-OPT as well, but these optimistic algorithms are unable to
take advantage of it because of the bottleneck that forms at the root. Unlike TD-OPT and B-OPT,
which saturated at throughput values close to those of their pessimistic counterparts, we found that
OPT-DLOCK exhibited thrashing behavior in the append experiments due to unbounded restarts;
however, OPT-DLOCK was still better than TD-OPT and B-OPT throughout.

8A strategy that causes the appends to be inserted in the increasing order of key values will attain a leaf page
occupancy of only 50% for new pages, while a randomization of the appends will cause the page occupancy to be
around 69% [Yao78]. Thus, randomization leads to fewer splits.

37

high fanout:50% appends:1 CPU:1 Disk:in mem

L 70007

i

k 6000

k =—e B-LINK

c A—A Best OPI(TD-OPT)

h 5000. G © ButbC('l‘D«SlX)

a

s

e 40007

s

& 3000

R

€ 2000

s

t

a4 10001

r

t

s . R ')
25 50 75 100 125 150 175 200
Multlsprogramm?ng Level (MPL)

Figure 2.22: Overhead (per 10,000 ops.)

Low Fanout Tree Experiments

The qualitative results for the low fanout tree are mostly similar to those of the high fanout case,
so the graphs are not shown. We found no significant performance differences between the LY
and LY-LC algorithms in situations where the buffer pool size was 600 pages (much less than the
B-tree size). Even in heavily disk bound cases, link-chases did not significantly affect the hit rates
of the buffer pool. This suggests that link chasing tends to occur almost immediately after a page
is modified and is therefore very inexpensive.

In experiments with the entire tree in memory, we found that the LY-LC algorithm performed
slightly worse than the LY algorithm at high MPLs (providing around 20% less throughput). The
reason for this is the lock waiting introduced by holding S locks while searching for the parent of a
leaf node. Still, both the LY and LY-LC algorithms performed an order of magnitude better than
the rest of the algorithms.

Summary

To summarize, even in this very high contention workload, the B-link algorithms increased in
throughput except in low resource situations. For the B-link and optimistic algorithms, a large
MPL randomizes an append workload and reduces the number of splits. The B-link algorithms

effectively use the reduced number of splits to lower the rate of increase in link-chases at high

38

MPLs. Moreover, link-chases are extremely cheap and cause no bottlenecks to form, unlike restarts
that either cause a bottleneck at the root (TD-OPT and B-OPT) or thrashing behavior (OPT-
DLOCK). There was no significant difference between the LY and LY-LC algorithms across a wide

range of resource conditions and tree structures; the exception was a system configuration with a

low fanout tree, infinite resources, and a buffer pool as large as the tree, where the LY-LC algorithm

performed slightly worse than the LY algorithm at high MPLs. This sort of situation can likely be

ruled out in practice, and even if it occurs, the LY-LC algorithm performed reasonably close to the

LY algorithm and much better than all non-B-link algorithms.

2.5 Discussion of Performance Results

We can broadly summarize the results of the previous section into the following points.

1.

3.

In a system with a single CPU and disk, there is no significant performance difference between

the various algorithms.

Lock-coupling with exclusive locks is generally bad for performance. Even for workloads
dominated by searches, algorithms in which updaters use such a lock-coupling strategy cannot
take full advantage of even the small amount of parallelism available in systems with a few

CPUs and disks.

Optimistic algorithms that restart upon encountering a full leaf node attain only a limited
amount of performance improvement over their pessimistic counterparts. In fact, the algo-
rithms TD-OPT and B-OPT perform close to their corresponding pessimistic algorithms at
high MPLs. Since the probability of a restart is fixed by the tree structure, the number of
restarts interfering with each other increases at higher MPLs — irrespective of whether there is
any actual data contention or not. Therefore, these algorithms cannot adapt to dynamically
changing workload conditions. A naive algorithm like OPT-DLOCK, in which restarts are
based on actual lock conflicts, is much better than algorithms that restart based on leaf node

occupancy in most situations.

The extent to which an overhead like a restart or a link-chase directly affects performance
depends more on the number of conflicts that it creates than on the extra resources used. For
example, in the append experiments, the overhead for the link-chases in the B-link algorithms
was comparable to that of the restarts in the optimistic algorithms. However, the B-link
algorithms continued to increase in throughput, given enough resources, while the optimistic

algorithms saturated at a throughput level close to that of their pessimistic counterparts.

39

This is because the restarts in the optimistic algorithms caused a concurrency bottleneck at
the root (TD-OPT and B-OPT) or at the level above the leaf (OPT-DLOCK), while the
link-chases of the B-link algorithms were spread over many different leaf nodes and did not

cripple performance.

5. The fanout of index pages can greatly affect performance, as one would expect. For example,
the performance of the OPT-DLOCK algorithm relative to the B-link algorithms in high and

low fanout situations varies quite widely (Figures 2.15 and 2.18).

The only algorithms that were seen to perform consistently well are the B-link algorithms. In all
of the workloads examined, the B-link algorithms were able to make use of extra resources and
increase their throughput. They treat searches and inserts symmetrically, unlike (for example) the
SIX algorithms, which speed up search response times at a heavy cost to inserts. Moreover, the
overhead in the B-link algorithms due to page splits can actually decrease at high MPLs in a high
contention situation like our append experiments. A final important observation is that the B-link
algorithms performed the best in both high and low fanout trees. This leads us to conclude that
B-link algorithms will also perform well for trees that have variable length keys, in which the fanout
may vary widely from node to node.

In addition to the above experiments, which used a FCFS scheduling algorithm at the disk,
we also performed experiments in which disk requests were scheduled using an elevator algorithm.
The elevator algorithm differs from FCFS disk scheduling by significantly reducing the average
seek time for disk requests when there are many concurrent requests. We found that this change in
seek times affected the results of the disk bound experiments quantitatively but not qualitatively.
The reason is as follows: At higher MPLs, algorithms that do not bottleneck at the root are able
to queue multiple requests at the disk at the same time, thus attaining better throughput than
in the FCFS case due to the reduction in response time caused by faster seeks. Algorithms that
do bottleneck at the root allow much less concurrent operation, and hence their disk seek times
do not change much from the FCFS case; they attain the same throughput as before. Thus, the
differences in throughput between the bottlenecked algorithms and the other algorithms increases,
but the qualitative results are the same as before. For example, in a low contention workload on the
high fanout tree with a system configuration of 200 buffers, 1 CPU, and 8 disks using the elevator
scheduling algorithm, we found that while the throughput of the pessimistic algorithms was close
to that in the corresponding FCFS case (Figure 2.6), the optimistic and B-link algorithms reached
a peak throughput that was 70% higher than in Figure 2.6.

40

Based on the above observations and the results of the previous section, we can also comment
on the performance of algorithms that have not been explicitly simulated in our system relative to

the performance of the B-link algorithms.

2.5.1 Side-Branching Technique

The side-branching solution proposed in [Kwon82] is a modification to the SIX locking Bayer-
Schkolnick algorithm, B-SIX. Updaters in this algorithm perform the allocation of new pages and
the copying of keys from old pages to new ones while holding SIX locks on the scope of the update.
After making changes on the side, the updaters then make a quick pass down the scope with X locks
and patch up the nodes. This strategy aims to minimize the time during which X locks are held
on nodes in order to speed up searches relative to the B-SIX algorithm. However, in our low data
contention experiments we found that there are so few updaters that are not waiting at the root
at high MPLs that searches basically have a free run of the B-tree. The side-branching technique,
which endeavors to minimize interference between updaters and searches, is thus unlikely to have
much of an effect on performance since, due to updaters experiencing a bottleneck at the root,
there is already little interference (as evidenced by the almost constant search response times in

Figure 2.9 for the SIX-LC algorithm class).

2.5.2 The mU Protocol

An interesting algorithm called the mU protocol was proposed in [Bili87]. An important feature of
this algorithm is that the compatibility graph for locks on a node is dependent on the occupancy of
the node. The algorithm uses special insert and delete lock modes (distinct from S and X locks) to
reserve slots in a node for later insertions or deletions. (The exclusive lock mode used by pessimistic
algorithms can be thought of as locking all slots.) The maximum number of insert locks that can
be held on a node at any one time is equal to the number of empty <pointer, separator> slots in
the node; similarly, the maximum number of delete locks on a node is equal to the occupancy of
the node. Insert and delete lock modes are incompatible with each other. This algorithm uses high
keys and right links like the B-link algorithms, and in addition it maintains a low key and a left
link in all nodes.

There are workloads and system conditions under which this algorithm is likely to perform as
well as the B-link algorithms, but there are others where it will surely perform worse. The mU
algorithm is sensitive to the occupancy of the index pages — in particular that of the root page -
since the number of simultaneous updaters that can be reading a page is limited by the number

of empty or full slots in the node. The mU algorithm is therefore likely to perform badly for trees

41

with mostly full or mostly empty nodes as well as for trees with a small number of keys per page.
We have seen in our experiments that the probability of finding full pages in a low fanout tree can
be quite high, and in such cases the mU protocol will perform worse than the B-link algorithms.

Apart from the above problem with low fanout trees, inserts and deletes interfere with each
other at the root in the mU protocol since their respective lock modes are incompatible. In a
workload with an equal proportion of inserts and deletes, we can therefore expect this interference
to cause a loss of throughput at sufficiently high MPLs due to a bottleneck forming at the root,
much like in the TD-OPT and B-OPT algorithms.

2.5.3 ARIES/IM Algorithm

An algorithm for high-concurrency index management was described in [Moha89]. We will not
describe the details of this algorithm, except to state that it does not suffer from any of the
performance drawbacks that are present in non-B-link algorithms and discussed at the beginning
of this section.

ARIES/IM has both left and right pointers linking nodes at the leaf level, but unlike the B-
link algorithm, the nodes at higher levels do not have right links. Updaters in ARIES/IM make
an initial descent to the leaf using S locks, and at the leaf level they may perform link-chases
just as in the B-link algorithms. However, while the B-link algorithms perform link-chases at all
levels, updaters in ARIES/IM instead use a complex protocol based on recursive restarts. These
restarts do not have the disadvantage of creating any bottlenecks, however, as the operations use
extra information stored in the B-tree nodes to ensure consistency rather than using exclusive
locks. In our experiments, we observed that most of the link-chases in the B-link algorithms were
at the leaf level (100% in the high fanout case and over 90% in the low fanout case). Since the
leaf level ARIES/IM algorithm resembles the B-link algorithm in many respects, we can expect
the ARIES/IM algorithm to perform close to the LY algorithm for most workloads (including the
append workload).

An important difference between the ARIES/IM algorithm and the other algorithms discussed
so far is that ARIES/IM allows only one page split (or merge) at a time. To find out exactly what
impact this has on performance, we modified the LY algorithm to limit itself to one page split at
a time (using a tree latch) and ran experiments with the 100% insert workload in infinite resource
conditions. In trees with a high fanout, we found that the modified algorithm performed slightly
worse than the B-link algorithms; the throughput of the modified algorithm was in between that
of the B-link and OPT-DLOCK algorithms in Figure 2.15 and, at an MPL of 200, the throughput
of the modified algorithm was about 25% less than that of the B-link algorithm. The waiting time

42

for the tree latch for page splits contributed to the increase in response time, leading to a loss in
throughput. In trees with a low fanout, however, the modified algorithm performed much worse
when compared to the B-link algorithms. In fact, it performed even worse than the optimistic
algorithms in Figure 2.18. The impact of waiting for the tree latch was much higher in the low
fanout case due to an increased number of splits.

A modification to the ARIES/IM algorithm to handle more than one page split at a time is
suggested in [Moha89] and, if implemented, this should allow ARIES/IM to perform comparably
to the B-link algorithm. It should be noted, however, that we have looked at ARIES/IM only from
the concurrency perspective of single B-tree operations; the ARIES/IM algorithm also describes
how to hold extended locks on records (to allow serializability of transactions that perform more

than one B-tree operation) as well as how to perform recovery using write-ahead logging.

2.6 Comparison with Related Work

An approximate analysis of the Bayer-Schkolnick algorithms was included in [Baye77]. The for-
mulas provided there calculate quantities like the number of locks held by tree operations and the
maximum MPL that can be handled without creating a bottleneck at the root. This is a static
analysis, so it does not provide insight into the dynamic performance of the various algorithms.

Biliris [Bili85] described a simulation model for the evaluation of B-tree algorithms and presented
a set of experiments comparing four algorithms that included the Samadi algorithm [SamaT76], the
B-SIX algorithm, the side-branching algorithm [Kwon82], and the mU algorithm [Bili87]. This
study found that the pessimistic algorithms bottleneck at the root and that the mU algorithm
performed better in the situations considered. The side-branching technique was found not to give
any improvement over B-SIX. The main shortcomings of this study are that the optimistic and
B-link algorithms were not studied, response times for individual operation types were not given,
and no detailed analysis of the results was provided.

The most recently published performance analysis of B-tree concurrency control algorithms was
based on analytic modeling of an open queuing system [John90a]. This study assumed infinite
resource conditions and did not model buffer management. The algorithms compared in the study
are a naive lock-coupling algorithm (B-X), an optimistic algorithm (B-OPT modified with the
second phase using X locks instead of SIX locks), and the LY version of the B-link algorithm. The
key results of this study are that the root will become a bottleneck for the lock-coupling algorithms,
and that, in situations where link-chases are rare, the LY B-link algorithm performs much better

than the other algorithms. Our simulation model differs from their analytical model in that we

43

take into account resource contention and buffer management. In addition to the low contention
situations analyzed in their model, we have studied very high concurrency situations where a large
number of link-chases are performed by the B-link algorithms. We have also analyzed differences
between several variants of the B-link algorithm. Some of our results differ from theirs; for example,
they found that the optimistic descent algorithm always performed much better than the naive lock-
coupling algorithm, while we found that the optimistic algorithms sometimes perform close to their
corresponding pessimistic versions at high MPLs (eg., for the 100% insert workload on a low fanout
tree), though they indeed provide much better performance at intermediate MPLs. Finally, their
model allows only S and X locks, while we have considered more complicated algorithms that use
SIX locks to enable certain tree operations to overtake others on their descent to the leaf.

In parallel with the work reported in this thesis, the authors of [John90a] have extended their
work. In their extended study [John90b], they now handle SIX locks and analyze four additional
algorithms: TD-X, B-OPT, two-phase locking, and a parameterized optimistic descent algorithm
(in which the number of levels X-locked during the first descent is a parameter). They found that
the LY algorithm still performed the best among all of the algorithms considered. They also found
that the response times of the two-phase locking algorithm varied widely due to a large number of
deadlocks and long waiting times at the root. While we have not modeled two-phase locking, the
OPT-DLOCK algorithm is really an optimized version of the standard two-phase locking algorithm.
Since we found that OPT-DLOCK performed very well for low fanout trees, not so well for high
fanout trees, and poorly in the append experiments, our results (like theirs) predict that two-
phase locking (which is necessarily worse than OPT-DLOCK) cannot be better than the B-link
algorithms. Furthermore, we have also modeled an additional algorithm, TD-OPT, and found in
our experiments that TD-OPT almost always outperforms B-OPT. Another important additional
result in our study is that bottlenecks at the root were shown to affect different operation types
differently. In our low contention experiments (experiment Set 1), for example, searches in B-SIX
were faster even than searches in the B-link algorithms, though the overall throughput of the B-link
algorithms was much higher than that of the B-SIX algorithm (see Figures 2.6 and 2.9).

The analytical model in [John90a, John90b] assumes that the proportion of inserts in the
workload is always larger than that of deletes, i.e., they model only growing trees. Also, the
workload model assumes that operations access leaf nodes uniformly. In contrast, we have studied
a wider range of workloads that lead to both steady-state trees as well as growing trees, and hence
our results are somewhat more general. In addition, our append experiments model a situation
with highly concurrent and skewed access to portions of the B-tree.

In addition to extending their work to additional algorithms, [John90b] modeled resource con-

44

tention using a service time dilation factor and found that (i) under very high resource contention
there was no difference between the various algorithms and (ii) under moderate to light contention
there was a significant difference between the algorithms. These conclusions essentially agree with
our results. In addition, we found that in high resource contention situations a highly skewed
append workload causes the B-link algorithms to exhibit a thrashing behavior; in fact, in such
situations, the B-link algorithms performed worse than the exclusive lock-coupling algorithms at
high MPLs (Figure 2.21). [John90b] also showed that LRU buffering will hold the highest levels
of the tree in memory. While our results agree with theirs, we have also characterized the extra
utilization of the buffer pool by variations of the B-link algorithms. Finally, using the insights
generated from our study, we have been able to make predictions regarding the performance of

other algorithms in the literature.

2.7 Conclusions

The most important conclusion of this study is that the B-link algorithms perform the best among
all of the algorithms that we studied over a wide range of resource conditions, B-tree structures, and
workload parameters. Even in a high contention workload of appends, the B-link algorithms show
gains in throughput under plentiful resource conditions. The reason for the excellent performance
of the B-link algorithms is the absence of any bottleneck formation (except, of course, at the
CPUs or disks in resource-constrained situations). In contrast, in all of the other algorithms,
locking bottlenecks form at high MPLs if the workload contains a significant percentage of updaters.
Moreover, the overhead that the B-link algorithms incur in very high data contention situations are
link-chases, which turn out to be inexpensive. We also found interesting differences in the behavior
of the optimistic and pessimistic algorithms among themselves.

Among the B-link algorithms, we have further shown that a slightly conservative update algo-
rithm that locks a maximum of three nodes at a time generally performs as well as one that locks
a maximum of only one node at a time. The more conservative variation of the B-link algorithm
is more suitable for use in practice, as it avoids some rather complex (inconsistent) situations that
can arise in the latter. Before using B-link algorithms in real systems, however, recovery strategies
have to be designed for them, and a way has to be found to handle variable length keys. Recovery
strategies for B-link algorithms have been proposed recently [Lome91].

In this study we have considered only one aspect of concurrency control on B-tree indices,
namely, transactions that perform single B-tree operations. When B-tree operations are part of

larger transactions, there are several strategies available for holding long term locks for recovery

45

purposes. For example, a transaction could hold extended locks on index leaf pages, on individual
slots in the leaf pages, or on individual record ids or key values. These lock holding strategies are
also closely linked to recovery strategies; few comprehensive recovery strategies have been proposed
for B-trees. Furthermore, special types of queries such as range scans may interact differently with
long term lock holding and recovery strategies than single operation transactions would.

Finally, another important facet of B-tree concurrency control and recovery involves the prob-
lem of building a B-tree index on a relation while the relation is being concurrently accessed by
other transactions. This problem must be addressed in order to move database management sys-
tems toward fully on-line operation. We will turn our attention to the problem of on-line index

construction in the next chapter.

Chapter 3

On-Line Index Construction
Algorithms

3.1 Introduction

As we mentioned earlier, the coming explosion in database sizes will necessitate the scaling up of all
the algorithms used in a DBMS, including the class of database utilities. These utilities are typically
used for index construction, database reorganization, and checkpointing. On-line checkpointing has
been discussed in [Rose78, Pu85, Pu88], and concurrent database reorganization was addressed in
[Salz91, Sock78, Sock79, Sode81la, Sode81b, Ston88). In this chapter, we address the open problem
of on-line index construction.

A need arises for the construction of a new secondary index on an attribute of a relation when
it is discovered that a significant proportion of the (current or future) queries on the relation could
be executed more efficiently using an index on this attribute. Current DBMSs typically perform
index construction in an off-line manner (i.e., by locking the relevant relation). This approach is
not suitable for building an index for a very large relation, however, as index construction requires
a relation scan and scanning a 1-terabyte table may take days. It is almost sure to be unacceptable
to exclude updates for such an extended period of time. In fact, leading researchers have identified
the problem of on-line index construction for very large databases as an important open research
problem [Dewi90, Silb90].

In this chapter, we present several algorithms for on-line index construction. All of the algo-
rithms presented scan the relation (copying out index entries) concurrently with updaters, while
somehow keeping track of the updates that take place during the scan; they then combine these
updates with the scanned entries before registering the index in the system catalogs. The algo-
rithms differ in the data structures used for storing the concurrent updates, their strategies for

combining these updates with the scanned entries, and finally, in the degree of concurrency allowed

46

47

following the scan phase of the index construction process. Since B-trees are the most common
dynamic index structure in database systems, we will focus here on the on-line construction of
B-tree indices. However, the techniques presented here can be easily extended to design on-line
algorithms for other types of index structures as well.

The rest of this chapter is organized as follows. In Section 3.2, we describe the basic steps
involved in building a B-tree index. We describe a simple off-line index construction algorithm
in Section 3.3. After describing index updates in Section 3.4, we discuss various on-line index
construction algorithms in Sections 3.5, 3.6 and 3.7. Section 3.8 describes related work that was
done in parallel with the work described here. Finally, Section 3.9 summarizes the key results of
this chapter. Correctness proofs for our on-line index construction algorithms are outlined in the

Appendix.

3.2 Primitives and Data Structures

In this section, we describe some basic primitives and data structures that will be used later by all
of the proposed index construction algorithms. We assume that the tuples contained in a relation
are stored as records that each have a unique record identifier (rid).

Constructing a B-tree index from a relation involves three basic steps. The first step involves
scanning the relation and collecting the (key, rid) entries that are needed to build the index. In the
second step, the entries collected in the first step are sorted to produce a linked-list of leaf pages
of the index. The third and final step involves creating the non-leaf pages in a bottom-up fashion
from the leaf page list created in the previous step. These three basic steps are implemented by
the pseudo-code functions Extract-keys, Sort, and Make_indez respectively in Figure 3.1. A brief
description of these functions follows.

Extract_keys: This function reads the pages of the relation one after another, acquiring short
term Share locks on the relation pages if necessary (i.e., unless the relation itself has been locked
in Share mode). The appropriate (key, rid) entries from a page are copied into a heap file which is
the output of this function.

Sort: This procedure sorts a heap file of (key, rid) entries into increasing key order using a
method like the (two-phase) sort-merge algorithm described in [Shap86]. A heap file is first scanned,
producing runs of size V/N pages where N is the number of pages in the heap file. Next, these runs
are concurrently merged. This causes at most 4N I/Os (2N I/Os more than an in-memory sort),
and it works as long as v/N pages of memory are available for use by the sort [Shap86). If the file
to be sorted is actually a sequence of updates of the form (key, rid, insert/ delete) then only the last

48

entry in the input determines the state of a particular (key, rid) pair and needs to be retained. One
way of eliminating duplicates in this manner is for the Sort routine to tag all entries in the input
file with a number that indicates their relative order in the input, and use these tags later while
eliminating duplicates, retaining only the latest entry for a particular (key, rid) pair. Duplicate
elimination is done during step 3 of the figure.

Make_indez: This procedure takes as input two lists of (key, rid) pairs that are each sorted in
increasing key order; at least one of these lists is required to be non-empty. If one of the input
sorted lists is empty, the non-empty sorted list of pages is used directly as the list of leaf pages,
and the nonleaf index pages are built on top of them in a bottom-up fashion (ending with the
creation of a single root page). If both input lists are non-empty, however, this function merges
them in increasing key order to form the leaf pages of the index. During the merge, duplicates are
eliminated concurrently, and specially marked deleted entries are matched with their corresponding
inserts, if any?. Note that the construction is accomplished in one pass from left to right through
the newly created leaf pages; as each new leaf page is generated, an index entry at the next level is
generated simultaneously.

Apart from the above procedures, we also assume that for every attribute of a relation the
system catalog contains the entries ‘Phase’, ‘Index’ and ‘U’ (see Figure 3.2). These catalog entries
are used for communication between the updaters and the index construction process. Phase[R,
A] stores information about the state of the index on attribute A of relation R, and Index[R, A]
points to the corresponding index if it exists. Finally, U[R, A] points to a list storing the concurrent
updates, and is used in list-based on-line algorithms.

Having described the basic index utilities and shared data structures, we now describe a simple

off-line strategy for index construction that works by locking the entire relation.

3.3 Off-Line Algorithm

The simplest way to construct a new index on a relation would be to lock the relation in Share
mode, build the index, and then release the lock. Updaters are assumed to hold an Intention-
exclusive lock on the relation while modifying a page of the relation (& la the hierarchical locking
scheme of [Gray79]) and would therefore be unable to execute concurrently with the index building
process. On the other hand, readers (which only acquire an Intention-share lock on the relation)
can access the relation’s pages concurrently with the building process.

