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ABSTRACT

Prior to this work, all implementations of stack simulation [MGS70] required more than linear time 1o process an
address trace. In particular these implementations arc often slow for highly-associative memories and traces with
poor locality, as can be found in simulations of file systems. We describe a new implementation of stack simulation
where the referenced block and its stack distance arc found using a hash table rather than by traversing the stack.
This allows the trace-driven simulation of multiple alternative memories with the same block size, the same number
of sets (e.g., fully associative), and using the least-recently-used replacement policy, with one pass through the trace
in linear time. The key to this implementation is that designers are rarely interested in a continuum of memory
sizes, but instead desire metrics for only a small, discrete set of alternatives (e.g., powers of two). We determine the
memories in which a block resides by augmenting the state of each block with an index to the largest memory that
contains that block. We update this state by using pointers to the block below the least-recently-used block in each
memory. Our experimental evaluation confirms that the run-time of the new implementation is linear in address
trace length and independent of trace locality.

KEY WORDS: trace-driven simulation, stack simulation, caches, memory systems, file systems.

1. Introduction

Trace-driven simulation is the most common mecthod for evaluating cache and memory system designs. A
major shortcoming is the hours of execution time a single simulation can consume, particularly when it is applied to
highly-associative memories with traces having poor locality. Traces of billions of references are being used today
[BKW90], which only exacerbates the problem. Simple and cfficient algorithms are needed to reduce simulation
time. A key approach is to evaluate multiple alternative memorics with a single pass through an address trace. But
while good algorithms exist for direct-mapped and sct-associative caches [HiS89], the algorithms for fully-

associative memories are less attractive,

Mattson et al. [MGS70] describe a single-pass technique called stack simulation that can cfficiently simulate
multiple memories with the same block size (line, page), the same number of scts, and using the least-recently-used
(LRU) replacement policy. Stack simulation takes advantage of inclusion, the property that a larger cache or
memory always contains a superset of the blocks (or pages) contained in smaller ones. A single stack can therefore
simultancously represent the contents of many alternative memories, with each memory of size & blocks consisting
of the top & blocks of the stack. Any reference o a block at level k in the stack, called the reference’s stack distance,
thercfore hits in all alternative memories of sizc k blocks or larger. Simulations maintain distance counts that record
the number of references found at each stack distance. Summing the distance counts for depths one to & gives the

number of hits 1o a memory of size k blocks; the miss ratio is casily derived from that.

¥ The material presented here is based on research supported in part by the National Science Foundation'’s Presidential
Young Investigator and Computer and Computation Rescarch Programs under grants MIPS-8957278 and CCR-8902536,
A. T. & T. Bell Laboratories, Cray Research, Digital Equipment Corporation, and the graduate school at the University of
Wisconsin-Madison.
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Linked lists provide a straight-forward implementation of LRU stack simulations. Since finding references in
the stack (and therefore the reference’s stack distance) involves traversing the linked list, these implementations
have running times proportional to the length of the trace times the mean stack distance [Tho87). Bennett and
Kruskal [BeK75] and Thompson [Tho87] usc hash tables o supplement their linked-list stacks. The tables deter-
mine if a reference is not contained in the stack, in which case a futile search of the stack can be avoided. However,
traversal of the stack is still required to determine references’ stack distances, such that these algorithms still run in
time proportional to the length of the trace times the mean stack distance [Tho87]. CPU traces usually exhibit good
locality, so CPU cache simulations usually have small mean stack distances (even with fully-associative caches);
Thompson reports mean stack distances between seven and twenty [Tho87]. For implementation reasons, CPU
caches typically limit associativitics to at most four, further restricting the mean stack distance. Thus simple linked-

list implementations give good performance for CPU cache simulation.

However, simulations are also done for file systems [ODH85] and disk caches which are generally fully-
associative and exhibit much higher mean stack distances; Thompson [Tho87] observed mean stack distances
between 200 and 500 for disk and file system traces. Filtered input traces, used to reduce simulation time, may also
experience large mean stack distances. One filtering technique is stack deletion, in which references that would oth-
erwise hit near the top of stack arc deleted [Smi77] (see Section 3.1 for a more complete description). Stack deletion
increases the mean stack distance by greatly reducing the locality in a trace. Simulations for large virtual memories,
file systems, or that use traces reduced through stack deletion will therefore have poor running times with linked-list

stack simulations due to their large mean stack distances.

