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Abstract

Parallel algorithms for depth first search on two classes of graphs are
presented. A new algorithm for the class of graphs that do not contain
subgraphs homeomorphicto K3 3 is presented that takes O(log2 n) time
using O(n) processors. For the class of graphs that do not contain a
subgraph homeomorphic to K5, we present an algorithm that takes
O(log® n) time using O(n?) processors. The model of computation
assumed is a CRCW PRAM.

1 Introduction

Efficient parallel depth first search has been an open problem for a long
time. Reif [Rei85] showed that constructing a lexicographically first depth-
first -search tree is P-complete. Aggarwal and Anderson [AA87] presented
an RNC algorithm for DFS on general graphs that ran in O(log®n) time
using O(n*>) processors.

Efficient algorithms are known for special cases of graphs. For planar
graphs, DFS can be done in O(log? n) time [Smi86, HY88], with a linear
number of processors. Khuller [Khu88a] has a parallel algorithm for graphs
that do not contain subgraphs that are homeomorphic to K33 (I3 3-free
graphs) which runs in O(log®n) time using a linear number of processors.
Here, we present an improved algorithm for these graphs that takes O(log? n)
time with the same processor bound. In addition to being more efficient
asymptotically, our algorithm is somewhat simpler than the one in [Khu88a).
We also present a parallel algorithm for the depth-first search problem on



graphs that do not contain a subgraph that is homeomorphic to K5 (K 5-free
graphs). This is the first efficient parallel algorithm for this class of graphs.

Qur algorithms use characterizations of K3 3-free and Ks-free graphs due
to Hall [Hal43] and Wagner [Wag85], that were also used in [Vaz89, Khu88a,
Khu88b]. These characterizations allow the decomposition of such graphs
into simpler structures which can be processed independently and the results
are combined in an efficient manner.

In Section 2 , we define terms that are used in this paper. Section 3
discusses the characterization of K3 3-free graphs. Section 4 discusses the
algorithm for K3 3-free graphs and analyzes its time and processor require-
ments. Sections 5 and 6 similarly deal with Ks-free graphs.

2 Definitions

Let G(V, E) be a connected undirected simple graph. Let 5§ C V. Define
G\ S to be the subgraph of G obtained by deleting from G all the vertices
of S and all the edges incident on vertices in 5.

A vertex u of G is said to be a cut-vertez of G if G\ {u} is not connected.
A connected graph is biconnected if it has no cut-vertices. A maximal bi-
connected subgraph of G is called a biconnected component of G.

Let G(V, E) be a biconnected graph. A a pair of vertices u,v € V is a cut-
pair of G if G\ {u,v} is disconnected. In this case, let {G},G%, G5, ... G}
be the set of k connected subgraphs in G \ {u,v}. Let G; be the subgraph
induced on V(G}) U {u, v}, with the edge (u,v) added, if it doesn’t already
exist in G. The G are called the split components of G w.r.t. the cut-pair
{u,v}.

A graph G is triconnected if it has no cut-pairs. For a graph G that is
not triconnected, the triconnected components are defined as follows. Find
a cut-pair {u,v} and split G into its split graphs w.r.t. {u,v}. Recursively
continue to split the components obtained until no component has a cut-
pair. The resultant triconnected graphs are the triconnected components
of (G. This decomposition is unique and any two triconnected components
share at most two vertices [Tut66].

In a similar fashion, if G(V, F) is a triconnected graph, a set of three
vertices {u,v,w} C V(G) is said to be a cut-triplet if G\ {u, v, w} is discon-
nected. Four-connected graphs and four-connected components of a graph
are defined similarly in the natural way.

Given a graph G, let F; and E; be a partition of the edge set E(G). Let



V1 and V3 be the subsets of V(@) induced naturally by the edge sets F; and
E, respectively. Then (G1(Vi, E41), G2(Va, E2)) is said to be a separation of
G. Let (G4, G2) be a separation of G. Let H; be the graph obtained from G;
by adding new edges between every pair of vertices in V(G1NG3). Then, G
is said to be the clique-sum Hjy o Hy, of Hy and Hy. If |V(H,)NV(Hy)| <k,
then Hq o H, is said to be a < k clique-sum of Hy and Hy. If C is a class of
graphs, the set of graphs obtained by repeatedly taking < k clique-sums of
graphs in C is denoted by (C),.