The pseudo code for this algorithm is given in Figure 3.3. The code is straightforward and builds

1The merge and duplicate elimination steps will be used in several of the on-line algorithms described later in the
chapter.

function Extract_keys(R)
begin
R: Input relation
H: Empty heap file
step 1. foreach page in R do
begin
Lock page in share mode, if necessary
Append (key, rid) entries from page to H
Unlock page
end
step 2: return H
end

function Sort(H)
begin
H: Input heap file with N pages
S: Final list of pages sorted by (key,rid)
step 1: Scan H and produce sorted output runs of length VN pages
step 2: Allocate one block of memory for each sorted run
step 3: Concurrently merge all runs, eliminating duplicates,
producing sorted entries, and appending the results to S
While eliminating duplicates of a (key,rid) pair, the pair
occurring last in the input file H is retained in the output
step 4: return S
end

function Make_indez(S, T)

begin
S, T: Sorted files
L: Initially empty linked list of leaf pages
I: Initially empty B-tree index
step 1: Merge S and T to produce the list of leaf pages, L. During merge,

eliminate duplicates and discard matching insert/delete entry pairs

step 2: Concurrently create the higher levels of the index | based on L
step 3: return |

end

Figure 3.1: Index Construction Primitives

50

Phase[R, A]
State of the index on attribute A of relation R
Possible values are:

none No index exists

scan Build process is in relation scan phase

build Build process is making the index

catchup Final clean-up phase of the build

available Index exists and can be accessed normally
Index|[R, A]

Pointer to the index that exists or is being built on attribute A of relation R

U[R, A]

Pointer to the list of concurrent updates,
while an index is being built on attribute A of relation R

Figure 3.2: Shared data structures for Index Construction

the index in three steps, using the utilities described in the previous section. As an optimization,
the Make_Indez step (step 4) could be combined with the Sort (step 3) to build the index with one
fewer pass through the leaf pages. This optimization is possible since only one of the arguments
to Make_indez is nonempty and the top levels of the index can be built during the merge step of
the sort (step 3 of Sort in Figure 3.1). We assume that such optimizations would be made in any
implementation but we retain the present form of the code for clarity.

In the off-line strategy, the existing concurrency control mechanism will take care of conflicts
between updaters and the index building process, so no modifications to the behavior of update
transactions are needed. To the best of our knowledge, this is how most commercial database
systems operate today. Due to the absence of concurrent updaters in the off-line algorithm, the

index building process benefits in the following ways:

1. The building process faces no interference from updaters in terms of waiting for locks for
relation pages. It also avoids the overhead of locking each page, but this is likely to be

insignificant relative to the actual resources used by the index building process.

2. Since the relation is not modified during the index building time, the index building process

does not have to incorporate any concurrent updates at the end to make the index consistent.

This algorithm, therefore, is the fastest way to build the index, but it will provide zero throughput
for updaters. As we indicated earlier, the scan phase for a large relation is likely to be quite large
(e.g., it may take days for a terabyte of data), and this phase will dominate the index building

process. Thus, the off-line algorithm will be unacceptable to use for building indices on very large

51

Build process
begin
R: Input relation
A: Attribute of R on which to build index
H: Heap file
L: List of leaf pages
step 1: Lock relation R in share mode

step 2: H = Eztract_keys(R)
step 3: L = Sort(H)
step 4: Index[R, A] = Make_indez(L, empty file)
step 5: Phase[R, A] = available
step 6: Unlock relation R
end

Figure 3.3: Off-Line Algorithm

relations due to the lack of updater throughput for long periods of time. We plan to use the

performance of this algorithm as a baseline for understanding the behavior of alternative on-line

algorithms.

3.4 Concurrent Updates

One way to improve on the off-line approach is to allow updaters to proceed during the scan phase,
somehow communicating their updates to the building process at the end of the scan phase. The |
scanned values and this list of updates can then be merged and made consistent. It is possible
that the duration of the scan phase will be increased due to the presence of concurrent updates,
but permitting updates during the index construction phase makes it attractive to use such on-
line strategies. All of the on-line algorithms described in the rest of this chapter allow updaters to
concurrently execute during the scan phase. The algorithms will vary in the data structures used to
record concurrent updates, in the amount of concurrency allowed after the scan phase, and finally,
in the strategies used for applying the concurrent updates to the scanned entries. We will further
subdivide the on-line algorithms into list-based algorithms and index-based algorithms, depending
on whether they use a list or an index for storing concurrent updates. In this section we describe
when and how transactions perform index updates, and in the next two sections we describe the

on-line index construction algorithms themselves.

3.4.1 Impact of Updates

If an index exists on an attribute of a relation, updates to the relation (in the form of inserting,

deleting or modifying a record) can result in updates to the corresponding index. An index update

52

consists of three parameters: a key, an associated rid, and a flag depicting whether it is an insert
or a delete. It is possible for a particular relation update (involving exactly one record) to result

in zero, one or two index updates:

o When a record in a relation is modified without changing the value of the indexed attribute,

no index update needs to be done.

e When a new record is inserted into a relation or an existing record is deleted, there is exactly
one index operation that has to be done. The key value for the index update is the value of
the indexed attribute of the inserted or deleted record, and the rid value is the rid of this

record.

e When the value of an indexed attribute in a record is modified, it causes two updates to be
done to the corresponding index: an index delete (with the key being the old attribute value)
followed by an index insert (with the key being the new attribute value).

Update transactions are assumed to execute “correctly”, and obey the following two rules: (i)
they hold an Exclusive lock on a relation page while they are making changes to it, and (ii) they
do not try to insert the same index entry (key/rid pair) twice successively without deleting it in-
between (and vice versa). To ensure correct behavior of our on-line algorithms in a serializability
sense, we also require that update transactions hold locks on record ids until they terminate (commit
or abort). It should be pointed out that the page lock mentioned in (i) above need not be held until
end of transaction; a short-term Exclusive page latch will suffice. All of our algorithms will also work
(unchanged) in systems where page locks are held until commit or abort time. Update transactions
that encounter an index construction process will perform the index updates corresponding to their
relation updates using special code that depends on the type of on-line algorithm being used. We
assume for simplicity that this special code will be executed immediately after the corresponding
relation update, i.e., part of this code will be executed while still holding the Exclusive lock on the
modified relation page. We will indicate later how to relax this restriction?, though we will also

argue that it may not be such a serious restriction.

3.4.2 Impact of Aborts

The above method of transaction execution takes care of situations like transaction abort in a

straightforward manner. During a transaction abort (even if index construction is still going on),

2Note that this restriction applies only for index updates that occur during the on-line index construction phase.
Index updates at other times can be handled either immediately after the corresponding relation update or grouped
together at commit time.

53

undo operations will generate index updates in exactly the same manner as they do during normal
operation. During index construction, these updates will be executed using the same special purpose
code that was used by the transaction during its forward execution. However, it should be noted
that these index updates may not be the exact inverse operations of the index updates performed
during the forward execution. For example, it is possible that a transaction undoing a record delete
operation may be assigned a different rid for the record, in which case the abort-time index update

will be an insert with the same key but a different record id.

3.5 List-Based Algorithms

The list-based algorithms, like all on-line algorithms described in this chapter, allow updaters to
concurrently operate on the relation during the scan phase. Updaters that execute concurrently
with an index construction process store index updates (corresponding to their relation updates) in
a special update-list. There is one such list for every index that is being built, and it is maintained
as a heap file. The individual list-based algorithms differ from each other in their method of
combining the list of concurrent updates with the scanned list of entries, and also in the amount
of concurrency provided after the scan phase. We will begin our discussion of these algorithms by
discussing three methods for combining the list of concurrent updates and the scanned entry list
in order to produce a consigtent index.

A simple way of combining the scanned entries with the update-list is to first build an inter-
mediate index using the scanned entries alone, and then sequentially apply the update-list entries
to this index like ordinary index inserts and deletes. A disadvantage of this strategy is that it
may result in leaf nodes of the intermediate index being accessed more than once, especially if the
number of entries in the update-list is large. If the amount of available buffer space is small enough
so that leaf pages are typically paged out before being accessed again, such repeated accesses will
result in an increased number of I/Os.

A second method of combining the scanned entries with the update-list is to build an interme-
diate index using the scanned entries (as above) but to then sort the update-list before sequentially
applying its entries to the intermediate index. In such a strategy, the problem of additional I/Os
will be solved since the leaf pages of the intermediate index will be scanned once from left to
right®. Also, sorting the update-list has an added advantage: we can eliminate matching inserts
and deletes during the sort, and thus avoid inserting entries into the intermediate index that have

a corresponding delete entry later in the unsorted list (and vice versa).

3This strategy could be further optimized by grouping together all inserts from the sorted list that can be accom-
modated in a leaf page before making the next index traversal from the root page.

54

Name How Updates Are Applied? After Scan Phase
Tisl-X-Basic | Sequentially apply from unsorted list | exclude concurrent updaters
List-X-Sort Sequentially apply from sorted list exclude concurrent updaters
List-X-Merge | Merge sorted list and scanned entries | exclude concurrent updaters
Lisi-C-Basic | Sequentially apply from unsorted list | allow concurrent updaters
List-C-Sort Sequentially apply from sorted list allow concurrent updaters
List-C-Merge | Merge sorted list and scanned entries | allow concurrent updaters

Table 3.1: List-Based Algorithms.

A third method of combining the concurrent updates with the scanned entries would be to first
sort the scanned entries, as well as the update-list entries, to produce two sorted lists. The index
can then be built in a bottom-up manner using the Make_Indez function (of Figure 3.1) with the
two sorted lists as parameters. This merging approach is bound to be better than either of the
sequential strategies if the number of operations performed in the sequential strategies is very large.
An added advantage of merging is that the utilization of the pages in the final index can be strictly
controlled, being kept at any desired (high) level of occupancy. In contrast, this occupancy can
be strictly controlled only for the intermediate index in the sequential insert strategies, and the
sequential inserts performed later could reduce the occupancy of leaf pages.? This effect will be
significant when the number of sequential inserts is large.

Apart from the above, list-based algorithms can also vary in the amount of concurrency allowed
after the scan phase. (Recall that all of our on-line algorithms will allow concurrent updaters
during the scan phase.) The simplest strategy involves locking out updaters after the scan phase,
and applying the concurrent updates using one of the three methods described above. This way,
no concurrent updaters are allowed while the scanned entries are being combined with the updates
that took place during the scan phase. If the amount of the time taken to apply these changes is
significant compared to the scan time, however, locking out updaters could still lead to a noticeable
loss of concurrency. To avoid such a loss, updaters can be allowed to execute concurrently during the
scan phase also; this requires an appropriate strategy for merging in this second set of concurrent
updates at the end. Such a strategy is quite a bit more complicated than the one that exclusively
locks the relation after the scan phase; we will postpone the details of this strategy until later.

Based on the three possible ways of merging the update-list with the scanned entries, and the
presence or absence of concurrent updaters after the scan phase, there are six possible variations of
the list-based algorithms. Their names and classifications are given in Table 3.1. We also illustrate
the three List-X-* algorithms in Figure 3.4, and the three List-C-* algorithms in Figure 3.5. Note

that the List-X-* algorithms execute in two phases, the scan phase (in which updaters execute

*The expected leaf page occupancy of a B-tree built with random inserts is about 69% [Yao78].

55

Time Start Of Index Construction
b 2
Build Process
Scan Relation Creating

Heap File
ﬁ Build Process
.3. E?\tarri‘ansed — .. — f— —sreee- | Sort Scanned Entries
< |
o Leaf Page +
@ List e
3
a Build Process =
2 Basic and Sort

Build Higher Levels <

§ of i UpdaAte Transaction
= ppend Into
o ‘ Update-List
[=
é Update-List _

Intermediate

Seguentia_lly Insert Sorted | | Build Process Merge
IUP ?te—L'St Entries Merge Scanned Entries
.] / nto Index With Sorted Update-List.
Final Index A ——| Bottom-Up Build
[.E:'

4
T

Index
ik 4// A
3 Build Process Build Process
g Basi ds Sort and Merge
8| .. cesean ort Sort Update-List
% | linitialize Build Phase Index Sorted
91| From Scan Phase Index Update—List i
(2]
% Build Process Basic B /
B Seguentia}ly Insert —
2 Update-List Entries -
Into Index Build Process Sort
@
o
=
o
=2
‘5
m

£
Pons
Yoau:

End Of Index Construction

u

Figure 3.4: The List-X-* Algorithms

concurrently) and the build phase (in which updaters are locked out). The List-C-* algorithms
execute in three phases, the scan, build and catchup phases, and updaters are allowed to execute
concurrently in all three phases. We now describe each of the list-based algorithms of Table 3.1 in

more detail.

3.5.1 The List-X-Basic Algorithm

In this algorithm (detailed in Figure 3.6), the building process executes in two phases, the scan
and build phases, executing all steps except step 6a in the figure. In the scan phase, the building
process first creates an empty update-list. It then proceeds to scan the relation, a page at a time,

collecting index entries into a heap file. The heap file is sorted, and an intermediate B-tree index is

Intermediate
Index

Update-List

Time Start Of Index Construction
Vo 7
Build Process
Scan Relation Creating

Heap File
§ s Build Process
_5 Enn'ie?se d — .= - = | Sort Scanned Entries
| el
o Il:eaf Page @
3 ist -
«
a Build Process -j_._.
2 Basic and Sort

Build Higher Levels Update T i

o pdate Transaction
ﬁ Of Index Append Into
o Update-List
5
w

&

Build Process
Basic and Sort

Sort and Merge

Build Process

Catchup (Updaters .,

“—

Build Process

Sequentially Insert Sorted
Upgate—List Entries Into Index

End Of Index Construction

< ||Initialize Build Phase Index soeg Update-List
% From Scan Phase Index Update-List ‘
< Build Process Basic / .
g Sequentially insert e
® Update—List Entries A
2 Into Index Build Process Sort]
2 Sequentially Insert Sorted | | Build Process ~ Merge
ﬂ?g?ﬁ%ﬁ;’s‘ Entries Merge Scanned Entries
% | intormediate ! / With Sorted Update-List.
£ | Index 55§3x - Bottom-Up Build
2 A Update Transaction Update-List
@ Append Into New
' Update-~List
- Update Transaction Build P,
Build Process Make Updates to Index So:t”IU dr:tc;isl_sist
Make Index "Public” | | That is Still Not Available Sorted P
For Normal Use Update-List /

Figure 3.5: The List-C-* Algorithms

56

57

Build process
begin
R: Input relation
A: Attribute of R on which to build index
H: Heap file
step 1: U[R,A] = empty, Phase[R, A] = scan
step 2: H = Extract_keys(R)
step 3: H = Sort(H)
step 4: Index[R, A] = Make_index(H, empty)
step 5: Lock U[R,A] in exclusive mode
step 6: Phase[R, A] = build
step 6a: if algorithm is List-X-Sort then
U[R,A] = Sort(U[R,A])
step T: foreach entry in U[R,A] do
case entry type of
insert: if entry not in Index[R, A}, insert it
delete: if entry in Index[R, A], delete it
step 8: Phase[R, A] = available
step 9: Unlock U[RA]
end

Update transaction
begin
R: input relation
. . . Normal processing . . .
step n: if Phase[R, A] = scan or build then
Lock U[R,A] in exclusive mode
if Phase[R, A] = scan then
Append (key, rid, insert/delete) entry to U[R,A]
else Unlock U[R,A], goto step n
Unlock U[R,A]
end

Figure 3.6: The List-X-Basic and List-X-Sort Algorithms

built on these data items. After this, the index building process locks the update-list in Exclusive
mode and enters the build phase.

In the build phase, the building process applies the entries from the update-list one after another
to the intermediate index, bringing it up to date. Applying an update-list entry (step 7 in Figure 3.6)
to the intermediate index may involve either inserting an entry, deleting an entry, or no action at
all. The last case could occur, for example, if the page on which a concurrent insert acts is scanned
in the scan phase after the insert has already been done. In this case, no change needs to be
made to the intermediate index on encountering the corresponding entry in the update-list, and
an index traversal will find the appropriate entry to be already present in the intermediate index.
An analogous scenario could occur for deletes. After all of the entries in the update-list have been

applied to the intermediate index, the lock on the update-list is released and the index is made

58

available for normal use.

Unlike the off-line case, where the code for update transactions did not change due to the
presence of an index building process, updaters behave differently here in the presence of an index
building process. In the List-X-Basic algorithm, an updater that finds an index building process in
the scan phase will append an index update (corresponding to its relation update) to the update-
list. Each entry in the update-list consists of three components: the key, the rid, and the type of
operation (insert or delete). Each list append is done while holding an Exclusive lock on the list,
so these entries are ordered according to when the list updates are performed. The special code
needed for update transactions is illustrated by step n of the update process in Figure 3.6. For
every update to a relation, there will be one such step executed for each attribute of the relation
on which an index is being currently built®. During the time while the index construction process
is in the build phase (steps 6 and 7 in Figure 3.6), updaters cannot proceed. However, assuming
that the number of entries in the update-list will be much smaller than the size (in pages) of the
relation being scanned, this phase should be much shorter than the scan phase.

Due to the concurrent execution of updaters in the scan phase, unlike the off-line algorithm,
this algorithm is expected to provide a significant level of throughput for updaters. On the other
hand, the time for building the index will be longer than in the off-line algorithm, due to both
page-locking interference with updaters during the scan phase and the extra work needed to apply

scan phase updates to the intermediate index.

3.5.2 The List-X-Sort Algorithm

The List-X-Sort algorithm is described in Figure 3.6 along with the List-X-Basic algorithm. The
code for the update transaction in this algorithm is the same as for the List-X-Basic algorithm.
However, the code for the build process includes a step for sorting the update-list entries (step
6a in Figure 3.6). As explained earlier, sorting the update-list before inserting its entries into the
intermediate index (created in step 4) avoids repeated accesses to the same leaf page. Another
potential advantage of the List-X-Sort algorithm is that its sort step provides an opportunity to
match inserts with later deletes, if any, and vice versa.

It is possible that multiple insert and delete entries may be present in the update-list for the same
(key, rid) pair. In this case, only the latest update entry needs to be applied to the intermediate

index. This is because insert and delete entries for the same (key, rid) pair have to alternate in the

5In Figure 3.6, we do not show the logic for index updates for existing indices. In fact, an updater that was
waiting for an Exclusive lock in step n of Figure 3.6 may find, after the lock is granted, that the index is indeed
available for normal use. In this case, it must perform a normal index update, as indicated by the goto statement in

the pseudo-code.

59

update-list, and it is the last entry that determines whether this (key, rid) pair should be present
in the final index or not. The duplicate elimination step of the sort routine (step 3 of Sort in
Figure 3.1) therefore retains only the latest index operation for a (key, rid) pair that occurs more
than once in the update-list.

The first two list-based algorithms both use a two-pass strategy to build the index: first, they
build an intermediate index from the scanned entries, and then they sequentially insert the entries

from the update-list into this index.

3.5.3 The List-X-Merge Algorithm

The List-X-Merge algorithm merges a sorted list of the scanned entries with the sorted update-list
to build the index in one pass. The pseudo-code for this algorithm is given in Figure 3.7. The code
for the updaters is the same as that for the earlier algorithms (see Figure 3.6). Also, as in the two
earlier List-X-* algorithms, the index building process works in two phases, scan and build, with
concurrent updaters permitted only in the scan phase.

The key difference between the earlier algorithms and the List-X-Merge algorithm is that the
Make_Indez function, which was executed in the scan phase earlier (step 4 in Figure 3.6), has now
been moved to the build phase (step 7 of Figure 3.7). Also, Make_Indez takes two sorted lists as
arguments here. Note the slight difference between the entries of the sorted update-list (U[R,A])
and the sorted scanned list(H). While the former contains information on the latest operation for a
(key, rid) pair, the latter contains just (key, rid) index entries. The merge step in the Make_Indez
function (step 1 of Make_Indez in Figure 3.1) now performs all of the actions that were done via
the sequential inserts into the intermediate index in the two earlier algorithms. In particular, a
(key, rid) pair in the sorted list of scanned entries will appear in the final index only if the entry
for the same pair in the sorted update-list is not a delete entry.

In the three algorithms discussed so far, there is one major critical section (steps 5-9 in Figure 3.6
and steps 4-9 in Figure 3.7). If the list of updates is large, then this critical section may take a
significant amount of time. During this time, updaters are locked out. It may be possible to
increase updater throughput in these algorithms by replacing the one long critical section with
several smaller ones, thus allowing concurrent updates even during the build phase. The three
remaining list-based algorithms are modifications of the first three algorithms that allow concurrent

updates both during and after the scan phase.

60

Build process
begin

R: Input relation
A: Attribute of R on which to build index
H: Heap file
step 1: U[R,A] = empty, Phase[R, A] = scan
step 2: H = Eztract_keys(R)
step 3: H = Sort(H)
step 4: Lock U[R,A] in exclusive mode

step 5: Phase[R, A] = build
step 6: U[R,A] = Sort(U[R,A])
step 7: Index[R, A] = Make_indez(H, U[R,A])
step 8: Phase[R, A] = available
step 9: Unlock U[R,A]
end

Figure 3.7: The List-X-Merge Algorithm

3.5.4 The List-C-Basic Algorithm

In the List-C-Basic algorithm (detailed in Figure 3.8), the index building process executes in three
phases, the scan, build, and catchup phases. The scan phase of this algorithm is identical to the
scan phase of the List-X-Basic algorithm. As before, the relation is scanned, and an intermediate
index is then built with the scanned entries. The build phase here is also similar to the build phase
of the earlier algorithm, except that the exclusive lock is released as soon as the phase state has
been changed. During the build phase, the updates that occurred during the scan phase are now
applied to the intermediate index, just as in the earlier List-X-Merge algorithm.

Note that the behavior of the updaters (given in Figure 3.9) in the scan and build phases in this
algorithm is the same as their behavior in the scan phase of the three earlier List-X-* algorithms
(Figure 3.6). Also note that, at the end of the build phase in Figure 3.8, the intermediate index
(Index[R,A]) is consistent® w.r.t. all of the scan phase updates, unlike the intermediate index at the
start of the build phase. That is, at the end of the build phase (step 10 in Figure 3.8), Index[R,A]
is consistent with respect to the state of the relation as of the start of the build phase (step 6 in
Figure 3.8). This is because the inconsistencies introduced during scanning are removed due to the
build phase’s incorporation of all scan phase updates into the index. This index is still behind by
one phase, however, so the build phase updates have to be applied to bring it up to date. This is
done in the catchup phase.

One way of implementing the catchup phase would be by using a single critical section. With

this approach, the build phase updates would be sequentially applied to the index during the

6 A consistent index is one that correctly reflects the actual state of the corresponding relation as of some time.

Build process
begin
R: Input relation
H: Heap file
S: Temporary file
step 1: Phase[R, A] = scan, U[R,A] = empty list
step 2: H = Extract_keys(R)
step 3: H = Sort(H)
step 4: Index[R,A] = Make_indez(H, empty)
step 5: Lock U[R,A] in exclusive mode
step 6: S = U[R,A], U[R,A] = empty
Phase[R, A] = build
step 7: Unlock U[R,A]
step 7a: if algorithm is List-C-Sort then
S = Sor((S)
step 8: foreach entry in S do
case entry type of
insert: if entry not in Index[R, A], insert it
delete: if entry in Index[R, A], delete it
step 9: Lock U[R,A] in exclusive mode
step 10: S = U[R,A], U[R,A] = empty
Phase[R, A] = catchup
step 11: Unlock U[R,A]
step 12: S = NSory(S)
step 13: foreach entry in S do
case entry type of
insert: if marked delete entry present in Index[R,A] then
Delete the marked entry
else Insert this entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present
step 14: Phase[R, A] = available
end

Figure 3.8: Build Process in the List-C-Basic and List-C-Sort Algorithms

61

62

Update transaction
begin
R: input relation
.. . Normal processing . . .
step n: if Phase[R, A] = scan or build then
Lock U[R,A] in exclusive mode
if Phase[R, A] = scan or build then
Append (key, rid, insert/delete) entry to U[R.A]
else Unlock U[R,A], goto step n
Unlock U[R,A]
else if (Phase[R, A] = catchup) then
case updater of
insert:
if the entry is present in Index[R,A] then
Add a specially marked insert entry
else Insert (key, rid) into Index[R,A]
delete:
if the entry is not present in Index[R,A] then
Add a specially marked delete entry
else Delete (key, rid) from index[R.A]
end

Figure 3.9: Updater in the List-C-Basic, List-C-Sort and List-C-Merge Algorithms

catchup phase without allowing concurrent updaters. In such an algorithm, the catchup phase
would be similar to the exclusive build phase of the earlier List-X-Basic algorithm. It turns out,
however, that we can devise a strategy for the catchup phase that allows concurrent execution of
updaters along with the build process. In this strategy, the build process (described in Figure 3.8)
enters the catchup phase after applying the scan phase updates to the intermediate index. This
phase change occurs in a short critical section (steps 9-11 of Figure 3.8). During the catchup phase,
the build process actually shares the index with concurrent updaters: i.e., when index building is
in the catchup phase, updaters register their index updates directly in the intermediate index.
The process of incorporating the build phase changes is slightly different than incorporating the
scan phase changes since (i) the build phase changes are applied starting from a consistent initial
index (Index[R,A] at step 10 of Figure 3.8), whereas the scan phase changes are applied starting
from a possibly inconsistent index built using scanned entries (Index[R,A] at step 6), and (ii) build
phase changes are applied to the index while updaters are also concurrently operating on the same
index. Because of these differences, the routine NSort (used in step 12 of Figure 3.8) is slightly
different from the earlier Sort routine (Figure 3.1), in that it eliminates duplicates differently. If
an even number of occurrences of a (key, rid) entry are found in the input file, NSort eliminates
this entry altogether from the output file. Tf an odd number of entries (for the same key/rid pair)
are found in the input file, however, the latest entry is kept in the output file. Recall that the

63

earlier Sort procedure always retained the latest entry. The reason that NSort removes the entry
in the even case here is that, since we start with a consistent index, and since insert and delete
entries have to alternate, the state for this entry after an even number of inserts and deletes is the
same as in the initial consistent index (Index[R,A] at step 10 of Figure 3.8). Note that the build
process code for applying these build phase updates (step 13 of Figure 3.8) differs from the code
for applying scan phase updates (step 8).

