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Abstract

It is well known that using conventional concurrency control techniques for obtaining seri-
alizable answers to long-running queries leads to an unacceptable drop in system performance.
As a result, most current DBMSs execute such queries under a reduced degree of consistency,
thus providing non-serializable answers. In this paper, we present a new and highly concur-
rent approach for processing large decision support queries in relational databases. In this
new approach, called compensation-based query processing, concurrent updates to any data
participating in a query are communicated to the query’s on-line query processor, which then
compensates for these updates so that the final answer reflects changes caused by the updates.
Very high concurrency is achieved by locking data only briefly, at the tuple-level, while still
delivering transaction-consistent answers to queries. Compensation-based query processing can
co-exist with conventional query processing, and a cost model similar to that used for optimizing
conventional queries can be used for optimizing queries in the new model as well. Finally, it

appears that compensation-based query processing can be implemented efficiently in a DBMS.

1 Introduction

Next generation database management systems are expected to gravitate more and more towards
what is referred to as 24(hour)x 7(day) operation. There exist important DBMS applications that
have no significant off-peak time, which is time when it becomes acceptable to take the data off-
line for maintenance purposes. Examples of such 24x7 systems include database management
for multinational companies with a global reach, hospital management systems, a round-the-clock
shopping service, etc. In order to service such applications, next generation databases will be
required to keep their data on-line all of the time [Dewi90, Silb90].

One implication of completely on-line operation is that maintenance operations like checkpoint-
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ing, index management, and storage reorganization have to be performed concurrently with normal
database access and updates. Since database management systems currently perform many of these
operations off-line, there has been quite a bit of research in the area of on-line utilities, much of
which is relatively recent. On-line index construction is discussed in [Moha91, Srin91, Srin92b],
concurrent database reorganization in [Salz91, Sock78, Sock79, Sode8la, Sode81b], and on-line
checkpointing is discussed in [Rose78, Pu85, Pu88]. Since it is inevitable that commercial database
systems have to implement on-line utilities in the near future, primitives are bound to appear in
these systems to enable such on-line operation. In this paper, we show how the same primitives
that need to be implemented for on-line utilities can be used to enable a new, highly concurrent way
of executing certain queries which are not executed satisfactorily by current conventional DBMSs.

We shall explain the sort of queries of interest by using an example.

Q1: Suppose an auditor of a company wants to know about the average salary of all of the
employees of the company. Assuming the existence of a relation called EMPLOYEE with a
SALARY attribute, the SQL form of the query is given below.

SELECT AVG(SALARY)
FROM EMPLOYEE

Current systems, depending on the details of their implementation, will handle such a query in one
of several ways:

1. One way of executing a transaction to compute Q1 using two-phase locking involves locking
the EMPLOYEE relation in Share mode, reading all the tuples of the relation, and keeping a
running sum of the salary values encountered as well as a count of the number of tuples read.
On completing the scan of the relation, the average salary is computed by dividing the sum
by the count. It is easy to see that the above method of executing Q1 makes it serializable
with respect to all other transactions using the EMPLOYEE relation. However, this method
of executing Q1 is disastrous for concurrency purposes, as no updates to the EMPLOYEE
relation are allowed during the execution of Q1.

2. A slightly more concurrent way to execute Q1 would be to lock the EMPLOYEE relation
in Intention-Share mode and then lock individual tuples as they are read in Share mode,
with all locks being held until end of transaction. This method allows execution of update
transactions on the portion of the EMPLOYEE relation that has not yet been read by Ql1,
but it still locks out large portions of the EMPLOYEE relation for a significant period of
time. This strategy is roughly half as restrictive as the first one in terms of the amount of
data locked by Q1 as a function of time.

3. A third way of executing Q1 would be to lock only the SALARY attribute of the EMPLOYEE
relation in Share mode, thus allowing updates to other attributes of existing tuples of the

relation. Such selective locking of attributes may be possible, for example, in a system that



uses key-value locking of the type described in [Moha90] if an index exists on the SALARY
attribute. Still, locking the SALARY attribute would rule out inserts and deletes of new
EMPLOYEE tuples, and would block updates to the SALARY attribute of the existing
tuples.

Since each of these ways of executing Q1 involves significant concurrency restrictions for other
transactions, DBMSs currently tend to execute queries like Q1 under a weakened degree of consis-
tency. For example, IBM’s System R and DB2 offer the concept of cursor stability [Gray79], where
a query like Q1 looks only at committed updates of other transactions, but holds locks on tuples
only while their values are actually being read. Executing Q1 under a reduced degree of consistency
would involve getting an Intention-Share lock on the EMPLOYEE relation and then scanning the
relation tuple by tuple, acquiring a Share lock on each tuple before reading it and then releasing the
lock immediately after the tuple is read. The advantage of cursor stability is that there is minimal
delay for other transactions in the system due to executing Q1. The disadvantage is that, while
the salary values read are individually correct values, they are not from one transaction-consistent
state of the EMPLOYEE relation. The answer obtained by Q1 is therefore approximate, and in
some cases may bear little resemblance to the correct value. The deviation of the answer from the
actual value is determined by the rate and magnitude of changes to the SALARY attribute of the
EMPLOYEE relation. In some applications this may be unacceptable to the person running the

query, in this case the auditor.

The above discussion indicates that queries like Q1 are not dealt with satisfactorily in conven-
tional DBMSs. Apart from the simple query that we have used as an example, many other types
of large queries (used for decision support) on single or multiple base relations suffer from similar
concurrency problems. In current DBMSs, the size of the data and the transaction rates might be
small enough that the inefficient execution of such queries is only a minor problem. For example,
a simple solution that is likely to work satisfactorily with a conventional DBMS is to take a copy
of the database periodically (during off-peak time) and to run such large queries on the copy. As
transaction rates and database sizes increase, however, such a solution becomes unsuitable due to

the following reasons:
1. With large databases, it could take a very long time to create a copy of the database, and
the copy would also double the already large storage requirements for the database.

2. With large transaction rates and long copy-times, the copied data might become out of
date very soon after a copy is taken. This would necessitate frequent copying for obtaining

relatively recent answers to queries.

For these reasons, efficient on-line execution of long-running queries will become essential in next



generation DBMSs; any other solution that provides transaction-consistent answers will surely turn

out to have too high a concurrency overhead and/or copying overhead.

In order to find an on-line way to execute decision support queries like Q1, we turn to recent
work on on-line index construction algorithms [Moha91, Srin91]. Typically, a build process in an on-
line index construction algorithm scans the relation (copying out index entries) concurrently with
updaters, somehow keeping track of the updates that take place during the scan; it then combines
these updates with the scanned entries before registering the new index in the system catalogs. In
a recent study of the performance of such algorithms, we found that on-line index construction can
indeed be done in an efficient manner with minimal interference and little increased overhead for
the concurrent transaction workload [Srin92b]. In this paper, we adapt and extend the techniques
used for on-line index construction to process queries like Q1, as well as more complex queries, in

a correct (i.e., serializable) and efficient manner.