Bennett and Kruskal [BeK75] and Olken [OIk81} have proposed LRU simulation algorithms that encode the
stack’s state in a tree. These methods reduce the number of elements that must be scarched to determine a
reference’s stack distance (or determine that the reference is not in the stack). Bennett and Kruskal’s algorithm
takes advantage of the fact that a block’s stack distance is just the number of unique blocks referenced since the
block’s last reference [Tho87]. Simulation times become proportional to the log of the average inter-reference time.
Olken further refines Bennett and Kruskal’s algorithm to run in bounded space where the alternative memorics are
smaller than some given size. Olken develops his own algorithm that uses an AVL tree to encode the state of the
stack. The tree is dynamically rebalanced, and thus cxhibits a better worst-case running time than Bennett and
Kruskal’s algorithm. Thompson shows that further improvements, to maintain a better balanced tree with fewer
rebalancing actions, reduce the algorithm’s complexity [Tho87]. However, Thompson’s measurcments indicate that
Bennett and Kruskal’s algorithm typically gives the best running time of the tree-based methods. In both cases,
Thompson has shown that these tree-based algorithms reduce the asymptotic running time to O (N log D), where D

is the mean stack distance.
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Unfortunately, the trec-based schemes lack the clean intuitive appeal of linked-list stack simulation and are
much more difficult to code. They also have running times that are still related to the locality present in the trace,
and thus will have worse performance for traces that induce high mean stack distances (albeit varying according to
the log of the mean stack distance or inter-reference time). This paper shows that our hashing stack algorithm has

run times unrelated to a trace’s localily, resulting in run times proportional to trace length.

Trace-driven simulation and exccution-time profiling confirm that our hashing stack algorithm can process
cach reference in approximately constant time. However, the overhead of maintaining the hash table results in a
large constant factor, causing linked-list-based simulations to perform faster for traces with low mean stack dis-
tances. The hashing algorithm overcomes the constant overhcad and clearly outperforms linked-list stack algorithms

for mean stack distances greater than 10.

The rest of this paper is organized as follows. Scction 2 presents our hashing stack algorithm, and also
presents an informal analysis of its running time. Section 3 compares the execution times of a simulator using the
hashing algorithm with those of a linked-list-based simulator. Section 4 discusses possible extensions to and limita-

tions of the hashing algorithm, Finally, Section 5 presents conclusions.

2. A Hashing Stack Algorithm

Our hashing stack algorithm can simulatc multiple memories with one pass through the trace so long as all
memories use the same block size, the same number of sets (one for fully-associative), and LRU replacement. Like
conventional stack algorithms, the hashing stack algorithm represents the stack using a linked list. The important
difference is the addition of a hash table to accelerate the lookup function. The hash table serves as an index, return-
ing a pointer to the correct stack element (or NIL) in essentially constant time. However, merely locating a stack

clement is insufficient; we must determing its current stack depth.

The key to the algorithm is that designers arc rarcly interested in a continuum of memory sizes, but instead
desire metrics for only a discrete set of alternatives (c.g., powers of two). Thus the algorithm need only maintain
distance counts for these sizes: a hit at distance n is recorded in the distance count of the smallest memory contain-
ing at least n blocks. We can efficiently compute distance counts if each stack element has an in-memory ficld, that
keeps track of the smallest memory that contains it. In the remainder of this section, we describe the algorithm in
detail and examine its run-time complexity. The algorithm consists of four stages for cach reference: read in the
reference, locate the reference in the stack (or determine that the reference is not in the stack) and determine its
stack distance, update metrics to indicate which memorics contain the reference, and then update the stack to reflect
changes in the contents of the memories after this reference [HiS89]. We call these stages INPUT, FIND, METRIC, and

UPDATE, respectively. After first describing the data structures, we examine each of the four stages in turn.