3 A Characterization of Kj3-free Graphs

The following lemma is due to Hall [Hal43].

Lemma 3.1 (Hall) A graph G has no subgraph homeomorphic to K33 iff
every triconnected component of G is either planar or the graph I(s.

While Lemma 3.1 gives us a decomposition of K3 3 free graphs into “sim-
ple” components, the following property of the decomposition says that the
components are connected in a particularly simple structure that facilitates
the components being handled in parallel.

Lemma 3.2 Let G be a graph and let C be the set of triconnected compo-
nents of G and P be the set of cut-pairs in this decomposition of G. Define
the graph H on C U P s.t. (c,p) is an edge of H iff c € C,p € P and the
pair of vertices p are in the component ¢. Then, H is a tree.

Lemmas 3.1 and 3.2 were used in [Khu88a, Vaz89] to develop parallel
algorithms for several graph problems on K33 graphs.

We will call the tree H of Lemma 3.2 the decomposition tree of G. For
purposes of description, we define another auxiliary tree H' of the tricon-
nected components alone where, an edge between ¢; and ¢; exists iff they
share a cut-pair of vertices. Clearly, H' is obtained from H by collapsing
the nodes corresponding to cut-pairs into their parents. We will call H' the
component tree of G. Each component ¢ (except the root) in this component
tree has a unique cut-pair that separates it from its parent. We will call this
cut-pair the parent cut-pair of c.

4 The Algorithm for K;s-free Graphs

Miller and Ramachandran [MR87] give a parallel algorithm to obtain tri-
connected components of a graph that runs in O(log®n) time using O(n)



processors. This algorithm can be used to construct the tree of triconnected
components and cut-pairs described in Lemma 3.2.

For planar graphs, He and Yesha [HY88] give an O(log® n) time paral-
lel algorithm for depth first search that uses a linear number of processors.
This algorithm proceeds by first finding a separating path in the planar
graph, i.e. a path whose removal disconnects the graph into components
which are smaller than the original graph by at least a constant factor. This
path becomes a path in the DFS-tree and the DFS-trees of the remaining
components are computed recursively and spliced onto this path. The al-
gorithm of Khuller [Khu88a] works in a similar fashion for K33 graphs and
uses Lemmas 3.1 and 3.2 to efficiently compute a separating path in such
graphs.

Our algorithm proceeds by generating the DFS trees for each of the
triconnected components in parallel. This can be done efficiently, since, by
Lemma 3.1, the triconnected components are either planar or exactly Is.
Then, these trees are put together by using the simple structure afforded
by Lemma 3.2. This merging is done by merging adjacent pairs of levels
in the tree of components H in parallel, i.e. in the first step, levels 2¢ — 1
and 2¢,7 =1,2,3,..., are merged to obtain a tree of half the depth. This
is continued recursively giving an O(log n) stage procedure. We show below
that we can do each of these merging steps in constant time.

At each stage, each node of the current tree represents a cluster of the
initial triconnected components, whose DFS tree has been generated. Actu-
ally, our algorithm computes and maintains four different DFS trees (with
specific properties) for each node (except the root cluster) in the current
component tree. This is to ensure that the next merging step can be per-
formed efficiently. Thus, when a cluster C is merged with one of its children
D, each of C’s DFS trees Tc(k),k = 1,...,4 is merged with exactly one of

D’s DFS trees Tgc), the choice being made based on which Tg;) is “easy” to
handle. At the end of this merging then, this again leaves behind four DFS
trees of the newly formed cluster.

We now define the structure of these four DFS trees. Let C be a cluster.
Recall that C represents a subtree of the original tree of triconnected com-
ponents consisting of a root component C, and all its descendants up to a
particular level. Let (u,v) be the parent cut-pair of C,. Define the following
DFS trees :

i) Té”’u), a DFS tree of C \ {v}, rooted at u.



it) TC("U), a DFS tree of C \ {u}, rooted at v.
iii) Téu’u), a DFS tree of C with edge (u,v) removed, rooted at u.
iv) T, a DFS tree of C with edge (u,v) removed, rooted at v.