Our new method of query processing is on-line, i.e., it allows updates to be performed on base
relations while those same relations are being concurrently accessed by queries. Moreover, our
method is compensation-based, i.e., concurrent updates to any data participating in a query are
communicated to the query’s on-line query processor, which then compensates for the updates
so that the final answer reflects any changes that they cause. Our compensation-based on-line
query processing method requires the addition of only a few new primitives to the system, and
the required primitives are similar to those required for supporting on-line index construction and

other on-line utilities.

The rest of the paper is organized as follows: In Section 2, we review the basic features of
an efficient on-line index construction algorithm. In Section 3, we describe the basic ideas un-
derlying the proposed compensation-based query processing method. Section 4 explains how our
compensation-based method can support the execution of a number of single relation query types.
In Section 5, we describe how the method can be used to process queries on more than one base
relation. Section 6 deals with implementation issues arising in the design of the proposed approach.
Section 7 discusses how compensation-based query processing could be used to compute queries
whose answers are transaction-consistent as of some pre-specified time. Section 8 compares and
contrasts our work with other related work. Finally, in Section 9 we present our conclusions and

our plans for future work.

2 On-Line Index Construction

Earlier work on on-line index construction [Moha91, Srin91] has led to the design of a number of
alternative algorithms. Here we will describe only the best among them in terms of performance;

see [Srin92b] for a performance study of the various algorithms.



2.1 Algorithm Overview

In an on-line index construction algorithm, the index is built by a build process while updaters can
concurrently modify the data on which the index is being built. The concurrent execution of the
build process and update transactions in the on-line index construction algorithm of interest here

is illustrated in Figure 1.

Index construction proceeds in three phases, as shown in the figure. In the first phase, the
scan phase, the build process scans the relation page by page to collect <key, rid> entries to add
to the index. While reading a relation page, the build process holds a short-term exclusive latch
on that page. After scanning the entire relation, the build process sorts the index entries that it
has collected. Meanwhile, an updater that finds an index building process in the scan phase will
append an index update of the form <key, rid, insert/delete> corresponding to its relation update
to the update-list (Figure 1). Updater appends are synchronized via a short-term exclusive latch
on the update-list. The scan phase ends when the build process has finished sorting the scanned

entries.

In the second phase of index construction, the build phase, the build process combines the
entries in the update-list from the end of the scan phase with its initial sorted list of scanned
entries. It does so by first sorting the update-list entries and then building an intermediate index
(in a bottom-up manner) by merging the sorted scanned entries with the sorted update-list entries.
The entries in the update-list have enough information, and the logic involved in sorting and
merging is sophisticated enough, to resolve inconsistencies that may exist in the scanned entries
due to the non-2PL locking strategy used by the build process to scan the relation. The type of

inconsistencies and how they are resolved is explained in Section 2.2.

As in the earlier scan phase, update transactions append their updates to an update-list during
the build phase; this update-list is distinct from the one used in the earlier scan phase and is
initialized to empty at the start of the build phase. The build phase ends when the build process

completes the construction of the intermediate index.

In the third and final phase of index construction, the catchup phase, the updates in the update-
list from the end of the build phase are incorporated into the intermediate index from the end of the
build phase. Since the details of this phase are not essential for understanding compensation-based

query processing, we omit the review of the catchup phase details here.

2.2 Inconsistencies and Their Resolution

Since the build process does not use 2PL on the tuples that it scans, the set of entries obtained by
the build process at the end of the scan phase is likely to differ from the actual state of the relation at
the end of the scan phase. For example, a relation tuple may have been updated after its state was

copied by the build process in the scan. Also, additional tuples may have appeared (or disappeared)
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Figure 1: On-Line Index Construction Algorithm [Srin91]

on pages of the relation behind the current scan position of the build process. Deviations of the
scanned state from the actual state, like the two cases above, are called inconsistencies and are

corrected by sorting and merging the scanned entries and the update-list.

The logic needed in the sort and merge steps of the build phase to resolve inconsistencies can
be understood by noting the following fact. Since the update-list is actually a sequence of updates,
only the last entry (insert or delete) for a given (key, rid) pair determines if this (key, rid) pair
should be present in the merged output. During the sorting of the update-list, all entries except the
last one for a particular (key, rid) pair can therefore be discarded. In order to be able to identify
the last entry for a (key, rid) pair during sorting, one either has to use a sort that preserves the
same input order for duplicates or else tag the update-list entries with a timestamp field and sort

duplicates based on this field. After sorting, the following actions are taken during the merge in



order to remove inconsistencies:

1. If the sorted scanned list contains a particular (key, rid) pair, and the last entry in the

update-list is a delete, this (key, rid) pair is omitted from the output of the merge.

2. If the sorted scanned list does not contain a particular (key, rid) pair, and the last entry in

the update-list is an insert, this (key, rid) pair is included in the output of the merge.

3. If the sorted scanned list contains a particular (key, rid) pair, and the update-list has no entry

for this (key, rid) pair, then the (key, rid) pair is included from the output of the merge.

Performing sorting and merging in the above manner ensures that the intermediate index at the
end of the build phase reflects the relation’s transaction-consistent state as of the end of the scan
phase. See [Srin92a] for a proof of this assertion as well as a proof of correctness for the overall

algorithm.

2.3 Generalization

Compensation based query processing uses techniques from the on-line index construction algorithm
to evaluate queries in a manner that makes them serializable with other transactions in the system.
In the case of index construction, it is necessary to fully catch up with the activity that is going
on in the database; hence the need for the catchup phase in Figure 1. As we shall illustrate in
the next section, however, for query processing purposes it is likely to be acceptable to stop with
a prior serializable execution state (even though it may not be current at the time the answer is

returned to the user).

3 Compensation-Based Query Execution

In this section, we shall illustrate the general principles of the compensation-based query processing
method. In this approach, a query process executes the query on a relation while transactions
updating the same relation are allowed to execute concurrently. The query process here is analogous
to the build process that builds the index in an on-line index construction algorithm. The query
process executes in two phases, the scan phase and the compensation phase. The behavior of the
query process and update transactions is illustrated in Figure 2. The specific actions of the query
process and update transactions in Figure 2 are for a query that computes a transaction-consistent
copy of a full relation. We will later show how these actions can be modified and, more importantly,

suitably optimized for the efficient execution of more complicated queries.