2.1. Data Structures

A doubly-linked list represents the state of the stack, with each clement of the stack corresponding to a unique
block encountered in the reference stream (sec Figure 2). The top stack element, or block, is most recently refer-
enced, and so on. Addresses arc hashed by block number (the integer address divided by the block size in bytes).
Each non-empty hash bucket points into the doubly-linked stack to the block in which the reference occurred, and
uses chaining to resolve collisions [Knu73]. In our implementation, the hash table entries are combined with the
stack nodes to simplify storage management. The hash function (bucket# = reference-block# MOD hash-table-size)

is simple and fast, while causing few collisions.

We chose the size of the hash table rather arbitrarily (o be 8201 or 10001 buckets. Clearly, power of two table
sizes will speed up the hash function (which reduces to bit sclection), but may also cause more collisions. We made
no efforts to cxamine this tradeoff or refine the hash function, since we observed a very low collision rate with the
present scheme. An execution profile indicates that the hash function consumes less than 6% of the simulation time

in all cases (see Section 3.2 for results indicating low collision rates).

Each stack clement contains a field that indicates the largest memory size of interest in which the block
currently resides, called the in-memory field. A scparate array of pointers, one for each simulated memory size,
helps maintain the in-memory ficlds. The discard-pointer for a memory size of N blocks points to the block at stack
distance N+1.1 We also keep track of the size of the stack in a variable called stack_size. See Figure 1 for an illus-

tration of a stack element, and Figure 2 for an cxample of a stack, hash table, and associated data structures.”

A A

previous | previous element
clement in slack1 of same hash table bucket
In-memory field - number
of largest memory size of in-memory lag
interest to the user
containing this block
next i next element
clement in smck1 of same hash table bucket
v v

Figure 1: Stack element.

! Robinson and Devarakonda [RoD90] use a similar sct of pointers indexing into an LRU stack to implement frequency-
based replacement in a disk cache.
2 In our implementation of the algorithm, we added a backpointer per clement to make pruning in UPDATE more convenient.
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Top (J),f Stack Hash Table
, 1 tag=67) 9 : °10
Memory Sizes N o : ° |1
of Interest Distance Discard 3 : | ° 12
4 gzejn  Counts Pointers 1 tag=05:"'§"“; ,; 2
1 2 7 S ' TR Lo 5 | 5
2 4 [ 4o P
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L |2 g =28 ] 25
P E= 2 5 ° |26
Pl S a——— ° |27
Db 3 ag=35 T ° 128
o g e g ° 129
v v v e - 130
° 131
Bucket #

Figure 2: Example of the stack, hash table and associated data structures.

This example shows four memory sizes of interest consisting of two, four, eight, and sixicen
blocks, respectively. A memory of size two contains the top two blocks of the stack (67, 05), of
size four the top four blocks (67, 05, 94, 25), cte. Note that there is a discard-pointer (to the next
block after the last one in each size) and distance count associated with each size. The hash table
shown has 32 buckets; the hash function is the block’s tag MOD the table size (hence why 67 and
35 are linked to the same buckel.)

2.2. INPUT

INPUT reads in references in ASCII as 4 byte hexadecimal addresses. We used ASCII to aid with
debugging despite the obvious speed disadvantages. Our algorithm as presented here makes no distinction

between instruction and data references, or reads and writes.

2.3. FIND

To find a reference’s block in the stack, we hash the address of the reference to obtain a bucket
number in the hash table. If the bucket is empty, the reference is not in the stack. If it is non-empty, we [ol-
low the bucket’s collision chain, comparing the tag of the reference’s block with those of each block in the
chain. On a match, we return a pointer to the correct entry. If the entry is not in the collision chain, it is not

in the stack and the reference misses. The average number of elements that must be searched to find a
block in the hash table is approximately 1 + > where o equals the number of blocks hashed into the table

divided by the number of buckets in the table [HoS76]. For a sufficiently large hash table, FIND can be

done in essentially constant time,
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FIND, in addition to finding a block in the stack, must determine its stack distance. If the block is
found, its in-memory field directly indicates the largest memory size which contains it (i.c. its stack dis-

tance), with no traversal of the stack.