The actions performed by updaters during the catchup phase are given in Figure 3.9. As
mentioned earlier, updaters are allowed to register their updates directly in the intermediate index
during the catchup phase (though the index is still not available for normal use). In this phase,
special handling is required for certain deletes (those that do not find an entry to delete in the
index) and certain inserts (those that find an entry already in the index). This is accomplished
via the use of special marked index entries; these are removed when the index update for such a
special entry is performed by the build process using the sorted update-list (step 13 of Figure 3.8),
and they do not re-appear afterward. When the build process has completed all of its updates, no
such special entries will remain in the index, at which point the index is made available for normal

use (step 14 of Figure 3.8). We prove the above assertions in the Appendix.

3.5.5 The List-C-Sort Algorithm

The List-C-Sort algorithm differs from the List-C-Basic algorithm in that the build process sorts
the update-list before inserting its entries sequentially into the intermediate index. This is indicated
by the addition of an extra sort step for this algorithm (step 7a of Figure 3.8). The differences here
are identical to the differences between the List-X-Basic and the List-X-Sort algorithms described
ecarlier. The code for the List-C-Sort updaters is identical to that in the List-C-Basic algorithm
(Figure 3.9).

3.5.6 The List-C-Merge Algorithm

The last list-based algorithm that we discuss is the List-C-Merge algorithm (Figure 3.10). This
algorithm is derived from the List-C-Basic algorithm in the same way that the List-X-Merge algo-
rithm was derived from the List-X-Basic algorithm earlier. For the build process, the key difference
from List-C-Basic and List-C-Sort is that the intermediate index is built in one pass using both
the scanned entries and the scan phase updates. As in List-C-Basic and List-C-Sort, concurrent
updates are allowed in the build phase in List-C-Merge, and these updates are then applied to
the intermediate index during the catchup phase. Notice that the code for the catchup phase in

Build process
begin

R: Input relation
H: Heap file
S: Temporary sort file
step 1: Phase[R, A] = scan, U[R,A] = empty list
step 2: H = Extract_keys(R)
step 3: H = Sort(H)
step 4: Lock U[R,A] in exclusive mode
step 5: S = U[R,A], U[R,A] = empty

Phase[R, A] = build
step 6: Unlock U[R,A]
step 7: S = Sori(S)
step 8: Index[R, A] = Make_indez(H, S)
step 9: Lock U[R,A] in exclusive mode
step 10: S = U[R,A], U[R,A] = empty

Phase[R, A] = catchup
step 11: Unlock U[R,A]
step 12: S = NSori(S)
step 13: foreach entry in S do

case entry type of

insert: if marked delete entry present in Index[R,A] then
Delete the marked entry
else Insert this entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present
step 14: Phase[R, A] = available
end

Figure 3.10: The List-C-Merge Algorithm

64

65

Name How Updates Are Applied? After Scan Phase
Tndez-X-Basic | Sequentially apply from leaf-page list exclude concurrent updaters
Indez-X-Merge | Merge leaf-page list with scanned entries exclude concurrent updaters
Indez-C-Basic | Sequentially apply from leaf-page list allow concurrent updaters
Indez-C-Merge | Merge leaf-page list with scanned entries | allow concurrent updaters

Table 3.2: Index-Based Algorithms.

this algorithm (steps 12-14 in Figure 3.10) is the same as that in the List-C-Basic and List-C-Sort
algorithms (steps 12-14, Figure 3.8). The code for the updaters is also the same here (Figure 3.9).

8.5.7 System Log Versus Update-List

Instead of using a special update-list to store concurrent updates, the system log can be used for
this purpose. The advantage of using the log would be that no changes are needed to the logic for
concurrent updates?, just as in the off-line algorithm. There are several disadvantages to using a
log-based strategy to build an index on a large relation, however. Because the portion of the log to
be processed may be large (since scanning may take days), it may be unreasonable to expect all of
the log records written during the scan to be kept on-line. Moreover, only a small fraction of the log
will be relevant to any particular index construction process, and this fraction will be distributed
throughout the overall log. These disadvantages led us to instead use a special update-list in the

algorithms presented in this section.

3.6 Index-Based Algorithms

The index-based on-line index construction algorithms use an index to store concurrent updates
instead of the update-list used by the list-based algorithms. Like all of our on-line algorithms, the
index-based algorithms allow updaters to execute concurrently during the scan phase. Like the
list-based algorithms, the various index-based algorithms differ in their method of combining the
scanned entries with the concurrent updates as well as in the amount of concurrency allowed after
the scan phase. However, there are only four possible index-based algorithms. This is because
there are no counterparts to the List-C-Sort and List-X-Sort algorithms in the index case, as the
leaf pages of the index that will be created by concurrent updaters will already contain the keys
in sorted order. The various possible index-based algorithms are listed in Table 3.2. In addition,
we also illustrate the Index-X-* algorithms and the Index-C-* algorithms in Figures 3.11 and 3.12

respectively. As for the corresponding list-based algorithms, the Index-X-* algorithms execute in

7I{ the log of a record update does not always contain the value of all the attributes needed for building a multi-
attribute index, some changes are necessary to ensure that sufficient information is always logged.

66

Time Start Of Index Construction
Build Process
Scan Relation Creating
Heap File
l Build Process
Eﬁ?,?é‘;’ dE [e e] 2= | Sort Scanned Entries
Leaf Page +
ist

U -
Build Process / -L-_
Basic Update Transaction

Build Higher Levels Insert Into Tem|
porary
Of Index Public Index

l :

Temporary Public’

Scan Phase (Updaters Allowed)

Intermediate Index
Index
1 T
5 Build Process Basic)
o Initialize Build Phase Index Build Process Merge
B From Scan Phase Index. Then, Merge Scanned Entries |
S Sequentially Insert Entries From With Leaf Pages Of Public
9 Leaf Pages Of Public Index Index. Bottom-Up Build
o into Build Phase Index
g \ /
©
.
2
A
] Final index AHH)
s AR
o
2
3
m

End Of Index Construction

Figure 3.11: The Index-X-* Algorithms

two phases (scan and build) while the Index-C-* algorithms execute in three phases (scan, build,

and catchup). We will now describe each of the four index-based algorithms in more detail.

3.6.1 The Index-X-Basic Algorithm

The pseudo-code for the build process and an update transaction in the Index-X-Basic algorithm
are given in Figures 3.13 and 3.14 respectively. The build process of the Index-X-Basic algorithm
executes in two phases, the scan and build phases, and is very much like the build process in the
List-X-Basic algorithm (Figure 3.6). The difference here is the use of a “public” B-tree index (visible
to concurrent updaters, Index[R,A] in Figure 3.13) to store the concurrent updates. As before, the

build process scans the relation to gather index entries and builds a private intermediate index (T

Time Start Of Index Construction
bz 723
Build Process
Scan Relation Creating
Heap File
§ Scanned Build Process
&| Enties — . —1lllIll ————— | Sort Scanned Enries
< l
o Leaf Page {
2 List ..
o
2 Build Process /
=2 Basi
Build H'g?\ZwLevel Update Transaction
o igner S insert Into Tempor:
§ Of Index Public Index a
o ‘ ‘
f " L "
g Temporary Public
Intermediate Index
Index

N
N

N f

Build Process
Make Index "Public"

That is

Make Updates to Index
till Not Available
For Normal Use

—

End Of index Construction

.
Build Process Basic / :
T Initialize Build Phase Index Build Process Merge
= From Scan Phase Index. Then, Merge Scanned Entries
2 Sequentially Insert Entries From With Leaf Pages Of Public
< Leaf Pages Of Public Index Index. Bottom~Up Build
§ Into Build Phase Index
o
] \ / Update Transaction
2 Insert Into New
Intermedlate ¢= Temporary Public Index
o Index
o
i Temporary Public
© index
5
m
4
Update Transaction Build Process

Sequentially Insert
Leaf Page Entries from
Build Phase Public Index

Into Final index

Figure 3.12: The Index-C-* Algorithms

67

68

in Figure 3.13) with these scanned entries. It then enters the build phase, locking the public index
in Exclusive mode. The entries in the leaf pages of the public index (built by concurrent updaters)
are applied to the privately built index, bringing it up to date. The build process here treats the
leaf pages of the public index in much the same way that the List-X-Bas;c build process treated
the list of updates. After all of the entries in the leaf pages have been applied to the intermediate
index, the build process makes the index available for normal use (step 8), releasing the Exclusive
lock.

Updaters finding that index construction is in the scan phase directly update the public index
(step n of Figure 3.14). There are several key differences in the way that this public index is used,

however, compared to how a normal (available) index is used:

e Updaters take a Share lock on the public index before accessing it in the scan phase, while this
is not done in a normal index traversal. This share lock is used by updaters simply to exclude
the build process from the index; updaters can still concurrently update the index. Concurrent
updaters resolve their conflicts on individual index pages using the B-tree concurrency control

algorithm described in Section 2.2.

e The public index cannot be used for searching like a normal index. In Figure 3.13, until the
build process makes the final consistent index available in step 8, no searches can take place

using the index.

o Updates to this public index add entries that are similar to those appended to the update-
list in the list-based algorithms: each entry here has three components, a key, a rid, and
the operation type (insert/delete); entries in a normal index do not have the operation type

component.

o Updates to the public index differ from normal index updates in that they leave entries that
keep track of the latest operation, if any, that took place for a particular (key, rid) entry in the
index. This is to ensure that enough information is available about the concurrent updates to
prevent inconsistent situations® from occurring when the scanned entries and the concurrent

updates are combined. Any inconsistencies that are present in the private intermediate index

8 An example inconsistency is as follows: During the scan phase, if a deleter finds a to-be-deleted entry to already
be present in the public index, this entry must have been inserted after the start of the scan phase. However, it is
possible for the index building process to have read the entry during the relation scan after it was inserted and before
the impending delete. If the deleter now completely removes this entry from the public index, it may reappear later
as a spurious entry (from the build process’s scanned list) when index building completes, thus leaving an inconsistent
index. Retaining a delete entry in the public index, and later matching this delete entry with the spurious entry in
the scanned list, prevents this inconsistency in the final index.

69

Build process
begin

R: Input relation
T: Temporary B-tree index
A: Attribute of R on which to build index
H: Heap file
L: Head of a list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty index
step 2: H = Extract_keys(R)
step 3: H = Sort(H)
step 41 T = Make_indez(H, empty)
step 5: Lock Index[R, A] in exclusive mode

step 6: Phase[R, A] = build
L = List of leaf pages of Index[R, A]
Index[R, Al =T

step 7: foreach entry in L do

case entry type of
insert: if entry not in Index[R, A], insert it
delete: if entry in Index[R, A], delete it
step 8: Phase[R, A] = available
step 9: Unlock Index[R,A]
end

Figure 3.13: Build Process in the Index-X-Basic Algorithm

built using the scanned entries alone will be removed by the index building process during

the build phase (step 7 of Figure 3.13).

The behavior of updaters here can be best understood by noting that the leaf pages of the public
index at the end of the scan phase have the same contents as would be obtained by storing these
updates in a list and then sorting them, eliminating any duplicates by keeping only the latest entry.
Recall that this is what the build process in the List-X-Sort algorithm accomplished by sorting the
scan phase updates (using the Sort function of Figure 3.1) in the exclusive build phase. In the
Index-X-Basic algorithm, this work is done by updaters using the public index. The build process
in the Index-X-Basic algorithm thus performs less work in the critical section than the List-X-Sort
algorithm. Updaters, however, perform more work in the Index-X-Basic algorithm, as an index
insert is bound to take more time than list append (especially if the leaf pages of the public index
do not all fit in memory).

3.6.2 The Index-X-Merge Algorithm

The Index-X-Merge algorithm is illustrated in Figure 3.15. The build process again executes in two
phases, and is very much like the corresponding List-X-Merge build process (Figure 3.7). The only

differences are (i) the use of a public B-tree index in lieu of the update-list used earlier, and (ii) the

70

Update transaction
begin
R: Input relation
. . . Normal processing . . .
step n: if Phase[R, A] = scan or build then
Lock Index[R, A] in share mode
if Phase[R, A] # scan then
Unlock Index[R, A], goto step n
else case updater of
insert: if delete entry present in Index[R, A] then
Replace the entry by an insert entry
else Add an insert entry
delete: if insert entry present in Index[R,A] then
Replace the entry by a delete entry
else Add a delete entry
Unlock Index[R, A]

end

Figure 3.14: Updater in the Index-X-Basic Algorithm

absence of the sort phase (step 6 of Figure 3.7) that was necessary for merging in the list of updates
in the earlier algorithm. The reason for difference (ii) is that the leaf pages of the public index
already contain the keys in sorted order and, since the leaf pages are linked from left to right, it can
be directly used as an argument to the Make_index procedure (step 6 of Figure 3.15). The code for
update transactions is exactly the same as that for the Index-X-Basic algorithm (see Figure 3.13).

The preceding index-based algorithms do not allow concurrent updaters after the scan phase.
We now describe their *-C-* counterparts, which do allow concurrent updaters throughout the
entire execution of the index building process. The next index-based algorithm that we discuss is

the Index-C-Basic algorithm.

3.6.3 The Index-C-Basic Algorithm

The build process of the Index-C-Basic Algorithm is described in Figure 3.16, and the corresponding
update transaction code is given in Figure 3.17. The build process of this algorithm is similar to the
build process in the List-C-Basic algorithm (see Figure 3.8). The build process here also executes
in three phases, the scan, build and catchup phases. The scan phase here is similar to the scan
phase of the earlier Index-X-Basic algorithm. In this phase, the build process first scans the entries
from the relation and then builds an intermediate index using the scanned entries. During the scan
phase, concurrent updaters operate on the public index in the same manner as in the Index-X-Basic
algorithm, i.e., the scan phase code for updaters is identical in Figures 3.13 and 3.17.

After building the intermediate index (after step 4, Figure 3.16), the build process locks the

71

Buzild process
begin

R: Input relation
A: Attribute of R on which to build index
H: Heap file
L: Head of a list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty index
step 2: H = Extract_keys(R)
step 3: H = Sort(H)
step 4: Lock Index[R, A] in exclusive mode

step 5: Phase[R, A] = build
L = List of leaf pages of Index[R, A]
step 6: Index[R, A] = Make_index(H, L)
step 7: Phase[R, A] = available
step 8: Unlock Index[R, A]
end

Figure 3.15: The Index-X-Merge Algorithm

public index in Exclusive mode, driving away any updaters, and records a pointer to the head of
the leaf page list of the public index. It then re-initializes the public index to be empty, changes
the state variable to indicate to updaters that the build phase has started, and finally releases the
Exclusive lock on the public index. During the build phase, the build process sequentially applies
the updates from the leaf page list (saved above) to the intermediate index that it built with the
scanned entries. Updaters continue to add their updates to the public index during the build phase,
but these build phase updates are stored differently from the scan phase. This is illustrated by the
difference in the updater code segments for the scan and build phases in Figure 3.17. The basic
idea in the build phase is to retain the latest update for a (key, rid) pair only if an odd number
of operations took place after the start of the build phase. (Recall that at the start of the build
phase, the public index is empty.)

This difference between the handling of scan phase and build phase updates is similar to the
difference between the Sort and NSort functions described earlier. The explanation is analogous,
so we do not repeat it here.

After applying all of the scan phase updates to the intermediate index, the build process enters
the catchup phase, where the intermediate index is made visible to concurrent updaters. The
build process now applies the build phase updates to this intermediate index. During the catchup
phase, updaters apply their updates directly to the public intermediate index, behaving exactly
like updaters in the catchup phase of the List-C-Basic algorithm (Figure 3.9). These concurrent
updaters leave specially marked entries in the index in case they detect inconsistencies (e.g., an

inserter finds the entry to be inserted to already be in the index, or a deleter does not find an entry

Build process
begin
R: Input relation
H: Heap file
T: Temporary B-tree index
L: Head of a linked list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty
step 2: H = Extraci_keys(R)
step 3: H = Sori(H)
step 41 T = Make_indez(H, empty)
step 5: Lock Index[R, A] in exclusive mode
step 6: L = leaf page list of Index[R, A]
Index[R, A] = empty
Phase[R, A] = build
step 7: Unlock Index[R, A]
step 8: foreach entry in L do
case entry type of
insert: if entry not in T, insert it
delete: if entry in T, delete it
step 9: Lock Index[R, A] in exclusive mode
step 10: L = leaf page list of Index[R, A]
Index|R, Al =T
Phase[R, A] = catchup
step 11: Unlock Index[R, A]
step 12: foreach entry in L do
case entry type of
insert: if marked delete entry present in Index[R,A] then
Delete the marked entry
else Insert the entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present
step 13: Phase[R, A] = available
end

Figure 3.16: Build Process in the Index-C-Basic Algorithm

72

Update transaction

begin

R = input relation

step n:

end

. . . Normal processing . . .
if Phase[R, A] = scan then
Lock Index[R, A] in share mode
if Phase[R, A] # scan then
Unlock Index[R, A], goto step n
else case updater of
insert: if delete entry present in Index[R, A] then
replace the entry by an insert entry
else add an insert entry
delete: if insert entry present in Index[R,A] then
replace the entry by a delete entry
else add a delete entry
Unlock Index[R, A]
else if Phase[R, A] = build then
Lock Index[R, A] in share mode
if Phase[R, A] # build then
Unlock Index|R, A], goto step n
else case updater of
insert: if delete entry present in Index[R, A] then
remove the entry
else add an insert entry
delete: if insert entry present in Index[R,A] then
remove the entry
else add a delete entry
Unlock Index[R, A]
else if (Phase[R, A] = catchup then
case updater of
insert:
if entry is already present in Index[R,A] then
add a specially marked insert entry
else insert this (key, rid) in Index[R,A]
delete:
if entry is not present in Index[R,A] then
leave a specially marked delete entry
else delete this entry from Index[R,A]

Figure 3.17:

Updater in the Index-C-Basic and Index-C-Merge Algorithms

73

74

Build process
begin

R: Input relation
H: Heap file
T: temporary B-tree index
L: Head of a linked list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty
step 2: H = Extract_keys(R)
step 3: H = Sori(H)
step 4: Lock Index[R, A] in exclusive mode
step 5: L = leaf page list of Index|[R, A]

Index[R, A] = empty

Phase[R, A] = build
step 6: Unlock Index[R, A]
step 7: T = Make_indez(H, L)
step 8: Lock Index|[R, A] in exclusive mode
step 9: L = leaf page list of Index[R, A]

Index[R, A] =T

Phase[R, A] = catchup
step 10: Unlock Index[R, A]
step 11: foreach entry in L do

case entry type of

insert: if marked delete entry present in Index[R,A] then
delete the marked entry
else insert the entry normally
delete: if marked insert entry present in Index[R,A] then
delete this marked entry
else delete the normal entry that is present
step 12: Phase[R, A] = available
end

Figure 3.18: The Index-C-Merge Algorithm

to delete). These marked entries will be found and removed by the build process as it executes step
12 of Figure 3.16. When the build process is finished applying all of the build phase updates, the

index is up to date and is made available for normal use.

3.6.4 The Index-C-Merge Algorithm

The last index-based algorithm that we discuss is the Index-C-Merge Algorithm. The build process
in this algorithm (Figure 3.18) differs from the Index-C-Basic build process only in the manner
in which the intermediate index is built. This index is built in one pass in step 7 (Figure 3.18)
using the leaf page list of the concurrent scan phase updates as well as the sorted list of scanned
entries. This is similar to how the intermediate index was built in the List-C-Merge algorithm.
Update transactions in the Index-C-Merge algorithm execute just like updaters in the Index-C-
Basic algorithm (Figure 3.17).

75
3.7 More Concurrency for Updaters

In Section 3.4, we stated that concurrent updaters are assumed to register their index updates
immediately into the update-list or the temporary index during index construction. This ensures
that all updates to a given page that occur before the page is scanned by the build process are
registered in the update-list or the temporary index before the scan phase completes. This is
necessary to prevent inconsistent situations from being seen by update transactions due to the late
application of index updates®. We will now explain how immediate index updates affect concurrency
for the various algorithms.

For the list-based algorithms, the above requirement means that updaters have to request an
Exclusive lock on the list while still holding a short-term Exclusive lock on a newly modified relation
page. The relation page lock can be released only after the list lock is granted. If the list becomes
a concurrency bottleneck, this strategy may slow down other updaters as well as the scan phase
of the build process due to interference at the relation page level. This seems unlikely to happen,
however, due to the fact that the list append is likely to be an in-memory operation and therefore
very fast (since the last page will always be in memory). In the index-based algorithms, updaters
have to get a Share lock on the index before releasing the Exclusive lock on the modified relation
page. This Share lock is only used to exclude the build process from the index, so multiple updates
can still proceed concurrently on the temporary index. It therefore appears that there is an even
smaller chance of a concurrency problem arising here as compared to the list case.

If the requirement of immediate index updates is considered undesirable, it can be relaxed by
employing the page coloring technique of [Pu85]. In this strategy, all relation pages are colored
“white” when the build process starts. As soon as a relation page is scanned in the scan phase, it
is colored “black.” Now, instead of always registering their index updates to the update-list or the
temporary index, updaters will only register their index updates on black pages (pages that have
already been scanned by the index construction process). This prevents the inconsistent situations
mentioned earlier from occurring even if the index updates are not registered immediately. Also,
it reduces the total number of updates registered during the scan phase, reducing the work of the
build process in the end. An implementation of this algorithm requires a special “color bit” with
every relation page to keep track of the color of the page. Multiple color bits per relation page

would be needed to accommodate more than one index construction process at a time.

9An example of this type of inconsistency is as follows: Suppose a page was scanned by the build process after
a (key, rid) pair was inserted into it, but the index construction process completes before the corresponding index
update is performed. When the index update for this (key, 1id) pair is finally performed by the update transaction
(on the newly built index, which is now available as a normal index), the updater will find that this entry is already
in the index. While this is legal during the construction phase, during normal operation it is an error.

76

3.8 Related Work

In parallel with this work, two other on-line index construction algorithms have also been proposed
by Mohan and Narang [Moha91]. Their first algorithm is index-based and allows updaters and
the build process to share the same index throughout. In this algorithm, the build process first
initializes a public index into which updaters concurrently insert their index updates. It then
scans the relation, sorts the scanned entries, and inserts them (not necessarily one at a time) into
the public index concurrently with updaters. Updaters sometimes have to leave special pseudo-
deleted entries in the index that later may or may not be removed later by the build process. A
disadvantage of this algorithm is that the index building process cannot build the index bottom-up
from the sorted entries, and hence it may take a long time to complete. Also, at the end of the
index construction process, the new index may still contain superfluous pseudo-deleted entries.

The second algorithm described in [Moha91] is list-based and does not have the above disadvan-
tages. It uses an update-list, like the List-C-Basic strategy, but the index building process performs
catch-up differently. In their algorithm, the build process catches up by copying list entries (except
those at the very end of the file, where update transactions may be still actively appending entries)
into an intermediate index that has been built in a bottom-up fashion using the sorted scanned
entries. Finally, when only a small number of entries remain at the end of the update-list, the build
process exclusively locks the list, applies the last few entries to the index, and then makes the index
available for normal use and releases the exclusive lock.

In both of the above algorithms, an alternative to the coloring strategy described above is used
to limit the updates actually deposited in the index or the update-list. In this strategy, the build
process scans the relation in a pre-specified order and concurrent updaters figure out if a page has
been scanned yet by looking at the current position of the build process (which is available in a
shared variable).

As we mentioned earlier, index construction for a terabyte relation may take days (due to the
scan phase itself). This means that the index building process must be able to survive crashes
and to complete without having to restart from scratch after every crash. Recovery strategies are
presented in [Moha91] for their algorithms, and it should be straightforward to apply those recovery
techniques to the algorithms described in this chapter.

3.9 Summary

In this chapter, we have presented a range of solutions to the important problem of on-line index

construction. In particular, we have described two families of on-line index construction algorithms.

77

These on-line algorithms vary in the sort of data structures that they use to store the concurrent
updates (list or index), the strategies used to actually build the index from leaf-level entries, and
the degree of concurrency allowed for concurrent updates. The algorithms trade off, to varying
degrees, increased building time for increased updater throughput. Proofs of correctness of these
algorithms can be found in the Appendix.