During the scan phase, the query process scans the relation’s tuples one-by-one to collect the
information (from values of the tuples’ attributes) necessary for the execution of the query®. During

the scan, the query process locks a tuple in Share mode only while the tuple is being read, using

Tt should be noted that this scan does not necessarily need to be a simple relation-scan; other efficient access
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the same mechanism that is used in cursor stability [Gray79]. For each tuple it encounters in the
scan, the query process extracts the data that it needs for query execution. Depending on the type
of query being executed, this data is either stored as is for later processing, or it is pre-processed
using a function and the result of this function is stored. In addition, for certain queries (including
the consistent-copy query illustrated in Figure 2), an associated tuple-id that uniquely identifies
the tuple from which the data was extracted will be stored along with the data. These tuple-ids
can be either logical or physical, and they can be re-used; the only requirement is that no two
tuples present in the relation at a particular instant can have the same tuple-id, i.e., the tuple-id
has to be an internal or external key for the relation. If the attributes needed for query processing
already contain a key, we can choose to use that key for identification purposes instead of storing
an additional tuple-id field.

During the scan phase, transactions that update the relation being queried perform a special
action for every tuple (of this relation) that they update. This action can be as simple as appending
the updated tuple to an update-list along with an associated tuple-id (in the case of the consistent-
copy query), or it can be something query-specific like maintaining aggregate information. For ease

of discussion, we assume that transactions collect all of their updates and perform the associated

paths may be used as well to perform the scan. For example, if a suitable index exists that matches a predicate in
the query [Seli79], an index scan can be used to efficiently retrieve only those tuples from the relation that actually

satisfly the predicate.



special actions in a critical section at commit time. This assumption is rather restrictive, so we
will later show how to achieve the same logical effect while allowing transactions to execute their

special actions as their updates occur.

If entries are added to an update-list, the update-list entry for a tuple update contains the type
of update (insert or delete?), the values of the attributes that are relevant to the query, and an
optional tuple-id. At the end of the scan phase, the update-list therefore contains a record of all
relevant concurrent updates that occurred during the scan phase. The scan phase ends when the

query process finishes scanning all of the relation’s tuples.

At the end of the scan phase, the query process enters the compensation phase. In this phase,
the query process combines the results from its scan with the changes stored in the update-list as
of the end of the scan phase. In order to enter the compensation phase, the query process locks
the update-list in read mode, thereby excluding update transactions from the list, and switches
the state from scan to compensation. Unlike the scan phase, update transactions can once again
behave normally during the compensation phase of query processing, i.e., they no longer need to

perform any special action when they update the relation.

In cases where the scan phase information kept by the query process and/or the update transac-
tions is query specific, then the method of combining information in the compensation phase is also
query specific. We shall see examples of such behavior in the next section. In contrast, if both the
query process and update transactions store portions of extracted tuples and associated tuple-ids
(as in the consistent-copy query of Figure 2), then the following strategy is used for merging the
scanned entries and the update-list: The query process first sorts the scanned entries by tuple-id to
create a sorted run. The update-list is then sorted by tuple-id to create another run. The two runs
are then merged to resolve inconsistencies like those described in Section 2.23. The logic used while
merging is similar to that used in the build phase of on-line index construction (Figure 1). The
merging logic ensures that if an entry for a particular tuple-id occurs in the update-list, then the
latest such entry is used to determine the entry that is retained in the merged list. The merged list
will thus contain a copy of the relevant information from the relation that is transaction-consistent
as of the end of the scan phase. In other words, all updates performed by transactions that com-
mitted before the end of the scan phase are present in the copy, and no updates of transactions
that committed after the end of the scan phase are present. A proof of this assertion follows from

the proof of a similar property of on-line index construction algorithms [Srin92a].

2A record modify is deposited in the update-list as a delete followed by an insert.
3Typically, one can optimize this strategy by concurrently merging several runs in parallel instead of completely

sorting down to two runs before merging [Shap86]. We assume that this optimization will be done in any implemen-
tation, but retain the simpler description in our discussion for clarity. Similarly, for all queries, it should be possible

to execute the query itself during this final merge step.



The above strategy for sorting and merging can be optimized in two ways. First, sorting the
scanned entries can be eliminated entirely if the relation was scanned in the order of its tuple-ids.
Second, sorting can still be made very efficient if the relation is scanned in the order of some
attribute A which is not the tuple-id. In the second case, we can first efficiently sort the scanned
entries by <A, tuple-id> (which will be efficient due to the order of scanning), also sorting the
update-list by <A, tuple-id>. A merge similar to that in Section 2.2 is then performed to create a
transaction-consistent copy. This strategy avoids a full sort of the scanned entries and automatically
makes use of any chosen scanning strategy. We believe that one of these two optimizations should

be possible in most (if not all) cases.

Based on the preceding discussion, one way of executing a query on a relation would be to
obtain a transaction-consistent copy of the relevant attributes of the relation and then run the
query on the copy. However, this may result in a potentially large storage overhead as well as
wasting resources for sorting and merging. We shall see in the following section that, in some cases,
it is possible to optimize the above naive strategy and execute queries much more efficiently. The
optimizations are usually related to the kind of data extracted from tuples by the query process in
the scan phase, the information recorded by concurrent update transactions, and the way in which

these are combined in the compensation phase to obtain the correct answer to the query.

4 Single Relation Queries

In this section, we demonstrate how SQIL queries on a single relation can be efficiently executed
in our compensation-based query model. Since the compensation-based model is particularly well
suited to executing aggregate queries efficiently, we consider several examples of aggregate queries
first. Techniques for processing aggregate queries in relational database systems have been discussed
earlier [Epst79]; our work employs some of those techniques as well as extensions needed in the

context of our compensation-based model.

Aggregate queries come in two types, scalar aggregates and aggregate functions. Scalar aggre-
gates compute a single scalar value, like the aggregate AVG in query Q1 of Section 1. Aggregate
functions differ from scalar aggregates in that they return a set of values; the data to be aggregated
is logically partitioned by one or more attributes, and aggregation takes place within each partition.
Aggregates can also have an optional qualification that restricts the base tuples to which they are
applied. Aggregates that commonly occur in database systems include COUNT, SUM, MAX,
MIN, and AVG. The COUNT function returns the number of tuples or values specified in a
query. The functions SUM, MAX, MIN, and AVG are applied to a set or multiset of numeric
values and return, respectively, the sum, maximum value, minimum value, and average of those

values.
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4.1 Scalar Aggregates
A scalar aggregate consists of an aggregate value and an optional qualification. The following steps

are needed for processing a general scalar aggregate [Epst79]:

1. Allocate two variables, one for storing the aggregate result and another for storing a count.
Initialize both to zero.

2. For each tuple that satisfies the qualification, update the aggregate result and increment the

counter.

As an example of computing a scalar aggregate in our model, we shall describe three ways of
executing the aggregate query Q1 of Section 1. This query computes the average of the salary
values over all tuples of the EMPLOYEE relation. In each approach, the scan performed by the

query can be either a relation scan or an index-only scan [Epst79].