24. METRIC

At this point we have either found the reference’s block or determined that the block is not in the
stack. If the block is found, we use its in-memory ficld to dircctly increment the proper distance count (o
reflect a hit in that and all larger memory sizes (see Figure 3). Note that we do not require traversal of the
stack to compute stack distances, and thus update the appropriate metric for each reference in constant
time.

If a block is not found in the stack, METRIC records it as a miss in all memories. METRIC also incre-

ments stack_size, since misses cause the stack to grow in size.

2.5. UPDATE

The algorithm then updates the stack. As in conventional stack algorithms, the reference’s block
moves Lo the top of stack, if it is not already there (see Figure 4). If it was originally at stack distance d, the
blocks at distances 1 through d - 7 automatically move down one block (the whole stack moves on a miss).
The hashing stack algorithm must also update the appropriate discard-pointers and in-memory fields. We
move discard-pointers that index into the stack at or above the depth of the reference (the size of the stack
on a miss) up o point to the next higher block in the stack (the new block just below the last block of that
size of interest - it is for this reason that the stack must be doubly linked). We also increment the in-
memory fields of these new blocks (having just been pushed out of the next smaller memory size). At the
start of a simulation, the stack grows as blocks arc referenced for the first time. Stack_size indicates when
to initialize discard-pointers as each successive memory size of interest fills up. Note that if a block is
found in the stack, UPDATE does not affect any portion of the stack or its associated data structures below

the distance of the reference.

Blocks that fall out of the largest size of interest arc pruned out of the stack and hash table (at the
same time we also decrement stack_size). This docs not affect metrics derived from the simulation since
any block found below the last size of interest in the stack is a miss anyway, and it allows the simulation to

run for arbitrarily long traces.’

3 In our implementation of the algorithm, we actually retain one block beyond the end of the last size of interest, as it is
pointed Lo by the discard-pointer of the largest memory.
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Top of Stack Hash Table
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Figure 3: This and the next figure show the same stack and hash table while processing a refer-
ence 1o block 94. Here we have just done FIND and METRIC. The lag hashed into the table (94
MOD 32 = bucket #30) gives a pointer directly 1o the correct block. Note that the in-memory
field of that block gives its stack distance without traversing the stack, indicating that the second
distance count must be incremented, from 4 to 5.

Top of Stack Hash Table
!
I tag =94 777 =0
Memory Sizes : g ° ; ° 11
of Interest Distance Discard I 5 ° 12
4 gzejn  Counts Pointers tag=67 ¢ T e 13
R N s e R =
2 4[5 Te e b RS
3 8 1 o--j-e=my b e 2 tag =05 . 6
4 16 0 e R N =
i |2 wg=as e 2
L N T = | 26
N T o
a3 tag =35 4 ° 128
Lo ° E 29
Vv 1 ey e 130
° 131
Bucket #

Figure 4: In doing UPDATE, block 94 is moved 1o the top of stack (LRU) and its in-memory field
changed. All blocks above the depth of the hit move down automatically. Discard-pointers in this
range are moved up (there is only one - discard-pointer #1 now points to block 05) and the in-
memory fields of the new blocks they point to are incremented. Note that updating takes place in
the stack only above the depth of a reference (the depth of a miss can be thought of as equal to
the size of the entire stack).
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To determine UPDATE’s time per reference, Iet us assume that the simulation is in steady-state such
that all M memory sizes are full, and that the miss ratio for the i th size is m;, for i = 1..M. The amount of
time it takes to move a block 1o the top of stack is constant; call this A. The amount of time it takes (0
adjust a single discard-pointer and the in-memory ficld of the block it points to is also constant; call this B.
For cach reference we must then spend an amount of time equal to A to move the block to the top of stack,

plus B for cach memory whose size (in blocks) is smaller than the stack distance of that reference (or in

=M
other words, for each memory size for which this reference is a miss). Thus UPDATE requires A + B 3 m;
i=1

time per reference, on average, which is always less than or cqual © A + [B X M} since miss ratios arc
never greater than one. In fact, these miss ratios arc likely to be quite small. Regardless, the time per refer-
ence to do UPDATE is O (M), where M is unrelated to stack size, trace length, or other parameters, and tends

1o be a small constant (less than cight).

