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Abstract. Program dependence graphs (pdgs) are popular tools for reasoning about a
program’s semantics. This report proves two fundamental theorems about the represen-
tational soundness of pdgs for languages with heap-allocated storage and reference vari-
ables. The first, the Pointer-Language Equivalence Theorem, asserts that pdgs ade-
quately represent a program’s meaning. The second, the Pointer-Language Slicing
Theorem, asserts that pdgs adequately represent a program’s threads of computation.
These theorems are demonstrated with two new lemmas about the semantics of pdgs for
languages that lack pointer variables. These lemmas, the Dynamic Equivalence and
Dynamic Slicing Theorems, state that an edge can safely be removed from a program’s
pdg if this edge represents a static dependence that does not arise at run-time.

The proof of the Pointer-Language Equivalence Theorem assumes that computations
have as much memory as they need to complete; i.e., that reordering a computation’s
evaluation will not cause that computation to overflow its heap. It is argued that this
assumption exposes a shortcoming of using dependences to reason about heap opera-
tions: standard notions of data dependence do not account for how programs consume
storage.
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1. INTRODUCTION

Program dependence graphs (pdgs) are popular tools for manipulating imperative programs. A pdg is a
directed labeled graph that depicts a program’s dependences—possible constraints on that program’s
evaluation. Pdgs have been used in optimizing and parallelizing compilers to restructure programs
[Kuc81, Al183,Fer87,Lar89], and in debuggers, program-integration tools, and semantic-differencing utili-
ties to identify a program’s threads of computation [Ott84, Cho89, Hor89, Hor90]. Pdgs are useful because
they simplify program analysis; dependences abstract away from a program’s statement-list operator, and
expose its underlying threads of computation.

Early research on pdgs was limited to languages such as FORTRAN that support scalar variables and
arrays, but lack heap-allocated storage. Recently, pdgs have been used to represent programs in pointer
languages—Ilanguages such as Pascal that support heap-allocated storage, reference variables, and a des-
tructive assignment statement. Several authors have proposed techniques for computing dependences in
the presence of heaps [Hor89a,Lar89,Bod90,Gua90]. One of these authors [Lar89] also shows how
dependences can be used to parallelize Lisp-like programs.

An important limitation of the work on pointer-language pdgs is the lack of theoretical justification for
using pdgs to reason about programs with pointers. This report takes a first step towards providing such
justification by proving two fundamental theorems about pointer-language pdgs. The first, the Pointer-
Language Equivalence Theorem, states that two pointer-language programs that have isomorphic pdgs
represent equivalent programs. The second, the Pointer-Language Slicing Theorem, states that a program’s
pdg adequately characterizes its threads of computation.

The Pointer-Language Equivalence and Slicing Theorems are proved by reducing assertions about the
semantics of pointer-language pdgs to assertions about the semantics of pdgs for pointer-free languages.
Example pointer-language programs are first reduced to programs in a simpler language (called S) that
supports neither references nor allocation. The reduction ensures that a reduced computation simulates the
evaluation of an unreduced computation, up to the exhaustion of the simulated freelist. The reduction also
ensures that programs with isomorphic pdgs are reduced to pointer-free programs with isomorphic pdgs.
The problem of proving the Pointer-Language Equivalence and Slicing Theorems is therefore reduced to
the task of proving two lemmas about the semantics of pdgs for $-like languages:

* The first lemma, the Dynamic Equivalence Theorem, states that two programs in $ that have iso-
morphic dynamic pdgs represent equivalent programs.

* The second lemma, the Dynamic Slicing Theorem, states that a dynamic pdg adequately represents a
program’s threads of computation.

These lemmas generalize existing adequacy theorems for S-like languages by relaxing the requirements on
a pdg’s set of edges. Earlier versions of the Equivalence and Slicing Theorems (e.g., [Rep89]) assume that
program P’s pdg contains an edge p —> ¢ if paths between p and ¢ in P’s control-flow graph satisfy cer-
tain criteria—even if these paths are never evaluated. The Dynamic Equivalence and Slicing Theorems, on
the other hand, allow p — ¢ to be removed from P’s pdg if none of P’s possible evaluations exhibits
p > q.

The proof of the Equivalence Theorem exposes an interesting shortcoming of using dependences to rea-
son about programs with pointers. The proof assumes that a terminating computation can always allocate
as much memory as it needs to complete. This assumption implies that any dependence-based reordering




of a computation’s prescribed evaluation strategy is safe, regardless of whether that reordering increases a
computation’s peak memory requirements. The assumption that an evaluation strategy’s memory require-
ments can safely be ignored may of course prove false for applications that use most of a machine’s avail-
able memory. The assumption is needed, however, since standard notions of (data) dependence do not
account for how operations consume storage.

The rest of the report contains four sections. Section 2 defines an example language whose features
typify those exhibited by pointer languages. Section 3 defines a pdg for this language. Section 4 proves
that this pdg provides an adequate representation of a program’s semantics. Section 5 describes related
research, and discusses the limitations of the theorems presented in this paper.

2. A LANGUAGE WITH HEAP-ALLOCATED STORAGE

This report argues that a dependence-graph representation of a program that uses pointers adequately
characterizes that program’s meaning and threads of computation. These claims are proved for the
language #{, an example imperative language that exhibits the following features:

. Memory is represented as a map from locations to structures—cons cells and environments.

. Environments are maps from identifiers to values (i.e., locations and atoms). Every store contains
exactly one environment.

. Cons cells are maps from selectors—elements of { hd, tl }—to values.

. Programs are finite syntactic objects that map finite stores to stores. A store is finite if it contains
finitely many structures that are accessible from (i.e., can be reached from) that store’s environment.

. Cons cells are allocated by expressions of the form exp :: exp.

. Storage is accessed by expressions such as x.hd and x.tl.

. Assignment statements alter the fields of environments and cons cells. For example, the statement
x.hd := 0 overwrites the current contents of x.hd with the value 0.