In our discussions of on-line index construction algorithms, we have identified certain situations
that could favor one on-line algorithm over another, but a detailed performance study is needed
to clearly understand the tradeoffs among these algorithms under various system resource and
workload conditions. An important question to be answered in such a performance study is: How
much of an increase in updater throughput warrants allowing a certain increase in build response
time? In answering this question, it is necessary to keep in mind that increasing the build time also
increases the “lost opportunity” cost for queries that can run only after the index is built (since
they may have unacceptably high costs without the index). This suggests that an appropriate
cost model needs to be developed to evaluate the performance tradeoffs of these algorithms. A

performance study of on-line index construction algorithms is the topic of the next chapter.

Chapter 4

Performance of On-Line Index
Construction Algorithms

4.1 Introduction

In this chapter, we evaluate the relative performance of the on-line index construction algorithms
proposed in Chapter 3. Using a detailed simulation model of a centralized DBMS, we compare the
performance of these on-line algorithms with that of a good off-line algorithm as well as amongst
themselves. By running experiments over a wide range of system, workload, and storage conditions,
we investigate the performance trade-offs for the proposed algorithms. In particular, to assist in
our analysis, we employ a performance metric, “loss,” that captures the lost work in terms of
update transactions that are unable to execute due to contention caused by conflicts with the index
construction process. We also compare algorithms using other relevant metrics, including the “off-
line fraction,” which characterizes the fraction of time (relative to the response time of an off-line
algorithm) during which updaters are unable to proceed.

The rest of the chapter is organized as follows: Section 4.2 discusses the performance trade-offs
involved in choosing one on-line algorithm over another. The simulation model used in our study is
described in Section 4.3. Section 4.4 describes the performance experiments that we conducted and
presents their results. In Section 4.5 we predict the performance of other proposed algorithms based
on our performance results. Finally, in Section 4.6, we summarize the results of the performance

study.

78

79

4.2 Performance Trade-Offs
4.2.1 Hidden Costs

Studying the performance of on-line index construction algorithms is complicated due to the hidden
“lost opportunity” costs involved in building a new index. These costs arise because the performance
of the database system with the new index may be much different from its performance without
the index. Not surprisingly, these hidden costs are closely related to the reason for building the
new index. The decision to build a new index may be made for either of the following reasons, each

of which relates to a performance-improving opportunity:

1. The new index would significantly speed up a class of queries that are currently running

inefficiently (i.e., using sub-optimal access plans) in the system.

9. The new index would enable a new class of queries to be executed that cannot be executed at
all (reasonably) given the current system configuration. For example, a credit card company
might want to provide a new service that involves accessing its customer records using a
currently unindexed attribute. A naive way of executing such queries without building a new
index on the relevant attribute might involve a relation scan, which could be prohibitively

expensive for large relations (e.g., it could take days for a terabyte relation).

Accounting for either of the aforementioned considerations is difficult, as the interests of queries
that will not be speeded up by the new index conflict with those of the queries that will indeed
benefit from the new index. In particular, for the queries that will benefit from the new index,
the best way to build the index is to build it as soon as possible. On the other hand, for existing
queries that will not benefit from the new index, the best way to build the new index is the way that
creates the least interference for them during index construction. The question of which class of
queries is more important, and thus needs to be given priority in the system, is application-specific
and depends on factors like the economic benefit of preferring one class of queries over another.
Such factors are hard to quantify and will vary from system to system.

Despite the complexity of the general problem, there is an objective factor that we can in-
deed quantify: the effect of index construction on the system’s already existing on-line workload.
Therefore, as a first step towards understanding the relative performance of the various on-line
index construction algorithms, we will consider the impact of index construction on concurrent
transactions that use other access paths to efficiently access and update the relation on which the
index is being built. Furthermore, we assume that the decision to build the index is made off-line.

Although we do not explicitly consider the waiting-costs for the class of queries in 1 and 2 above,

80

such waiting costs can be easily factored into our performance metrics, if such costs are available

for a particular system.

4.2.2 Performance Metrics

In order to study the performance impact of index construction on an already existing on-line work-
load, two important metrics have to be studied: the index build time, and the on-line workload’s
throughput during the index construction period. As we mentioned earlier, the off-line algorithm
provides the fastest way of building an index at the cost of providing no throughput for updaters.
On the other hand, the on-line algorithms each allow concurrent updaters during some or all of
the index construction process, with the price being an increase in the time required to build the
index. For the on-line algbrithms then, the following question arises: How much of an increase
in updater throughput is needed to compensate for a corresponding increase in the build response
time? We shall try to answer this question by quantifying the loss to the database system caused
by the index construction activity.

Suppose that the best throughput possible in the system without the new index is Thest. Suppose
also that a particular index construction algorithm A has a build response time of R4 seconds and
that during its building time it permits a throughput of T4 transactions per second. In an on-line
algorithm, update transactions face interference from the index construction process in terms of
data and resource contention, and read-only transactions face resource contention from the index
construction process, so T4 will be less than Thes;. Using Ry, T4, and Thest, we can estimate the
loss to the system in terms of the number of potential transactions that could not execute due to

contention caused by the index construction activity:
loss = (Trest —Ta) X Ra (4.1)

Interestingly, the formula for loss can also be applied to the off-line algorithm directly. The loss
metric thus gives us a way of comparing the performance of an on-line algorithm both with that
of other on-line algorithms and with that of the off-line algorithm. From the loss formula, it
can be seen that the loss will be high if index construction takes a long time (if R4 is large) or
if the throughput during index construction is very low (if T4 is small). The loss metric thus
offers a simple way to answer the question posed in the previous paragraph regarding the amount
of additional throughput needed to offset an increase in the build response time. In terms of this
metric, an algorithm with a lower loss is better than one with a higher loss. Between two algorithms
with the same loss, the one with the smaller response time is better since the index is available

earlier in that case. Finally, the normalized loss for an algorithm can be defined as the loss for that

81

algorithm divided by the loss for the off-line algorithm.

Though the loss metric provides a clean way to combine the build response time and the
throughput into one measure, it alone is not sufficient to characterize the performance of an on-
line algorithm completely. In particular, recall that some on-line algorithms (e.g., the List-X-*
and Index-X-* algorithms) have exclusive phases during their execution. Since high-performance
transaction processing systems may have severe maximum updater response time requirements,
the durations of such exclusive phases may be critical to the performance of such systems. Thus,
when evaluating an index construction algorithm, we will also consider the off-line fraction of the
algorithm, which is defined as the ratio of the duration of its exclusive phase (if any) to that of the
off-line algorithm (which has a single exclusive phase equal to its entire build response time).

Our above discussion for the loss and off-line fraction metrics is directly applicable to closed
systems. In a stable open system, the throughput is equal to the arrival rate. For open systems,
therefore, the important performance metric is response time. Here again, we can define a loss
metric analogous to the one described above based on the average transaction response time without
the index comstruction process (the best response time) and the average response time obtained
when the the index construction process executes in the system. Another alternative for an open
system would be to analyze the various algorithms based on a loss metric constructed from the
mazimum throughput, which is defined as the maximum possible arrival rate that can be handled
stably by the open system [John90a, John90b]. Thus, we believe that the performance results for
on-line index construction algorithms that we obtain here using a closed system model would to a

large extent, also hold under an open system model.

4.2.3 Overall Cost

We now indicate how the waiting costs for queries can be combined with the loss metric to determine
the overall cost of index construction in a system. Suppose that the index is needed at time .
The cost of waiting is proportional to the length of time that the index is unavailable beyond t,,
i.e., to ty — t,, where t, is the time when the index actually becomes available. We now combine
the waiting cost with the earlier equation for loss and provide a formula for the overall cost for
index construction. Assuming that the cost of losing one existing transaction is C1, and the cost
of waiting for one unit of time is Cs, the following equation gives the overall cost of building the

index:

Cost = Cyxloss+Ca X (ta—1s) (4.2)

82

In the rest of this chapter, we concentrate on estimating the loss, i.e., the impact of index construc-

tion activity on the performance of the on-line workload in a system.

4.3 Simulation Model

In this section, we describe the simulation model used to study the performance of the on-line
algorithms described in Chapter 3. This model, which is a closed queueing model with a fixed
multi-programming level (MPL), is an extension of the model used earlier in Chapter 2 for studying
the performance of B-tree concurrency control algorithms. While the focus earlier was a B-tree
that was being accessed concurrently, the central focus of the model here is a relation on which a
new index is being built.

The model of the system hardware assumes a computer system with one or more CPUs and
disks. Requests for the CPUs are scheduled using an FCFS$ (first-come, first-served) discipline with
no preemption. Each of the disks has its own disk queue, and each queue is managed using an
elevator disk scheduling algorithm!. Apart from the CPUs and disks, the physical resource model
also includes a buffer pool for holding disk pages in main memory. The buffer pool is managed in
a global LRU fashion for all pages except relation pages. Since relation page accesses are either
sequentially (due to the build process) or randomly (due to concurrent update or search activity),
relation pages are added to the tail of the LRU list upon being released, effectively giving them
lower priority than index pages. The buffer manager performs demand-driven writes when dirty
pages are chosen for replacement. The system model also includes a lock manager for setting and
releasing locks on pages and records.

The components of the database storage model include the relation (which is a heap file) on
which an index is being built, one already existing unclustered B-tree index on this relation, and
auxiliary data structures like the temporary lists and indices needed by the various on-line index
construction algorithms. Important parameters of the database storage model include the size of
the initial relation in tuples, the maximum number of tuples per relation page, and the maximum
fanout of a B-tree index page. In our experiments, the physical size of a page is always the same
(4K bytes), so a variation in the maximum capacity of a relation page should be viewed as being
due to different tuple sizes. For modeling simplicity, all tuples are assumed to be of the same size,
all index entries are assumed to be of the same size, and no duplicate keys are allowed in the index.
(These simplifications should not impact our qualitative performance results.) The distribution

of values for an indexed attribute of the relation are drawn from a random permutation over an

1Unlike Chapter 2, the use of the elevator algorithm for disk scheduling is quite important here. This is due to
the fact that the workload will now involve both random (updater) and sequential (index builder) I/O patterns.

83

nUM-Cpus Number of CPUs (1)
num-disks Number of disks (1, 8)
disk-seek-time Min: 0 msec; Max: 27 msec
cpu-speed 20 MIPS

cc-cpu Cost for lock/unlock (100 inst.)
buf-cpu Cost for buffer call (1000 inst.)

page-search-cpu | Cost for page search (50 inst.)
page-modify-cpu | Cost for key insert/delete (500 inst.)
page-copy-cpu Cost for page copy (1000 inst.)

compare-cpu Cost for comparing keys (2 inst.)

intt-rel-keys Tuples in initial relation (100,000)

maz-fanout Index-entries/page (200/page)

rel-page-capacity | Tuples/page (2, 20, or 200 /page)

page-size Size of a disk page (4KB)

alg On-line algorithm (List-X-Basic, Index-C-basic, etc.)
num-bufs Size of the buffer pool (250)

search-term Number of search terminals (0 or 50)

update-mpl Number of insert and delete terminals (0, 2, 10, 20, 40)
insert-prob Proportion of inserts among updates (50%)

Table 4.1: Simulation Parameters

integer key space of 1..400,000.

The workload model consists of the index build process and a fixed set of user terminals, each of
which submits one of three types of relation operations (search, insert, or delete). Since the relation
is stored as a heap file, insert operations find a non-full page in the relation using a bit map and
then insert a tuple into that page. After their relation insert, they immediately perform an insert
into the relation’s existing B-tree index. Following this, they take the appropriate action, if any,
required by the on-line index building algorithm. Deletes, on the other hand, access a single relation
page at random, delete a randomly chosen tuple from that page, and then immediately perform the
corresponding B-tree delete to the already available index. Like inserts, they then take the action
called for by the relevant on-line index building algorithm. Finally, searches randomly access a
single tuple of the relation using the existing B-tree index. Each terminal submits its operations
one at a time. As soon as a terminal submits an operation, it becomes active and executes in the
system; when the operation completes, it returns to the terminal. In the current study, we use a
terminal think time of zero, so the terminal immediately generates another operation of the same
type when its current operation completes.

The simulation parameters for our experiments are listed in Table 4.1. In all of the experiments
discussed in this chapter, there is exactly one CPU in the system. Apart from the single CPU, a
system configuration consists of a fixed number of disks and a fixed capacity for relation pages. In
each system configuration, we varied the MPL for updaters from 0 (where only the build process

executes) to a maximum of 40, conducting one experiment for each on-line index construction

84

algorithm as well as for the off-line algorithm. At the start of each experiment, the buffer pool is
initialized with randomly chosen pages from the initial relation; the build process is then started
along with the specified number of terminals. The terminal types (search, insert, and delete)
are initialized according to the workload parameters. The experiment is stopped when the build
process terminates. A special additional experiment is run to calculate the best updater throughput
in the system without the new index (for calculating the loss using equation 4.1). Batch probes
in the DeNet simulation language are used with the operation response time metric to generate
confidence intervals. For all of the data presented here, the 90% confidence interval for relation

operation response times was within 2.5% (i.e., £2.5%) of the mean.

4.4 Performance Results

An important factor likely to affect the performance of an on-line index construction algorithm is
the relative proportions of time spent in the various phases of index construction. These relative
proportions depend on the size of the index relative to the size of the relation itself. We modeled
different relative sizes by keeping the size of an index entry constant (20 bytes) and considering three
different tuple sizes, small (20 bytes), medium (200 bytes), and large (2000 bytes). We subdivide
the performance experiments into three categories based on the tuple size and present the results

for each of these categories.

4.4.1 Experiment Set 1: Small Tuple Size (20 Bytes)

In this set of experiments, the size of the index is comparable to the size of the relation since an
index entry and a tuple are the same size. The system workload consists of the build process and a
set of concurrent updaters. The multiprogramming level (MPL) gives the total number of updaters
in the system; half are inserts while the other half are deletes. We will subdivide the small tuple
experiments into those involving a system with a single disk and those involving a system with

eight disks.

Single Disk Results

The build response times for the various algorithms in the single disk case are given in Figure 4.1,
and the updater throughput curves are given in Figure 4.2. As expected, the build response time
for all of the on-line algorithms increases with the MPL due to an increase in resource contention
at higher MPLs. We also see from Figure 4.1 that the List-C-Basic algorithm’s build response

time increases much faster than those of all the other algorithms. The reason for this is that the

85

T ™7 T T T | T T T ¥
25001~ { IndexCBasic & ListCSort |
ListCBasic; - .
¥ o Lisg(ic // o § 16 ' -
—~2000 RE erge o # -y e
3 ,lndexCMgrge X g -
S ; S G All On-Line Alg..
‘% ; A 812 Except ListXBasic |
o 1500 - g P
'.E_ ',: '/ §_ ‘_,_,4—-""’ \
's / > bt ListXBasic
g ListXSort & o g -
g 1000 / IndexXBasic | 5
& % 2
@ 500~ _.-="ListXMerge & IndexXMergp ;3 4r 7
.- o __of-Line =) Off-Line Algorithm
Ober - . -
I L | L | oG 1 { | I
[} 10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) Multiprogrammimg Level (MPL) —*
1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page 1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page
Figure 4.1: Build Times, 1 Disk Figure 4.2: Updater Thruput, 1 Disk

build process in List-C-Basic sequentially inserts unsorted entries from the update-list into the
intermediate index during the build phase (Figure 3.5). These sequential inserts can cause multiple
accesses to a given leaf page which, since the buffer pool can hold only a subset of the leaf pages
in memory, results in multiple I/Os for the same page. These extra I/Os cause the build phase
to become very long in this extremely disk bound situation, which in turn increases the size of
the build phase update-list, thus increasing the duration of the catchup phase as well. Sorting the
list before insertion into the intermediate index (as in List-C-Sort) alleviates this problem, so the
response time is much lower for List-C-Sort than for List-C-Basic. In contrast to List-C-Basic,
List-X-Basic does not suffer as much because its build phase length increases much more slowly
due to the absence of buffer and resource contention during this phase.

In Figure 4.1, the build response time ordering of the on-line algorithms other than List-X-Basic
and List-C-Basic reflects the increasing amount of work that they have to do for index construction.
Among these eight algorithms, each of the concurrent (*-C-*) algorithms has a higher response
time than all of the exclusive (*-X-*) algorithms. This is expected since the *-C-* algorithms allow
concurrency throughout the index construction period, resulting in increased contention as well
as extra work for catching up. Among the four algorithms within each class, the algorithms that
use merging are better than those that perform sequential (sorted) inserts. This is because the
sequential insert strategies perform slightly more work in the scan phase than the merge-based
algorithms, while the build phases and catchup phases (if any) are comparable in length. The

extra work results in expensive I/Os that increase the build response times of the sequential-insert

86

algorithms (List-*-Sort and Index-*-Basic).

While the various on-line algorithms differ widely in their build response times, all except List-
X-Basic attain the same updater throughput? (Figure 4.2). In particular, this means that all of the
_X- algorithms except List-X-Basic attain the same throughput as the *-C-* algorithms. This
is surprising since we would expect the *-X-* algorithms to attain less throughput than the *-C-*
algorithms due to their exclusive build phase. This is due to the extremely high level of resource
contention in this experiment. In all of the *-X-* algorithms except List-X-Basic, a bottleneck at
the lone disk increases the scan phase duration tremendously at high MPLs, while the (exclusive)
build phase duration remains about the same due to lack of contention; the build phase therefore
forms a negligible part of the build response time, causing a negligible effect on the throughput.
In List-X-Basic, however, the extra I/Os during the build phase cause this phase to become a
significant fraction of the build response time at higher MPLs, resulting in a significant drop in
throughput.

Having looked at the updater throughput and response times separately, we now look at the
normalized loss in Figure 4.3 in order to combine both measures. Recall that the normalized loss
for a given algorithm is the ratio of the loss for the algorithm (calculated using Equation 4.1) to
the loss for the off-line algorithm. Note from Figure 4.3 that the loss for the List-X-Basic and the
List-C-Basic algorithms is very high compared to that for the other algorithms (so much so that
their values for high MPLs are omitted from the figure). The large loss in List-C-Basic is due to
its very high response time (Figure 4.1), while the loss in List-X-Basic is due to its lower updater
throughput (Figure 4.2). The normalized loss metric also gives an idea of the improvement achieved
by using an on-line algorithm instead of the off-line algorithm. The loss curves in Figure 4.3 show
that, at high MPLs, only two merge-based algorithms (List-X-Merge and Index-X-Merge) manage
to achieve better loss than the off-line algorithm. As shown, the loss for the *-C-* algorithms
increases with MPL and reaches a maximum value of between 225% to 250% of the loss for the
off-line algorithm. In contrast, the losses for the *-X-* algorithms (except List-X-Basic again) track
the loss for the off-line algorithm more closely.

Despite the loss results, it is not necessarily the case that the *-X-* algorithms are preferable
to the *-C-* algorithms here, as they might have an unacceptably large exclusive build phase. In
order to investigate this, we plot the off-line fraction of these algorithms in Figure 4.4. We see
that the duration of the exclusive build phase for the List-X-* and the Index-X-* algorithms is a
sizable fraction (25% to 50% for all algorithms except List-X-Basic) of the total response time of

2There were slight (but insignificant) differences between the various algorithms. We only present significant
differences in our graphs.

87

3.00T T T T T I !] ! '
ListXBasic & 110 | ;l/"‘s'xaas'c -
ListCBasic / ListCSort & 1.00 | Off-Line.__ .
2.501- ! IndexCBasic, - :
Y N 0.90 |- .
; ListCMerge & L
N i IndexCMerge/,/’ ‘__." N 0.80 ol
5200 \ -
3 N 5070 Lisixson&]
o ; - L i o nde ic]
o :" e £ - A]
E Lol Ofi-Line 5030 —
2100 = 1 . 5040 __ﬂ_mﬂ____Mﬂ_‘,_‘(x.w-w i
\ 0.30 |- }.iztxxh)ll(ﬂge& N
n — ndexXMerge _|
0.50 ListXMorge & 0.20 - g
IndexXMerge R ListC* & IndexC* -
0.10
.00 -1 - -
09, L | L ' 0.00 1 ! 1 | |
10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) —* Mutltiprogrammimg Level (MPL)
1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page 1 Disk, 250 Buffers, 200 tuples/page, 200 index entries/page
Figure 4.3: Loss, 1 Disk Figure 4.4: Off-Line Frac., 1 Disk

the off-line algorithm. Thus, if it is unacceptable for updaters to wait in the case of the off-line
algorithm, it is likely to be unacceptable for them to wait in the *.X-* algorithms as well (since
the waiting times are of the same order of magnitude). Using the best among the *.C-* algorithms
(List-C-Merge or Index-C-Merge) thus seems to be a better choice here even though they have a
higher loss than most of the *-X-* algorithms.

In the single disk experiments, the builder in the on-line algorithms faces very high resource
contention. In such a situation, a bottleneck forms at the disk in the on-line index construction
algorithms at even small MPLs; this increases the build response time enormously, and concurrent
execution of updaters does not provide enough throughput to offset this increase in response time.
This experiment therefore represents a worst case for the on-line algorithms. In order to study
their performance in a less resource-bound situation, the next set of experiments assumes a system
with eight disks. Due to the extremely poor performance of the List-X-Basic and the List-C-Basic

algorithms, we will omit these two algorithms from all future graphs.

Eight Disk Results

The build response time and updater throughput curves for the eight disks case are given in
Figures 4.5 and 4.6 respectively. It can be seen from the build response time curves that the
ordering of response times among the various on-line algorithms is the same as in the one disk case.
The key difference here is that the best on-line algorithm now has a maximum response time of

only a few times that of the off-line algorithm, while in the one disk case the best on-line algorithm

88

T T T T T] T T T T
N W .
5001
- ListCSort & IndexCBasic, -~ ~ 80 Best Throyghput -
450)
[400F _,n"f N g 70k List-C-*]
b= ,x’ﬁistCMerge & e
§ 3500 . IndexCMerge — S 60l B
= 300 X . g O ndoxaes
g = : sof AN
= - - e
g 250 ListXSort & 5 | N
§.200" g lndex?(Bgs|c_ f:; 40 /" ListXMerge & IndexXMerge
------- 8 3ol ’ .
& 150" \ . g
= ListXMarge & IndexXMerge =]
3 100 J % g 201
s0f - . 5 o
Ofi-Line = 10 Oft-Line
of - L { _
i 1 I ! 1 ory I]] i
0 10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) Multiprogrammimg Level (MPL)
8 Disks, 250 Buffers, 200 tuples/page, 200 index entries/page 8 Disks, 250 Buffers, 200 tuples/page, 200 index entries/page
Figure 4.5: Build Times, 8 Disks Figure 4.6: Updater Thruput, 8 Disks

was more than ten times slower than the off-line algorithm at an MPL of 40 (Figure 4.1). Adding
disks has reduced the level of resource contention considerably for the builder, resulting in a faster
index building time for all of the on-line algorithms.

From the updater throughput curves (Figure 4.6), we see that the List-X-* algorithms and the
Index-X-* algorithms have a slightly lower throughput than the corresponding *-C-* algorithms.
In the *-X-* algorithms, the (exclusive) build phase now forms a significant proportion of the index
construction time, thus leading to a noticeable loss in throughput. Another point to be noted
from Figure 4.6 is that the List-X-Sort and the Index-X-Basic algorithms attain a slightly higher
updater throughput than the List-X-Merge and the Index-X-Merge algorithms. Again, the reason
is that the build phase proportion is greater in the two merge-based algorithms than in List-X-Sort
and Index-X-Basic at high MPLs. This is because the (non-exclusive) scan phase in List-X-Sort
and Index-X-Basic is slightly longer than for the merge-based algorithms, while the build phases
are comparable in length. As seen in the single disk case earlier, extra work in the scan phase is
expensive at high MPLs due to resource contention; this fact is shown by the higher build response
times of List-X-Sort and Index-X-Basic in Figure 4.5.

In Figure 4.7, we present the normalized loss for the various algorithms in the eight disks case.
In contrast to the results of the one disk experiments, where the loss for the *-C-* algorithms was
larger than that for the other algorithms, the *-C-* algorithms (which have no exclusive phases)
perform better than the other algorithms in terms of the loss metric here. The off-line fractions

of the various algorithms for this experiment were the same as in the earlier high contention case

89

¥ T T T T
1.00 f -
0.90 Off-Line -
0801~ ListXSort &
070 IndexXBasic N
a) ListXMerge &
S0.601- IndexXMerge i
EO 50 - ’___”ﬂ___,_,_m._...-;a—;ﬂ -
o P
5040— e \ -
0.30 PPy ListCSont & _
) st IndexCBasic
- sl ListCMerge & _
020 A ‘IndexCMerge
i
010~ ~ _
0.00 = -
1 L | L |
0 10 2 30 40

Multiprogrammimg Level (MPL) ——*
8 Disks, 250 Buffers, 200 tuples/page, 200 index entries/page

Figure 4.7: Loss, 8 Disks

(Figure 4.4), so we omit those curves here; this is to be expected since the duration of the periods
during which updaters are locked out should be the same as in the one disk case (since the build
process is the only active process in the system during that time). Since the off-line fraction for
the *-C-* algorithms is very close to zero, and they also have the least loss, they are unequivocally
better than the *-X-* algorithms in this situation. Among the *-C-* algorithms, List-C-Merge and
Index-C-Merge are the best since they involve the least overhead (as demonstrated by their superior
build response times).