The structure of these trees is illustrated in Fig. 1.

If Téx’y) is one such DFS tree of C, we will call it a (z,y)-DFS tree of C.
Note that Tc(“’u) and Téf”v) do not contain all the vertices of C. The fact
that this definition is consistent follows from the fact that C is a biconnected
component, and hence C \ {u} and C \ {u} are still connected graphs and
can be covered by a single DFS tree.

The motivation for the above definitions is the following lemma, which
essentially describes how to combine the DFS trees of two clusters.

Lemma 4.3 Let C be a cluster and D its parent cluster in the current
tree. Let (u,v) be the cut-pair that separates these clusters. Let (uy,v1)
be the copies of (u,v) in D and (ug,vy) its copies in C. Let Tg’y) be any
(z,y)-DFS tree for D, where (z,y) € {(u1,v1), (v1,%1),(—, v1),(—,v1)}. Let
Té_'w),Té_’W), Téuz’”) and Tévz’”) be the DFS trees of C as defined above.
Then,

1) If uy and vy are both in Tg"’y), then uy; and vy are on a common path
from the root of Tz()x’y).

ii) Suppose either u; ¢ Tg’y) or uy is an ancestor of vy in Tém’y).

(a) Ifeither (uy,v1) & TS or (ug,v1) € G, then, E(TSYYUE(TS ™))
forms an (x,y)-DFS tree for C UD.
(b) If(us,v1) € TS, but (ug,v1) & G, then, E(T& YU E(TEY)\
{(uy,v1)} is an (2, y)-DFS tree for CUD.
Proof:

i) Since (u,v) is a cut-pair that separates C and D, D contains the virtual
edge (u1,v1). Thus, any DFS tree Tp of D that contains both u; and
vy is constrained to have u; and v; on a common path from the root.
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ii) (a) In this case, by identifying the vertices v; and v, and making T, é_'uz)
a subtree of Tp at v;, we get a tree that spans C UD. Since the
additional non-tree edges introduced by this operation go only

(

from vertices of T

.

"’Uz), to the vertex uy, which is an ancestor of

TC(_’U2) (either currently or potentially), the DFS-tree property is
retained. We will call this operation grafting.

(b) Here, the tree Tp contains the illegal edge (u1,v1), which can be
replaced by a part of the path from the root of Tc(uz’”). Since in
this splicing step, the relative ancestor—descendent relationships
of the nodes are not disturbed, the DFS property is again retained
in the merged tree.

N

The process of grafting and splicing can be done in constant time using
a linear number of processors (linear in |C| + |D|). It remains to show how
to efficiently decide the ancestor—-descendent relationship between u; and
v1 in Tp. Observe that the ancestor—descendent relationship between the
nodes in a DFS tree within any triconnected component is an invariant and
is unchanged by grafting or splicing. Thus it suffices to establish this rela-
tionship at the beginning for every DFS tree constructed and subsequently
keep track of which trees are currently active at any stage.

Specifically, initially each cluster has four distinct DFS trees associ-
ated with it. At any stage, when two clusters are merged, an appropri-
ate form of the child cluster’s DFS tree is chosen and merged with each
of the four types of the parent’s DFS tree. Thus, at any stage, for ev-
ery initial triconnected component, there are four versions of its DFS tree
extant (perhaps in a form merged with other components to form a clus-
ter). Each triconnected component thus maintains the following informa-
tion about itself throughout the course of the algorithm : the identity of
the cluster it is currently contained in, and the forms of its four DFS trees
represented as an ordered list ((@1,y1), (22, ¥2), (¢3,¥3), (€4, y4)), where each
(zs,9:) € {(u,v),(v,u),(—,u),(—,v)}. This list is easily updated on merges
by observing which versions of its cluster were merged with the parent clus-
ter.