The following grammar defines 7{'s concrete syntax:

Program  — Stmt_list
Stmt_list  — Stmt {; Stmt}*

Stmz —3 while Cond do Stmt_list od | if Cond then Strmz_list else Stmt_list i | IdExp = Exp
Cond — isAtom simpleExp | isNil simpleExp | not Cond
Exp —» SimpleExp | Exp :: Exp

SimpleExp — ATOM | IdExp

IdExp — IDENT{.Sel}"

Sel —hd |d

ATOM is a set of primitive objects—e.g, integers. IDENT is a set of lower-case alphanumeric identifier
names. Members of IDENT are called identifiers. Members of IdExp are called identifier expressions.

Figure 1 gives an operational semantics for #{ Using an operational semantics to define 7/ simplifies the
task of reasoning about how programs evaluate.

The expression P:c is used to denote the sequence of states that results from evaluating the program P
with respect to the store 6. The expression P (o) is used as a synonym for My (P, ), the meaning of the
computation P :6. P(G) is the error state L if either P :o is not finite or P :0 terminates abnormally—i.e., if
a statement either reads an undefined identifier, or applies a selector expression to an atom.

Three assumptions are made about the semantics of alloc ():



® alloc () always returns an unused cons cell.

° alloc () uses an auxiliary data structure known as the freelist to obtain unused cons cells. Each call
to alloc () removes the first cell from the freelist, and returns a reference to that cell.

° The freelist is unbounded: programs never fail for want of storage.

Although all three assumptions are typical of languages that support heap-allocated storage, the assumption
that an implementation can support arbitrarily large stores is false in practice. How the difference between
the idealized freelist and actual implementations of alloc affects the validity of these results is discussed in
the final section of this paper.

State = Point xStore  Store = Loc — Env +Cons  Env =Ident - Val, Cons=S8el - Val  Val = Loc +Atom

M, : Prog x Store — Store
My (prog, ©) =

let freelist be an unbounded list of locations that are not in Domain (c) in

let firstPoint be prog’s initial program point in
let evalPgm = fix Mf. (A((p, ")) . p =final - & [| f (next (prog, (p, 0)))) in evalPgm((firstPoint, G))

end’
next : Prog x State - State |
next (prog, (p, 6)) =

case p In
If (cexp) ,While (cexp): (nextPoint (prog, p, cond (G, cexp)), ©)
Assign (lexp, rexp): (nextPoint (prog, p), assign (0, lexp, rexp))
esac
cond : Store xCond > Bool | rvalue : Store X Exp —» (Store xVal},
cond (G, cexp) = rvalue (G, rvexp) =
case cexp in case rvexp in
isNil(exp):  (idexp (G, exp) = nil) Atom: (o, rvexp)
isAtom(exp): (idexp (C, exp) € Atom) Idexp: (o, idexp (O, rvexp))
not(exp): — cond (G, exp) lexp irexp: cons (G, lexp, rexp)
esac esac
assign : Store X Exp x Exp — Store cons : Store x Exp x Exp — (Store xVal),
assign (6, lexp, rexp) = cons (O, lexp, rexp) =
let Iv = idexp (G, front(lexp)) in let (¢, headv) = rvalue (G, lexp) in
lve Atom — 1 || let (6", tailv) = rvalue (o', rexp) in
let (o', rv) = rvalue(o, rexp) in let loc = alloc() in
o’ { (o(v)) [rv / last (lexp)] / Iv] (¢” [ [hd |- headv , 1l |- tailv] / loc], loc)
end’ end”

idexp : Store --> (ldexp u (e}) — Val |

idexp (G, idexpr) = let env be the location of the unique environment in 6 in selexp (0, env, idexpr) end

selexp : Store x Val x (Ident +Sel)" > Val |

selexp (G, val, selexpr) = selexpr Le—val | (val € Atom — L || selexp (0, ((val)) (first (selexpr)), tail (selexpr)))
alloc: () = Loc =\ (). loc = first(freelist); freelist := tail (freelist); return(loc)

fix is the least fixpoint functional. nextPoint (prog, p, cond) and nextPoint (prog, p) denote point p’s control-flow suc-
cessors. € is the empty sequence. first (seq) and last (seq) denote the first and last elements of sequence seq. tail (seq)
denotes all but the first, and front (seq) all but the last, element of seq.

Figure 1. Language #'s meaning function, M. Every function is strict in each argument.




3. PROGRAM DEPENDENCE GRAPHS

A pdg is a graph that depicts interactions between a program’s component statements. Pdgs consist of
nodes that represent a program’s syntactic points of control, linked by edges p —> ¢ that represent how
one statement p might exchange information with, or control the evaluation of, a second statement q. The
exact definition of a pdg—how its nodes and edges are labeled, and the notion of dependence it portrays—
depends on the graph’s intended use.

This report uses two kinds of pdgs. The first, the dynamic heap pdg (hpdg), represents programs in .
The second, the dynamic scalar pdg (spdg), is used to prove assertions about Apdgs. Both spdgs and hpdgs
are derived from a third pdg, referred to here as a static pdg. Static pdgs were developed for imperative
languages with conditionals, loops, and scalar variables A static pdg for program P, Gp, contains one entry
vertex, which represents P’s initial point of control; one initial-definition and one final-use vertex for every
variable in P; and one if, while, and assignment vertex for every if predicate, while predicate, and assign-
ment in P, respectively. Gp also contains one edge for each of P’s static control, loop-carried flow, loop-
independent flow, loop-carried def-order, and loop-independent def-order dependences. The definitions of
these dependences and the labeling requirements for the edges that represent them are summarized in Fig-
ure 2.

Let level (p) be the number of while and if statements enclosing p. Program P has a control dependence p —>, q iff
either

1. pis the enfry vertex, q is not the entry vertex, and level (g) = 0;

2. pis awhile predicate, the while statement at p encloses g, and level (q) = level (p)+1;

3. pis an if predicate, the true branch of the if statement at p encloses g, and level(q) = level (p)+1; or
4. pis an if predicate, the false branch of the if statement at p encloses ¢, and level (q) = level (p)+1.