This set of experiments (both the single and eight disk results) examined the case where a tuple
is the same size as an index entry. We also ran experiments in cases where the tuple size is ten
and then a hundred times the size of an index entry, respectively. To conserve space, we will only
present a complete set of results for the large tuple experiments. Also, since we found above (and
in all of our other experiments as well) that the merge method of building the index was better
overall than the basic and sort strategies, we will show only the four merge-based algorithms and

the off-line algorithm in the remaining graphs.

4.4.2 Experiment Set 2: Large Tuple Size (2000 Bytes)

In this set of experiments, a tuple is a hundred times larger than an index entry, unlike in the
earlier set of experiments where they were the same size. This causes an increase in the relation
size (200MB here as compared to 2MB in Experiment Set 1), while the size of the index remains the

same as before (~ 2MB). This increase, in turn, causes the scan phase to dominate the process of

90
T T T T T - T T T T
90
ListCMerge Best Throug
60001 7 __ 801 ListCMagge o
©
_ ListXMerge 8. B
8 5000 - g 0 IndeyCMerge
§ o 1 " ‘g ek /f;j‘ _
Ryt 2
L4000 - g
@ e IndexCMerge @0l A -
E ,,,, e IndexXMerge
L = . 5
000K - .
2;:3 IndexXMerge j_-; 40
3
€ 2000 Ofi-Line - £30
E s
5 £ 201 -
@ ©
1000 N 2
= 10F Ofi-Line
0 - -
2 I i i ory I I !
0 10 20 30 40 0 10 20 30 40
Multiprogrammimg Level (MPL) Multiprogrammimg Level {MPL)
8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/page 8 Disks, 250 Buifers, 2 tuples/page, 200 index—entries/page
Figure 4.8: Build Times, Large Tuples Figure 4.9: Updtr. Tput.,, Large Tups.

index construction (accounting for more than 95% of the build response time). Since a bottleneck
at the disk can be expected to swamp the performance differences between the various on-line
algorithms in the one disk case, as we saw earlier in the small tuple experiments, we only conducted

experiments on a system with eight disks here.

Eight Disk Results

The build response time curves for the large tuple experiments on a system with eight disks are
given in Figure 4.8. Compared to the response time differences seen in the corresponding small
tuple experiments (Figure 4.5), the relative response time differences between the various on-line
algorithms are smaller here. This is because the scan phase (during which all on-line algorithms
perform similarly) is dominant, and the other phases (which were primarily responsible for the
build response time differences seen previously) form only a small portion of the overall index
construction time. Another thing to note is that all of the list-based algorithms perform slightly
worse at high MPLs here than all of the index-based algorithms. The reason is that the update-
list becomes large, due to the large scan phase, and the sorting that takes place during the build
phase of the list-based algorithms thus contributes a significant overhead which is absent in the
index-based algorithms. Also, between the two list-based algorithms, List-X-Merge is faster than
List-C-Merge; this is due to the additional catchup phase in List-C-Merge. Similar behavior is seen
between the index-based algorithms.

The updater throughput curves for this experiment are given in Figure 4.9. As shown there,

91
1201 T T T T I I !
1.00i~
Off-Line | B
1.001 { /442 | 0.90 Off-Line
IndexXI\% /;{/ 0.80[~ .
0.80 {:,',;/ - =0.70 o 1l
@ i S
wd /’f{'\ 30'60 -)
" A~ " ra
3%0’60) y IndexCMerge %:0.50 B N
E 4 Z0.40- -
Z0.40}- o ListXMerge - e}
N WS 030 .
& e ListXMerge i
_ A et i 020F N S
0.20 /;::,/—" __________ ’ ListCMerge & IndexCMerge...-~""
P L o.10 i ____________ e Index)iMjr
0.00 ListCMerge _j 0.00 e S
1 L 1 ! i 1 | L L
0 10 20 30 40 0 10 20 30 40

Muttiprogrammimg Level (MPL)

Multiprogrammimg Level (MPL)
8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/oage

8 Disks, 250 Buffers, 2 tuples/page, 200 index-entries/page

Figure 4.10: Loss, Large Tuples Figure 4.11: Off-Line Fr., Large Tups.

the throughput for the index-based algorithms is significantly less (by about 25%) than that of
the list-based algorithms at high MPLs. This is because the public index (into which concurrent
updaters insert their updates) in the index-based algorithms becomes large enough at high MPLs in
this experiment for every index access to have a high probability of performing a disk 1/0 for a leaf
page. This extra disk access causes a significant increase in the overhead for concurrent updaters
in the index-based algorithms, while there is no such overhead in the list-based algorithms (since
the append to the update-list almost certainly does not involve a disk access). The reason why
this effect was not significant in the small tuple experiments is that the scan phase was much
smaller there and, even at high MPLs, the number of updates recorded in the public index did not
cause it to become large enough for its leaf pages to be paged out.often. Apart from the above
differences in throughput between the list-based and the index-based algorithms, we find that
among the list-based algorithms, the List-C-Merge algorithm attains a slightly higher throughput
than the List-X-Merge algorithm. This is because there is no exclusive phase in List-C-Merge;
similar behavior is exhibited by the index-based algorithms.

In order to understand whether or not the increase in throughput achieved here by the list-
based algorithms compensates for their increase in response time, we plot the normalized loss for
each of these algorithms in Figure 4.10. The loss curves indicate that the index-based algorithms
suffer quite a bit due to their reduction in throughput. In fact, at an MPL of 40, Index-X-Merge
and Index-C-Merge are even a bit worse than the off-line algorithm. In contrast, List-X-Merge and
List-C-Merge perform much better than the off-line algorithm throughout the entire MPL range,

92

I T T T T
1.00 - T 1
0.90- Otf-Line .
0.80+- -
§ 0.70- -
2 0.601 -
§ IndexXMerge
= 0.50 -
-g IndexCMerge \ .-
So040- / < / .
030k e -
020~ ‘[ListXMerge |
0.10 ListCMerge
0.00
0 10 20 30 40

Multiprogrammimg Level (MPL)
8 Disks, 250 Buffers, 20 tuples/page, 200 index-entries/page

Figure 4.12: Loss, Medium Tuples.

with a maximum normalized loss of 35% for List-X-Merge and only 20% for List-C-Merge. Finally,
the off-line fractions for the various on-line algorithms are given in Figure 4.11. As expected, the
off-line fractions for the *-X-Merge algorithms are smaller here than in the small tuple experiments
(Figure 4.4), but they are still not negligible. In fact, the off-line fraction for the List-X-Merge
algorithm increases with MPL from less than 5% to a maximum value of greater than 20% due to

the overhead of the sort performed during its exclusive build phase.

4.4.3 Other Experiments

Apart from the large (2000 bytes) and small (20 bytes) tuple experiments, we also performed
experiments in which the tuple size was intermediate (200 bytes), as mentioned earlier. In these
medium tuple experiments, an index was approximately one-tenth the size of the relation. The
results of the medium tuple experiments were essentially a hybrid of the results of the small and
large tuple experiments. To illustrate the performance of the algorithms there, we reproduce their
loss curves for a system with eight disks in Figure 4.12. From these curves, it is clear that at
lower MPLs the trends are like those of the small tuple experiments (Figure 4.7), where the *.C-*
algorithms had smaller losses than the *-X-* algorithms, while at higher MPLs the trends are like
those observed in the large tuple experiments (Figure 4.10), where the list-based algorithms had
smaller losses than the index-based algorithms. This behavior is expected since the scan phase
proportion (which affected the relative performance of the on-line algorithms in the small and large

tuple experiments) lies between those of the small and large tuple experiments here. A final point

93

to note from Figure 4.12 is that List-C-Merge again has the least loss throughout the range of
updater MPLs considered.

The experiments that we have discussed up to now have only had updaters in the workload. We
also conducted a series of experiments where there was a constant background search query load
on the relation along with the concurrent updaters. In these experiments, the relative performance
of the various algorithms was essentially the same as in the case with no searches, except that due
to the resource contention generated by the concurrent searches, all algorithms took much longer

to build the index and the on-line algorithms each attained a lower maximum updater throughput.

4.5 Discussion
The performance results of the previous section can be summarized as follows:

o Except in extremely resource bound situations, most of the on-line index construction algo-
rithms clearly outperformed the off-line algorithm. In other words, the throughput that the
on-line algorithms achieved for updaters during index construction more than compensated

for their increase in build response time.

¢ Among the on-line algorithms, the best among the algorithms with no exclusive phase (List-C-
Merge) outperformed the best among the algorithms with an exclusive phase (List-X-Merge)

except in heavily resource bound situations.

o Even in heavily resource bound situations, the best fully concurrent algorithm (List-C-Merge)
had a loss of only a few times that of the best partially exclusive algorithm (List-X-Merge).
Furthermore, List-X-Merge was found to have an exclusive phase whose length was a non-
negligible fraction of the response time of the off-line algorithm, likely making it unacceptable

for use in high performance transaction processing systems.

o As should be expected, the relative performance of the various algorithms depended on the
proportion of time spent in the initial relation scan phase of index construction. The list-
based algorithms performed better than the index-based algorithms when the scan phase was
a large proportion (> 95%) of the index building time. When the scan phase was around 50%
of the index building time, the fully concurrent (*-C-*) algorithms were found to be superior

to the partially exclusive (*-X-*) algorithms.

o The merge strategy for building the index was clearly superior in performance to the basic

and sort strategies.

94

o As a result of the points above, the List-C-Merge algorithm achieved the lowest loss among
all of the on-line algorithms over a wide range of tuple sizes, except in heavily resource bound

situations.

Even though our simulation results were obtained for relatively small relation sizes (2MB to
200MB), the basic performance conclusions should hold for very large database sizes as well. This
is because the relative performance of the various algorithms is affected by the ratio of the size
of the index to the size of the relation, which in turn determines the time spent by the on-line
algorithms in their different phases of index construction. This ratio depends only on the size of
an index entry relative to the size of a tuple (assuming there is enough memory for an efficient sort
[Shap86]), and not on the absolute size of the relation itself. Finally, using the above results, we
can now make informed projections about the performance of other on-line algorithms that have

been proposed in the literature.

Other Candidate Algorithms

As we mentioned earlier in Section 3.8, Mohan and Narang have proposed two algorithms for on-line -
index construction [Moha91]. One of their algorithms is index-based while the other is list-based.
While we have not explicitly simulated the two algorithms from [Moha91] in our experiments, we
believe that their performance can be inferred from that of the Index-C-Basic and List-C-Basic
algorithms.

First, the performance of our Index-C-Basic algorithm should be comparable to (or better than)
the performance of the index-based algorithm from [Moha91]. This is because the set of concurrent
updates is inserted into the index built with the scanned entries in the Index-C-Basic algorithm,
while in their index-based algorithm the sorted scanned entries are inserted concurrently into an
index built with concurrent updates. In realistic situations, the list of concurrent updates is likely
to be much smaller than the list of scanned entries, leading Index-C-Basic to perform better than
their index-based algorithm.

Turning to the list-based algorithm from [Moha91], the performance of their list-based algorithm
should be similar to that of our List-C-Basic algorithm. Their algorithm should perform better
than List-C-Basic, in the best case having about half of the response time of List-C-Basic, since
updaters selectively (rather than always) record updates to the update-list. Note, however, that our
list-based and index-based algorithms can also be modified to make use of a similar optimization
(as described in Section 3.7). Since we found the performance of List-C-Basic to be an order of

magnitude worse than that of the other on-line algorithms (Figures 4.1 and 4.3), their list-based

95

algorithm can be expected to perform quite a bit worse than that of the other on-line algorithms
(once they too are optimized to selectively record updates). Finally, due to the multi-phase catch-
up strategy used in their list-based algorithm, a race condition could occur if the rate of concurrent
updates to the update-list somehow happens to be higher than the rate at which the build process
can apply these updates to the intermediate index; under such circumstances, their build process
may never terminate. This problem cannot occur in the *-C-* algorithms of Chapter 3 due to the
fact that the build process and the concurrent updaters share the same index during the catchup

phase.

4.6 Conclusions

In this chapter, we have studied the performance of a collection of candidate algorithms for on-line
index construction. To aid in our study, we employed a performance metric that measures the loss
to the system due to interference between concurrent updaters and the index building process. An
important property of the loss metric is that it enables us to directly compare the on-line algorithms
with the best off-line algorithm as well as comparing them to one another.

An important conclusion of this study is that in most cases, the fully on-line algorithms (which
have no exclusive phase) perform very well and do better than the partially on-line algorithms
(which have a concurrent relation scan phase but an exclusive build phase) and the off-line algo-
rithm. In fact, even in a highly resource-bound situation, which is the worst case for the fully
on-line algorithms, some of the fully on-line algorithms were only a factor of 2 to 3 worse in terms
of loss than the best partially on-line or off-line algorithm. The list-based fully on-line algorithms
were found to perform better than the index-based alternatives overall due to the smaller overhead
that they impose on concurrent updaters. List-C-Merge, the fully on-line list-based algorithm that
uses the merge strategy, appears to be a very good candidate for use in a real system.

An interesting avenue of future work is to extend our on-line index construction strategies to
work for indices other than B-tree indices. Most of the work in such extensions will likely involve the
development of efficient strategies for combining the scanned entries with the concurrent updates.
(We found that the merge strategy was efficient in B-trees for combining the scanned entries with
the concurrent updates, but this may not be the case for other indices like a hash index.) The
concurrency control techniques employed in our index construction algorithms should be directly
applicable for the on-line construction of other types of indices. In fact, the techniques that we have
used to design on-line index construction algorithms are sufficiently general that applying them to

the problem of executing long-running queries in a DBMS gives rise to a new, highly concurrent

model of query processing. This is the topic of the next chapter.

96

Chapter 5

Compensation-Based On-Line Query
Processing

5.1 Introduction

As we have seen in earlier chapters, one implication of completely on-line operation is that main-
tenance operations like checkpointing, index management, and storage reorganization have to be
performed concurrently with normal database access and updates. Since it is inevitable that com-
mercial database systems will have to implement such on-line utilities in the near future, primitives
are bound to appear in these systems to enable such on-line operation. In this chapter, we show
how the same primitives that are required for on-line utilities can be used to provide a new, highly
concurrent way of executing long-running queries.

We first recall our earlier discussion in Chapter 1 on why long-running decision support queries

like the following cannot be executed satisfactorily by current conventional DBMSs.

Q1: Suppose an auditor of a company wants to know the average salary of all of the employees
of the company. Assuming the existence of a relation called EMPLOYEE with a SALARY
attribute, the SQL form of the query is given below.

SELECT AVG(SALARY)
FROM EMPLOYEE

We explained in Chapter 1 that the only on-line way of executing a query such as Q1 in a typical
commercial DBMS is to use a lower degree of consistency (like cursor stability [Gray79]), therefore
obtaining only an approximate (non-serializable) answer. Any attempt to obtain a serializable

answer for such queries is likely to have an unacceptable impact on system performance.

97

98

Apart from the simple query that we have used as an example, many other types of large
queries on single or multiple base relations suffer from similar concurrency problems. In order to
execute such queries more concurrently yet serializably, it turns out that we can use the techniques
developed for the on-line index construction algorithms of Chapter 3. In this chapter, we adapt
and extend the techniques used for on-line index construction to process queries like Q1, as well as
more complex queries, in a correct (i.e., serializable) and efficient manner.

Our new method of query processing is on-line, i.e., it allows updates to be performed on base
relations while those same relations are being concurrently accessed by queries. Moreover, our
method is compensation-based, i.e., concurrent updates to any data participating in a query are
communicated to the query’s on-line query processor, which then compensates for the updates
so that the final answer reflects any changes that they cause. Our compensation-based on-line
query processing method requires the addition of only a few new primitives to the system, and
the required primitives are similar to those required for supporting on-line index construction and
other on-line utilities.

The test of the chapter is organized as follows: In Section 5.2, we review the basic features of
an efficient on-line index construction algorithm and explain which are useful for compensation-
based query processing. In Section 5.3, we describe the basic ideas underlying the proposed query
processing method. Section 5.4 explains how our compensation-based method can support the
execution of a number of single relation query types. In Section 5.5, we describe how the method
can be used to process queries on more than one base relation. Section 5.6 deals with implementation
issues arising in the design of the proposed approach, and Section 5.7 discusses how compensation-
based query processing could be used to compute queries whose answers are transaction-consistent
as of some pre-specified time. Section 5.8 compares and contrasts our work with other related work.

Finally, in Section 5.9 we summarize the results of this chapter.

5.2 On-Line Index Construction

Before we describe our new query processing method, we first briefly review the features of the best

on-line index construction algorithm (List-C-Merge of Chapter 3).

5.2.1 Algorithm Overview

In an on-line index construction algorithm, the index is built by a build process while updaters can
concurrently modify the data on which the index is being built. The concurrent execution of the

build process and update transactions in the on-line index construction algorithm of interest here

99

is illustrated in Figure 5.1.

Index construction proceeds in three phases, as shown in the figure. In the first phase, the
scan phase, the build process scans the relation page by page to collect <key, rid> entries to add
to the index. While reading a relation page, the build process holds a short-term exclusive latch
on that page. After scanning the entire relation, the build process sorts the index entries that it
has collected. Meanwhile, an updater that finds an index building process in the scan phase will
append an index update of the form <key, rid, insert /delete> corresponding to its relation update
to the update-list (Figure 5.1). Updater appends are synchronized via a short-term exclusive latch
on the update-list. The scan phase ends when the build process has finished sorting the scanned
entries.

In the second phase of index construction, the build phase, the build process combines the
entries in the update-list from the end of the scan phase with its initial sorted list of scanned
entries. It does so by first sorting the update-list entries and then building an intermediate index
(in a bottom-up manner) by merging the sorted scanned entries with the sorted update-list entries.
The entries in the update-list have enough information, and the logic involved in sorting and
merging is sophisticated enough, to resolve inconsistencies that may exist in the scanned entries
due to the non-2PL locking strategy used by the build process to scan the relation. The type of
inconsistencies and how they are resolved is explained in Section 5.2.2.

As in the earlier scan phase, update transactions append their updates to an update-list during
the build phase; this update-list is distinct from the one used in the earlier scan phase and is
initialized to empty at the start of the build phase. The build phase ends when the build process
completes the construction of the intermediate index.

In the third and final phase of index construction, the catchup phase, the updates in the update-
list from the end of the build phase are incorporated into the intermediate index from the end of the
build phase. Since the details of this phase are not essential for understanding compensation-based

query processing, we omit the review of the catchup phase details here.

5.2.2 Inconsistencies and Their Resolution

Since the build process does not use 2PL on the tuples that it scans, the set of entries obtained by
the build process at the end of the scan phase is likely to differ from the actual state of the relation at
the end of the scan phase. For example, a relation tuple may have been updated after its state was
copied by the build process in the scan. Also, additional tuples may have appeared (or disappeared)
on pages of the relation behind the current scan position of the build process. Deviations of the

scanned state from the actual state, like the two cases above, are called inconsistencies and are

Time Time
Scan Relation Update Transaction
(7)) Sorted (key, rid) pairs U
(- -HI -
=
/
/Sort
0 NN | ypdate Transaction
T O / Sorted
- Merge Update-List #1 Add To Index
8 & I r@_ ‘ o Uate—List #2
l _ Sort
Make Available e
To Updaters L@' {23 B3 Sorted
" Update-List #2
o} i
_::“ 8 Sequentially Insert
O
o Update
oo Transaction
Add To Index

Figure 5.1: On-Line Index Construction Algorithm (List-C-Merge)

100

101

corrected by sorting and merging the scanned entries and the update-list.

The logic needed in the sort and merge steps of the build phase to resolve inconsistencies can
be understood by noting the following fact. Since the update-list is actually a sequence of updates,
only the last entry (insert or delete) for a given (key, rid) pair determines if this (key, rid) pair
should be present in the merged output. During the sorting of the update-list, all entries except the
last one for a particular (key, rid) pair can therefore be discarded. In order to be able to identify
the last entry for a (key, rid) pair during sorting, one either has to use a sort that preserves the
same input order for duplicates or else tag the update-list entries with a timestamp field and sort
duplicates based on this field. After sorting, the following actions are taken during the merge in

order to remove inconsistencies:

1. If the sorted scanned list contains a particular (key, rid) pair, and the last entry in the

update-list is a delete, this (key, rid) pair is omitted from the output of the merge.

9. If the sorted scanned list does not contain a particular (key, rid) pair, and the last entry in

the update-list is an insert, this (key, rid) pair is included in the output of the merge.

3. If the sorted scanned list contains a particular (key, rid) pair, and the update-list has no entry

for this (key, rid) pair, then the (key, rid) pair is included from the output of the merge.

Performing sorting and merging in the above manner ensures that the intermediate index at the
end of the build phase reflects the relation’s transaction-consistent state as of the end of the scan

phase, as described in Chapter 3 (and proven in the Appendix).

5.2.3 Generalization

Compensation based query processing uses techniques from the on-line index construction algorithm
to evaluate queries in a manner that makes them serializable with other transactions in the system.
In the case of index construction, it is necessary to fully catch up with the activity that is going
on in the database; hence the need for the catchup phase in Figure 5.1. As we shall illustrate in
the next section, however, for query processing purposes it is likely to be acceptable to stop with
a prior serializable execution state (even though it may not be current at the time the answer is

returned to the user).

5.3 Compensation-Based Query Execution

In this section, we shall illustrate the general principles of the compensation-based query processing

method. In this approach, a query process executes the query on a relation while transactions

102

updating the same relation are allowed to execute concurrently. The query process here is analogous
to the build process that builds the index in an on-line index construction algorithm. The query
process executes in two phases, the scan phase and the compensation phase. The behavior of the
query process and update transactions is illustrated in Figure 5.2. The specific actions of the query
process and update transactions in Figure 5.2 are for a query that computes a transaction-consistent
copy of a full relation. We will later show how these actions can be modified and, more importantly,
suitably optimized for the efficient execution of more complicated queries.

During the scan phase, the query process scans the relation’s tuples one-by-one to collect the
information (from values of the tuples’ attributes) necessary for the execution of the query!. During
the scan, the query process locks a tuple in Share mode only while the tuple is being read, using
the same mechanism that is used in cursor stability [Gray79]. For each tuple it encounters in the
scan, the query process extracts the data that it needs for query execution. Depending on the type
of query being executed, this data is either stored as is for later processing, or it is pre-processed
using a function and the result of this function is stored. In addition, for certain queries (including
the consistent-copy query illustrated in Figure 5.2), an associated tuple-id that uniquely identifies
the tuple from which the data was extracted will be stored along with the data. These tuple-ids
can be either logical or physical, and they can be re-used; the only requirement is that no two
tuples present in the relation at a particular instant can have the same tuple-id, i.e., the tuple-id
has to be an internal or external key for the relation. If the attributes needed for query processing
already contain a key, we can choose to use that key for identification purposes instead of storing
an additional tuple-id field.

During the scan phase, transactions that update the relation being queried perform a special
action for every tuple (of this relation) that they update. This action can be as simple as appending
the updated tuple to an update-list along with an associated tuple-id (in the case of the consistent-
copy query), or it can be something query-specific like maintaining aggregate information. For ease
of discussion, we assume that transactions collect all of their updates and perform the associated
special actions in a critical section at commit time. This assumption is rather restrictive, so we
will later show how to achieve the same logical effect while allowing transactions to execute their
special actions as their updates occur.

If entries are added to an update-list, the update-list entry for a tuple update contains the type

11t should be noted that this scan does not necessarily need to be a simple relation-scan; other efficient access
paths may be used as well to perform the scan. For example, if a suitable index exists that matches a predicate in
the query [Seli79], an index scan can be used to efficiently retrieve only those tuples from the relation that actually

satisfy the predicate.

103

Time Time
l A
Scan Relation . 1
e Relation Scan or Update Transaction
s Clustered Index Scan Appe nd
»n ..., uple—id, insert]

‘ ... tuple-id] ‘ [
Fﬂm‘m ple-t o pdate_matrg_..._g_g [-.., tuple—id, delete]
t

Sort (if Necessary) Sort
g (BY tuple-id) ‘ (BY tuple-id)
&4 l--dHD ==t
C o \ /
Q O
Q. ol
=] Merge (See Tex)
Q Transaction-Consistent
(&) Answer To Query

e RO i

Note : Specific Actions Shown Are For Consistent-Copy Query

Figure 5.2: Compensation-Based Query Execution

of update (insert or delete?), the values of the attributes that are relevant to the query, and an
optional tuple-id. At the end of the scan phase, the update-list therefore contains a record of all
relevant concurrent updates that occurred during the scan phase. The scan phase ends when the
query process finishes scanning all of the relation’s tuples.