2.6. Comparison to Other Algorithms

We have shown that our algorithm does INPUT, FIND, METRIC, and UPDATE in constant time. (The
validity of assuming constant time¢ hash table operations for the FIND operation will be examined experi-
mentally in Section 3.2.) In total, our algorithm processes a trace of length N in at most O (NM) time,
where M is a small constant chosen by the designer. Linked-list based algorithms have run times of
O (ND), and tree-based algorithms asymptotic run times of O (N log D), where D is the mean stack dis-
tance. For traces with high mean stack distances, D is large while M is always small and unrelated 1o the

locality of input traces in any way.

3. Evaluation

We implemented the hashing stack algorithm described above and compared it to a conventional
linked-list LRU implementation. We ran both simulators on a variety of input traces to compare their run
times, and o test the assertion that the hashing algorithm would run in time proportional to trace length (i.c.

is insensitive to locality).

3.1. Traces

The input traces were selected portions of long CPU address traces generated through link-time code
modification techniques [BKW90]. We would have preflcrred to use file system traces, but had none at our

disposal. Tables 1 lists the names and characteristics of cach trace.



Name Description pgth Mefm Stack
(10" instrs.) Distance

Multl || Multiprocessor traces from 6 processes running concurrent- 127 32
ly.

Mult2 [} Muluprocessor traces from 6 processes running concurrent- 137 3.0
ly.

Tree Lisp dialect program that builds a tree and then searches for 157 2.8
the largest element. Does garbage collection when needed.

Tv A timing verifier for VLSI circuits, written in Pascal. Gen- 195 12
erates then traverses a linked list structure.

SOR Fortran implementation of a successive overrelaxation al- 97 52
gorithm using sparse matrices.

Table 1: Characteristics of Five Main Traces
This table describes the five main traces used in simulation. Lengths are in millions of instruc-
tions. Mean stack distances are those that would have been obtained for a fully-associative LRU
stack of unbounded size with 1K byte blocks, where the distance of misses are recorded as the
size of the stack at the time of the reference.

Derived || Deletion englh Mean Stack | Relative Error
From: Depth (107 instrs.) Dislance 1M memory
Multl 1 38 85 0%
2 23 13 0%
4 9.3 28 0.01%
8 44 53 0.02%
16 1.8 120 0.14%
Mult2 1 41 7.1 0%
2 25 11 0%
4 9.1 26 0.01%
8 4.7 47 0.05%
16 22 89 0.15%
Tree 1 49 6.6 0%
2 34 8.7 0%
4 14 17 0%
8 6.9 27 0%
16 2.3 55 0%
TV 1 75 29 0%
2 43 48 0%
4 17 120 0%
8 6.3 310 0%
16 6.2 320 0%
SOR 1 20 260 0%
2 17 310 0%
4 9.3 550 0%
8 4.0 1200 -02%
16 3.7 1400 -.04%

Table 2: Characteristics of Other Traces
These traces were obtained through the stack deletion. Note the increase in mean stack distance associated with
larger deletion depths. The last column shows the relative error in results obtained with these traces versus those
obtained with the original traces, for fully associative LRU simulations of 1M memories with 1K blocks. 0% indi-
cates that —0.005% < error < 0.005%.

Table 2 lists additional traces derived {rom the original five using stack deletion, a reduction tech-
nique that deletes from the trace all references that hit within the top 4 blocks of an LRU stack [Smi77].
The parameter d is called the deletion depth. Besides reducing trace length, stack deletion also reduces the
trace’s locality, and thus increases the mean stack distance that the trace would induce in a stack simula-
tion. From here on, it will be more convenient to associate mean stack distances with the traces themselves,

and unless otherwise noted it will refer to the mean stack distance that would be obtained for a fully-
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associative LRU stack of 1K byte blocks which is allowed to grow to an arbitrary size (stacks which are
bounded in size due to limited associativity or for efficiency considerations will decrease the mean stack

distance). The depths of misses are recorded as the size of the stack at the time of the reference.