P’s static pdg contains one edge for each of P’s control dependences. Edges that correspond to cases 1-3 are labeled
true; edges that correspond to case 4 are labeled false.

P has a flow (output) dependence p —>; q (p —>, q ) iff there exists a path in P’s control-flow graph from p to ¢
such that p defines a variable x; x is not redefined between p and g; and q accesses (redefines) x. Dependencep —> ¢
is carried by loop L iff L contains p and ¢, a path 7t gives rise to p —> g, and 7t contains L’s entry point. Dependence
p —> q is loop-independent iff there exists a path T such that &t gives rise to p —> ¢ and, for all L that contain both p
and g, ™ does not contain L's entry point.

(N.B.: A loop contains its own entry point—i.e., its predicate vertex.)

P’s pdg contains one edge p —> ;¢ q for every loop L that carries p —>;q. P's pdg also contains one edge
P = saiy qif p —; q is loop-independent.

P has a transitive output dependence pg —-)": pn iff there exist py* - p, such that pg —>,py - =2, pa.
Do -—)’: Pa is carried by L if any of the p; —, p;.; are carried by L.

P has a def-order dependence p — 4, y q iff P has two dependences p —>; r and ¢ —>; r through a variable x, and p
precedes g in P’s abstract syntax tree. P’s pdg contains one edge p — 4z 4 for every loop L that carries p -—)Jo' q.
P’s pdg also contains one edge p —> 4,1y 4 if P -—)j q is loop-independent.

Figure 2. Edges that make up a static pdg.



The only difference between a static pdg and an spdg is that an spdg portrays a dynamic notion of data
dependence (¢f. Figure 3). A static pdg for program P must contain the edge p —> ¢ when P’s control-
flow graph contains paths from p to g that satisfy certain criteria—even if these paths are never evaluated.
An spdg for P, on the other hand, may omit p —> ¢ if none of P’s evaluations exhibit p —> ¢. An spdg
for the program “[1] if pred them [2] x :=1 fi; [3] y :=x", for example, may omit a flow edge from [2]
to [3] when pred is uniformly false. Similarly, an spdg for a program P may omit p —>, (- 4 When none
of P’s evaluations exhibit bothp —>,rand g —>,r.

Hpdgs differ from spdgs in two ways. Hpdgs contain one initial definition vertex and one final use ver-
tex, corresponding to every accessible structure in a program’s initial and final stores, respectively. Hpdgs
also portray a slightly different notion of data dependence—one that describes accesses of structures and
fields (¢f. Figure 4). To simplify the presentation—more specifically, the reduction described in Section
4—edges that arise from accesses of structures are omitted from hpdgs. Such edges can be omitted
because they are accompanied by corresponding, transitive edges that arise from accesses of fields. This
point may be illustrated by examining the dependences exhibited by an example program; for instance,
“[1] a:=nil:nil; [2] b:=a; [3] if isAtom(b) ---”. This program exhibits [1] —>; [3], since state-
ment [3] checks the type of a cons cell that statement [1] creates. The program, however, also exhibits a
transitive dependence [1] —>; [2] — [3] that arises from the accesses of a and b.

The definition of an spdg implies that programs can have multiple spdgs. Let P be a program that can be
represented by a pdg. Let static (P) and dynamic (P) be program P’s static and dynamic dependences,
respectively. Let S ¢ static (P) be any def-order-consistent superset of dynamic (P); i.e., any superset of
dynamic (P) such that, forall p, ¢, r,and L,p —> 4,y g€ Siff p —>,re § A g —>preS. Then the spdg
that depicts only those data dependences in § is a valid spdg for program P. Similarly, let P, be a program
that manipulates pointers. Let static (P,) be the set of dependences that P, exhibits with respect to worst-

P exhibits a flow (output) dependence p —>; q (p —>, q ) iff there exists a store G such that P:C generates a se-
quence of states (p, G,) - * (¢, G,); p defines a variable x in ©,; x is not redefined between (p, 0,) and (g, 6,); and ¢
accesses (redefines) x in 6,. Dependence p —> q is carried by loop L iff L contains p and ¢, and there exists a store G
and a sequence of states T =(p, ;) - * * (¢, G,) such that PG generates T; T gives rise to p —> ¢; and 7 contains a
state at L’s entry point. Dependence p —> g is loop-independent if there exists a store ¢ and a sequence of states
= (p, 6;) - ** (¢, G,) such that 7 gives rise to p —> q and, for all L that contain both p and g, 7 does not contain a
state at L’s entry point.

(N.B.: T contains a state at point p iff = (p;, 61) * * * (Ps, On), and p = p; for some i between 1 and n inclusive.)

P’s pdg contains one edge p —> ¢, q for every loop L that camries p —>(q. P’s pdg also contains one edge
p = rai q if p —>¢ qis loop-independent.

P exhibits a def-order dependence p —>4, ) q iff P exhibits two dependences p —>,r and ¢ —> r through a vari-
able x, and p precedes g in P’s abstract syntax tree. P’s pdg contains one edgep — u4¢.1) 4 for every loop L that car-
ries p ——)j,' q. P's pdg also contains one edge p —> 4¢,p ¢ if P —)r q is loop-independent.

(N.B.: The definition of transitive output dependence is similar to the definition given in Figure 2.)

Figure 3. Data-dependence edges that must be included in an spdg.




case aliasing assumptions about P,. Let S, < static(P,) be any def-order-consistent superset of
dynamic (P,). Then the hpdg that depicts only those data dependences in S, is valid for program P,.

The most accurate representation of a program P’s dependences is given by that dynamic pdg that dep-
icts only those data dependences in dynamic (P). A program’s dynamic dependences, unfortunately, are
not always computable. This assertion follows from the observation that it is not always possible to deter-
mine which of a program'’s statements will evaluate [Man74]. (N.B.: Dependence-computation algorithms
for pointer languages typically compute a consistent superset of dynamic (P); see, for example, [Hor8%a].)