One way to execute query Q1 is similar to the execution of the consistent-copy query of Figure 2,
with minor differences. The query process first scans the EMPLOYEE relation collecting [SALARY,
tuple-id] pairs. During the scan phase, concurrent update transactions store entries of the form
[SALARY, tuple-id, insert/delete] in the update-list. In the compensation phase, the query process
sorts its scanned entries and the update-list, and then merges them to determine the transaction-
consistent value of the average salary (without explicitly storing the output of the merge). In spite
of the high concurrency achieved this method of computing the average salary may take much
more time (due to the overhead of sorting and merging) than a conventional strategy that locks

the relation and computes the average during the scan.

The above technique can be improved upon in systems where it is possible to scan the EM-
PLOYEE relation in a pre-specified order. The order can be, for example, the order in which the
relation’s records are physically laid out on disk, or it can be ordered on the value of a particular
attribute via an index-scan. In the improved technique (given in Figure 3), the query process
maintains a variable called the cursor that gives the position of the last tuple that it has completed
reading. At the start of the scan phase, the query process’s cursor is positioned at the beginning
of the relation (zeroth position). After the first tuple is read, the cursor gets moved to the first
position, and so on until the end of the relation is reached. Given the current position of the
cursor and a tuple to be updated, it is therefore possible to determine whether the tuple is behind
the cursor (has already been read) or ahead of the cursor (will be read in the future). Update
transactions add entries to the update-list only for updated tuples that are behind the cursor; for
updated tuples that are ahead of the cursor, the update transaction does not add entries to the
update-list, as the query will eventually see these tuples. A similar optimization has been suggested

for on-line index construction [Moha91] as well as for on-line checkpointing of databases [Pu85]. If

11



updaters follow the approach just outlined, then the query process no longer has to store individual
[SALARY, tuple-id] pairs; instead it can directly compute a count and a running average value in
the scan phase itself. The update transactions store entries of the form [SALARY, insert/delete]
in the update-list, and the query process applies these entries to the average and count variables
during the compensation phase. The average value obtained is transaction-consistent as of the end

of the scan phase, just like before?.

The compensation phase in Figure 3 can be eliminated if update transactions are required to
directly update the average and count values maintained by the query process in the scan phase
instead of appending their updates to an update-list. Inserts cause values to be added to the

average and count variables; deletes cause values to be subtracted.

The last approach to computing the average is certainly the fastest way of executing Q1. In
fact, this method has virtually the same overhead as one that executes Q1 using cursor stability,
while providing an answer that is transaction-consistent. The only potential problem with this
approach is that update transactions now have to know specific details of the aggregate query that
is being executed. It might be more convenient (in terms of system implementation) to have update
transactions simply append selected attributes of each tuple (with a tuple-id, if necessary) to the
update-list, as in Figure 3, as such a facility may already be available in the form of support for
executing on-line utilities. Also, an important consideration is that care needs to be taken not
to increase the path length of update transactions significantly. The path length for updaters is
unlikely to increase significantly in any of the above three cases, though, as the time for appending to
an update-list or performing a few arithmetic operations should be small compared to the execution
time of a typical transaction. We will see examples later where this path length increase is more

significant.

Note that all three of the schemes described above for computing the average can also be
used to compute the sum and the count. We will now describe an efficient way of computing the
maximum (Figure 4). The minimum can be computed similarly. To compute the maximum, the
query process scans the relation and collects data of the form [SALARY, tuple-id] that it extracts
from the relation’s tuples. It also maintains the maximum value of the salary that it encounters
during the scan in a variable called MAX. During the scan phase, update transactions append their
tuple updates to the update-list, and they also keep track of the largest salary inserted (MAXINS)
and deleted (MAXDEL) by any transaction during the scan phase. In the compensation phase,
the query process first performs an optimistic check to see if the correct maximum can be found

without actually scanning the update-list. The query process executes the following three steps in

*The proof of this assertion again follows from similar proofs for on-line index construction algorithms that are
outlined in [Srin92a].
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order:

1. If MAX is larger than both MAXINS and MAXDEL, then MAX is the desired maximum.
2. If MAXINS is larger than both MAXDEL and MAX, then MAXINS is the desired maximum.

3. If neither of the above conditions hold, then the scanned values and the update-list are sorted

and merged to find the correct value for the maximum.

This strategy will perform well if step 3 (which is expensive) is executed rarely compared to steps
1 and 2 (which are inexpensive). This is likely to be the case, as the odds of the maximum value
being deleted from a relation during a scan is presumably low. Furthermore, the above strategy
is easily modified to further reduce the probability of executing step 3 by maintaining the top few
values of the data (along with their tuple-ids) both during the scan and during appends to the
update-list. Steps 1 and 2 now become more complicated, but are still quite inexpensive, and the
probability that all of the top values will be deleted during the scan (necessitating step 3) becomes

extremely low.

4.2 Aggregate Functions
Aggregate functions are normally applied to subgroups of the tuples in a relation based on certain
attribute values, as specified by the query’s BY-list. SQL has a GROUP BY-clause for this

purpose. Aggregate functions require the maintenance of an aggregate value, a count field, and the
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Figure 4: Scalar Aggregate: MAX(SALARY) of the EMPLOYEE relation

actual BY-list attribute value for each different value of the BY-list attribute. There are two basic

algorithms that are commonly used to compute aggregate functions [Epst79]:

1. The first technique scans the base relation, maintaining a temporary relation which has
attributes for the count field, the aggregate value, and the BY-list attribute value. When a
tuple is scanned from the base relation, the query process updates the aggregate and count
values of the tuple in the temporary relation whose BY-list value matches the BY-list value of
the scanned tuple in the base relation. If an appropriate tuple does not exist in the temporary
relation, a new one is created. When the query process finishes scanning the relation, the
temporary relation will contain one tuple for every different BY-list value encountered in the

scCan.

2. An alternative processing strategy for computing the aggregate function is to first project the
base relation on the needed attributes and then sort the result on the BY-list (not removing
duplicates). The final merge of the sort can easily produce the aggregate value required since

all of the entries encountered are clustered on their BY-list values.

Which of the above techniques is better depends on the number of distinct values in the BY-list of
the query being executed. For a small number of values in the BY-list, the first method is likely to
be more efficient, while the sort-based method is likely to be superior for handling many BY-list
values. We now consider an example query that uses aggregate functions and show how such a

query can be computed in our compensation-based model.
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Q2: For each department, retrieve the department number, the number of employees in the de-

partment, and their average salary.

SELECT DEPT.NO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT.NO

The compensation-based execution of query Q2 using method 2 above is a modification of the
strategy for the consistent-copy query (Figure 2). In the scan phase, the query process stores entries
of the form [SALARY, DEPT-NO, tuple-id], while update transactions append similar entries with
an additional operation-type field to the update-list. In the compensation phase, the query process
sorts both the scanned entries and the update-list by <DEPT_NO, tuple-id> to create two sorted
runs. It then merges the runs, removing possible inconsistencies caused during scanning, and
computes the average salary and count values grouped by the values occurring in the DEPT NO
field (without actually storing the final merged list). Sorting by DEPT NO makes it efficient to
calculate the answer during the final merge, and merging based on both DEPT_NO and tuple-id,

using logic similar to that in Section 2.2, still creates a transaction-consistent answer.