The following segment of pseudo-code summarizes the above description
of the merging of a cluster C into its parent cluster :

Procedure Merge (C);
begin C, := the root component of cluster C;
D := parent cluster of C;
Cp := the patent of C, in the component tree H;
Let (u,v) be the cut-pair that separates C, and Cp;

For each currently extant DFS tree T"%) of D do
/* WLOG, assume that either u is a parent of v

in Tg’y) or u ¢ Tz()x’y) */

if (u,v) ¢ To" or (u,v) € G then
graft Té"u) onto Ip;

else

(uv)

splice T;“" onto Tp;

end

We now consider how this merging can be done in parallel at each stage
of the algorithm. Clearly, it suffices to look at merging two adjacent levels,
since the other pairs of levels can be merged independently in parallel. Let
I and ! 4+ 1 be the levels of the cluster tree that are to be merged. Let
{Co,C1,...} be the set of clusters at level [ and let {C;1,Ci2,...} be the
children of C;. Again, it clearly suffices to look at any one C; and its children.
Also, if two child clusters have distinct cut-pairs through which they are
attached to the parent cluster, they can also be handled independently.

Therefore, we need to worry about only the case where more than one
cluster has the same parent cut-pair, say (u,v). To handle this case, we
initially choose, in the decomposition tree H, a distinguished child cluster
as a normalizer. This cluster proceeds to merge into its parent as described
before, and its siblings can then proceed by performing a graft operation,
irrespective of the status of the edge (u,v) in the parent tree, since the state
has been normalized by the distinguished child. Thus, we avoid the situation
where more than one child may attempt a graft operation on the same edge
o the parent tree. Clearly, the normalizers can be chosen in constant time
and marked as such after the decomposition tree H has been constructed.

The running time of the above algorithm is as follows. The initial de-
composition of the K3 3-free graph into triconnected components and the
construction of the decomposition tree can be done in O(log?n) time using



O(n) processors using the algorithm in [MR87]. Generating DFS trees for
the planar components is again possible in O(log2 n) time by the algorithm
in [HY88]. The labeling of the vertices to determine the initial ancestor-
descendent relationships can also be done at the same time. As explained
before, the individual DFS trees can then be merged in O(logn) stages,
with each stage taking a constant time and using O(n) processors. Thus,
the overall running time is dominated by the preprocessing step, giving an
O(log? n) algorithm.

5 A Characterization of Kj;-free Graphs
The following lemma is due to Wagner [Wag85], and was used in [Khu88b].

Lemma 5.4 (Wagner) Let C be the class of all planar graphs along with
the “four-rung Mobius ladder” (see Fig. 2). Then, (C)5 is the class of all
Ks-free graphs.

Corollary 1 Let G be a triconnected Ks-free graph. Then, its four-connected
components are planar.

Proof: Since G is triconnected, it was generated by taking 3-clique sums
only, since < 2-clique-sums would give rise to either a cut-vertex or a cut-
pair. Since the “four-rung Mébius ladder” does not have K3 as a subgraph,
it could not have participated in a 3-clique-sum operation. Hence G must
have been generated by 3-clique-sum operations on planar graphs only. The
four-connected components of G are all subgraphs of these planar graphs. B

As in the case of the triconnected components of I3 3-free graphs, we
have the following lemma that says that the four-connected components are
linked in a “nice” fashion.

Lemma 5.5 Let G be a triconnected Ks-free graph and let C be the set
of four-connected components of G and P be the set of cut-triples in this
decomposition of G. Define the graph H on CUP s.t. (c,p) is an edge of H
iff ce C,p € P and the triple of vertices p are in the component c¢. Then,
H is a tree.

Lemmas 5.4 and 5.5 were used in [Khu88b] to develop parallel algorithms
for some graph problems on K5-free graphs.



We will again refer to the tree H of Lemma 5.5 as the decomposition
tree of G, and define the auxiliary component tree H' as in the case of I3 3-
free graphs. Each component ¢ (except the root) in this component tree
has a unique cut-triple that separates it from its parent. We will call this
cut-triple the parent cut-triple of c.

6 The Algorithm for K;5-free graphs

We will assume that the graph G is biconnected, since otherwise we can
solve the problem for each biconnected component and put the resulting
DFS trees together. Since, by Lemma 3.2, the triconnected components
of any graph form a tree, we can proceed essentially as in the previously
described algorithm for K3 3-free graphs, i.e., we decompose G into a tree of
triconnected components, compute a set of DI'S trees for each component
and merge them in O(logn) steps. The only difference now is that the
triconnected components may no longer be planar or “small”. We can use
the parallel planarity testing algorithm of [RR89] that runs in logarithmic
time using a linear number of processors to identify the planar components
and use the algorithm in [HY88] to compute the DFS trees for them. In
what follows, we describe how the non-planar components are handled.