At the end of the scan phase, the query process enters the compensation phase. In this phase,
the query process combines the results from its scan with the changes stored in the update-list as
of the end of the scan phase. In order to enter the compensation phase, the query process locks
the update-list in read mode, thereby excluding update transactions from the list, and switches
the state from scan to compensation. Unlike the scan phase, update transactions can once again
behave normally during the compensation phase of query processing, i.e., they no longer need to
perform any special action when they update the relation.

In cases where the scan phase information kept by the query process and/or the update trans-
actions is query specific, then the method of combining information in the compensation phase is
also query specific. We shall see examples of such behavior in the next section. In contrast, if
both the query process and update transactions store portions of extracted tuples and associated
tuple-ids (as in the consistent-copy query of Figure 5.2), then the following strategy is used for

merging the scanned entries and the update-list: The query process first sorts the scanned entries

2A record modify is deposited in the update-list as a delete followed by an insert.

104

by tuple-id to create a sorted run. The update-list is then sorted by tuple-id to create another run.
The two runs are then merged to resolve inconsistencies like those described in Section 5.2.23. The
logic used while merging is similar to that used in the build phase of on-line index construction
(Figure 5.1). The merging logic ensures that if an entry for a particular tuple-id occurs in the
update-list, then the latest such entry is used to determine the entry that is retained in the merged
list. The merged list will thus contain a copy of the relevant information from the relation that
is transaction-consistent as of the end of the scan phase. In other words, all updates performed
by transactions that committed before the end of the scan phase are present in the copy, and no
updates of transactions that committed after the end of the scan phase are present. A proof of
this assertion follows from the proof of a similar property of on-line index construction algorithms,
described earlier.

The above strategy for sorting and merging can be optimized in two ways. First, sorting the
scanned entries can be eliminated entirely if the relation was scanned in the order of its tuple-ids.
Second, sorting can still be made very efficient if the relation is scanned in the order of some atiribute
A which is not the tuple-id. In the second case, we can first efficiently sort the scanned entries by
<A, tuple-id> (which will be efficient due to the order of scanning), also sorting the update-list by
<A, tuple-id>. A merge similar to that in Section 5.2.2 is then performed to create a transaction-
consistent copy. This strategy avoids a full sort of the scanned entries and automatically makes use
of any chosen scanning strategy. We believe that one of these two optimizations should be possible
in most (if not all) cases.

Based on the preceding discussion, one way of executing a query on a relation would be to
obtain a transaction-consistent copy of the relevant attributes of the relation and then run the
query on the copy. However, this may result in a potentially large storage overhead as well as
wasting resources for sorting and merging. We shall see in the following section that, in some cases,
it is possible to optimize the above naive strategy and execute queries much more efficiently. The
optimizations are usually related to the kind of data extracted from tuples by the query process in
the scan phase, the information recorded by concurrent update transactions, and the way in which

these are combined in the compensation phase to obtain the correct answer to the query.

3Typically, one can optimize this strategy by concurrently merging several runs in parallel instead of completely
sorting down to two runs before merging [Shap86]. We assume that this optimization will be done in any implemen-
tation, but retain the simpler description in our discussion for clarity. Similarly, for all queries, it should be possible
to execute the query itself during this final merge step.

105

5.4 Single Relation Queries

In this section, we demonstrate how SQL queries on a single relation can be efficiently executed
in our compensation-based query model. Since the compensation-based model is particularly well
suited to executing aggregate queries efficiently, we consider several examples of aggregate queries
first. Techniques for processing aggregate queries in relational database systems have been discussed
earlier [Epst79]; our work employs some of those techniques as well as extensions needed in the
context of our compensation-based model.

Aggregate queries come in two types, scalar aggregates and aggregate functions. Scalar aggre-
gates compute a single scalar value, like the aggregate AVG in query Q1 of Section 5.1. Aggregate
functions differ from scalar aggregates in that they return a set of values; the data to be aggregated
is logically partitioned by one or more attributes, and aggregation takes place within each partition.
Aggregates can also have an optional qualification that restricts the base tuples to which they are
applied. Aggregates that commonly occur in database systems include COUNT, SUM, MAX,
MIN, and AVG. The COUNT function returns the number of tuples or values specified in a
query. The functions SUM, MAX, MIN, and AVG are applied to a set or multiset of numeric
values and return, respectively, the sum, maximum value, minimum value, and average of those

values.

5.4.1 Scalar Aggregates

A scalar aggregate consists of an aggregate value and an optional qualification. The following steps

are needed for processing a general scalar aggregate [Epst79]:

1. Allocate two variables, one for storing the aggregate result and another for storing a count.

Initialize both to zero.

2. For each tuple that satisfies the qualification, update the aggregate result and increment the

counter.

As an example of computing a scalar aggregate in our model, we shall describe three ways of
executing the aggregate query Q1 of Section 5.1. This query computes the average of the salary
values over all tuples of the EMPLOYEE relation. In each approach, the scan performed by the
query can be either a relation scan or an index-only scan [Epst79].

One way to execute query Q1 is similar to the execution of the consistent-copy query of Fig-
ure 5.2, with minor differences. The query process first scans the EMPLOYEE relation collecting

[SALARY, tuple-id] pairs. During the scan phase, concurrent update transactions store entries

106

of the form [SALARY, tuple-id, insert/delete] in the update-list. In the compensation phase, the
query process sorts its scanned entries and the update-list, and then merges them to determine
the transaction-consistent value of the average salary (without explicitly storing the output of the
merge). In spite of the high concurrency achieved' this method of computing the average salary may
take much more time (due to the overhead of sorting and merging) than a conventional strategy
that locks the relation and computes the average during the scan.

The above technique can be improved upon in systems where it is possible to scan the EM-
PLOYEE relation in a pre-specified order. The order can be, for example, the order in which the
relation’s records are physically laid out on disk, or it can be ordered on the value of a particular
attribute via an index-scan. In the improved technique (given in Figure 5.3), the query process
maintains a variable called the cursor that gives the position of the last tuple that it has completed
reading. At the start of the scan phase, the query process’s cursor is positioned at the beginning
of the relation (zeroth position). After the first tuple is read, the cursor gets moved to the first
position, and so on until the end of the relation is reached. Given the current position of the
cursor and a tuple to be updated, it is therefore possible to determine whether the tuple is behind
the cursor (has already been read) or ahead of the cursor (will be read in the future). Update
transactions add entries to the update-list only for updated tuples that are behind the cursor; for
updated tuples that are ahead of the cursor, the update transaction does not add entries to the
update-list, as the query will eventually see these tuples. A similar optimization has been suggested
for on-line index construction [Moha91] as well as for on-line checkpointing of databases [Pu85]. If
updaters follow the approach just outlined, then the query process no longer has to store individual
[SALARY, tuple-id] pairs; instead it can directly compute a count and a running average value in
the scan phase itself. The update transactions store entries of the form [SALARY, insert/delete]
in the update-list, and the query process applies these entries to the average and count variables
during the compensation phase. The average value obtained is transaction-consistent as of the end
of the scan phase, just like before®.

The compensation phase in Figure 5.3 can be eliminated if update transactions are required to
directly update the average and count values maintained by the query process in the scan phase
instead of appending their updates to an update-list. Inserts cause values to be added to the
average and count variables; deletes cause values to be subtracted. ‘

The last approach to computing the average is certainly the fastest way of executing Q1. In

fact, this method has virtually the same overhead as one that executes Q1 using cursor stability,

*The proof of this assertion again follows from similar proofs for on-line index construction algorithms that are
outlined in the Appendix.

107

Time Time
v 3 .
l ﬁf;aﬁ(;?m%%%gg"o dexSen | Update Transaction
ex y Scan, etc. . . .
§ (maintain current position in cursor) Append (if tuple is behind cursor)
1mizal [SALARY, insert]
n 0 : - ‘ [SALARY, ::eslete]
Update st
[Count, %rage] ré— ’E’E
e

Apply Update-list o adg if Insert
[Count, Average] (Subtract I Delete

Transaction—-Consistent
Answer To Query

Compensation
Phase

Updated [Count, Average]

Figure 5.3: Scalar Aggregate: AVG(SALARY) of the EMPLOYEE relation

while providing an answer that is transaction-consistent. The only potential problem with this
approach is that update transactions now have to know specific details of the aggregate query
that is being executed. It might be more convenient (in terms of system implementation) to have
update transactions simply append selected attributes of each tuple (with a tuple-id, if necessary)
to the update-list, as in Figure 5.3, as such a facility may already be available in the form of
support for executing on-line utilities. Also, an important consideration is that care needs to be
taken not to increase the path length of update transactions significantly. The path length for
updaters is unlikely to increase significantly in any of the above three cases, though, as the time for
appending to an update-list or performing a few arithmetic operations should be small compared
to the execution time of a typical transaction. We will see examples later where this path length
increase is more significant.

Note that all three of the schemes described above for computing the average can also be
used to compute the sum and the count. We will now describe an efficient way of computing the
maximum (Figure 5.4). The minimum can be computed similarly. To compute the maximum, the
query process scans the relation and collects data of the form [SALARY, tuple-id] that it extracts
from the relation’s tuples. It also maintains the maximum value of the salary that it encounters
during the scan in a variable called MAX. During the scan phase, update transactions append their
tuple updates to the update-list, and they also keep track of the largest salary inserted (MAXINS)
and deleted (MAXDEL) by any transaction during the scan phase. In the compensation phase,

108

Time Time
1 W
Scan Relation
P @1 Relation Scan, Clustered Index Scan Update Transactlon
8 g Index Only Scan, ete. Append
£ [SALARY, tuple-id, inseri]
70y [SALARY mple-ld \M\AX ™ S ;4/131,]\ § ALARY mEIe-ld , delete]
* / Update-List
Sort \ / (By tuple-id)
o (By tuple-id) Sort ®y e
o ‘ Step 1 and Step 2 ‘
=
§ & ri---Hm Maximum = EE
g- o, Step 3: only if
ep 3: only i
o) Steps 1 and 2 fail Merge
o l Transaction—-Consistent
Answer To Query
Maximum

Figure 5.4: Scalar Aggregate: MAX(SALARY) of the EMPLOYEE relation

the query process first performs an optimistic check to see if the correct maximum can be found
without actually scanning the update-list. The query process executes the following three steps in

order:
1. If MAX is larger than both MAXINS and MAXDEL, then MAX is the desired maximum.

2. If MAXINS is larger than both MAXDEL and MAX, then MAXINS is the desired maximum.

3. If neither of the above conditions hold, then the scanned values and the update-list are sorted

and merged to find the correct value for the maximum.

This strategy will perform well if step 3 (which is expensive) is executed rarely compared to steps
1 and 2 (which are inexpensive). This is likely to be the case, as the odds of the maximum value
being deleted from a relation during a scan is presumably low. Furthermore, the above strategy
is easily modified to further reduce the probability of executing step 3 by maintaining the top few
values of the data (along with their tuple-ids) both during the scan and during appends to the
update-list. Steps 1 and 2 now become more complicated, but are still quite inexpensive, and the
probability that all of the top values will be deleted during the scan (necessitating step 3) becomes

extremely low.

109

5.4.2 Aggregate Functions

Aggregate functions are normally applied to subgroups of the tuples in a relation based on certain
attribute values, as specified by the query’s BY-list. SQL has a GROUP BY-clause for this
purpose. Aggregate functions require the maintenance of an aggregate value, a count field, and the
actual BY-list attribute value for each different value of the BY-list attribute. There are two basic

algorithms that are commonly used to compute aggregate functions [Epst79]:

1. The first technique scans the base relation, maintaining a temporary relation which has
attributes for the count field, the aggregate value, and the BY-list attribute value. When a
tuple is scanned from the base relation, the query process updates the aggregate and count
values of the tuple in the temporary relation whose BY-list value matches the BY-list value of
the scanned tuple in the base relation. If an appropriate tuple does not exist in the temporary
relation, a new one is created. When the query process finishes scanning the relation, the
temporary relation will contain one tuple for every different BY-list value encountered in the

scan.

2. An alternative processing strategy for computing the aggregate function is to first project the
base relation on the needed attributes and then sort the result on the BY-list (not removing
duplicates). The final merge of the sort can easily produce the aggregate value required since

all of the entries encountered are clustered on their BY-list values.

Which of the above techniques is better depends on the number of distinct values in the BY-list of
the query being executed. For a small number of values in the BY-list, the first method is likely to
be more efficient, while the sort-based method is likely to be superior for handling many BY-list
values. We now consider an example query that uses aggregate functions and show how such a

query can be computed in our compensation-based model.

Q2: For each department, retrieve the department number, the number of employees in the de-

partment, and their average salary.

SELECT DEPT.NO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT.NO

The compensation-based execution of query Q2 using method 2 above is a modification of the

strategy for the consistent-copy query (Figure 5.2). In the scan phase, the query process stores

110

Time Time

Scan Relation .
Relation Scan, Clustered Index Scan Update Transaction

Index Only Scan, etc. Append (if tuple is behind cursor)

g (maintain current position in cursor)
- t'\o\'\ [DEPT _NO, SALARY, insert]
optimize [DEPT NO, SALARY, delete]

Temp{DEPT] NO, AVERAGE, COUNT] B Bluvpaate-List

[
9
©
- Add If insert
2 % Ap ly Update-List (ai 5t Deteto)
« emp
O O
g— o
(o) Transaction—-Consistent
(&) Answer To Query
Output Temp[DEPT _NO, AVERAGE, COUNT]

Figure 5.5: Aggregate Function: AVG(SALARY) GROUPED BY DEPTNO

entries of the form [SALARY, DEPT-NO, tuple-id], while update transactions append similar
entries with an additional operation-type field to the update-list. In the compensation phase, the
query process sorts both the scanned entries and the update-list by <DEPT.NO, tuple-id> to
create two sorted runs. It then merges the runs, removing possible inconsistencies caused during
scanning, and computes the average salary and count values grouped by the values occurring in the
DEPT_NO field (without actually storing the final merged list). Sorting by DEPT.NO makes it
efficient to calculate the answer during the final merge, and merging based on both DEPT_NO and
tuple-id, using logic similar to that in Section 5.2.2, still creates a transaction-consistent answer.
We can execute query Q2 more efficiently using method 1 above given the availability of cursor-
based scanning (as illustrated in Figure 5.5). The query process now forms a temporary relation
whose tuples are of the form [DEPTNO, Count, Average] by scanning the base relation and
operating on the temporary relation in the manner described earlier. When the query finishes
scanning the relation, the temporary relation will have one tuple for every different DEPT_NO
encountered in the scan. Concurrently, update transactions add entries of the form [DEPTNO,
SALARY, insert /delete] to the update-list. In the compensation phase, the query process applies
the entries in the update-list to the temporary relation. Inserts in the update-list cause values to be
added to the salary and count attributes of the appropriate tuple in the temporary relation, while
deletes cause values to be subtracted. When all values in the update-list have been applied to the

temporary relation, it contains the relevant average and count values for the various departments.

111

In both of the compensation-based methods described above for executing Q2, update trans-
actions append entries to an update-list. There is a third strategy possible in which update trans-
actions would directly operate on the temporary relation used by the query process rather than
the update-list. (This is indicated in Figure 5.5 as a possible optimization.) In this strategy, the
compensation phase would involve no action at all by the query process. However, a possible draw-
back of this strategy is that inserting into a temporary relation might increase the path length
of update transactions significantly, unlike the fast appends and arithmetic operations that were
used in the optimizations for earlier queries. Increasing the overhead for update transactions can
cause a significant drop in performance, as illustrated by our study of on-line index construction
algorithms, so one has to be very careful in choosing the sort of special actions that can be required

of update transactions.

5.4.3 Aggregates with Predicates

Typically, a query in a database system has certain predicates applied to its input and/or out-
put that limit the tuples that are needed to execute the query. Two methods of specifying such
predicates in SQL involve the WHERE and HAVING clauses. OQur method of query execution
handles such selection predicates by using filters. Typically, predicates specified in the WHERE
clause can be evaluated on individual tuples and are thus implemented by input filters, while pred-
icates specified in the HAVING clause can only be evaluated after processing the query and are
therefore implemented via output filters.

To execute a query with a WHERE-clause, an input filter is applied to the entries scanned by
the query process. This filter only lets through those tuples that satisfy the condition(s) specified in
the WHERE-clause. Of course, further optimizations can be applied in the initial scan if an index
that matches a predicate [Seli79] exists on an attribute. For example, an index on the SALARY
attribute matches the predicate (SALARY > 40,000), and in the presence of such a predicate in
the WHERE-clause, an index on SALARY can be used to scan the data efficiently. Furthermore,
given that the leaf page of the index stores [SALARY, rid] pairs, the relation does not have to be
accessed at all; an indez-only scan is sufficient [Epst79]. (Note that the rid will be used to lock the
tuple while its SALARY attribute is being read from the index in this case.)

Concurrent update transactions can either be required to apply the filter as well, thereby re-
stricting their appends to the update-list, or they can simply append all of their updates to the
update-list and have the query process apply the filter to the update-list in the compensation phase.
As before, the trade-off here is between increasing the path length of updaters and increasing the

overhead for the query process in the compensation phase. Testing a filter with a long string

112

Time ‘ Time

Scan Relation .
(maintain current position in cursor) Update Transaction

Use Index on SALARY Append (if tuple is behind cursor)

TR * [DEPT_NO, SALARY, Insert]
opt\m\za‘ [DEPT_NO, SALARY, delete]

Temp[DEPT \NO, COUNT] r%y‘%’éu;»date—ﬁat

—List;Add If Insert
?‘Y Update-List | g08 L 05 Deteto)

Phase

Output Filten (COUNT.».10).

Transaction—-Consistent
Answer To Query

Output Temp[DEPT_NO, COUNT]

Compensation

Figure 5.6: Filters: SELECT and HAVING clauses

of predicates may be expensive, and this may cause an unacceptable increase in path length for
updates, in which case it is probably best left for the query process to do.
In order to tie together all of the ideas discussed this far, we will demonstrate how to execute

the following query using the techniques discussed in this section.

Q4: What are the department numbers in which there are more than 10 employees, each of whom

earns more than 40K, and how many such employees are there in each such department?

SELECT DEPT.NO, COUNT(*)
FROM EMPLOYEE

WHERE SALARY > 40,000
GROUP BY DEPT.NO

HAVING COUNT(*) > 10

The compensation-based execution of this query is shown in Figure 5.6. Note that the index
available on the SALARY attribute is used to speed up the scan of the query process. Notice also
that the conditions in the WHERE-clause are on individual tuples, while the conditions in the
HAVING clause are on whole groups. The filter to check the condition in the HAVING clause

thus comes after the grouping has been done and the aggregates have been computed.

113

5.4.4 General Single Relation Queries

In our discussion thus far, we have shown how aggregate queries on a single relation can be executed
efficiently in the compensation-based model. These are the sorts of queries that often suffer from
inefficient execution in current database systems, as described in Section 5.1, and the compensation-
based model provides a cost-effective and low-interference alternative for obtaining transaction-
consistent answers for these queries. The model itself is more general, however, and can also be
used to improve the performance of non-aggregate queries. Consider the following simple query

that selects a subset of the tuples in the EMPLOYEE relation:

Q4: Find the names and salaries of all employees who earn more than 40K. The result should be

sorted by employee names.

SELECT NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > 40,000

ORDER BY NAME

If no index exists on the SALARY attribute, the way that most current database systems would
execute this query is to first lock the EMPLOYEE relation in Share mode, then scan every tuple of
the EMPLOYEE relation, retaining only tuples that satisfy the condition (SALARY > 40,000) in
the answer. After the relation has been scanned, the resulting tuples are sorted, and the Share lock
is released before the results are presented to the user. (Note that the Share lock could actually be
released before sorting.) Locking the EMPLOYEE relation during the scan causes a long waiting
period for update transactions, leading to reduced concurrency, as for the aggregate queries earlier.
And, as was the case there, we can instead execute Q4 using the compensation-based model to
improve concurrency.

Executing Q4 using the compensation-based approach would work as follows: During the scan
phase of query Q4, the query process collects entries of the form [NAME, SALARY, tuple-id]
from those EMPLOYEE relation tuples with salary > 40K. Either a relation scan or an index
scan (e.g., if a clustered B-tree index exists on the salary attribute) can be used for this purpose.
Meanwhile, update transactions add entries of the form [NAME, SALARY, tuple-id, insert/delete]
to the update-list. In the compensation phase, the query process first sorts each list on <NAME,

tuple-id>% to create two sorted runs. Finally, the two runs are merged to generate a transaction-

5This sorting strategy is chosen because of the condition in the ORDER. BY-clause.

114

consistent answer. The final output of the merge is a set of tuples of the form [NAME, SALARY],
ordered by NAME, as required by the query.

The compensation-based method can also be used for computing the projection of a relation on
a subset of its attributes, and in fact query Q4 has already illustrated this point. The basic idea
is to scan the relation, retaining only the projected attributes along with a tuple-id. Concurrent
update transactions deposit their (projected) tuple updates into the update-list along with a tuple-
id. In the compensation phase, as usual, the query process sorts the two lists by tuple-id and then
merges them to create a transaction-consistent projection.

To summarize, in this section we have shown how the compensation-based model can be used
to improve the performance of single-relation queries that would otherwise have to lock massive
portions of a relation in order to provide transaction-consistent answers. We now extend our
techniques to compute results for more general relational queries, including queries on multiple

base relations.

5.5 Join Queries

A join query is a complex query that is (usually) defined on multiple base relations. In addition, it
may be nested, and the same relation may occur several times in different roles within the query. A
simple but not very efficient way of executing any complex query in the compensation-based model
is to first obtain transaction-consistent copies of the various base relations, and then execute the
query on these copies. To execute complex queries more efficiently than this, we can integrate the
process of producing a transaction-consistent copy of a base relation more tightly with the execution
plans generated by the relational query optimizer. This is the strategy that we will use to execute
join queries. A third strategy that could be considered for compensation-based query execution
is one that actually executes the query on the base relations during the scan phase, obtaining an
answer that is not necessarily transaction-consistent. In the compensation phase, one would then
try to get a transaction-consistent answer by applying the update-list to the intermediate answer.
This third strategy has characteristics similar to keeping materialized views up-to-date when the
base relations are updated [Blak86a, Blak86b]; this is a hard problem for arbitrary join queries,
even when an initial transaction-consistent copy of the view exists, so we will not consider the third

strategy further.

115

5.5.1 Optimizing Compensation-Based Queries

While executing complex queries in a compensation-based manner, certain query optimization tech-
niques carry through with minor modifications from conventional query processing. One standard
query optimization strategy that is virtually always beneficial is pushing applicable selects and
projects through to base relations so that they can be evaluated before joins. In the scan phase,
the query process can easily be made to apply selection conditions on tuples and project out un-
necessary attributes as it scans the base relations. Furthermore, applying optimizations like using
an index to evaluate a predicate efficiently can be easily incorporated into the scan, as illustrated
in Figure 5.6 for query Q4.

Update transaction behavior during complex queries is quite similar to that in the single relation
case, except updates to any of several relations must now be recorded. Updaters can either append
their tuple updates into one common update-list or into several update-lists (with one for each
base relation). Using one list simplifies the special action code in update transactions, slightly
increasing the overhead of the query process in the compensation phase (as the list then has to be
decomposed into separate lists for the various relations). In our discussion, we will assume that
update transactions append to several update-lists, each corresponding to a base relation. Whenever
selects and projects are done by the query process during scanning, either the update transactions
can also apply the input filters to restrict the tuples that are appended to the update-lists during
the scan phase, or they can simply append all base relation tuple-updates to the update-list and
let the query process apply the input filters in the compensation phase. Which approach is better
is likely to depend mainly on the path length impact for update transactions caused by filtering,
rather than on the increase in overhead for the query process, as the update-list for a relation should
usually be small compared to the size of the relation and applying filters in the compensation phase
should not cause a significant increase in elapsed query time.

Given a join query, the query optimizer generates a plan that specifies the join order, the join
method for each individual join, and the selects and projects that have to be done at various
stages. It is clear how to perform joins in the order specified in the plan, and it is also clear how
to perform selects and projects at various stages of the query. What is not obvious, given a join
method, is how to efficiently compute that particular join in a transaction-consistent manner under
the compensation-based query execution model. The types of joins that are most commonly used
in database systems are the nested loops, sort-merge, hash, and indez join methods. We shall first
consider how to efficiently join two relations R and S (where R is smaller than §) using each of

these join methods in the compensation-based model, and we will later describe how a sequence

116

of joins can be computed through repeated applications of the basic method. In the following
discussion of join methods, assume that the query process always stores an associated tuple-id with

the data read during its scans.

5.5.2 Nested Loops Join

Nested loops is sometimes used when the smaller of the two relations to be joined, in this case R,
fits in memory. In the basic nested loops method, R is read into memory. § is then scanned and,
for each tuple in S, all of the tuples that it joins with in R are found (by scanning R in memory)
and the result tuples are produced.

