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Abstract

Adding linear-combination splits to two-class decision trees allows multi-
variate relations to be expressed more accurately and succinctly than univariate
splits alone. We propose the use of linear programming for determining linear
combination splits within two-class decision trees. The problem of determining
an optimal linear combination split to distinguish two sets can be formulated
as a single linear program. Fast and powerful techniques such as simplex and
interior point methods exist for quickly solving such problems. The linear
programming approach eliminates the problems of stopping criteria and local
minima that plague gradient and perceptron approaches. Computational com-
parison of the linear programming tree algorithm and classical univariate split
algorithms indicates that the linear programming approach produces smaller
trees that generalize well.
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1 INTRODUCTION

Tree-structured classification algorithms such as CART [3] and ID3 [18] have proven
to be powerful and effective methods for handling classification problems. Typically,
decision trees are limited to univariate splits, that is splits based on a single variable.
While such splits do make the tree easier to interpret logically, complex trees may
be required to express multivariate relations. Geometrically, each leaf of the tree
corresponds to a polyhedral region in the original observation space. Trees based on
univariate splits limit the faces of these polyhedral regions to the planes orthogonal
to the univariate axes and may require many more regions to capture a particular
relation. The CART package, perceptron trees [6], and neural tree networks [22] all
utilize linear-combination splits. However, there are potential difficulties with these
splitting algorithms. These difficulties are discussed in Section 2. Finding the best
linear combination split can be posed as a linear program (LP) that minimizes a
weighted sum of the misclassification errors. This is an attractive approach because
it avoids local minima and there are powerful algorithms for solving LPs efficiently.
The paper is organized as follows. Section 2 discusses the linear programming
formulation. A brief description of algorithms that can be used to solve the problem
is given. Comparisons of the LP approach with other linear-combination splitting
methods are made. Section 3 describes an implementation of the LP decision tree
approach. Section 4 contains results of experiments comparing the LP approach with
CART and C4.5 [18, 20]. Section 5 concludes with a summary and directions for

future work.

2 LINEAR PROGRAM APPROACH

The problem of finding an optimal linear-combination split is equivalent to finding
a separating plane that minimizes some measure of misclassification error. In this
section, an LP formulation [2] of such a problem is proposed that has the following
properties:

(i) If the two classes are linearly separable, i.e. points of each class lie on the opposite

sides of some plane, such a ”strictly separating” plane is found.




(ii) If the two classes are not linearly separable, a plane is always obtained that

minimizes some measure of misclassified points.

(iii) No extraneous constraints are imposed on the linear program which rule out

any problem from consideration.

We note that not all linear programming approaches possess these properties [24, 10,
9.

We first describe the notation that we shall employ. For a vector z in the n-
dimensional real space R", z; will denote the vector in R™ with components (z4); :=
max {z;, 0}, ¢ = 1,...,n (the plus function). The notation A € R™*" will signify

a real m x n matrix. For such a matrix, A’ will denote the transpose, while A; will
n

denote its ith row. The l-norm of z, »_ |z;|, will be denoted by ||z||;. A vector of

=1
ones in a real space of arbitrary dimension will be denoted by e.

2.1 LINEAR PROGRAM FORMULATION

Let the two classes be represented by the two point-sets A and B in the n-dimensional
real space R*. Each training example in A and B is represented by a row of the m xn
matrix A and the k£ x n matrix B respectively. When the sets A and B are linearly

separable the goal is to find a ”strictly separating plane” by solving the inequalities:
Aw > ey, ey > Bw,

where w is an n-dimensional “weight” vector representing the normal to an optimal
“separating” plane, and v is a real number which is a "threshold” that locates the
strictly separating plane wz = 5. If a point A; in A is correctly classified, then
—Asw +v < 0 and consequently (—A;w -+ ¥)4+ = 0. If A; is incorrectly classified then
(-Asw + 9)4 > 0. Similarly, (B;w — 7)+ provides a measure of misclassification for
a point B; in B.

When the sets are linearly inseparable, an optimal separating plane is defined

as a plane that minimizes a weighted sum of the misclassifications. Such an optimal



plane can by obtained by solving the following minimization problem:

: 1 1
(21.1) min —[(~Aw -+ e7), | + (B~ o),

w0,y

The constraint w # 0 is essential. Without it the point, w = 0, v = 0, is an optimal
solution and no error-minimizing plane is obtained. However, it is this constraint
that makes it difficult to formulate an LP with the desired properties (i)-(iii) above.
In order to overcome this difficulty we modify (2.1.1) as follows [2]:

o1
(2.1.2) min —|[(-Aw + ey +e)fl; + H(Bw-—e'r +e)lh

Problem (2.1.2) will always generate a strictly separating plane wz = v for linearly
separable sets A and B. The added term e in the error measure ensures that no points
of either class will be directly on the separating plane for the linearly separable case.
For linearly inseparable sets A and B, (2.1.2) will generate an optimal separating

plane wz = v, with w # 0, that minimizes the average violations

m k
S (~Aw+y+ 1)+ %Z (Biw — 7y + 1)4.
i=1 =1
Points of A which lie on the wrong side of the plane wz = v + 1, that is in {z|wz <
4 + 1}, and points of B which lie on the wrong side of the plane wz = v — 1, that
is in {z|wz > v — 1}, are the only points that contribute to the violations. Figure 1
depicts an actual error-minimizing plane wz = v obtained by minimizing (2.1.2).
Problem (2.1.2) can be easily solved when it is transformed [2] to the following

equivalent linear program.

(2.1.3) min {—ey+£ez|y> —Aw+tey+e z>Bw—eyte y>0,2z2>0}

w,Y,Y,2

We briefly mention the desirable properties of LP (2.1.3) and recommend that
the reader consult [2] for a complete discussion and proofs. LP (2.1.3) satisfies all of
the properties (i)-(iii) listed above. The planes wz = v+ 1 and wz = v — 1 used
to calculate the misclassification error are arbitrary in the sense that they can be
replaced by wz = v + ¢ and wz = v — { for any positive (. The linear program
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(2.1.3) will generate the same error-minimizing solution wz = v for any ( > 0. The
weights of 1 and { on the sums ensure that a nontrivial w is always generated without
imposing any extraneous constraints. Computational results on real-world problems
show that the LP (2.1.3) is preferable to other [24, 10, 9] LP-based approaches for
linearly inseparable sets.

2.2 LINEAR PROGRAMMING SOLUTION

LP (2.1.3) can be solved by taking advantage of various powerful computational
algorithms. The most widely used method is the simplex method originally proposed
by George Dantzig [4] in the 1940s. It works as follows. The feasible region of a linear
program is a convex polyhedron. If an LP has an optimal solution, it has an optimal
solution which is a vertex of this polyhedron. The simplex method traverses vertices
of the polyhedron until an optimal vertex is reached. The algorithm is guaranteed to
find an optimal vertex or detect that no optimal solution exists. In the worst case the
method is exponential. However in practice it works very fast. Other methods have
been developed that work as well or better on large problems (millions of variables).
Interior point methods [11, 12] find an optimal solution in polynomial time. They
traverse the interior of the feasible region of the problem directly to an optimum point,
thus the name. Both algorithms have well-defined, easy-to-check stopping criteria for
global optimality.

2.3 OTHER LINEAR-SPLITTING METHODS

Other decision-tree algorithms have used variants of the back propagation algorithm
[21] altered to fit the 1-norm error measure, variants of the perceptron algorithm, and
heuristic searches. CART uses a heuristic search algorithm which is computationally
costly and is prone to local minima [3]. Utgoff [6] proposes using the perceptron
algorithm with modifications to address the cycling problem [16, 8]. Basically, since
the perceptron algorithm fails to converge for the linearly inseparable case, stopping
conditions are more difficult to determine and there is no guarantee that an optimal
solution will be found. Sankar and Mamonne’s neural tree network [22] uses back
propagation [15] modified to use the sum of the absolute value of the errors to train

each unit. It suffers from the usual difficulties of back propagation: choice of parame-




ters, local minima, and stopping conditions. The advantage of the LP approach used
with the simplex method is that there are no parameters, no problems with local

minima or convergence, and it has well-defined, easy-to-check stopping conditions.

3 THE LP TREE ALGORITHM

We call the LP-based tree algorithm multisurface method - tree (MSMT) because it
uses multiple surfaces to construct the tree and is related to the multisurface method
of pattern recognition [13, 14]. For each node in the tree, the best split of the points
reaching that node is found by solving LP (2.1.3) using the simplex method. The
node is split into two branches, and the same procedure is applied until there are
mostly points of one class at the node or there are too few points at the node.
In practice, we split the most impure nodes first, as measured by the information
function popularized by ID3, and limit the tree to at most 10 linear-combination
splits. The leaf nodes are assigned the classification of the majority of points at
that node. Pruning strategies improve generalization in decision trees [17]. Thus we
adopted the pessimistic pruning strategy used in C4.5 proposed by Quinlan [19, 20].
This strategy, which does not require any additional data or cross-validation, works
by pruning a node of the completed subtree if the misclassification cost of a subtree is
greater than the misclassification cost of its root. This misclassification cost is based
on the re-substitution estimate of the misclassification cost statistically modified to

account for the fact that the estimate is overly optimistic.