As in [Khu88b], we use Lemmas 5.4 and 5.5 to decompose the given
triconnected non-planar graph into a tree of 4-connected components, which
are now planar. This can be done in O(logn) time and O(n?) processors
using the algorithm described in [XR87]. Recall that these 4-connected
components will have some extra virtual edges that were not present in
the original graph G. Having obtained this decomposition, we proceed in
a manner similar to the previous case. As before, for each four-connected
component, we generate a small set of DFS-trees constrained in a manner
that enables easy merging. Then, the DFS-trees of components at adjacent
odd-even levels are merged, giving a cluster tree of half the height. This
process is repeated until we are left with a single cluster and a DFS-tree
corresponding to it. In this case though, since the interface between two
four-connected components is more complicated (cut-triples rather than cut-
pairs), we need to generate alarger number of DFS-trees per component and,
in addition, ensuring that the DFS-trees satisfy the necessary constraints
requires more work than in the case of the triconnected components. We
now describe this process.

Our first step is to augment each four-connected component C in the

10



following manner :
For each four-connected component C in the component tree H' do

Step 1 Delete any virtual edges induced on C’s parent cut-triple.

Step 2 For each cut-triple {u,v,w} that separates C' from a child compo-
nent, if there is is only one child component, linked to C through this
triple, remove any virtual edges that were added to form the 3-clique
{u,v,w}, and add a new vertex z and the edges {(u,2), (v, 2),(w,z)}
to C.

Step 3 For each cut-triple {u,v,w} that separates C' from a child compo-
nent, if there are two or more child components linked to C through
this triple, then add the edges of the 3-clique {u,v,w} in C.

Henceforth, by a component of G, we will mean a component that has
been augmented as described above. Observe that this augmentation deletes
some of the virtual edges and adds a few virtual vertices. We will call the
original (non-virtual) vertices and edges of G as real vertices and edges.
Each virtual vertex is said to be associated with the corresponding unique
cut-triple of G and each virtual edge is associated with one or more cut-
triples of G. The following lemma verifies that the above augmentation does
not destroy the planarity and connectivity properties of the four-connected
components.

Lemma 6.6 Let C be a four-connected component of G that has been aug-
mented as above. Then,

i) C is planar.

ii) If {u,v,w} is the parent cut-triple of C, then C \ {u} and C \ {u,v} are
both connected graphs.

Proof:

i) Since the original four-connected graphs are planar, removing some of
the virtual edges in Step 1 and adding some of them back in Step 3
clearly retains planarity. In Step 2, we replaced some 3-cliques with
a “3-star” (see Fig. 3) with an additional virtual vertex. To see that
this does not destroy planarity, observe that in the original planar 4-
connected component, the edges of the 3-clique must have formed a
face in any planar embedding. Otherwise, removing the vertices of the
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3-clique would have disconnected the component, thus contradicting
its four-connectivity. Thus, we have a face available to us in which we
can embed the new virtual vertex and its associated edges.

ii) To see that removing two vertices of the parent cut-triple does not dis-
connect C, observe that since the original (unmodified) component was
4-connected, removal of any two vertices still leaves it connected. The
first step of the augmentation (removal of edges on {u,v,w}) is sub-
sumed by removing this pair of vertices. Also, the second step is easily
seen to retain any connectivity, since a deleted edge (z,y) is always
replaced by a path (z,z,y), where z is a virtual vertex.

To see that C \ {u} is connected, we simply have to show that v has
at least one neighbour in C \ {u,v}. This is clearly true, as in the
unmodified component, v had at least 4 neighbours, and Step 1 of the
augmentation process removes at most two of them, and any modifi-
cations of step 2 replaces two neighbours with one virtual neighbour.

| |

We define an aggregate of G to be the union of some collection of com-
ponents {Cy,Cs,...Ct} of G that are connected in H'. Every aggregate A
thus has a unique root component, and the parent cut-triple of A is defined
to be the parent cut-triple of this root component. An aggregate A, is said
to be a child of aggregate A, if the root component of A, is the child of
some component of A;. A cut-triple of G that occurs in A is said to be an
external cut-triple of A if the triple connects A to a component of G not in
A.