We can execute query Q2 more efficiently using method 1 above given the availability of cursor-
based scanning (as illustrated in Figure 5). The query process now forms a temporary relation

whose tuples are of the form [DEPT.NO, Count, Average] by scanning the base relation and
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operating on the temporary relation in the manner described earlier. When the query finishes
scanning the relation, the temporary relation will have one tuple for every different DEPT_NO
encountered in the scan. Concurrently, update transactions add entries of the form [DEPT.NO,
SALARY, insert/delete] to the update-list. In the compensation phase, the query process applies
the entries in the update-list to the temporary relation. Inserts in the update-list cause values to be
added to the salary and count attributes of the appropriate tuple in the temporary relation, while
deletes cause values to be subtracted. When all values in the update-list have been applied to the

temporary relation, it contains the relevant average and count values for the various departments.

In both of the compensation-based methods described above for executing Q2, update trans-
actions append entries to an update-list. There is a third strategy possible in which update trans-
actions would directly operate on the temporary relation used by the query process rather than
the update-list. (This is indicated in Figure 5 as a possible optimization.) In this strategy, the
compensation phase would involve no action at all by the query process. However, a possible draw-
back of this strategy is that inserting into a temporary relation might increase the path length
of update transactions significantly, unlike the fast appends and arithmetic operations that were
used in the optimizations for earlier queries. Increasing the overhead for update transactions can
cause a significant drop in performance, as illustrated by our study of on-line index construction
algorithms, so one has to be very careful in choosing the sort of special actions that can be required

of update transactions.

4.3 Aggregates with Predicates

Typically, a query in a database system has certain predicates applied to its input and/or out-
put that limit the tuples that are needed to execute the query. Two methods of specifying such
predicates in SQL involve the WHERE and HAVING clauses. Our method of query execution
handles such selection predicates by using filters. Typically, predicates specified in the WHERE
clause can be evaluated on individual tuples and are thus implemented by input filters, while pred-
icates specified in the HAVING clause can only be evaluated after processing the query and are

therefore implemented via output filters.

To execute a query with a WHERE-clause, an input filter is applied to the entries scanned by
the query process. This filter only lets through those tuples that satisfy the condition(s) specified in
the WHERE-clause. Of course, further optimizations can be applied in the initial scan if an index
that matches a predicate [Seli79] exists on an attribute. For example, an index on the SALARY
attribute matches the predicate (SALARY > 40,000), and in the presence of such a predicate in
the WHERE-clause, an index on SALARY can be used to scan the data efficiently. Furthermore,
given that the leaf page of the index stores [SALARY, rid] pairs, the relation does not have to be
accessed at all; an indez-only scan is sufficient [Epst79]. (Note that the rid will be used to lock the

tuple while its SALARY attribute is being read from the index in this case.)
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Concurrent update transactions can either be required to apply the filter as well, thereby re-
stricting their appends to the update-list, or they can simply append all of their updates to the
update-list and have the query process apply the filter to the update-list in the compensation phase.
As before, the trade-off here is between increasing the path length of updaters and increasing the
overhead for the query process in the compensation phase. Testing a filter with a long string
of predicates may be expensive, and this may cause an unacceptable increase in path length for

updates, in which case it is probably best left for the query process to do.

In order to tie together all of the ideas discussed this far, we will demonstrate how to execute

the following query using the techniques discussed in this section.

Q4: What are the department numbers in which there are more than 10 employees, each of whom

earns more than 40K, and how many such employees are there in each such department?

SELECT DEPT_NO, COUNT(*)
FROM EMPLOYEE

WHERE SALARY > 40,000
GROUP BY DEPT_NO

HAVING COUNT(*) > 10

The compensation-based execution of this query is shown in Figure 6. Note that the index available
on the SALARY attribute is used to speed up the scan of the query process. Notice also that the
conditions in the WHERE-clause are on individual tuples, while the conditions in the HAVING
clause are on whole groups. The filter to check the condition in the HAVING clause thus comes

after the grouping has been done and the aggregates have been computed.

4.4 General Single Relation Queries

In our discussion thus far, we have shown how aggregate queries on a single relation can be executed
efficiently in the compensation-based model. These are the sorts of queries that often suffer from
inefficient execution in current database systems, as described in Section 1, and the compensation-
based model provides a cost-effective and low-interference alternative for obtaining transaction-
consistent answers for these queries. The model itself is more general, however, and can also be
used to improve the performance of non-aggregate queries. Consider the following simple query
that selects a subset of the tuples in the EMPLOYEE relation:

Q4: Find the names and salaries of all employees who earn more than 40K. The result should be

sorted by employee names.

SELECT NAME, SALARY
FROM EMPLOYEE
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WHERE SALARY > 40,000
ORDER BY NAME

If no index exists on the SALARY attribute, the way that most current database systems would
execute this query is to first lock the EMPLOYEE relation in Share mode, then scan every tuple of
the EMPLOYEE relation, retaining only tuples that satisfy the condition (SALARY > 40,000) in
the answer. After the relation has been scanned, the resulting tuples are sorted, and the Share lock
is released before the results are presented to the user. (Note that the Share lock could actually be
released before sorting.) Locking the EMPLOYEE relation during the scan causes a long waiting
period for update transactions, leading to reduced concurrency, as for the aggregate queries earlier.
And, as was the case there, we can instead execute Q4 using the compensation-based model to

improve concurrency.

Executing Q4 using the compensation-based approach would work as follows: During the scan
phase of query Q4, the query process collects entries of the form [NAME, SALARY, tuple-id]
from those EMPLOYEE relation tuples with salary > 40K. Either a relation scan or an index
scan (e.g., if a clustered B-tree index exists on the salary attribute) can be used for this purpose.
Meanwhile, update transactions add entries of the form [NAME, SALARY, tuple-id, insert/delete]
to the update-list. In the compensation phase, the query process first sorts each list on <NAME,
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tuple-id>% to create two sorted runs. Finally, the two runs are merged to generate a transaction-
consistent answer. The final output of the merge is a set of tuples of the form [NAME, SALARY],
ordered by NAME, as required by the query.

The compensation-based method can also be used for computing the projection of a relation on
a subset of its attributes, and in fact query Q4 has already illustrated this point. The basic idea
is to scan the relation, retaining only the projected attributes along with a tuple-id. Concurrent
update transactions deposit their (projected) tuple updates into the update-list along with a tuple-
id. In the compensation phase, as usual, the query process sorts the two lists by tuple-id and then

merges them to create a transaction-consistent projection.