4, THE ADEQUACY OF HPDGS

This section proves two theorems about Apdgs. The first, the Pointer-Language Equivalence Theorem,
shows that an hpdg provides an adequate characterization of a program’s meaning. The second, the
Pointer-Language Slicing Theorem, shows that an hpdg provides an adequate characterization of its threads
of computation. Both theorems are proved by reducing programs that contain identifier and cons (“::”)
expressions to programs that lack these expressions. The reduced programs’ spdgs are then compared, and
conclusions drawn about the semantics of the original programs.

Intuitively, the reduction used to prove the Equivalence and Slicing Theorems is an algorithm for imple-
menting language # in a second, reference-free language. The concrete syntax of the reduction’s target
language, S, is given below:

Program — Stmt_list
Stmt_list — Stmt {; Stmt}*

Stmt ~> while Cond do Stmt_list od | if Cond then Stmt_list else Stmt list fi | VAR = Exp
—case VAR in (REF:Stms List}” esac

Cond — VAR € ATOM | VARLExp | not Cond

Exp — SimpleExp | PRIMFN (SimpleExp)

SimpleExp — VAR | ATOM | REF

REF -~ ¥1|*2| -

VAR is a set of alphanumeric variable names. Variables that are special to the reduction are given upper-

P exhibits a flow (output) dependence p —>; q (p —>, q ) iff there exists a store ¢ such that P:0 generates a se-
quence of states (p, 6,) * * * (¢, G,); p defines a structure or field x in 6;; x is not redefined between (p, ©,) and (q, G,);
and q accesses (redefines) x in G,.

P’s pdg contains one edge p —> ;i q for every loop L that carries p —>;q. P’s pdg also contains one edge
P —> ap 9if p —>; q is loop-independent.

P exhibits a def-order dependence p —>,, ,, q iff P exhibits two dependences p —>, r and ¢ —>, r through a field x,
and p precedes g in P's abstract syntax tree. P’s pdg contains one edge p —> 4.1, ¢ for every loop L that carries a
14 --)t q that arises through x. P’s pdg also contains one edge p ~> g nq if 2 p —-)-,',' q that arises through x is
loop-independent.

(N.B.: The definitions of loop-carried, loop-independent, and transitive dependence are similar to those given in Fig-
ures 2 and 3.)

Figure 4. Data-dependence edges that must be included in an Apdg.



case names; note that such names are not members of IDENT. PRIMFN is a collection of value-returning,
side-effect-free, non-nested functions. The subscripts # and § are used when needed to distinguish
between semantic objects in #and S.

An operational semantics is assumed for S, similar to one given in [Sel90]. Conditional expressions,
while loops, assignment statements, and statement lists have their usual meaning. The case statement is
equivalent to a nested if-then-else statement that causes a program to fail if none of its guards are matched.
Language S has one non-standard feature: its meaning function maps a computation P:oto L when P and
o fail to satisfy certain consistency constraints. These constraints, which ensure that every computation in
S corresponds to some computation in %, are described below.

Two functions are used to reduce computations in % to computations in S. The one, reduceStorey,
reduces a G € Store 5 to a comparable Ge Store s Store o consists of three sets of variables. The first con-
tains one variable x for every identifier x in ¢’s environment. The second contains 2n variables that
correspond to the n accessible cons cells in ¢’s heap: every accessible cell is reduced to a unique pair of
variables (L;HD, L;TL), where j is an arbitrary value between 1 and n. The third set, which contains 2k
variables named L, . HD - - L, TL, simulates ¢’s infinitely-long freelist.

Function reduceStore reduces atoms to atoms. If ¢’s environment, for example, maps the identifier x to
the value “3”, then variable x in ¢ contains “3”. References to the jth cons cell in ¢ are reduced to the
value *j e REF. If ¢’s environment, for example, maps x to the jth cons cell in o, then variable x in o con-
tains *j.

Function reduceStore, in effect, maps a 6 € Store 4 to an equivalent oe Stwre 5. Two stores ¢ and o are
equivalent, written G = 45 G, if for all idexp and idexp’ in IDEXP:

° idexp denotes the atom at in & iff idexp corresponds to a variable v in o that contains at. !

° idexp denotes a cons cell in ¢ iff idexp corresponds to a variable in o that contains a *j € REF.
° idexp and idexp’ denote the same structure in & iff idexp and idexp” correspond to variables in o that
contain the same *j € REF.

The two other equivalence relations given in this report are similar to = ;5. The one, =, identifies iso-
morphic members of Store . The other, = ;, identifies members of Store ; that have comparable interpreta-
tions. The definitions of =4, = 45, and = ensure that ¢ = 5 6" when there exist o and & such that G =
G =30 =40

Function reducePgm, the other reduction function, maps a P € Program, 10 a comparable
Pe Program. The expression reducePgmy g iq.n (P) denotes a P that comprises a prologue and a body.
Program P’s prologue is a sequence of assignment statements that initialize a special variable, NFREE, to
n, and every x € ident to the special atom undefined. Program P’s body is obtained by recursively reducing
P according to the rules given below:

A statement list “stmty ; - - - ;stmts” is reduced by reducing each stmy; individually, according to the fol-
lowing rules for reducing statements.

! idexp corresponds to v in cifv= idexp, or if v = L;SEL, idexp is of the form x.sely * - * sel,_1 SEL, and x.sely - - - sel,_; denotes a
variable containing the value *}§,




An assignment such as “x := at”, where at is an atom, is reduced to itself.
An assignment such as “x.hd := y.l” is reduced to a nested case statement that first determines which
variable corresponds to y.tl, then assigns the contents of this variable to the variable corresponding to x.hd:

case y in

*1: case x in *1: L HD :=L,TL; *2: L,HD =L TL; --- *n+k: L, HD =L \TL;  esac
*n+k: case x in *1: L,HD =L, ,TL; *2: LoHD =L, 4TL; --- *n+k: L, HD =L, TL; esac
esac

Note that this reduction proscribes the use of an infinite simulated address space, since n and & must be
finite to ensure that reduced programs contain finitely many points.