Stack deletion is an approximate technique, and can introduce error by skewing the simulation’s dis-
tance counts and miss ratios [Smi77]. However, in this paper we are interested primarily in our simulator’s
efficiency rather than its results. Stack deletion gives us a convenient way to vary the amount of locality
and mean stack distance of the traces used in our cvaluation. In practice, file system traces have mean
stack distances much larger than those of CPU traces; Thompson reports CPU traces with mean stack dis-
tances in the range of 7.5 to 71 and disk and file-system traces in the range of 240 to 500, not including
misses [Tho87]. The last column of Table 2 lists the relative error caused by stack deletion for a 1M fully-

associative memory with a 1K byte block size.

It should also be noted that the link-time modification techniques used to generate the five main
traces lose some information about the interlcaving of instruction fetches and data and stack accesses
within basic blocks of instructions [BKW90]. As a result, these main traces may exhibit more locality and
thus lower mean stack distances than might actually observed {rom the unaltered reference stream as seen
by a unified memory. Once again, we do not care if the range of mean stack distances of our traces may
start somewhat low since we are studying our simulator’s cfficiency (3/4 of Thompson’s CPU traces have

mean stack distances above 12 even though he excludes references to previously unreferenced blocks).

3.2. Methods and Results

We used the traces listed above as input to both simulators. We wrote the simulators in C, compiled
them with the highest level of optimization, and ran them on a MicroVAX 3200* with some X11°
processes in the background. Virtual run times were measured by calls to getrusage. We did separate runs
for profiling purposes for use with the UNIX® profiler gprof. In all cases, we simulated fully-associative
memories of sizes 256K, 512K, 768K, 1M, 1256K, 1512K, and 2M, with a block size of 1K bytes.
Although 1K byte blocks may seem inappropriate [or CPU caches, as well as disk caches and file systems,
we made our choice for the following rcasons. Previous scctions of the paper argue especially for the use
of hashing stack algorithms with disk and file system traces. However, we did not have any at our disposal;

nor did we have CPU traces long enough o simulatc memories with sizes on the order of file or disk

4 MicroVAX 3200 is a registered trademark of the Digital Equipment Corporation.
5X11is a registered trademark of the Massachusetts Institute of Technology.
6 UNIX is a registered trademark of AT&T.
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systems. In order to give an idea of how our hashing algorithm would perform in this domain, we tested

both simulators with the CPU traces described above, with memory and block sizes scaled down appropri-

ately (i.e. 256K to 2M memories with 1K byte blocks).

Figure 5 shows the time per reference versus mean stack distance. Each graph, except the last,

presents the results for a single base trace together with its derivative traces. Note that the time per refer-

ence remains fairly constant for the hashing algorithm, but varies proportional to mean stack distance for

the linked-list implementation. The last graph in Figurc 5 combines the results from all five trace groups to

illustrate the qualitative similaritics between the five sets of results. Note that the hashing lines are all more

or less horizontal and that the linked-list lines all have the same trend.
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Figure 5: Time/ref vs. Mean Stack Distance for Linked List and Hashing

Mean Stack Distanee

These graphs show time/ref (virtual msec.) for both the linked list and hashing simulations vs. the
mean stack distance for the traces used. All five traces sets are displayed separately, and then to-
gether in the last graph for qualitative comparison (SOR runs with mean stack distances above

320 are not shown on the last graph). Note the different scales on all graphs.
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The graphs clearly show that hashing is superior for large mean stack distances. However, if mean
stack distances are low, constant factors may dominate the simulation time. The extra constant overhead
needed to maintain the doubly-linked list, discard-pointers and hash table result in shorter run times for the
linked-list algorithm in some cases. Out of the five base traces, the linked-list implementation performs
better for the two multiprogramming workloads and Trece. The cross-overs occur at mean stack distances
ranging from approximately 3.5 to 4.3, As the mean stack distances increase, the constant factors become
small compared to searching the linked-list, and hashing delivers better performance for the other base

traces and all reduced traces.