To summarize, in this section we have shown how the compensation-based model can be used
to improve the performance of single-relation queries that would otherwise have to lock massive
portions of a relation in order to provide transaction-consistent answers. We now extend our
techniques to compute results for more general relational queries, including queries on multiple

base relations.

5 Join Queries

A join query is a complex query that is (usually) defined on multiple base relations. In addition, it
may be nested, and the same relation may occur several times in different roles within the query. A
simple but not very efficient way of executing any complex query in the compensation-based model
is to first obtain transaction-consistent copies of the various base relations, and then execute the
query on these copies. To execute complex queries more efficiently than this, we can integrate the
process of producing a transaction-consistent copy of a base relation more tightly with the execution
plans generated by the relational query optimizer. This is the strategy that we will use to execute
join queries. A third strategy that could be considered for compensation-based query execution
is one that actually executes the query on the base relations during the scan phase, obtaining an
answer that is not necessarily transaction-consistent. In the compensation phase, one would then
try to get a transaction-consistent answer by applying the update-list to the intermediate answer.
This third strategy has characteristics similar to keeping materialized views up-to-date when the
base relations are updated [Blak86a, Blak86b]; this is a hard problem for arbitrary join queries,
even when an initial transaction-consistent copy of the view exists, so we will not consider the third

strategy further.

5.1 Optimizing Compensation-Based Queries
While executing complex queries in a compensation-based manner, certain query optimization tech-
niques carry through with minor modifications from conventional query processing. One standard

query optimization strategy that is virtually always beneficial is pushing applicable selects and

5This sorting strategy is chosen because of the condition in the ORDER. BY-clause.
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projects through to base relations so that they can be evaluated before joins. In the scan phase,
the query process can easily be made to apply selection conditions on tuples and project out un-
necessary attributes as it scans the base relations. Furthermore, applying optimizations like using
an index to evaluate a predicate efficiently can be easily incorporated into the scan, as illustrated

in Figure 6 for query Q4.

Update transaction behavior during complex queries is quite similar to that in the single relation
case, except updates to any of several relations must now be recorded. Updaters can either append
their tuple updates into one common update-list or into several update-lists (with one for each
base relation). Using one list simplifies the special action code in update transactions, slightly
increasing the overhead of the query process in the compensation phase (as the list then has to be
decomposed into separate lists for the various relations). In our discussion, we will assume that
update transactions append to several update-lists, each corresponding to a base relation. Whenever
selects and projects are done by the query process during scanning, either the update transactions
can also apply the input filters to restrict the tuples that are appended to the update-lists during
the scan phase, or they can simply append all base relation tuple-updates to the update-list and
let the query process apply the input filters in the compensation phase. Which approach is better
is likely to depend mainly on the path length impact for update transactions caused by filtering,
rather than on the increase in overhead for the query process, as the update-list for a relation should
usually be small compared to the size of the relation and applying filters in the compensation phase

should not cause a significant increase in elapsed query time.

Given a join query, the query optimizer generates a plan that specifies the join order, the join
method for each individual join, and the selects and projects that have to be done at various
stages. It is clear how to perform joins in the order specified in the plan, and it is also clear how
to perform selects and projects at various stages of the query. What is not obvious, given a join
method, is how to efficiently compute that particular join in a transaction-consistent manner under
the compensation-based query execution model. The types of joins that are most commonly used
in database systems are the nested loops, sort-merge, hash, and indez join methods. We shall first
consider how to efficiently join two relations R and S (where R is smaller than 5) using each of
these join methods in the compensation-based model, and we will later describe how a sequence
of joins can be computed through repeated applications of the basic method. In the following
discussion of join methods, assume that the query process always stores an associated tuple-id with

the data read during its scans.

5.2 Nested Loops Join

Nested loops is sometimes used when the smaller of the two relations to be joined, in this case R,
fits in memory. In the basic nested loops method, R is read into memory. S is then scanned and,

for each tuple in 9, all of the tuples that it joins with in R are found (by scanning R in memory)
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and the result tuples are produced.

In the compensation-based nested loops join method, unlike the basic strategy, the join cannot
be performed while scanning S during the scan phase; this is because we need to combine the
scanned entries with the corresponding update-list, which can only be done in the compensation
phase. Thus, to execute a nested loops join in the compensation-based model, the query process
first scans R and S and collects two unsorted lists of R and S tuples, called Rs; and S; respectively.
Recall that in order to create transaction-consistent copies, Rs and S have to be merged with the
corresponding update-list entries for R and S. After accommodating R; in memory, if there is
enough space to construct hash tables in memory for the update-list entries for R and §, we can
perform the join with little extra overhead as follows: At the beginning of the compensation phase,
two hash tables on tuple-id are created in memory, one for the update-list of R (Hpr) and another
for the update-list of § (Hg). In these hash tables, only the latest entry for each tuple-id (insert

or delete) needs to be retained (for the same reason stated in Section 2.2).

After the hash tables Hg and Hg have been populated, R, is read into memory. As soon as a
tuple of R, is read, Hp is probed to find out if the latest entry for this tuple’s tuple-id is a delete. If
so, the tuple is discarded; if not, it is retained. The first time a tuple’s entry in Hp is accessed, it is
marked as having been used. After all of R has been read into memory, there may be entries in Hp
that were not used during the scan of R,. If any of these entries are inserts they should be added
to R, as such tuples must have been added to the relation behind the query process’s scan of R
(i.e., they were not seen by the query process). After R, has been completely loaded into memory,
the stored list of S, tuples is then scanned. A tuple from 5, is joined with R, only if there is no
delete entry for it in Hg. Also, after all tuples of S5 have been processed, the unaccessed insert

entries in Hg must be joined with the in-memory relation R;.

This method of executing a nested loops join requires one extra read and write of R and §
(creating Rs and S;) in the scan phase as compared to the conventional nested loops algorithm.
Further optimizations are possible; the extra read and write of R can be avoided if R is scanned
after S, and we only need enough extra memory for the larger of the Hr and Hg hash tables if Hg
is constructed after R, has been completely initialized in memory. The overhead of probing Hp
and Hg should be negligible compared to the in-memory join processing overhead, as this probing
is done exactly once for every tuple of R; and S;. The extra overhead for computing the join in
this compensation-based manner might then be justifiable, given the added concurrency obtained
by the update transactions. As we will see next, we can do even better in case of sort-merge
and hash joins, where the cost for compensation-based execution more closely approaches that of

conventional execution.
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5.3 Sort-Merge Join

In order to execute a sort-merge join, we extend the efficient strategy described in [Shap86]. The
first step is to scan R and §, creating sorted runs of size 2 X M where M is the size of memory in
pages. Assuming that M is at least /]| S]], where ||S|| is the size of the larger relation (in pages),
the sorted runs are then merged concurrently by allocating one page of memory to each run of R
and § and computing the join during the merge. If M < +/[|S]|, some of the R runs are merged
among themselves and some of the § runs are merged among themselves until the number of runs

is small enough for a final one-pass merge of all remaining runs of R and § to compute the join.