An assignment such as “x:=lexpurexp” is reduced to the four-statement sequence
“NFREE = NFREE+1; x = makeRef (NFREE); x.hd := lexp; x.tl := rexp”. Variable NFREE simulates
P’s internal pointer to the head of a store’s freelist. Function makeRef (NFREE) returns *NFREE when
NFREE <n-+k, and undefined otherwise. The assignments “x.hd := lexp” and “x.tl := rexp” must then be
reduced by applying the reductions given above.

A conditional statement such as “if isAtom (lexp) then SL fi” is first reduced to the pair of statements
“TEMP := lexp; if TEMP ¢ REF then SL fi”. Statement list SL and the assignment to TEMP must then
be reduced by applying the reductions given in this section.

The proofs of the Pointer-Language Equivalence and Slicing Theorems impose two requirements on the
reduction from #to S. The first requirement is that (1) reduced computations must mimic unreduced com-
putations up to heap overflow. Requirement (1) is a two-part requirement:

(1a) A computation P:G must denoté 1 when either P names an identifier that is not present in o, or the
initial configuration of P:c’s address space or freelist is invalid; for example, when any of the simu-
lated cons cells in ¢’s simulated initial freelist can be accessed by an identifier expression. Require-
ment (1a) ensures that every reduced computation in S corresponds to a valid computation in .

(1b) If o is a store and o = reduceStore, (o) for a suitable k, then P:c and P:0 must generate comparable
sequences of states and equivalent final stores—unless P:c fails by overflowing its simulated heap.

Requirement (1a) can be satisfied by defining .’s meaning function so that it maps invalid combinations of
stores and programs to 1. Requirement (1b) can be satisfied by using reducePgm and reduceStore 10
define a reduction from #to S, as follows:

DEFINITION. Let P € Program , and G € Store,. Let n be the number of accessible cons cells in 6. Let
idset be the set of all identifiers not defined in o, but referenced in P. Let k be an integer,
c—r=reduceStorek (o), and P =reducePgm, ; ;4. (P). The expression reduce (P:G) denotes P:c. The
expression reduce; (P(0)) denotes P(c). O

LEMMA 1. Let P € Program 4, o€ Store 5, and k be a non-negative integer. Then reduce; (P:0) fails if
P:c allocates more than k cons cells; otherwise, P:¢ and reduce; (P:0) generate corresponding sequences
of states, with P(G) = 55 reduce; (P(0)).

PROOF. Lemma 1 is proved by induction on the number of steps in P:c. This induction shows that P and P
generate equivalent sequences of states, so long as P:c does not exhaust its simulated freelist. [
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Program P Program P Program P’
[0] NFREE =0 [0] NFREE, :=0; NFREE, =0
(11 a=7=27 [1.1] NFREE :=NFREE+1; (1.11 NFREE, :=NFREE,+1
[1.2] a :=makeRef (NFREEY; [1.2] a:=free, (NFREE,)
[13] case a in [1.3] case a in
"'1 LHD =7; L\TL =1 “‘1 L\HD =7; L,TL =7
*n+k Ly HD :=7; Ly, TL =7 *n+k LoiHD :=7; Ly TL =1
esac esac
[2] b:=8:8 [2.1] NFREE =NFREE +1,; [2.11 NFREE,:=NFREE,+1
[2.2] b :=makeRef (NFREEY; {221 b :=free, (NFREE,)
[23] case b in [23] case b in
*1 LHD =8; L\,TL :=8 "‘1 LyHD :=8; L\TL =8
*n+k Ly HD :=8; L, 4TL :=8 "'n+k Lo HD :=8; Ly TL =8
esac esac

free, =Ax .x 51 — *1[] undefined
free; =Ax.x 51 ->*2 ] undefined

Figure 5. Two re<_111ctions of “::” that produce different dependences. Program P exhibits [1.1] —>, [2.1] through
NFREE. Program P’, which has two different freelist variables, does not exhibit [1.1] — [2.1].

The proofs of the Pointer-Language Equivalence and Slicing Theorems also require that (2) P and P
exhibit comparable dependences. More formally, let R(s) be the set of program points in P that
correspond under this reduction to a point s in P. Let p and ¢ be distinct points in P such that p =, q.
Then, for all p € R(p) and all g € R(g), the reduction must ensure that p >, g. Similar requirements
hold for flow and def-order dependences. Intuitively, requirement (2) allows programs with isomorphic
hpdgs to be reduced to programs with isomorphic spdgs.

The reduction defined in Lemma 1, unfortunately, fails to satisfy requirement (2). The reduction’s use of
a global freelist to parcel out storage, which provides a reasonable model of how programs allocate cells,
can introduce unwanted dependences into reduced programs. Figure 5 illustrates an example reduced pro-
gram, P, that exhibits a flow dependence ([1.1] —> [2.1]) that corresponds to none of the dependences in
the original program, P. This new dependence, which arises from [2.1]’s read of NFREE, tepresents a
needless constraint on the order in which a program removes cells from its (simulated) freelist.

A second reduction depicted in Figure 5 (¢f. program P’) eliminates freelist-related dependences by split-
ting P’s freelist into a set of local freelists—one per program point. Lemma 2 shows that the alternative
reduction yields (1) an equivalent computation to the one obtained from the standard reduction of cons, and
(2) a program whose dependences are comparable to those of the original program.