4 COMPUTATIONAL RESULTS

In this section we give computational comparisons on several real-world databases:
the Wisconsin Breast Cancer Database [14, 25], the Cleveland Heart Disease Database
[7], and the Bank Failure Database [1]. We use MSMT, CART, and C4.5 (the new and
improved ID3). The original experimental design was to use the linear-combination
feature of CART. Unfortunately, our commercial CART package crashes after exten-
sive computational time whenever the linear-combination feature is invoked. Thus
CART used univariate splits in conjunction with a cost-complexity pruning procedure

which uses cross-validation. C4.5 used univariate splits with pessimistic pruning. The



windowing feature of C4.5 was disabled because windowing did not seem to improve
the results significantly and it could be used to improve any of the three algorithms.

Table 1 summarizes the results on the three databases. The Wisconsin Breast
Cancer Database consists of 681 points of which 442 are benign and 239 are malignant,
all in a 9-dimensional real space. The Cleveland Heart Disease Database ! consists
of 197 points in a 13-dimensional real space, of which 137 are negative and 60 are
positive. Categorical features within this database were converted to ordered integers
for MSMT but not for C4.5 and CART. The Bank Failure Database consists of
4751 points in a 9-dimensional real-space with 4311 successful banks and 441 failed
banks. This previously unpublished data set, collected by Richard S. Barr of Southern
Methodist University and Thomas F. Siems of the Federal Reserve Bank of Dallas,
has 9 numeric features which range from 0 to 1. The Bank Failure Database exceeded
the space limitations for the CART program so there are no results for CART.

Ten-fold cross validation was used to measure generalization. The data was par-
titioned into 10 roughly-equal parts. For each part, a decision tree was created using
the remaining nine parts and tested on the part. The cross-validation error is the total
number of points misclassified on all 10 parts divided by the total number of points
in the database. The times reported are the CPU time on a DECStation 5000/125
required to construct and prune one tree averaged over the ten folds. The CART
program performs additional computations and was executed on a different machine.
Thus no times are reported for the CART algorithm. The percent training set error
and the number of leaf nodes reported are the results from using the entire dataset
one time.

On the whole, MSMT quickly produced trees with fewer nodes with equivalent or
better generalization than the other two methods. Specifically, MSMT produced trees
with less cross-validation error than C4.5 on all three databases, and was better than
CART on all but the Heart Disease database. Also, MSMT produced smaller trees in
terms of leaf nodes than did C4.5 and CART. Dramatic reduction in tree size makes
the tree easier to interpret and thus compensates for the slightly more complex linear-
combination splits. CART also had smaller trees than C4.5 probably because of its
better but more expensive pruning algorithm. MSMT and C4.5 were very fast on the
Breast Cancer data and the Heart Disease data. C4.5 is slightly faster especially on

1 Available via anonymous ftp from ics.uci.edu courtesy of the University of California-Irvine.
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COMPUTATIONAL RESULTS

WISCONSIN BREAST CANCER

[METHOD | TRAIN ERROR | CV ERROR | LEAF NODES | TIME (secs) |

MSMT 2.4% 3.0% 2 6.8
C4.5 2.8% 3.8% 11 3.7
CART 5.3% 5.3% 3 -

CLEVELAND HEART DISEASE

[METHOD | TRAIN ERROR | CV ERROR | LEAF NODES | TIME (secs) |

MSMT 19.1% 22.6% 2 10.0
C4.5 9.4% 25.9% 28 1.0
CART 16.8% 20.5% 6 -

BANK FAILURE

[METHOD | TRAIN ERROR | CV ERROR | LEAF NODES [ TIME (secs) |

MSMT

6.4%

6.5%

3

156.3

C4.5

5.0%

7.2%

67

261.0

Table 1: Comparison of MSMT, C4.5, and CART on Three Databases

TRAIN ERROR := Percent error on entire data set
CV ERROR := Percent cross-validation error (10-fold)



the Heart Disease Database which has categorical variables. C4.5 handles categorical
variables very efficiently. MSMT requires that the attributes be either linearized if
possible or encoded as binary attributes in a higher dimensional space. This can
cause a loss of information and more computation time. Like previous methods for
linear-combination splits, MSMT works best on numerical attributes. On the Bank
Failure Database, MSMT was much faster than C4.5. This indicates that MSMT can
work well on larger data sets.

5 CONCLUSIONS

We have presented a linear programming method of constructing two-class decision
trees. Unlike previous linear-combination splitting methods, the LP approach has
no problems with local minima, choice of parameters, and convergence criteria. The
MSMT algorithm compares favorably with classical decision tree methods in terms
of accuracy, training time, and size of trees. Currently, the LP decision trees are
limited to two-class problems. However, the LP split can be generalized to produce
multi-category splits similar to those proposed for linear machine decision trees [5]
and neural tree networks [22]. This extension of the algorithm is currently being
explored. We have demonstrated that LP-based decision tree algorithms compare
very favorably with other approaches and that they warrant further investigation and

application to a variety of machine learning problems.
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