In the compensation-based nested loops join method, unlike the basic strategy, the join cannot
be performed while scanning S during the scan phase; this is because we need to combine the
scanned entries with the corresponding update-list, which can only be done in the compensation
phase. Thus, to execute a nested loops join in the compensation-based model, the query process
first scans R and § and collects two unsorted lists of R and S tuples, called R, and S, respectively.
Recall that in order to create transaction-consistent copies, Rs and S; have to be merged with the
corresponding update-list entries for R and S. After accommodating Rs in memory, if there is
enough space to construct hash tables in memory for the update-list entries for R and 5, we can
perform the join with little extra overhead as follows: At the beginning of the compensation phase,
two hash tables on tuple-id are created in memory, one for the update-list of R (Hg) and another
for the update-list of S (Hg). In these hash tables, only the latest entry for each tuple-id (insert
or delete) needs to be retained (for the same reason stated in Section 5.2.2).

After the hash tables Hg and Hpr have been populated, R, is read into memory. As soon as a
tuple of R, is read, Hp is probed to find out if the latest entry for this tuple’s tuple-id is a delete. If
so, the tuple is discarded; if not, it is retained. The first time a tuple’s entry in Hp is accessed, it is
marked as having been used. After all of R has been read into memory, there may be entries in Hg
that were not used during the scan of R,. If any of these entries are inserts they should be added
to Rs, as such tuples must have been added to the relation behind the query process’s scan of R
(i.e., they were not seen by the query process). After R; has been completely loaded into memory,
the stored list of S; tuples is then scanned. A tuple from S, is joined with R only if there is no
delete entry for it in Hg. Also, after all tuples of S; have been processed, the unaccessed insert
entries in Hg must be joined with the in-memory relation R,.

This method of executing a nested loops join requires one extra read and write of R and §
(creating R, and S,) in the scan phase as compared to the conventional nested loops algorithm.

Further optimizations are possible; the extra read and write of R can be avoided if R is scanned

117

after S, and we only need enough extra memory for the larger of the Hr and Hs hash tables if Hg
is constructed after R, has been completely initialized in memory. The overhead of probing Hp
and Hg should be negligible compared to the in-memory join processing overhead, as this probing
is done exactly once for every tuple of R, and Ss. The extra overhead for computing the join in
this compensation-based manner might then be justifiable, given the added concurrency obtained
by the update transactions. As we will see next, we can do even better in case of sort-merge
and hash joins, where the cost for compensation-based execution more closely approaches that of

conventional execution.

5.5.3 Sort-Merge Join

In order to execute a sort-merge join, we extend the efficient strategy described in [Shap86]. The
first step is to scan R and S, creating sorted runs of size 2 X M where M is the size of memory in
pages. Assuming that M is at least 1/|[S]|, where [|S|| is the size of the larger relation (in pages),
the sorted runs are then merged concurrently by aﬂocatiné one page of memory to each run of B
and S and computing the join during the merge. If M < V1IS]], some of the R runs are merged
among themselves and some of the S runs are merged among themselves until the number of runs
is small enough for a final one-pass merge of all remaining runs of R and § to compute the join.

In the compensation-based model, the query process scans R and § and creates a set of sorted
runs R, and S, just like the basic sort-merge join strategy. During the sort, however, tuples with
the same join attribute value are further sorted by tuple-id. The query process then enters the
compensation phase, where it begins by creating similarly sorted runs for the update-lists of R and
S. At this point we now have four sets of sorted runs, R,, Ss, and the runs from the update-lists
for R and S. Let us assume that the number of pages in memory is larger than the total number
of runs. (This is probably a reasonable assumption given that the update-list sizes are likely to be
only a small fraction of the corresponding relations.) In this case, the runs can be merged, as in
the basic sort-merge strategy, by allocating one page of memory for each run. However, a tuple
from S is joined with a tuple from R only if the latest entries for both the R and § tuple-ids in the
corresponding update-lists are not deletes. In addition, tuples from the update-list runs of R and
S themselves qualify for the join if they are inserts that were not seen by the query process during
its scan. If the size of memory is too small to permit a one-pass merge, then the number of runs of
R, and S, can each be reduced by merging until a final merge pass is possible.

It should be noted that this strategy for computing the sort-merge join using the compensation-
based model is almost as efficient as the basic strategy, as the main extra work required is the

creation of sorted runs from the (presumably small) update-lists.

118

5.5.4 Hash Join

There are three common types of hash join: the simple hash join, the GRACE hash join, and the
hybrid hash join [Shap86]. Here we demonstrate how to adapt the GRACE hash join algorithm to
the compensation-based model. The GRACE algorithm first scans R and partitions it into roughly
equal subsets such that the hash table for each partition of R will fit in memory. The algorithm
then scans S and creates partitions of S corresponding to those for R. Finally, each individual
partition of R is read into memory, with a hash table being constructed on its join attribute, and
the join is computed by probing the in-memory hash table with tuples from the corresponding
partition of §.

Implementing the GRACE algorithm in the compensation-based model is straightforward. The
query process scans both R and then § during its scan phase, obtaining R, and S5, storing the
necessary partitions of R, and S, during this phase. In the compensation phase, the query process
firsts scans the update-lists for R and S and partitions them using the same hash function used for
R, and S,. Then, for each partition of R,, the query process starts by reading the corresponding
partition of the update-list of R into memory and constructing a hash table using its entries. The
query process then scans the partition of R, itself and continues building the hash table with entries
from R,; tuples of R, are discarded whenever a delete entry is encountered in the hash table. After
completing the hash table on the current partition of R, the build-process scans the corresponding
partition of the update-list of S and builds a hash table Hg based on its entries. (It is assumed
that Hg also fits in memory.) The join is then performed by scanning the relevant partition of S;;
before probing the hash table of R, with an S, tuple, however, Hg is probed to see if there is a
corresponding delete entry. Finally, after all tuples in the partition of S have been exhausted, any
remaining unaccessed insert tuples in Hg must be joined with the current partition of R,. This
process is repeated to join each partition of R and S.

As was the case for sort-merge join, the compensation-based GRACE hash join algorithm has
nearly the same cost as the basic GRACE algorithm. Creating hash partitions for the update-lists
is not likely to add much overhead, as these lists are likely to be small. It should be noted that
the techniques used for GRACE can be adapted to implement the simple and hybrid hash join
algorithms as well. However, when implemented in the compensation-based model, these later
two algorithms will require some extra reading and writing of (at least one bucket of) the base
relations as compared to their conventional counterparts. This is due to the same reason as in the
nested loops join method, i.e., because no join output can be generated during the scan phase of

compensation-based query processing.

Time Time
da Scan
Base Update Transaction
Relations Append
£ § I
8 « Fllters Relations [oee tuple..ld’ insert]
7] f[.,tuple_ld P:;f:}::;g:essed [, tuple—~id, delete]
g m ?“ﬁ? ;5;%
l l }.@deate-—Listsd
Treé—processe
@Eﬁ For Jl:)ins
c g
0
chuad
a &4
£ @
Q O
Q.0
g Execute Query Plan
(&)
Output
Filters
Transaction-Ceonsistent Answer

5.5.5 Index Join

Figure 5.7: Complex Query Execution

119

In a conventional index join, for each tuple in R, an index existing on the join attribute of S is

used to efficiently extract tuples from S. This type of join is usually chosen when R is quite small

(as otherwise the implied index 1/0, especially if the index in unclustered, is too costly). Due to

the fact that the scanning of one relation (§) is dependent on data from another relation (R), and

that both relations are being updated simultaneously, it appears difficult to efficiently adapt the

index join method to the compensation-based query execution paradigm. Fortunately, the lack of

index join support is unlikely to matter all that much for the kind of long-running queries that are

likely to benefit from our compensation-based model. This is because, as mentioned above, index

joins are primarily used when the join selectivity and the number of tuples in R are both small.

Such conditions are more likely to arise in conventional short-duration queries than they are in the

longer queries that compensation-based query processing is intended to help with.

120

5.5.6 Multiple Joins

In the discussion so far, we have described how to execute two-way joins using various join methods.
The generalization to many-way joins is straightforward. During the scan phase, all participating
relations are accessed (Figure 5.7). Depending on the join order and the join methods of the
various relations in the query, the outcome of scanning will vary. For example, if a relation is to
take part in a sort-merge join, then its sorted runs are created while it is being scanned. If it is
to take part in a GRACE hash join, it is partitioned into buckets based on hashing during the
scan phase. In the compensation phase, the query process will process each relation’s update-list
according to the type of join that the corresponding relation is taking part in. Intermediate join
results can be handled just as in conventional query processing, as these results are guaranteed to

be transaction-consistent.

5.6 Implementation Considerations

As we mentioned in Section 5.1, executing queries in the compensation-based model requires certain
special capabilities to be present in the DBMS for handling the query process and any update
transactions that affect its data. Update transactions have to be aware of the presence of any
compensation-based queries and must take appropriate actions when updating their data. The
required state information can be placed by the query process in the system catalogs, where update
transactions generally go to find information about auxiliary data structures like indices that they
are required to update along with the data. (The update-list can be added as just another auxiliary
data structure in the catalog entry corresponding to the relation to be updated.) In some current
DBMSs, the system catalogs are not accessed by transactions at run time; in such systems a special
data structure will have to be implemented for this purpose.

There is an important performance issue pertaining to the time when an update transaction
should execute its special code for each update. We assumed earlier that this is done at commit time,
but this would mean that transactions have to save a list of all of their updates until commit time.
This is probably an unreasonable requirement and may be unenforceable in practice. Fortunately,
equivalent behavior can be obtained by implementing the update-list much like a log. Transactions
can append their updates to the update-list, tagged with their transaction id, at the time when
they actually update the data. In addition, at commit time they should append a commit or abort
record. In the compensation phase, the query process can now analyze the update-list to determine
which of the updates are committed and which are aborted (or incomplete); the query process

will eliminate the updates of all but the committed transactions from the list and then proceed

121

as before. This log-like approach works in the case where an update-list is actually maintained,
but there is a slight problem if updaters operate on variables instead. For example, consider the
optimized version of the query for computing the average (Figure 5.3), where update transactions
directly update the average and count variables as they update relation records. In this case, they
will have to do the corresponding inverse operations if they abort, and the query process will have
to wait in the compensation phase for all running transactions that have updated the average and
count values to either commit or abort.

In our discussions thus far, we have assumed that the query process executes under cursor
stability (also called level 2 consistency) [Gray79], in which case it reads only committed data
from other transactions. This form of execution is sufficient for producing transaction-consistent
answers, but is not strictly necessary. Recall that the build process in the on-line index construction
algorithms of Chapter 3 performed dirty reads (level 1 consistency) and yet was still able to build a
consistent index. A similar execution strategy can be used for the query process in compensation-
based query processing. If the query process performs dirty reads, in order to create a transaction-
consistent answer, it must wait in the compensation phase for all of the running transactions that
have updated the update-list (and/or other query-specific information) to either commit or abort.
In other words, the query process will serialize itself after all transactions whose dirty data it could
have read, thus ensuring that its results are transaction-consistent.

Finally, given a query, the compensation-based query processor has to optimize the query and
then execute it according to the optimized plan. The optimizer will need to use slightly different
cost models for compensation-based plans, as the costs of certain joins (e.g., nested loops) are
somewhat higher in this model. Also, some conventional execution plans (e.g., index join) are not

available for compensation-based query processing use.

5.7 Pre-Specified Time Queries

In transaction processing applications, there is sometimes a need to run a class of queries whose
results are valid as of some pre-specified time. For example, banks periodically mail out statements
to their customers that contain records of all transactions that took place on the customer’s accounts
during the preceding period. Companies take stock of their inventories periodically when they
need to know exactly what items they have in stock. All organizations have a yearly audit when
a balance-sheet of all of their activities for the year are listed and accounted for. Typically, these
activities are done on a certain fixed day of the month or year. With DBMSs being widely used

for record-keeping, the above examples translate into queries over on-line databases. An example

122
of a time-based query is given below.

Q5: Print the names and salaries of all employees of the company (ordered by salary) as of the
end of the year, 1991. The required answer can be obtained by running the following SQL
query on the system, with the restriction that the answer obtained be transaction-consistent

as of midnight on December 31, 1991.

SELECT NAME, SALARY
FROM EMPLOYEE
ORDER BY SALARY

Interestingly, it turns out that compensation-based query processing can be used to execute such
queries efficiently. In order to understand how this is possible, recall that the answer obtained for
a query in the compensation-based model (Figure 5.7) is transaction-consistent as of the end of the
scan phase. In all of the examples thus far, we have assumed that the scan phase ends as soon as
the query process finishes scanning the base relation(s) used in the query. (This is certainly the
best way to execute a normal query as soon as possible.) To execute a query whose results are valid
as of some pre-specified time, however, we can force the end of the scan phase to occur at the time
specified in the query. On completing the scan of the base relation(s) in the scan phase, the query
process can then simply wait until the pre-specified time before switching to the compensation
phase. In order for this strategy to work, the query process has to ensure that its scan of the
relations is completed by the pre-specified time; this can be done by starting the query sufficiently
far in advance of that time. The above strategy can also be optimized further: Instead of waiting
from the end of the scan phase until the time pre-specified in the query, the query process can also

perform some or all of any pre-processing that it needs to do on the scanned data.

5.8 Related Work

The work that is most closely related to compensation-based query processing is the work on on-line
indez construction algorithms in Chapter 3 of this thesis and [Moha91]. In fact, it was our work
on techniques for incrementally building an index that led us to discover the techniques described
in this chapter. Compared to that work, the method described here is more general and handles
arbitrarily complex queries. The process of scanning the base relations in the compensation-based
method is also akin to taking a fuzzy dump of the relations [Gray79]. After the dump is taken, the
log generated during the fuzzy dump is merged with the fuzzy dump to produce a sharp dump.

123

This is quite similar to the way that queries execute in the compensation-based model in order to
generate transaction-consistent answers.
Concurrency control algorithms based on transient versioning (e.g., [Chan82,

Agra89, Bobe92]) are also related to compensation-based query processing. In transient version-
ing algorithms, prior versions of data are retained to allow queries to see slightly outdated but
transaction-consistent database snapshots. A transient versioning mechanism operates uniformly
on all data in the database whenever it is updated, keeping copies of each updated record or page.
In contrast, in the compensation-based model, a query (together with cooperative updaters) essen-
tially creates its own consistent version of the relevant underlying data while executing. In some
sense, our model can be viewed as an approach based on semantic versioning.

5.9 Conclusions

In this chapter, we have described a novel and highly concurrent approach to executing queries
in a database management system. The proposed approach is called compensation-based query
processing. This approach achieves very high concurrency by locking data only briefly, at the tuple-
level, while still delivering transaction-consistent answers to queries. We believe that such a model
of query processing will make it possible for long-running queries, which usually run under a reduced
degree of consistency in current DBMSs, to obtain transaction-consistent answers without adversely
affecting system performance. Compensation-based query execution can co-exist with conventional
query processing, and a cost model similar to that used for optimizing conventional queries can be
used for optimizing queries under the new model as well. Finally, it appears that compensation-
based query processing can be implemented without too much extra effort in a conventional DBMS
(at least once the conventional DBMS has been modified to support on-line index construction).

Since we have not analyzed the performance of the proposed scheme, one potential area for future
work is to characterize the performance of a system when queries are executed in a compensation-
based manner. The trade-offs involved in increasing the work of the query process versus increasing
the path length of updaters have to be studied in more detail. Furthermore, the performance of
compensation-based queries needs to be compared with the performance of the same queries when
they are run with conventional (serializable and non-serializable) concurrency control methods or
with concurrency control methods based on transient versioning. Another possible topic for future
work would be to determine how to implement intermediate recoverable points for particularly
long-running compensation-based queries so that they need not re-execute from scratch at every
crash. Finally, the ultimate test would be to implement this model of query processing in a real
DBMS.

Chapter 6

Conclusion

5.1 Summary of Results

The major results of this thesis are summarized below. The results are subdivided into three
categories: performance of B-tree concurrency control algorithms, on-line index construction, and

compensation-based query processing.

Performance of B-Tree
Concurrency Control Algorithms
The main conclusion of the B-tree concurrency control study of Chapter 2 is that the B-link algo-
rithms perform the best among all of the algorithms that we studied over a wide range of resource
conditions, B-tree structures, and workload parameters. Even in a high contention workload of ap-
pends, the B-link algorithms showed gains in throughput under plentiful resource conditions. The
reason for the excellent performance of the B-link algorithms was the absence of any bottleneck for-
mation (except, of course, at the CPUs or disks in resource-constrained situations). In contrast, in
all of the other algorithms, locking bottlenecks formed at high MPLs when the workload contained
a significant percentage of updaters. Moreover, the overhead that the B-link algorithms incurred in
very high data contention situations were link-chases, which turned out to be inexpensive. We also
found interesting differences in the behavior of the optimistic and pessimistic algorithms among
themselves.

The results of the performance study of B-tree concurrency control algorithms indicate that
for very high transaction rates, only the most concurrent algorithms are likely to be acceptable.
Algorithms which simplify the complexity of coding at the cost of concurrency are bound to be

unsatisfactory in some operating regions.

124

125

On-Line Index Construction

We presented a range of solutions to the important problem of on-line index construction in Chap-
ter 3. In particular, we described two families of on-line index construction algorithms. These
on-line algorithms vary in the sort of data structures that they use to store the concurrent updates
(list or index), the strategies used to actually build the index from leaf-level entries, and the degree
of concurrency allowed for concurrent updates. The algorithms trade off, to varying degrees, in-
creased building time for increased updater throughput. Proofs of correctness of these algorithms
can be found in the Appendix. The prospective ease of implementation of our algorithms is an
important reason why we believe that next generation databases will incorporate such algorithms
in their repertoire.

In Chapter 4 we presented the results of a comprehensive performance study of the proposed
index construction algorithms that was conducted in order to determine the best algorithm for use
in a DBMS. To aid in our study, we employed a performance metric that measures the loss to
the system due to interference between concurrent updaters and the index building process. An
important property of the loss metric is that it enabled us to directly compare the on-line algorithms
with the best off-line algorithm as well as amongst themselves. An important conclusion of this
study was that in most cases, the fully on-line algorithms (which have no exclusive phase) performed
very well and did better than the partially on-line algorithms (which had a concurrent relation scan
phase but an exclusive build phase) or the off-line algorithm. The list-based fully on-line algorithms
were found to perform better overall than the index-based alternatives due to the smaller overhead
that they imposed on concurrent updaters. The fully on-line list-based algorithm that uses the

merge strategy (i.e., List-C-Merge) appeared to be a very good candidate for use in a real system.

Compensation-Based Query Processing

Chapter 5 showed how the techniques used in the on-line index construction algorithms can be
generalized to efficiently execute long-running queries, which are currently handled unsatisfacto-
rily in conventional DBMSs. This led to a novel and highly concurrent approach to executing
queries that we call compensation-based query processing. Compensation-based query processing
achieves very high concurrency by locking data only briefly, at the tuple-level, while still deliver-
ing transaction-consistent answers to queries. We believe that such a model of query processing
will make it possible for long-running queries, which usually run under a reduced degree of con-
currency in current DBMSs, to obtain transaction-consistent answers without adversely affecting

system performance. Compensation-based query execution can co-exist with conventional query

126

processing, and a cost model similar to that used for optimizing conventional queries can be used
for optimizing queries in the new model as well. Furthermore, it appears that compensation-based
query processing can be implemented without too much extra effort in a conventional DBMS (at
least once the conventional DBMS has been modified to support on-line index construction). Fi-
nally, extrapolating from our performance results for on-line index construction algorithms, where
fully on-line algorithms performed the best, it seems likely that compensation-based on-line query

processing will be cost-effective to use in a DBMS.

6.2 Future Work

In spite of the steps taken in this thesis to design efficient on-line processing techniques for next
generation DBMSs, important opportunities for future work remain.

In our study of B-tree concurrency control, we have considered only one aspect of concurrency
control on B-tree indices, namely, transactions that perform single B-tree operations. There are
still important open questions related to how B-tree concurrency control algorithms perform when

they occur as part of a larger transaction:

1. Several strategies have been suggested for obtaining serializable executions of transactions
that perform multiple B-tree operations. For example, a transaction could hold an extended
lock on the index leaf page, on a single slot in the leaf page, or on a single record id or a
key value. In addition, such a locking strategy can be combined with deferred index up-
dates (where index updates are grouped together and applied at commit time). The relative

performance of these alternative strategies is an open question.

9. The aforementioned lock holding strategies are closely linked to recovery strategies. Few
comprehensive recovery strategies have been proposed for B-trees [Moha89, Lome91], and
the interaction of concurrency control and recovery in B-trees has not yet been satisfactorily

studied.

3. Furthermore, special types of queries such as range scans (particularly those that read a
large amount of data) may interact differently with long term lock holding strategies and
recovery strategies than conventional transactions (which usually access a small amount of

data) would.

Apart from using the alternatives mentioned in point 1 for executing range scans, a new alternative
that could work very well is to forego long-term locking and turn to compensation-based execution

of such queries.

127

Turning to on-line index construction algorithms, recall that all the algorithms described in
Chapter 3 apply to the construction of B-tree indices. An interesting and useful avenue of future
work will be to extend our on-line index construction strategies to work for indices other than B-
tree indices. Most of the work in such extensions will involve the development of efficient strategies
to combine the scanned entries with the concurrent updates. While we found the merge strategy
to be efficient in B-trees for combining the scanned entries with the concurrent updates, this may
not be the case for other indices like a hash index. Nevertheless, we believe that the concurrency
control techniques employed in our index construction algorithms can be directly applied for the
on-line construction of other types of indices.

The area of compensation-based query processing has several opportunities for future work, the
first being a performance analysis of the new approach. While it is clear that the compensation-
based approach to query processing is highly concurrent, the following performance issues need to

be studied in order to clearly establish its viability relative to other existing methods.

1. The trade-offs involved in increasing the work of the query process versus increasing the
path length of updaters have to be studied in more detail. Such path length increases can
have a significant impact on performance, as evidenced by the behavior of the index-based
on-line index construction algorithms in Chapter 4. Any implementation of compensation-
based query processing therefore has to ensure a minimal increase to the path length of the

concurrent transaction workload.

2. The performance of compensation-based query execution needs to be compared with both
conventional serializable and non-serializable query execution; this would provide an accurate
picture of the costs and benefits of obtaining serializable results via the compensation-based

model.

3. The performance of compensation-based query execution needs to be compared with concur-
rency control strategies that use transient versioning. Such a comparison would examine the
tradeoffs of uniformly versioning all the data (as is done in transient versioning strategies)
versus selectively versioning only the data that is being concurrently used by active queries
(which is the case in compensation-based query processing). In addition, such a study should

also compare the increases in update transaction path lengths caused by the two strategies.

Another topic for future work would be to determine how to provide intermediate recoverable points
for particularly large compensation-based queries so that they need not re-execute from scratch at

every crash. Parallel and distributed execution of queries using the compensation-based method

128

is another interesting topic for future work. Finally, the ultimate test will be to implement this

model of query processing in the context of a real DBMS.

Appendix A

Correctness Proofs for On-Line
Index Construction Algorithms

A relation consists of records, each of which is identified by an identifier called its record id (rid)
which is unique within all records of the relation. The set of rids in a relation R is given by S(R).
The value of the attribute A of the record associated with rid 7 is denoted by A(r). A relation is
assumed to be stored in pages 1..N. We assume that N is a large constant and is the maximum
possible size of the relation. The mapping M(R) maps individual elements in S(R) to a value
between 1 and N, i.e., M(R) gives the page where a record with a particular rid resides. The
mapping M(R) is a many-to-one and into function, ie., every rid is mapped to exactly one page,
and there can be pages that are not mapped from any rid (empty pages of the relation). To keep
our discussion simple, we will assume further that, given a set of rids of a relation, the mapping
from rids to pages for this set can be determined from fields of the rid itself. Therefore, S(R), the
set of rids, also determines M(R) completely. (In other words, we assume physical rids, though it
is straightforward to extend the proofs for logical rids as well.) An index on an attribute A of a
relation R (Indez|R, A]) consists of a set of entries, each of the form (k,r), where k € Dom(A)
(where Dom(A) is the set of all possible values for attribute A) and r € S(R). Finally, the set of
rids S(R) can vary with time, and the value of the set at time ¢ is denoted by Si(R).

Definition A.0.1 A relation update consists of the 3-tuple (r,v,0) where 7 is the record id, v is
the value of all of the fields of the inserted or deleted record, and o is one of ¢ (insert) or d (delete).
An indez update is also a 3-tuple (k,r,0) where k is a key value, r is a record id, and o is one of ¢
(insert) or d (delete). Also, every relation update u = (r,v,0), gives tise to a corresponding index

update t(u) = (A(7),r, o) for every indexed attribute A. O

From Definition A.0.1, it follows that modifying a field of a record is modeled as two operations, a

delete of the old record followed by an insert of a new record with the same record id but a different

129

130

value for the modified field. Such a two-operation modification will result in two corresponding
index updates. Recall from our discussion in Section 3.4 that an update transaction performing a
relation update (7, v, 0) holds an Exclusive lock on the page where 7 resides. This lock is released
after the update on the page is completed. The release of this lock is assumed to be done in a

critical section in the lock manager.