DEFINITION. Let program P contain p points. Let free, - - - free, be functions from Nat, the natural
numbers, to {n+l, -+, n+k undefined ). The expression reducePgm’, i igen (P, freeq, =, freep)
denotes a program that differs from reducePgm, s izen: (P) in the following two ways:

° The statement “NFREE :=0" in P’s prologue is replaced by p statements that set the variables
NFREE, - - - NFREE, t0 0.
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) An assignment such as “[g] x :=lexpurexp” is reduced to “NFREE,:= NFREE,+1,
x = free, (NFREE,);, x.hd :=lexp; x.l:= rexp”. O

DEFINITION. Let free; - - - free, be functions from Nat to Nat v {undefined }. The free; are mutually
independent iff freey (f ) = free, () implies that either free; (f) = undefinedord=eand f=g. O

LEMMA 2. Let P € Program ,, G € Store 5, and k be a non-negative integer. Let o = reduceStore, (). Let
free, - free, be mutually independent functions from Nat to {n+1, « -, n+k, undefined }. Let P=
reducePgmy, i jz.ns (P) and P= reducePgm’, i igens (P, freey, - - -, free,). Then P:c and P'o generate
equivalent sequences of stores, unless P’:c fails because of the evaluation of a variable containing the
value undefined (i.e., because of a call to a free;). Furthermore, P and P’ have comparable dependences.

PROOF. The assertion that P:c and P’:c generate equivalent sequences of stores (up to the possible failure
of P’ :5’) follows from the independence of the free; and the referential transparency of 7.

The assertion that P and P’ have comparable dependences is proved by reasoning about the reduction.
The claim that P and P’ have comparable sets of control dependences follows directly from the definition
of reducePgm. The claim that P and P’ also have comparable data dependences is proved by using P’s
hpdg to reason about the dynamic dependences exhibited by P’. Figure 6 illustrates how a program P’ may
have static data dependences that fail to correspond to any of P’s dependences, due to the use of case state-
ments to simulate the interpretation of identifier expressions. Static dependences in P’ of the form
[1.i] —>f [3.i] fail to correspond to dependences in P (i.e., to [1] —>¢ [3]) when a and b are always
aliased. Static dependences in P’ of the form [2.i] —; [3.i] fail to correspond to dependences in P (i.e., to
[2] = [3]) when a and b are never aliased. Finally, static dependences in P’ of the form
[1.i] = 4o qa.ip [2.4] fail to correspond to dependences in P (i.e., to [1] = 43y [2]) unless P exhibits
both [1] — [3] and [2] —>; [3].

It can be shown, however, that P’ and P exhibit comparable sets of dynamic data dependences. Let Hp
be an arbitrary hpdg for P. Let depend(Hp) be the set of data dependences depicted in Hp. Let static (P")
be the set of static data dependences exhibited by P’. Construct induced (P’, Hp) from static (P’) by remov-
ing p — ¢ from static (P") when there exist p and g in P such that p #¢, p€ R (p), g€ R(q), and
p —> q ¢ depend(Hp). Lemma 2 may now proved by arguing that:

Program P [1] ahd:=7; {2] b.hd:=8 ; [3] a:=ahd

Program P case a in [1.1] *1: L,HD =7 --- [lan+k] *n+k: L, HD =7 esac
case b in [2.1] *1: L,HD :=8 -+ [2n+k] *n+k: L, HD =8 esac
case a In [3.1] *1: a:=L,HD --- [3n+k] *n+k: a:=L,,HD esac

Figure 6. Illustration of how the reduction adds static dependences to a program. A static dependence of the form
{1.i] —>, [3.i] will fail to correspond to a dependence in P (i.e., to [1] —; [3]) when a and b are always aliased.
Similar observations hold for the [2.i] —>; [3.i] and the [1i] = aqaap (28]



—12-

i induced (1_’—’ , P) contains all P’s dynamic dependences, and
ii.  depend(Hp) and induced (P, Hp) are comparable sets of dependences.

Proof of (i). Let dynamic (I—’-') denote P”’s set of dynamic dependences. Let removed (I.’—’ , Hp) denote
static (I—’—’) ~ induced (P, Hp). Since dynamic (P c static (F), claim (i) can be proved by showing that (¥)
dynamic (137) ~ removed (1—’7, Hp)=@. To see the correctness of claim (*), assume to the contrary that
some p —> g in dynamic (P") was removed from static (P)). By the definition of a dynamic data depen-
dence, there exists some o such that P":0” exhibits 7 —> g. However, the definition of 5’s meaning func-
tion (cf. requirement (la)) and Lemma 1 then ensure the existence of a ¢ such that P:o exhibits p —> q.
Thenp —> q € depend(P),and p —> g could not have been removed from static (P")—-a contradiction.

Proof of (ii). Claim (ii) is proved by showing that p —> q ¢ depend(Hp) iff p —> q & induced (I—’_’ ,Hp)
for all peR(p) and GeR(q). The only if direction—p —> g¢ depend(P)  implies
P —> q¢€ induced (P, Hp)—is immediate from the definition of induced (P’, Hp). To show the if direc-
tion, assume that p —> q € depend(Hp). By the definition of data dependence, P’s control-flow graph
must contain a path from p to q. By the definition of the reduction, P”’s control-flow graph must also con-
tain paths from the points in R (p) to the points in R (¢). By the definition of the reduction, there must be a
peR(p)and a g e R(q) such that P’ exhibits a static dependence from p to g. Then, by the definition of
induced,p —> g€ induced(P’,Hp). [

The proof of Lemma 2 concludes the characterization of the reduction proper. The proofs of the
Pointer-Language Equivalence and Slicing Theorems use two additional lemmas, the Dynamic
Equivalence and Slicing Theorems, to obtain a characterization of a reduced program’s semantics. These
lemmas are used to show that a reduced program’s spdg provides an adequate characterization of its mean-
ing and threads of computation, respectively.

The Dynamic Equivalence and Slicing Theorems are proved by using the graph-rewriting semantics for
static pdgs given in [Sel89] to show that a data-dependence edge that does not correspond to a dynamic
dependence can safely be removed from a program’s pdg. This semantics is a pdg-rewriting system that
identifies redexes—nodes with no remaining incoming dependences—and updates the pdg to reflect the
impact of the node. For example, the rewriting of an assignment node causes the propagation of the value
of its expression to all other nodes with incoming flow edges from the redex. In this semantics, nodes are
removed from the pdg when they are rewritten, and nodes that do not execute due to the outcome of a
predicate node are removed without being rewritten. A rewriting sequence shows the order in which the
redexes are rewritten. The result of a rewriting is the set of final use nodes containing identifiers and their
final values.