The UNIX execution profiler gprof confirms the tradeoff of higher pointer manipulation overhead for
faster search time. Tables 3 and 4 present an approximate breakdown of time spent doing INPUT, FIND,
METRIC, and UPDATE for simulations using traces derived from Mult2. Two statistics are presented, the per-
centage of time spent in each stage and the average time per reference. The tables show that both simula-
tors spend roughly equal time in METRIC and INPUT, The hashing algorithm spends roughly constant time
per reference in FIND, while the linked-list implementation spends time proportional to the mean stack dis-
tance. The extra overhead required by the hashing algorithm causes it to spend roughly twice as much time
per reference performing UPDATE. Note that the hashing algorithm does spend more time in UPDATE as the
mean stack distance increases. This occurs because UPDATE must modify more discard-pointers and in-
memory fields for larger stack distances. However, the time in UPDATE is bounded since we are interested
in a fixed number of memory sizes. In addition, the magnitude of the increase is very small: less than 4%

over the entire range of mean stack distances.

Our simulator used a simple hash function, block number modulo table size, and a fixed table size.
Further tuning of the hash function and table size could [urther reduce the average number of hash probes
and thus the the run-time of FIND. However, the average number of tag comparisons over all simulations is
just 1.05, and in all cases is less than 1.23. Gprof also shows that the simulator never spent more than 6%

of its time doing division and remaindering for the hash function.

The time complexity analyses of previous stack algorithms usually ignore INPUT, which is reasonable
since those algorithms all grow faster than O (N). Note that for our hashing algorithm, INPUT takes a
significant portion of time (due to the ASCII input format), which if reduced, makes the advantages of con-

stant time FIND even more significant.

The memory requirements of our algorithm are quite modest. Pruning the stack and hash table limits
their size to be proportional to the largest memory size of interest. Each stack element requires only 16

extra bytes to accommodate the in-memory field, stack back pointer, and double collision chain pointers. In
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Deletion | Mean Stack INPUT FIND METRIC UPDATE
Depth Distance % | timefref || % | timefref | % | timefref | % | timefref
0 3.0 48 15 30 .09 6.5 02 7.1 .022
1 7.7 45 20 40 18 4.5 .02 6.1 .027
2 11 38 .20 49 26 3.8 02 5.0 026
4 26 25 20 66 53 2.6 02 34 027
8 47 17 20 77 90 1.8 .02 2.4 .028
16 89 11 .20 85 1.6 1.1 02 1.5 .029

Table 3: Profiling of Linked-List Implementation, Mult2 Traces

Table 3 shows the breakdown of Mull2 run times done with gprof for the linked-list implementa-
tion. % indicates the total amount of time spent in that activity as a percentage of the total time to
process entire trace. Time/ref is in virtual msce.

Deletion | Mean Stack INPUT FIND METRIC UPDATE
Depth Distance % | timefref || % | timefref || % | timefref || % | tme/fref
0 30 46 14 31 .10 6.0 .02 10 032
1 7.7 48 20 29 12 4.7 .02 13 056
2 11 49 20 28 11 4.7 .02 13 053
4 26 49 20 28 11 4.6 02 13 054
8 47 49 21 27 12 43 .02 13 057
16 89 48 21 26 12 44 .02 14 061

Table 4: Profiling of Hashing Algorithm, Mult2 Traces
Table 4 shows the breakdown of Mult2 run time done with gprof for our hashing algorithm. % in-
dicates the total amount of time spent in that activity as a percentage of the total time to process
entire trace. Time/ref is in virtual msec.

all cases, our simulator required less than 400K bytes (a maximum stack of 2049 elements) for all data
structures, of which about 10% went to the hash table.

Summing up, hashing algorithms can do WPUT, FIND, METRIC, and UPDATE in essentially constant
time, and thus process a trace of length N references in essentially O (N) time. However, due 1o constant
factors {rom maintaining a doubly-linked list, discard-pointers, in-memory fields, and pruning and main-
taining the hash table, the hashing algorithms performs better that the linked-list implementation only when
the mean stack distance is above a certain threshold. For our traces, the crossover occurs for stack distances
between three and five. For small mean stack distances, it is probably most appropriate to use linked-list
based simulators. This is especially wruc for CPU cache simulations, where small associativities limit stack
depths. But, for traces with poor locality, like disk or file system traces, hashing is the betler choice.
Thompson suggests that file and disk system traces have mean stack distances between 200 and 500
[Tho87]. Our results indicate that hashing would give ten to twenty times the performance of a linked-list-

based simulator for these traces.