A cluster C of G is the natural maximal subgraph of some aggregate A
such that every virtual vertex or edge that is in C is associated with some
external cut-triple of A. Thus, in particular, every component of G is a
cluster of G and G itself is a cluster of G corresponding to the aggregate
that includes all components of G. The parent and child cut-triples and
clusters of a given cluster are defined naturally from those induced by the
corresponding aggregates.

A DFS-tree T¢ on a cluster C is said to be well-constrained if it satisfies
the following properties :

i) If {u, v, w}is an external cut-triple of C that connects C to a child cluster,
then u, v and w are either all on a common root to leaf path of T¢, or
occur in T¢ in the “3-star” configuration (Fig. 3).

12



Fig. 3. Replacing the 3-clique with a 3-star

u u u
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Fig. 4 (a)

Fig. 4 (b)

Fig 4. The possible orientations of a cut-triple (u,v,w)
in a well constrained dfs tree



ii) For every virtual edge (u,v) in Tz where u and v are real vertices, there
exists a distinct component of G not contained in C that is connected to
C through a cut-triple that contains {u,v}. Similarly, one can associate
a distinct component not in C with each virtual vertex z in T¢.

Intuitively, condition (i) above ensures that a potential path in some
other component between a pair of vertices of the cut-triple will not affect
the depth-first tree property. Condition (ii) on the other hand ensures that
the virtual edges and vertices which were introduced (to ensure condition
(i)) can be “replaced” by a suitable real path from some other component.

The motivation behind the augmentation of the components that was
described earlier is given by the following lemma.

Lemma 6.7 Let T be any DFS search tree on an augmented component
C. Then, T¢ is well-constrained.

Proof:

i) Let {u,v,w} be an external cut-triple that connects C to a child com-
ponent. We have two cases to consider. If {u,v,w} has two or more
children, then the 3-clique on {u, v, w} produces the desired constraint.
If {u, v, w} has only one child, then the “star” configuration constrains
the possibilities to those shown in Fig. 4(b).

ii) Fach virtual vertex introduced in C is associated with a distinct cut-
triple and the single child component of that cut-triple. Virtual edges
are introduced in C only as edges on cut-triples that have two or more
child components. Since at most two of these 3 edges on any cut-
triple can appear in any T, we can again associate a distinct external
component to each virtual edge of T¢.

|

Thus, we have ensured that any DFS trees we construct on each indi-
vidual component are “nice” in the orientations of their child cut-triples.
We now describe a small set of orientations of the parent cut-triples that
can exploit this structure when merging components. The structure of the
parent cut-triples will be described by using path constraints. Let C be a
cluster and let {u,v,w} be its parent cut-triple. A path-constraint is speci-
fied by describing a path on a subset of the vertices {u, v, w} that specifies
the order of occurrence of the vertices and, in addition specifies whether the

14



sub-path between each successive pair of vertices is composed of a single
edge (denoted by u — v) or a sequence of one or more edges of C (denoted
by u = v). Thus, for instance, (u = v — w) denotes a path p from u to w
containing v such that the sub-path of p from u to v is composed of one or
more edges of C, whereas the sub-path from v to w consists of a single edge
(v, w) (which may or may not exist in C). By this notation, (u) denotes the
path consisting of the single vertex wu.

A DF'S tree of C that is path constrained by a given path-constraint p is
a DFS tree that is rooted at the first vertex of p and contains a path from
the root that is consistent with the constraints imposed by p. A p-path
constrained DFS tree of C is denoted by T%. In particular, Téu) denotes
simply a DFS tree of C rooted at u. Observe that a path constraint may
require an edge that is not present in C. In this case, we will add the required
edge as an additional virtual edge. Note that this addition does not detract
from the resulting DFS tree being well-constrained as defined earlier. For
each cluster, we will be interested in the following types of path-constrained
DFS trees.

f e
i) T
i) T
iv) Téu)

Each of these trees will be called a version of a DFS tree of C. The
structure of these trees is illustrated in Fig. 5