In the compensation-based model, the query process scans R and 5 and creates a set of sorted
runs R, and S, just like the basic sort-merge join strategy. During the sort, however, tuples with
the same join attribute value are further sorted by tuple-id. The query process then enters the
compensation phase, where it begins by creating similarly sorted runs for the update-lists of R and
S. At this point we now have four sets of sorted runs, R, S, and the runs from the update-lists
for R and 5. Let us assume that the number of pages in memory is larger than the total number
of runs. (This is probably a reasonable assumption given that the update-list sizes are likely to be
only a small fraction of the corresponding relations.) In this case, the runs can be merged, as in
the basic sort-merge strategy, by allocating one page of memory for each run. However, a tuple
from S is joined with a tuple from R only if the latest entries for both the R and S tuple-ids in the
corresponding update-lists are not deletes. In addition, tuples from the update-list runs of R and
S themselves qualify for the join if they are inserts that were not seen by the query process during
its scan. If the size of memory is too small to permit a one-pass merge, then the number of runs of

Rs and S, can each be reduced by merging until a final merge pass is possible.

It should be noted that this strategy for computing the sort-merge join using the compensation-
based model is almost as efficient as the basic strategy, as the main extra work required is the

creation of sorted runs from the (presumably small) update-lists.

5.4 Hash Join

There are three common types of hash join: the simple hash join, the GRACE hash join, and the
hybrid hash join [Shap86]. Here we demonstrate how to adapt the GRACE hash join algorithm to
the compensation-based model. The GRACE algorithm first scans R and partitions it into roughly
equal subsets such that the hash table for each partition of R will fit in memory. The algorithm
then scans S and creates partitions of S corresponding to those for R. Finally, each individual
partition of R is read into memory, with a hash table being constructed on its join attribute, and
the join is computed by probing the in-memory hash table with tuples from the corresponding

partition of S.

Implementing the GRACE algorithm in the compensation-based model is straightforward. The
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query process scans both R and then S during its scan phase, obtaining R and S5, storing the
necessary partitions of Rs; and S during this phase. In the compensation phase, the query process
firsts scans the update-lists for R and S and partitions them using the same hash function used for
R, and S;. Then, for each partition of R, the query process starts by reading the corresponding
partition of the update-list of R into memory and constructing a hash table using its entries. The
query process then scans the partition of R, itself and continues building the hash table with entries
from R,; tuples of R, are discarded whenever a delete entry is encountered in the hash table. After
completing the hash table on the current partition of R, the build-process scans the corresponding
partition of the update-list of S and builds a hash table Hg based on its entries. (It is assumed
that Hg also fits in memory.) The join is then performed by scanning the relevant partition of 5,;
before probing the hash table of R with an S, tuple, however, Hg is probed to see if there is a
corresponding delete entry. Finally, after all tuples in the partition of S; have been exhausted, any
remaining unaccessed insert tuples in Hg must be joined with the current partition of R;. This

process is repeated to join each partition of R and 5.

As was the case for sort-merge join, the compensation-based GRACE hash join algorithm has
nearly the same cost as the basic GRACE algorithm. Creating hash partitions for the update-lists
is not likely to add much overhead, as these lists are likely to be small. It should be noted that
the techniques used for GRACE can be adapted to implement the simple and hybrid hash join
algorithms as well. However, when implemented in the compensation-based model, these later
two algorithms will require some extra reading and writing of (at least one bucket of) the base
relations as compared to their conventional counterparts. This is due to the same reason as in the
nested loops join method, i.e., because no join output can be generated during the scan phase of

compensation-based query processing.

5.5 Index Join

In a conventional index join, for each tuple in R, an index existing on the join attribute of S is
used to efficiently extract tuples from S. This type of join is usually chosen when R is quite small
(as otherwise the implied index I/O, especially if the index in unclustered, is too costly). Due to
the fact that the scanning of one relation (.9) is dependent on data from another relation (R), and
that both relations are being updated simultaneously, it appears difficult to efficiently adapt the
index join method to the compensation-based query execution paradigm. Fortunately, the lack of
index join support is unlikely to matter all that much for the kind of long-running queries that are
likely to benefit from our compensation-based model. This is because, as mentioned above, index
joins are primarily used when the join selectivity and the number of tuples in R are both small.
Such conditions are more likely to arise in conventional short-duration queries than they are in the

longer queries that compensation-based query processing is intended to help with.
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5.6 Multiple Joins

In the discussion so far, we have described how to execute two-way joins using various join methods.
The generalization to many-way joins is straightforward. During the scan phase, all participating
relations are accessed (Figure 7). Depending on the join order and the join methods of the various
relations in the query, the outcome of scanning will vary. For example, if a relation is to take part
in a sort-merge join, then its sorted runs are created while it is being scanned. If it is to take
part in a GRACE hash join, it is partitioned into buckets based on hashing during the scan phase.
In the compensation phase, the query process will process each relation’s update-list according
to the type of join that the corresponding relation is taking part in. Intermediate join results
can be handled just as in conventional query processing, as these results are guaranteed to be

transaction-consistent.

6 Implementation Considerations

As we mentioned in Section 1, executing queries in the compensation-based model requires certain
special capabilities to be present in the DBMS for handling the query process and any update
transactions that affect its data. Update transactions have to be aware of the presence of any
compensation-based queries and must take appropriate actions when updating their data. The
required state information can be placed by the query process in the system catalogs, where update
transactions generally go to find information about auxiliary data structures like indices that they
are required to update along with the data. (The update-list can be added as just another auxiliary
data structure in the catalog entry corresponding to the relation to be updated.) In some current
DBMSs, the system catalogs are not accessed by transactions at run time; in such systems a special

data structure will have to be implemented for this purpose.

There is an important performance issue pertaining to the time when an update transaction
should execute its special code for each update. We assumed earlier that this is done at commit time,
but this would mean that transactions have to save a list of all of their updates until commit time.
This is probably an unreasonable requirement and may be unenforceable in practice. Fortunately,
equivalent behavior can be obtained by implementing the update-list much like a log. Transactions
can append their updates to the update-list, tagged with their transaction id, at the time when
they actually update the data. In addition, at commit time they should append a commit or abort
record. In the compensation phase, the query process can now analyze the update-list to determine
which of the updates are committed and which are aborted (or incomplete); the query process
will eliminate the updates of all but the committed transactions from the list and then proceed
as before. This log-like approach works in the case where an update-list is actually maintained,
but there is a slight problem if updaters operate on variables instead. For example, consider the
optimized version of the query for computing the average (Figure 3), where update transactions

directly update the average and count variables as they update relation records. In this case, they
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will have to do the corresponding inverse operations if they abort, and the query process will have
to wait in the compensation phase for all running transactions that have updated the average and

count values to either commit or abort.