LEMMA (Dynamic Equivalence Theorem). Suppose that P and Q are members of Program s that have iso-
morphic spdgs. Let ¢ and o’ agree on the values of all variables named by P’s initial-definition vertices. If
P halts on o then (1) Q halts on ¢, (2) P and Q compute identical sequences of values at corresponding
program points, and (3) P and Q compute stores that agree on the values of all store-access expressions
named by P’s final-use vertices.

PROOF. Since the spdgs for P and Q are isomorphic, their meanings under the rewriting semantics from
[Sel89] are the same. If the rewriting semantics holds for spdgs as well as pdgs, the lemma is shown. The
proof for the following claim appears below.
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CLAM. Let P be a program in Programg, let G be its static pdg and let G’ be an spdg for P. Then G
rewrites to the set { (x{,vy) -+ (x,, v,) ] for all x; appearing in the final-use vertices iff G’ rewrites to the
same set.

PROOF OF CLAIM. By the definition of spdgs, G and G’ have the same node set and control edge set. The
proof proceeds by induction on the length of the rewriting sequence. The induction hypothesis includes the
following three claims:

1. The same values are computed for corresponding redexes in G and G'.

2. The same values flow over corresponding edges in G and G,

3. The nodes removed in G and G’ by the rewriting are the same.

The base case is trivial. Since G and G’ only differ in the flow and def-order edge sets, there are three
cases to consider for the induction step: the same redex is available for rewriting in both G and G’, the
node in G corresponding to the redex in G’ has an incoming flow edge, and the node in G corresponding to
the redex in G” has an incoming def-order edge.

The first case is trivial.

For the second case, let n and n” be the nodes in G and G’ respectively, and let (p,n) be the edge in G.
Since this edge is not in G and by the induction hypothesis, this edge must not be exhibited by any rewrit-
ing of P. Since n’ is a redex, all control edges for n must have been resolved so n will execute. Thus, either
(i) p does not send a value to n, or (ii) the value that p sends to n will be overwritten by some other node p’.
If (i) holds, then n becomes a redex that is, by part 2 of the induction hypothesis, not different from n’. Oth-
erwise, if (ii) holds, the def-order consistency condition for pdgs (cf. Section 3) and part 3 of the induction
hypothesis ensure the presence of a def-order edge (p,p”) in G. The value sent to n” by p” must therefore
overwrite any value sent by p. By part 2 of the induction hypothesis, when n does become a redex, its
expression will evaluate to the same value as n’.

The arguments for the third case are similar to those of the second case, but there are more possibilities
to consider in the differences in the graphs. These differences arise because there are more situations
where a def-order edge can be removed from the spdg than there are situations for flow edges.

With this claim, the lemma follows directly from the pdg Equivalence Theorem given in [Sel89]. [1

DEFINITION. A slice of a pdg G with respect to vertex set S, written G / S, is the subgraph of G induced by
V(G /S), the set of vertices v such that there exists a path from v to a vertex in S——less all edges

U =>4 wvsuchthatwe V(G/S). [

Intuitively, G / S is safe approximation to the set of all points in G that could contribute to the sequence of
values computed at points in §.

LEMMA (Dynamic Slicing Theorem). Let Q be a slice of a P € Program  with respect to a set of vertices.
Let o and ¢ agree on the values of all variables named by Q’s initial-definition vertices. If P halts on o,
then (1) Q halts on ¢, (2) P and Q compute identical sequences of values at each program point of Q, and
(3) P and Q agree on the values of all variables named in Q’s final-definition vertices.

PROOF. Let G and H be the spdgs for the program and the slice respectively. Since P halts, the rewriting
sequence for G is finite. A finite rewriting sequence for H can be constructed from this sequence by simply
selecting the steps for nodes that exist in H . From the definition of a slice, this sequence results in a final
value for Q and is a valid rewriting sequence. Thus, Q halts. Since the steps are identical for all nodes in
H, and since the rewriting semantics shows that the effects of rewriting a node are confined to nodes with
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edges from the rewritten node, the rest of the theorem follows directdy. O

This concludes the presentation of the auxiliary lemmas used in the Pointer-Language Equivalence and
Slicing Theorems. Proofs of these theorems now follow.

THEOREM (Pointer-Language Equivalence Theorem). Let P and Q be programs that have isomorphic
hpdgs, Hp and Hyp. If P terminates successfully on o, then (1) Q terminates successfully on G, (2) P and Q
compute equivalent sequences of values at corresponding program points, and (3) P (6) = Q (0).

PROOE. Let ident be the set of identifiers named in P but not defined in 6. Let n be the number of accessi-
ble cells in . Let k be an upper bound on the number of cells that P:c allocates; such a bound must exist
because P terminates. Let O = reduceStore,(c) and P = reducePgm, s jzns (P). By Lemma 1, P (o)
succeeds, with P (0) = g P (c—)‘). Since P (3) terminates, there exist mutually independent free; - - - free,
and a P’ = reduceP g’ y.igens (P, free 1, - - - .free,) such that P() = ; P ().

Let Q7 = reducePgm’ , k. izers (Q. freex 1y, * * * .freex ), where n(j) denotes that program point in Hy
that corresponds under the isomorphism to point j in Hp. If programs P’ and Q’ have isomorphic spdgs,
then it follows from the Dynamic Equivalence Theorem that P’ and @’ are equivalent programs.