Definition A.0.2 A relation update is defined to occur atomically at the time when the Exclusive
lock on the modified relation page is released. Similarly, an index update is defined to occur
atomically at the time when the Exclusive lock on a modified leaf page is released by the B-tree

concurrency control algorithm (Section 2.2). O

Definition A.0.3 If s and t are times such that s < t, then U, is the sequence of updates to
relation R in the time interval between s and t, in increasing order of lock release time. For the
sequence U, : of relation updates of length n, we define a sequence T, ; of index updates (to an
index on attribute A) also of length n as follows: if the ith entry of Us, is u, then the itk entry of

T31t is t('LL). O

Definition A.0.4 An index I[R, A]is consistent with respect to the relation R at time ¢ if (i) for
every rid 7 in Sy(R), the entry (A(r),r) is present in I[R, A], and (ii) for every entry (k,r) in the
index, r € Si(R) and A(r)is k. O

A.1 List-X-Basic Algorithm

Let ¢, denote the time at the start of the scan phase, step 1 of Figure 3.6. Let #, denote the
start of the build phase, i.e., the Exclusive lock on U[R, 4] (step 5 of Figure 3.6) is granted at
time 5. Finally, let ¢; be the time when the index construction process terminates (step 9 of
Figure 3.6). Recall that, in this algorithm, update transactions that make a relation update u add
the corresponding index update t(u) to the update-list U[R, A] using an Exclusive lock (step n,
Figure 3.6). Therefore, just like for relation updates, the append to the update-list can be viewed
as an atomic occurrence at the time when the Exclusive lock on the list is released. The update-list

U[R, A] thus contains a sequence of index updates ordered by this lock release time.

Definition A.1.1 The time when a page p is scanned by the index construction process is denoted

by t,. For all pages p in a relation R, t; <1, <. O

Lemma A.1.1 If a relation update u is performed on a page p at any time t, t; < t < tp, then
t(u) will be added to U[R,A] before time 1.

131

Lemma A.1.2 The sequence of indez updates present in U[R, A] at ty is Tt,;,. Recall that Tt b
is the sequence of indez updates corresponding to the actual relation updates Uy, 4, that took place

in [ts, ts] (see Definition A.0.3).

Proof: Both of the lemmas above can be proved from the fact that an updater in the List-X-
Basic algorithm will release its Exclusive lock on the modified relation page only after getting an
Exclusive lock on the update-list, U[R,A] (Section 3.7).

Since the build process has not scanned page p before time ¢, it can scan p only after the updater
has acquired the Exclusive lock on U[R,A] and released its page lock (since the builder needs a
Share lock on p to read it). So, before the time when the build process gets the Exclusive lock
in step 5 of Figure 3.6 (f;), the index update t(u) will be in the update-list. This proves the first
lemma above.

It also follows from the lock-chaining strategy described above that the order of releasing relation
page locks (which determines the relative order between relation updates) is the same as the order
of releasing update-list locks (which determines the relative order of index updates). This, along
with the additional fact that the index update is registered in U[R, A] immediately after the relation

update, proves the second lemma. O
Theorem A.1.1 At time t;, the index Indez[R, A] is consistent with respect to R.

Proof: We will prove this theorem by proving that, for any page p in the relation, the entries in
index Indez[R, A] at t; accurately reflect the state of that page at ;. Since we assume physical
rids, the rid of a record determines uniquely the page of the relation where the record is stored.
Therefore, of the sequence of updates in U[R,A] at t5, it is possible to identify the sub-sequence of
index updates that were caused by relation updates to page p. This sub-sequence of updates can
be further divided into the sequence of updates B, that took place before t, (the time when this
page was scanned by the build process), and the sequence A, of updates that took place after i,.
Consider the execution of step 7 (in Figure 3.6) of the build process. For page p, the sequence of
index updates in B, are first redone on the contents of page p, followed by the (new) index updates
in Ap.

For page p, Indez|R, A] at t; is consistent w.r.t. the state of the relation page p at time %,.
Consider a record id r that does not occur in Bp. For such a record, applying B, to [ndez[R.A]
does not change the entry corresponding to r in Indez[R, A]. Now consider a record id ¢ that does
occur in Bp. In this case, applying By, leaves the state of this record consistent with the last index
update in B, for g. But, this will be the same as the state of this record id as read from the page

itself at t, because of Lemmas A.1.1 and A.1.2. Therefore, at the time when all updates from B,

132

have been applied and no updates from A, have begun, the state of the page p in the index is
consistent with the state of p at time ¢, when it was scanned i.e., after applying all updates from
B,, Indez[R, A] contains the same entries obtained for page p during the scan. Applying the index
updates in A, thus cannot cause any consistency problems, as these updates happened after page
p was scanned and will be applied in the same order as the relation updates themselves.

The same argument can be used for all pages in R. Furthermore, no updates will be lost since it
is clear from Lemma A.1.2 that all relation updates that have completed before ¢, will be present in
U[R,A]. Also, no updates can complete in [ty, 7] due to the Exclusive lock. Indez[R, A)] is therefore
consistent w.r.t B at 5. O

The above proof can be extended to prove Theorem A.l.1 for the List-X-Sort algorithm as
follows. Lemmas A.1.1 and A.1.2 are true here also. To prove the theorem, one has to show that
the sort (step 6a in Figure 3.6) does not change the proof above. This follows from the fact that
for every (key, rid) pair e in the update-list U[R, A], the sort retains the latest entry for e that
was appended to U[R, A], thus causing the same effect for e as would be obtained by sequentially
inserting the unsorted entries in the same order in which they were appended to U[R, A].

For the List-X-Merge algorithm, the proof of Theorem A.1.1 directly follows from the proof for
the List-X-Sort algorithm. The reason is that merging the sorted scanned entries with the sorted
update-list in List-X-Merge (step 7, Figure 3.7), is identical to creating an index out of the sorted
scanned entries first and then sequentially applying the entries from the sorted update-list to this
index (as in List-X-Sort, step 7 in Figure 3.6).

A.2 List-C-Basic Algorithm

In this algorithm, as before, ¢, and ?, are times that denote the start of the scan and build phases,
respectively (steps 1 and 6 respectively in Figure 3.8). Time t; is again the time when the index
construction process is completed (step 14). In addition to these, we denote as ?. the time of the
start of the catchup phase (step 10 in Figure 3.8). These times are illustrated in Figure A.1. We
further assume the correctness of the B-tree concurrency control alg();ithm used for performing
concurrent operations on the index. Lemmas A.1.1 and A.1.2 are true here as before. Our goal

now is to prove Theorem A.1.1 here as well.

Lemma A.2.1 At time t,, the index Index[R, A] is consistent with respect to the state of R at
time ty, Sy, (R).

Proof: The proof of this lemma follows from the proof of Theorem A.1.1 earlier and the fact that

during [ts, t.] there is no interference between concurrent updaters and the build process. O

133

Lemma A.2.2 The sequence of indezx updates present in U[R, A] at t; is Ty, z. (see Definition A.0.3).
Proof: This proof follows the same logic as that for Lemma A.1.2. O

Theorem A.2.1 At time ty, the index Index[R, A] is consistent with respect to the state of R at

tf.

Proof: For a moment, assume that no concurrent updater accesses the index during [t.,¢ 7]- Under
this assumption, we will prove that the above theorem is true. The routine NSort (step 12, Fig-
ure 3.8) retains the latest entry for only those (key, rid) pairs that occur an odd number of times
in Ty, 4. It is clear that, since Indez[R, A] at i, is consistent w.r.t. S:,(R) (Lemma A.2.1), the
(key, rid) pairs with an even number of entries in T, can be ignored (since inserts and deletes
for a (key, rid) pair have to alternate in Ty, ., see Section 3.4). Also, if a (key, rid) pair has an
odd number of index updates in Ty, ., only the latest entry determines the state of this (key, rid)
pair in the final index. Recall that Ty, truly reflects the relation updates Up,e. (by definition).
Since in the absence of concurrent updates, the catchup phase merely performs actions that are
equivalent to applying T}, to an index that is consistent w.r.t. to Si,(R), at time 2. the index is
consistent w.r.t. S; (R), the state of the relation at t.. Since Uy, is empty due to our assumption
of no concurrent updates in the catchup phase, the theorem is therefore true.

Now, we must prove that the theorem is true even in the presence of concurrent updaters in
the catchup phase. First, if no (key, rid) pair associated with the index updates performed during
[te,ts] is present in Tt s, (the sequence of build phase updates applied to the index in the catchup
phase), then the theorem is trivially true.

Now consider a (key, rid) pair e for which one or more concurrent index updates occurs in
[tc,tf], and where there is at least one entry for e in Ty, 4. If there are an even number of entries for
e in Ty, 1., then Indez[R, A] contains the true state for e at ., and any updates during the catchup
phase [t.,t;] will not see any inconsistency. (Note that, the build process will not insert or delete
any index entry during [t.,/] for e, since it ignores all rids with even number of entries in Tipter)

If there is an odd number of entries for e in T}, +., the build process applies only the latest entry
for e to the index at some time t, in [t,ts] (see Figure A.1). If the first concurrent update to e
after ¢, occurs after t., then no inconsistency is seen by a concurrent update, either then or at any
time afterward. If one or more concurrent updates to e occurs after t. but before t., then the first
update will necessarily find an inconsistent situation. This follows directly from Lemmas A.2.1
and A.2.2 and the fact that insert and delete entries for e have to alternate. Since the latest update

for e in T}, ;. is not entered in the index until t., the first concurrent index update for e (which

134

ts % e fe te

. .
t t ;
1
i

Catchup Phase

ScanPhase | Build Phase
|
|

|
i
f
i
i
i
i

Figure A.1: Phases in the List-C-Basic algorithm

happens before t.) will detect this inconsistency (i.e., an insert will find an existing entry and a
delete will not find the required entry) and will add a special marked entry to the index (step m,
Figure 3.9). After this first index update for e, the state in the index for e is a true reflection of its
state in the relation, ignoring the marked entry for e. Subsequent updaters to e ignore the marked
entry for e and will not find any inconsistency. At ., the build process will access the index and
find the marked entry and delete it, after which no new marked entry for e can be introduced.
Since the above is true for every e in T}, 1., Indez[R, A] will be consistent w.r.t to the state of the
relation at 5. O

The proof for the List-C-Basic algorithm can be extended to prove the correctness of the List-C-
Sort and the List-C-Merge algorithms. The only difference is in the proof of Lemma A.2.1, which is
similar to how Theorem A.1.1 was proved for the List-X-Sort and List-X-Merge algorithms. Apart
from Lemma A.2.1, the rest of the proofs for List-C-Sort and List-C-Merge are the same as for
List-C-Basic, as all three algorithms behave similarly in the catchup phase.

A.3 Index-Based Algorithms

We saw earlier that for all of the list-based algorithms, Lemmas A.1.1 and A.1.2 were true. For all
of the index-based algorithms, only Lemma A.1.1 holds. Lemma A.1.2 doesn’t hold here because,
unlike the list-based algorithms, where an Exclusive lock is requested on the update-list before
releasing the Exclusive lock on the modified relation page, here only a Share lock is requested on
the temporary index before releasing the relation page lock. However, it turns out that proofs
similar to those earlier can still be obtained by using the following weaker lemma which has to
hold (by definition) for serializability of transactions (assuming that a relation update and the

corresponding index update occur within the same transaction).

Lemma A.3.1 If two relation updates u; and uy occur (Definition A.0.2) in a certain order, both

involving the same rid 7, then the corresponding indez updates t(u1) and t(uz) occur in the same

135
order. Le., if uy occurs before ug, then t(u,) occurs before t(ug) and vice versa.

Using the above lemma and Lemma A.1.1, it is possible to prove Theorem A.1.1 for the Index-X-
Basic algorithm. We will outline the key ideas of the proof here. First, observe that at time i,
the end of the scan phase (step n, Figure 3.13), the public index (Indez[R, A]) contains exactly
the same entries as would be obtained by storing all index updates during the scan phase in a list
and then sorting this list using Sort (Figure 3.1), as in the List-X-Sort algorithm (Figure 3.6). The
proof for Index-X-Basic is therefore similar to that for List-X-Sort. The key difference is that the
consistency of the index is proven on a per-tid basis instead of the per-page basis used in proving
Theorem A.l.1.

The proof for the Index-X-Merge algorithm (Figure 3.15) follows from the proof for the Index-X-
Basic algorithm in the same way that the List-X-Merge algorithm proof followed from that for the
List-X-Sort algorithm. The first part of the proof for the less restrictive Index-C-Basic algorithm
involves re-proving Lemma A.2.1 using the proof of the Index-X-Basic algorithm outlined above.
The rest of the proof follows from the proof of Theorem A.2.1 for the List-C-Basic algorithm by
observing how the state of the temporary index at the start of the catchup phase (tc, step 10 in
Figure 3.16) is similar to the result produced by storing the updates that occurred in [ty tc] in a list
and sorting it using NSort (Figure 3.8). After proving the Index-C-Basic algorithm, the extension
to Index-C-Merge is straightforward, as for the corresponding list algorithms.

A.4 Coloring Algorithms

Finally, we briefly touch upon how to prove algorithms which use the coloring strategy described
in Section 3.7. Here, the updaters know whether or not a particular page has been scanned by a
build process, and they only communicate to the build process those changes that take place after
the page has been scanned. The following lemma can be used along with Lemma A.3.1 to derive

proofs for this class of algorithms in a manner similar to that described earlier in this section.

Lemma A.4.1 Only updates to a relation page p that occur after t, (the time when p is scanned)

will be present in either the update-list or the temporary indez.

Proof: This is ensured directly by the coloring scheme outlined in Section 3.7. O

Bibliography

[Agra89] Agrawal, D. and Sengupta, S., “Modular Synchronization in Multiversion Databases:
Version Control and Concurrency Control”, Proceedings of the ACM SIGMOD Conference, June
1989.

[Agra87) Agrawal, R., Carey, M., and Livny, M., “Concurrency Control Performance Modeling:
Alternatives and Implications”, ACM Transactions on Database Systems, 12(4), December 1987.

[Baye72] Bayer, R. and McCreight, E.M., “Organization and Maintainance of Large Ordered
Indices”, Acta Informatica, 1(3), 173-189, 1972.

[Baye77] Bayer, R. and Schkolnick, M., “Concurrency of Operations on B-trees”, Acta Infor-
matica, 9, 173-189, 1977.

[Bern81] Bernstein, P., and Goodman, N., “Concurrency Control in Distributed Database
Systems”, ACM Computing Surveys, 13(2), June 1981.

[Bilig5] Biliris, A., “A Model for the Evaluation of Concurrency Control Algorithms on B-
trees”, Computer Science Technical Report, No. 85-015, Boston University, 1985.

[Bili87] Biliris, A., “Operation Specific Locking in B-trees”, Proceedings of the Sizth ACM
Symposium on Principles of Database Systems, San Diego, California, 159-169, March 1987.

[Blak86a] Blakeley, J., Larson, P. and Tompa, F., “Efficiently Updating Materialized Views”,
Proceedings of the ACM SIGMOD Conference, May 1986.

[Blak86b] Blakeley, J., Coburn, N. and Larson, P., “Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates”, Proceedings of the Twelfth International Con-
ference on Very Large Data Bases, Aug. 1986.

[Bobe92] Bober, P. and Carey, M., “On Mixing Queries and Transactions Via Multiversion
Locking”, Proceedings of the Eighth IEEE Conference on Data Engineering, February 1992, to
appear.

[Care84a] Carey, M., and Stonebraker, M., “The Performance of Concurrency Control Algo-

rithms for Database Management Systems”, Proceedings of the Tenth International Conference on
Very Large Data Bases, Singapore, August 1984.

136

137

[Care84b] Carey, M., and Thompson, C., “An Efficient Implementation of Search Trees on [lg
N + 1] Processors”, IEEE Transactions on Computer Systems, 11(2), November 1984.

[Chan82] Chan, A. et al, “The Implementation of an Integrated Concurrency Control and
Recovery Scheme”, Proceedings of the ACM SIGMOD Conference, June 1982.

[Chen84] Cheng, J.M., Loosley, C.R., Shibamiya, A. and Worthington, P.S., “IBM Database
2 Performance: Design, Implementation, and Tuning”, IBM Systems Journal,, 23(2), 189-210,
1984.

[Come79] Comer, D., “The Ubiquitous B-Tree”, ACM Computing Surveys, 11(4), 1979.

[Dewig0] DeWitt, D. J. and Gray, J., “Parallel Database Systems: The Future of Database
Processing or a Passing Fad?”, SIGMOD Record, 19(4) December 1990.

[Elli80a] Ellis, C., “Concurrent Search and Insertion in 2-3 Trees”, Acta Informatica, 14(1),
1980.

[Ellisob] Ellis, C., “Concurrent Search and Insertion in AVL Trees”, IEEE Transactions on
Computers, C-29(9), September 1980.

[Elli83] Ellis, C., “Extendible Hashing for Concurrent Operations and Distributed Data”, Pro-
ceedings of the 2nd ACM Symposium on Principles of Database Systems, Atlanta, Georgia, March
1983.

[Epst79] Epstein, R., “Techniques For Processing of Aggregates in Relational Database Sys-
tems”, Memorandum No. UCB/ERL M79/8, Electronics Research Laboratory, University of
California-Berkeley, 1979.

[Fran85] Franaszek, P., and Robinson, J., “Limitations of Concurrency in Transaction Process-
ing”, ACM Transactions on Database Systems, 10(1), 1-28, March 1985.

[Good85] Goodman, N., and Shasha, D., “Semantically-based Concurrency Control for Search
Structures”, Proceedings of the Fourth ACM Symposium on Principles of Database Systems, March
1985.

[GrayT79] Gray, J., “Notes On Database Operating Systems”, in Operating Systems: An Ad-
vanced Course, Springer-Verlag, 1979.

[Guib78] Guibas, L., and Sedgewick, R., “A Dichromatic Framework for Balanced Trees”,
Proceedings of the Nineteenth Annual Symposium on Foundations of Computer Science, 1978.

[Haer83] Haerder, T., and Reuter, A., “Principles of Transaction-Oriented Database Recovery”,
ACM Computing Surveys, 15(4), December 1983.

[John89] Johnson, T. and Shasha, D., “Utilization of B-trees with Inserts, Deletes and
Searches”, Proceedings of the Eighth ACM Symposium on Principles of Database Systems, 235-246,

138

1989.

[John90a)] Johnson, T. and Shasha, D., “A Framework for the Performance Analysis of Con-
current B-Tree Algorithms”, Proceedings of the Ninth ACM Symposium on Principles of Database
Systems, April 1990.

[TJohn90b] Johnson, T., “The Performance of Concurrent Data Structure Algorithms”, Ph.D.
Thesis, New York University, May 1990.

[Kell88] Keller, A. and Wiederhold, G., “Concurrent Use of B-trees with Variable-Length
Entries”, SIGMOD Record, 17(2), June 1988.

[Kung80] Kung, H., and Lehman, P., “A Concurrent Database Manipulation Problem: Binary
Search Trees”, ACM Transactions on Database Systems, 5(3), September 1980.

[Kwon82] Kwong, Y., and Wood, D., «“A New Method for Concurrency in B-trees”, IEEE
Transactions on Software Engineering, SE-8(3), May 1982.

[Lani86] Lanin, V. and Shasha, D., “A Symmetric Concurrent B-tree Algorithm”, Proceedings
of the Fall Joint Computer Conference, 380-389, 1986.

[Lehm81] Lehman, P., and Yao, S., “Efficient Locking for Concurrent Operations on B-trees”,
ACM Transactions on Database Systems, 6(4), December 1981.

[Livn90] Livny, M., “DeNet User’s Guide”, version 1.5, 1990.

[Lome91] Lomet, D. and Salzberg, B., “Concurrency and Recovery for Index Trees”, Technical
Report, No. CRL 91/8, Cambridge Research Laboratory, Digital Equipment Corporation, August
1991.

[Mill78] Miller, R., and Snyder, L., “Multiple Access to B-trees”, Proceedings of the Conference
on Information Science and Systems, Johns Hopkins University, Baltimore, MD, March 1978.

[Moha89] Mohan, C. and Levine, F., “ARIES/IM: An Efficient and High Concurrency Index
Management Method Using Write-Ahead Logging”, IBM Research Report, RJ 6846, 1989.

[Moha90] Mohan, C., “ARIES/KVL: A Key-Value Locking Method for Concurrency Control of
Multiaction Transactions Operating on B-tree Indexes”, Proceedings of the Sizteenth International
Conference on Very Large Data Bases, 392-405, September 1990.

[Moha91] Mohan, C. and Narang, I., “Algorithms for Creating Indexes for Very Large Tables
Without Quiescing Updates”, IBM Research Report, RJ 80186, March 1991.

[Mond85] Mond, Y. and Raz, Y., “Concurrency Control in B*-trees Databases Using Prepara-
tory Qperations”, Proceedings of the Eleventh International Conference on Very Large Data Bases,
331-334, 1985.

139

[Omie89] Omiecinski, E., “Concurrent File Conversion Between B+ Tree and Linear Hash
Files”, Information Systems, 14(5), 1989.

[Omie92] Omiecinski, E., Lee, L. and Scheuermann, P., “Performance Analysis of a Concurrent
File Reorganization Algorithm for Record Clustering”, Proceedings of the Eighth IEEE Conference
on Data Engineering, February 1992, to appear.

[Pu85] Pu, C., “On-the-Fly, Incremental, Consistent Reading of Entire Databases”, Proceedings
of the Eleventh International Conference on Very Large Data Bases, 369-375, 1985.

[Pu88] Pu, C., Hong, C. H. and Wha, J.M., “Performance Evaluation of Global Reading of
Entire Databases”, Proceedings of the International Symposium on Databases in Parallel and Dis-
tributed Systems, 167-176, 1988.

[Rose78] Rosenkrantz, D., “Dynamic Database Dumping”, Proceedings of the ACM SIGMOD
Conference, May 1978.

[Sagi85] Sagiv, Y., “Concurrent Operations on B*-trees with Overtaking”, Proceedings of the
Fourth ACM Symposium on Principles of Database Systems, 28-37, 1985.

[Salz91] Salzberg, B. and Dimock, A., “Record Level Concurrent Reorganization”, Technical
Report, No. NU-CCS-91-6, College of Computer Science, Northeastern University, May 1991.

[Sama76] Samadi, B., “B-trees in a System With Multiple Users”, Information Processing
Letters, 5(4), 1976.

[Seli79] Selinger, P., et al, “Access Path Selection in a Relational Database Management Sys-
tem”, Proceedings of the ACM SIGMOD Conference, June 1979.

[Shap86] Shapiro, L., “Join Processing in Database Systems with Large Main Memories”, ACM
Transactions on Database Systems, 11(3), September 1986.

[Shas84] Shasha, D., “Concurrent Algorithms for Search Structures”, Ph.D. Thesis, Aiken
Computation Laboratory, Harvard University, June 1984.

[Shas85] Shasha, D., “What Good are Concurrent Search Structure Algorithms for Databases
Anyway?”, Database Engineering, 8(2), June 1985.

[Silb90] Silberschatz, A., Stonebraker, M. and Ullman, J. D., “Database Systems: Achievements
and Opportunities”, SIGMOD Record, 19(4) December 1990.

[Sock78] Sockut, G. H., “A Performance Model for Computer Data-Base Reorganization Per-
formed Concurrently with Usage”, Operations Research, September-October 1978.

[Sock79] Sockut, G. and Goldberg, R., “Database Reorganization — Principles and Practice”,
ACM Computing Surveys, 11(4), December 1979.

140

[Sode81a] Soderlund, L., “Concurrent Database Reorganization - Assessment of a Powerful
Technique through Modeling”, Proceedings of the Seventh Conference on Very Large Data Bases,
September 1981.

[Sode81b] Soderlund, L., “Evaluation of Concurrent Physical Database Reorganization
through Simulation Modeling”, Proceedings of the ACM SIGMETRICS Conference, Sept. 1981.

[Srin91] Srinivasan, V. and Carey, M. J., “Performance of B-tree Concurrency Control Al-
gorithms”, Technical Report, TR 999, Computer Sciences Department, University of Wisconsin,
February 1991.

[Ston88] Stonebraker, M., Katz, R., Patterson, D. and Ousterhout, J., “The Design of XPRS”,
Proceedings of the Fourteenth Conference on Very Large Data Bases, Los Angeles, CA, August
1988.

[Tay84] Tay, Y., “A Mean Value Performance Model For Locking in Databases”, Ph.D. Thesis,
Computer Science Department, Harvard University, February 1984.

[Verh78] Verhofstad, J., “Recovery Techniques for Database Systems”, ACM Computing Sur-
veys, 10(2), June 1978.

[Weih90] Weihl, W. E., Wang, Paul., “Multi-Version Memory: Software Cache Management
for Concurrent B-trees”, MIT Laboratory of Computer Science Manuscript, (1990).

[Yao78] Yao, A. C., “ On Random 2-3 Trees”, Acta Informatica, 9, 159-170, 1978.