We now show that constructing these versions of DFS trees for an initial
cluster (i.e. component of G') can be done in O(log? n) time using a linear
number of processors. We know that the algorithm of [HY88] generates an
arbitrary DFS tree of a planar graph rooted at a particular vertex within
these time and processor bounds. From Lemma 6.6, we know that each
components C is planar. To obtain a path-constrained DFS tree, we simply
modify the algorithm in [HY88] as follows. We first generate the path re-
quired by the path-constraint. The paths (v — v — w) and (u) are trivial
to generate. For the other two cases, observe that only one sub-path, say
(u,v), is required to be a path in C'. We first obtain this path by running the
spanning tree algorithm of [SV82] on C'\ {w} (which is connected by Lemma

15
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Fig. 5. The structure of the path constrained trees



6.6), and then append the edge (v, w) to it. Once we have the required path,
we then proceed as if this was the first path generated by the planar depth
first search algorithm. Since the algorithm to generate the path in C takes
only O(logn) time with O(n) processors, and the planar graph depth first
search algorithm runs in O(log? n) time, we get the bound on the running
time.

As remarked earlier, the reason for constructing these constrained DFS
trees is that given a version of a well-constrained DFS tree Th for a cluster
D and a child cluster C, we can always find a version of C’s DFS tree that
can be “easily” merged into the tree T5, as outlined in Procedure Merge in
Fig. 6.

Lemma 6.8 Let D be a cluster and T} be a version of D’s DFS tree Let C
be a child cluster of D. Then Merge(T5,C) returns a well-constrained DFS
tree TE 5, of Co D.

Proof: First, it is clearly the case, by the nature of the four-connected
components, that all cut-triples in C o D must have been contained entirely
in either C or D. Also, it is clear that Procedure Merge leaves the relative
ancestor — descendent relationship between any pair of nodes within each of
the trees undisturbed except in the case where the cut-triple {u, v, w}, across
which C and D were just merged was oriented in a “star” configuration in T%
and the vertices v and w, which were originally the two unrelated vertices
of the “star”, fall into a different configuration dictated by T¢. In this case,
let us examine the potential external cut-triples of C o D that may contain
{v,w}. {u,v,w} itself is no longer an external cut-triple of the new cluster,
since the fact that it was oriented as a “star” implied that it had only one
descendent cluster, namely C itself, which has already merged into the new
cluster. For the same reason, {v,w} could not have been part of another
cut-triple of D, since then, there would have been a path (either a single edge
or a path consisting of a single virtual vertex) between v and w, and thus
they could not have been unrelated vertices of the “star”. v and w could be
a part of some external cut-triple of C, but since Tz was well-constrained to
begin with, and v and w are now oriented according to T¢, this preserves
the well-constrained property.

It is also easily verified that property (ii) of being well-constrained is
maintained, as each merge eliminates a virtual vertex or a virtual edge
whenever it is possible to do so.

Since the merge procedure ensures that some virtual edge of the parent
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Procedure Merge (T5,C);
begin
C, := the root component of cluster C;
Cp := the parent of (. in the component tree H;
Let (u,v,w) be the cut-triple that separates C, and Cp;
Let < u,v,w > be the permutation of (u,v,w) such that
level(u) < level(v) < level(w) in TH;
if C; is the only child of C}, in H’
then
begin
z := the virtual vertex associated with {u, v, w} in C;
if {(z,u), (z,v),(z,w)} € Th then
return (75 \ {(z,v), (,v), (&, 0)}) UT);
else if {(z,u),(z,v)} € TH then
return (75 \ {(z, ), (2,0) U T ™),
else if {(z,v), (z,w)} € TH then
return (T3 \ {(x,v), (2, W)U T,
else
return (T5 U (76" \ {(w,v), (v, w)}));
end
else
begin
if (u,v) € T} and (u,v) is virtual and (u,v) is not required by p then
return (TH U (T¢"™"™)\ {(v,w)}));
else if (v,w) € T} and (v, w) is virtual and (v, w) is not required by p then
return (75 U (T8 \ {(x,0)}));
else
return (TH U (Téuﬁw_*w) \ {(u,v),(v,w)}));
end
end.