Let spdg(l—’—' ) denote that spdg for program P’ that depicts only those data dependences in
induced (P, Hp) (cf. the proof of Lemma 2). Similarly, let spdg(Q") denote that spdg for Q” that depicts
only those dependences in induced @7 ,Hgp). A two-part argument can now be used to show that spdg(é—')
and spdg(i’—') are isomorphic. It must first be shown that (1) P and Q have isomorphic sets of program
points. This claim, however, follows immediately from the choice of the freeq). It must then be shown
that (2) spdg(IT’) and spdg(Q_’) have isomorphic edge sets. The proof of assertion (2) can be divided into
two cases. If p and g are two points in spdg (P that correspond to a single point in P, then the reduction
ensures that edges between p and ¢ in spdg(f;’) are isomorphic to edges between m(p) and w(g) in
spdg(Q"). Otherwise, p and g correspond to distinct points in P. Then Lemma 2 and the reduction ensure
that edges between p and g are isomorphic to edges between n(p) and n(g). Graph spdg (Q") is therefore
isomorphic to spdg(I?).

Since P’ and O’ have isomorphic spdgs, the Dynamic Equivalence Theorem now implies that 0'(0)
succeeds, with P (5)-—- Q’(E’). (Computation @ :c cannot overflow, since F(S) and Q—' (5) compute the
same final values for the NFREE;.)

Let é = reducePgmy g iaens (Q). By Lemma 2, the mutual independence of the free;, and the observation
that @ (o) succeeds, Q(&) must also succeed, with O (o) = s é(&). Since Q (o) terminates successfully,
Lemma 1 now implies that é (©) = s Q(0).

To summarize the preceding argument, P(0) = 4 f(&) = 13—'(8) = @(3) = —Q— (c_s) =, 0(0). The
definitions of the various equivalence relations now imply that P(G) = 5 Q(). An extension of this argu-
ment shows that P and Q generate equivalent values at corresponding program points. [

COROLLARY. If ¢ = 50, then (1) Q halts on ¢, (2) P and Q compute corresponding sequences of values at
corresponding program points, and (3) P (0) = 4 Q (¢).

PROOF. Since language #is referentially transparent, P (G) = 5 P (o). The corollary now follows from the
main theorem and the transitivity of =,. O

THEOREM (Pointer-Language Slicing Theorem). Let Q be a slice of a program P with respect to a set of
vertices. Let ¢ and o be stores that agree on the values of all store-access expressions named by Q’s
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initial-definition vertices. If P halts on &, then (1) Q halts on &, (2) P and Q compute equivalent values on
each program point of Q, and (3) P and Q agree on the values of all store-access expressions named in Q’s
final-definition vertices.

PROOE. This claim follows from the Dynamic Slicing Theorem and the assertion that the reduction based
on reducePgm’ maps dependences in a program to comparable dependences in a reduced program. O

5. DISCUSSION

This report presents what we believe are the first proofs of the Equivalence and Slicing Theorems, relative
to a language with heap allocation and pointer variables. These proofs can be extended to an expanded
language that supports other structures and referentially-transparent operators and predicates. The limita-
tions imposed by the lack of multiple initial-definition and final-use vertices can be overcome by adding
input and output statements to %, using the techniques outlined in [Sel89].

The idea that a program’s semantics can be represented by its data dependences was proposed by Kuck
et. al. in [Kuc72]. The various kinds of dependence graphs that have been proposed since [Kuc72}—such
as pdgs [Ott84, Fer87, Sel89, Hor89), system dependence graphs (sdgs) [Hor90a), program representation
graphs (prgs) [Hor90], and program dependence webs [Bal90]—represent different extensions of
[Kuc72]. None of the these representations were intended for languages with heaps.

Horwitz, Reps, and Prins were the first to investigate whether dependence graphs provide an adequate
representation of a program’s semantics [Hor88]. Horwitz et. al. proved that programs with isomorphic
pdgs computed identical final stores, relative to a structured language with scalar variables. Reps and Yang
strengthed this result by showing that terminating programs with isomorphic pdgs computed identical
sequences of values at corresponding program points [Rep89]. A second proof of the Equivalence
Theorem that develops a graph-rewriting semantics for pdgs was given by Selke {Sel891.

Reps and Yang were the first to investigate the semantics of program slicing. In [Rep89], Reps and
Yang showed that pdgs provide an adequate characterization of a program’s slices, relative to a structured
language with scalar variables. A second proof of the Slicing Theorem has been given by Selke [Sel90].

Other reports on the semantics of dependence-graph representations include [Sel90a], which gives a cal-
culus for pdgs, [Ram89], which gives a semantics for prgs, and [Bin89], which proves an equivalence
theorem for sdgs—a pdg-like representation for languages with procedures. Binkley et. al.’s proof of the
sdg Equivalence Theorem, which reduces two programs with isomorphic sdgs to two programs with iso-
morphic scalar pdgs, inspired the approach used here.

The Dynamic Equivalence and Slicing Theorems are believed to be the first soundness theorems for
dependence-based program representations that use a dynamic notion of data dependence.

Horwitz et. al. were the first to give a provably safe algorithm for computing a program’s dependences
for an #flike language [Hor89a). Larus was the first to describe how dependences can be used to find
parallelism in Lisp-like programs {Lar89]. Bodin and Guarna have also given dependence-computation
algorithms for programs with heaps and pointers [Bod90, Gua90]. None of these reports, however, show
that dependence-based representations for programs are sound.

The theorems demonstrated in this report do not guarantee the soundness of many common
dependence-based program transformations, such as loop unrolling and parallel evaluation (¢f. [Lar89]).
Such concerns, though important, are beyond the scope of this paper. The report also fails to consider
whether the classic kinds of dependences that are represented in pdgs adequately portray how “real” pro-
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grams manipulate storage. The theorems presented in Section 4 make claims about how programs evaluate
when their freelists contain arbitrarily many cons cells. It can be argued that this assumption is not a cru-
cial limitation, so long as a program’s heap is large enough to support any of its feasible evaluation orders:
the freelist may be viewed as a list of virtual cons cells, and a garbage-collector as an oracle that maps vir-
tual cells onto free locations. This use of an oracle, however, begs the question of whether a statement that
allocates cells should be regarded as being dependent on statements that deallocate cells. A more serious
problem with the failure to account for storage limitations is that a naive, but apparently safe, rearrange-
ment of a program’s default execution order may cause that program to overflow its heap.
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