In our discussions thus far, we have assumed that the query process executes under cursor
stability (also called level 2 consistency) [Gray79], in which case it reads only committed data
from other transactions. This form of execution is sufficient for producing transaction-consistent
answers, but is not strictly necessary. Note that the build process in the on-line index construction
algorithms of [Srin91] performed dirty reads (level 1 consistency) and yet was still able to build a
consistent index. A similar execution strategy can be used for the query process in compensation-
based query processing. If the query process performs dirty reads, in order to create a transaction-
consistent answer, it must wait in the compensation phase for all of the running transactions that
have updated the update-list (and/or other query-specific information) to either commit or abort.
In other words, the query process will serialize itself after all transactions whose dirty data it could

have read, thus ensuring that its results are transaction-consistent.

Finally, given a query, the compensation-based query processor has to optimize the query and
then execute it according to the optimized plan. The optimizer will need to use slightly different
cost models for compensation-based plans, as the costs of certain joins (e.g., nested loops) are
somewhat higher in this model. Also, some conventional execution plans (e.g., index join) are not

available for compensation-based query processing use.

7 Pre-Specified Time Queries

In transaction processing applications, there is sometimes a need to run a class of queries whose
results are valid as of some pre-specified time. For example, banks periodically mail out statements
to their customers that contain records of all transactions that took place on the customer’s accounts
during the preceding period. Companies take stock of their inventories periodically when they
need to know exactly what items they have in stock. All organizations have a yearly audit when
a balance-sheet of all of their activities for the year are listed and accounted for. Typically, these
activities are done on a certain fixed day of the month or year. With DBMSs being widely used
for record-keeping, the above examples translate into queries over on-line databases. An example

of a time-based query is given below.

Q5: Print the names and salaries of all employees of the company (ordered by salary) as of the
end of the year, 1991. The required answer can be obtained by running the following SQL
query on the system, with the restriction that the answer obtained be transaction-consistent

as of midnight on December 31, 1991.

SELECT NAME, SALARY
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FROM EMPLOYEE
ORDER BY SALARY

Interestingly, it turns out that compensation-based query processing can be used to execute such
queries efficiently. In order to understand how this is possible, recall that the answer obtained for
a query in the compensation-based model (Figure 7) is transaction-consistent as of the end of the
scan phase. In all of the examples thus far, we have assumed that the scan phase ends as soon as
the query process finishes scanning the base relation(s) used in the query. (This is certainly the
best way to execute a normal query as soon as possible.) To execute a query whose results are valid
as of some pre-specified time, however, we can force the end of the scan phase to occur at the time
specified in the query. On completing the scan of the base relation(s) in the scan phase, the query
process can then simply wait until the pre-specified time before switching to the compensation
phase. In order for this strategy to work, the query process has to ensure that its scan of the
relations is completed by the pre-specified time; this can be done by starting the query sufficiently
far in advance of that time. The above strategy can also be optimized further: Instead of waiting
from the end of the scan phase until the time pre-specified in the query, the query process can also

perform some or all of any pre-processing that it needs to do on the scanned data.

8 Related Work

The work that is most closely related to compensation-based query processing is the work on on-line
index construction algorithms [Srin91, Moha91, Srini92b]. In fact, it was our work on techniques
for incrementally building an index that led us to discover the techniques described in this paper.
Compared to that work, the method described here is more general and handles arbitrarily complex
queries. The process of scanning the base relations in the compensation-based method is also akin
to taking a fuzzy dump of the relations [Gray79]. After the dump is taken, the log generated
during the fuzzy dump is merged with the fuzzy dump to produce a sharp dump. This is quite
similar to the way that queries execute in the compensation-based model in order to generate

transaction-consistent answers.

Concurrency control algorithms based on transient versioning (e.g., [Chan82, Agra89, Bobe92])
are also related to compensation-based query processing. In transient versioning algorithms, prior
versions of data are retained to allow queries to see slightly outdated but transaction-consistent
database snapshots. A transient versioning mechanism operates uniformly on all data in the
database whenever it is updated, keeping copies of each updated record or page. In contrast,
in the compensation-based model, a query (together with cooperative updaters) essentially creates
its own consistent version of the relevant underlying data while executing. In some sense, our model

can be viewed as an approach based on semantic versioning.
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9 Conclusions and Future Work

In this paper, we have described a novel and highly concurrent approach to executing queries in
a database management system. The proposed approach is called the compensation-based model
for query processing. Compensation-based query processing achieves very high concurrency by
locking data only briefly at the tuple-level while still delivering transaction-consistent answers
to queries. We believe that such a model of query processing will make it possible for long-
running queries, which usually run under a reduced degree of concurrency in current DBMSs, to
obtain transaction-consistent answers without adversely affecting system performance. A major
advantage of compensation-based query execution is that it can co-exist with conventional query
processing, and a cost model similar to that used for optimizing conventional queries can be used
for optimizing queries in the new model as well. Finally, it appears that compensation-based
query processing can be implemented without too much extra effort in a conventional DBMS
(at least once the conventional DBMS has been modified to support on-line index construction).
Finally, extrapolating from our performance results for on-line index construction algorithms, where
fully on-line algorithms performed the best, it seems likely that compensation-based on-line query

processing will be cost-effective to use in a DBMS.

The area of compensation-based query processing has several opportunities for future work, the
first being a performance analysis of the new approach. While it is clear that the compensation-
based approach to query processing is highly concurrent, the following performance issues need to

be studied in order to clearly establish its viability relative to other existing methods.

1. The trade-offs involved in increasing the work of the query process versus increasing the path
length of updaters have to be studied in more detail. Such path length increases can have a
significant impact on performance, as evidenced by the behavior of the index-based on-line
index construction algorithms in [Srin92b]. Any implementation of compensation-based query
processing therefore has to ensure a minimal increase to the path length of the concurrent

transaction workload.

2. The performance of compensation-based query execution needs to be compared with both
conventional serializable and non-serializable query execution; this would provide an accurate
picture of the costs and benefits of obtaining serializable results via the compensation-based

model.

3. The performance of compensation-based query execution needs to be compared with concur-
rency control strategies that use transient versioning. Such a comparison would examine the
tradeoffs of uniformly versioning all the data (as is done in transient versioning strategies)

versus selectively versioning only the data that is being concurrently used by active queries
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(which is the case in compensation-based query processing). In addition, such a study should

also compare the increases in update transaction path lengths caused by the two strategies.

Another topic for future work would be to determine how to provide intermediate recoverable points
for particularly large compensation-based queries so that they need not re-execute from scratch at
every crash. Parallel and distributed execution of queries using the compensation-based method
is another interesting topic for future work. Finally, the ultimate test will be to implement this

model of query processing in the context of a real DBMS.
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