Figure 6: Procedure Merge merges a suitable DFS tree of cluster C with
the path-constrained DFS tree Th of cluster D. It is assumed that the DFS
trees are represented as edge sets.
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cluster is not required by the path constraint p before trying to splice over
it, the resultant tree also satisfies the same path constraint p. |

If we are able to establish the relative orientation of the cut-triple (u, v, w)
in T§, the rest of the operations in Procedure Merge can be done in constant
time with a linear number of processors. The previous Lemma implies that
the orientation of the cut-triple in TF is the same as it was in the version of
Tc, that had merged into T5,. Thus, it suffices to establish the orientations
of the cut-triples for each version of the trees for each original component,
and subsequently keep track of which version has been merged into each
cluster.

The above description gives us a sequential algorithm to merge the DFS
trees of the various components to obtain a single DFS tree of the entire
graph. We start with some version of the root component’s tree and succes-
sively merge an appropriate versions of adjacent components’ trees with it
to obtain DF'S trees of successively larger clusters.

We now describe the parallel merge procedure. Essentially, our initial
clusters are simply the original components of G in the tree H'. At each
stage, we merge, in parallel, every cluster at an odd level in the tree with its
parent cluster thus reducing the height of the tree of clusters by a factor of
two. In O(logn) stages, we will be left with a single cluster and a DFS tree
corresponding to it. By Lemma 6.8, this tree is well defined with respect
to the entire cluster, and hence is a valid DFS tree of G. At each stage,
a merge consists of merging an appropriate version of a child cluster’s tree
into each version of the parent cluster’s tree as described earlier.

When merging several clusters in parallel, however, we need to ensure
that two child clusters do not attempt to splice over the same virtual edge
in a parent cluster. We informally describe a way of ensuring this, that
is similar to the technique used in the case of K3 3-free graphs. For each
cut-triple of G that has two or more children in H', we will identify one of
them as an “upper normalizer” and another as a “lower normalizer”. This
can be done in constant time; each cut-triple in the decomposition tree H
simply picks two of its child components and labels them appropriately. The
basic idea is that when it is time for a parent cluster and all child clusters
to merge across a cut-triple (u,v,w) that has two or more children (so that
(u,v,w) is on a common root to leaf path in th parent tree), exactly one
of the children will splice over the “upper” pair (u,v) if it is a virtual edge
and exactly one other child is similarly assigned to take care of the “lower”
pair (v, w). In addition, we need to avoid the condition where a single edge
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may be spliced over by children of two different cut-triples both containing
the edge. Again, we handle this case by pre-assigning every virtual edge to
a single cut-triple. This can again be done in constant time in a CRCW
PRAM as follows. Each cut-triple “votes” for itself to be assigned to each
of its associated virtual edges, by writing its own identifier into locations
associated with those edges. For each edge, exactly one of the cut-triples it
is contained in “wins” and only a child cluster associated with this cut-triple
will ever try to splice onto that edge.

We now turn to the analysis of the running time of the parallel algorithm.
Decomposing a triconnected component into the tree of four-connected com-
ponents and cut-triples can be accomplished in O(logn) time with O(n?)
processors using the algorithm of Kanevsky and Ramachandran [KR87].
Generating the different versions of the DFS trees for each planar com-
ponent takes O(log?n) time with a linear number of processors using the
algorithm in [HY88]. As was observed earlier, each of the O(logn) phases
of merging can be done in constant time with a linear number of proces-
sors. This gives a total of O(log® n) time and O(n?) processor requirement
to generate a DF'S tree of a given nonplanar triconnected graph.

Theorem 1 A depth first search tree of a triconnected Ks-free graph can be
computed in O(log?n) time using O(n?) processors.

Proof: The proof follows from the previous discussion. B

Theorem 2 A depth first search tree of any Ks-free graph can be computed
in O(log? n) time using O(n?) processors.

Proof: As described earlier, given an arbitrary K's-free graph, we first de-
compose it into its triconnected components and run the algorithm for K 3-
free graphs on it. Whenever we are required to generate a DFS tree for a
nonplanar triconnected component, we use the algorithm described above
to obtain it. The time and processor bounds follow easily. B
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