4, Extensions and Limitations

The hashing algorithm presented in this paper can be extended to work with memories that use write
back of dirty blocks to reduce memory traffic. Thompson and Smith [ThS89] have proposed an efficient

method for recording the number of write backs, by recording a dirty level within each block. The dirty
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level indicates the stack distance at or below which all memorics have that block dirty. We can then main-
tain for each memory size the number of writes avoided, or writes to a block which is already dirty. We
increment the writes avoided for a particular memory size whenever a write occurs to a block for which
this is the smallest memory equal to or larger than the block’s dirty level. Since a write to a block that is
already dirty in a memory will not cause another write back, we can calculate the true number of write
backs that must take place for a given memory size of interest by subtracting the sum of the writes avoided
{or this and smaller sizes from the total number of writes that occurred in the course of the simulation (also,
the number of dirty blocks which remain in the memory at the end of the simulation must be subtracted if
we assume that the memories are not flushed at the end of the simulation). A key point in incorporating

write backs into our algorithm is that we need to update a block’s dirty level only when it is referenced.

This hashing algorithm is not adaptable to all-associativity simulation [HiS89}. All-associativity
simulation relies on traversing the stack and recording the number of blocks that would have appeared in
the same set as the referenced block over a range of number of sets. Since the hashing algorithm does not
traverse the stack, it does not generalize to all-associativity simulation without losing the improvements in

simulation speed for which hashing was introduced.

We assumed an LRU replacement policy [rom the outsct. Hashing as presented in this paper is not
adaptable to other stack algorithms besides LRU without suffering degradation in simulation speed.
Although hashing can be applied in general to allow blocks to be found in a stack in constant time, our
hashing algorithm relies on the orderly fashion in which LRU moves blocks between memory sizes to

allow efficient maintenance of the in-memory ficlds.

5. Conclusion

In this paper we have described a new algorithm for efficiently simulating highly-associative
memories, such as disk and file-system caches. The algorithm also performs efficiently for CPU address
traces reduced using stack deletion. These traces all exhibit large mean stack distances, resulting in long
simulation times using a conventional stack algorithm. Conventional stack algorithms have run-times of
O (N xD), where N is the trace length, and D is the mean stack distance. Several other stack algorithms
use tree structures to reduce the running time, but achieve bounds of at best O (N log D). Our algorithm
uses hashing to find references in the stack and their stack distances (the FIND operation) in constant time,

and hence requires essentially constant time per reference or O (N) for the entire trace.

The key to the algorithm is that computer designers are not interested in a continuum of memory

sizes, but rather in discrete sets of sizes (e.g., the powers of two). The algorithm exploits this fact, and uses
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in-memory ficlds and discard-pointers to determine the smallest memory currently containing the requested
i=M
block (i.e. its stack distance). Thus the algorithm runs in O (N Y, m;) time, where the m; through my, are
i=1
the miss ratios for the M memory sizes under investigation. In most cases, researchers investigate a small
i=M
number of memory sizes (e.g., M < 8) and ¥ m; is much less than M, since highly associative memories
i=l
i=M
tend to have low miss ratios. In any case, since Y. m; cannot exceed M, a constant with respect 1o trace
i=l

locality, our algorithm’s run-time is simply O (N). Furthermore, our algorithm is a simple extension to the

traditional linked-list algorithm, and hence is much casier to code than the tree-based schemes.

In this paper, we compared an implementation of our hashing stack algorithm to a link-list-based
simulator. Run-time' measurements showed that the traditional algorithm works best for small mean stack
distances, because of the additional hash table overhead. But the new algorithm quickly dominates as the
mean stack distance increases above approximately 5. Thus our algorithm is clearly superior for disk and

file-system traces, which have mean stack distances in the hundreds.

In the future, we plan to extend this work by comparing the hashing and link-list algorithms for disk
and file-system traces. We also hope to measurc the run-time performance of at least one trec-based algo-

rithm (o allow a more complete comparison.
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