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ABSTRACT

Microprocessors are increasingly incorporating one or more on-chip caches. These caches
are occupying a greater share of chip area, and thus may be the locus of manufacturing
defects. Some of these defects will cause faults in cache tag or data memory. These faults
can be tolerated by disabling the cache blocks that contain them. This approach saves chips
with defects without requiring on-chip caches to have redundant row or columns or to use
error correcting codes. Disabling blocks, however, typically increases a cache’s miss ratio.

This paper investigates how much cache miss ratios increase when blocks are disabled. It
shows how the mean miss ratio increase can be characterized as a function of the miss ratios
of related caches, develops an efficient approach to calculating the exact distribution of
increases from all fault patterns, and applies this approach to the ATUM traces [1]. Results
for the ATUM traces indicate that the mean relative degradation in miss ratio from a few
faults decreases with increasing cache size, and is negligible (< 2% per defect) unless a set is
completely disabled by faults. The maximum relative degradation in miss ratio is also
acceptable (< 5% per fault) if no set is entirely disabled.

Index Terms: computer architecture, cache performance, trace-driven simulation, fault
tolerance, on-chip caches, microprocessors.

1. Introduction

Commercial and academic microprocessor architectures are increasingly incorporating caches on the
processor chip itself to hide off-chip latencies [3,6,8,12]. These on-chip caches are currently relatively
small, but the trend is toward larger sizes to hide relatively slower off-chip memory speeds; thus, an
increasing portion of chip area is being devoted to the memory (tags and blocks) of the cache. As cache
chip area becomes large, so will the fraction of manufacturing defects that land in the cache.

A manufacturing defect is said to cause a fault in a cache if it impares the correct operation of the
cache. We will study those faults that make a bit in the cache unable to retain the value written to it, but

t This work is supported in part by the National Science Foundation (MIPS-8957278 and CCR-8902536), A.T.& T. Bell
Laboratories, Cray Research Foundation and Digital Equipment Corporation.
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that do not otherwise perturb the operation of the cache. A fault causes an error if it causes the system to
enter a logical state other than the one intended. We can prevent faults in an on-chip cache from causing
errors by (1) discarding chips with such faults, (2) using redundant memory, or (3) disabling cache blocks
that contain faults. The advantage of discarding chips, method (1), is that it works for any defect. Its
disadvantage, however, is that it increases systems cost by reducing yield.

Redundant memory, method (2), can be employed to tolerate faults in, at least, three, ways: (a) add
extra memory words (rows) that are selected instead of faulty ones, (b) add extra bits per word (columns)
that are selected in instead of faulty ones, or (c) add extra bits per word that store an error correcting code.
The advantage of each of these approaches is that they work for any memory. Two disadvantages, how-
ever, are (a) the cost or opportunity cost of the extra memory, and (b) a possible increase in memory access
time required to implement them.

Disabling cache blocks that contain faults, method (3), is applicable to cache only. Caches are
buffers used to hold data from recently-used parts of main memory [13]. Data is usually transferred from
main memory in aligned blocks (also called lines). The number of bytes in a block is the block size. A
block is stored in a cache with memory that holds its contents, its tag (part of its main memory address) and
some state bits, including a valid bit that indicates whether a block is present. The blocks in a cache are
usually divided into sets. Every block maps to one set, so only blocks in that set must be searched on a
reference. A cache with n blocks in a set has associativity n and is called direct-mapped if n=1, fully-
associative if n equals the number of blocks in the cache, or n-way set-associative otherwise. Cache size is
the number of blocks a cache can hold multiplied by the block size. Finally, the number of sets is cache
size divided by the product of block size and associativity. Caches are usually characterized by their block
size, associativity and cache size.

Method (3) exploits the fact that all memory in a cache is redundant memory, since a cache merely
keeps a copy of data from main memory. Thus, instead of building redundancy on top of the redundant
memory in a cache, this method just causes the cache to not use blocks that contain faulty bits. This can be
implemented with a mechanism to test blocks and a second valid bit that is used to mark faulty blocks per-
manently invalid, as was proposed by Patterson, et al.! [11]. Consider, for example, a 64K-byte cache with
associativity four and block size 32 bytes. This cache has 512 sets. If there is a fault in one block, the set
containing it will behave as if it has associativity three, while the other 511 sets will behave normally. If
all four blocks in one set were disabled, references to that set would be handled as if there was no cache (or
the chip could be discarded).

Disabling cache blocks offers two advantages and two disadvantages over using redundant memory.
The first advantage is that, unlike redundant memory, implementing a second valid bit does not increase
cache access time on a hit. The second advantage is that it allows all non-faulty blocks to be used, whereas
redundant memory is only used to replace faulty memory. The disadvantages of this method are that it can
increase both the mean and variability of cache miss ratio, whereas using redundant memory leaves the
miss ratio unchanged.

Nevertheless, disabling cache blocks can lead to a better average access time than the use of redun-
dant memory. The average access with redundant memory, method (2), can be modeled as:

tey = (tcache+tA)+mtmemaryv

1 This mechanism to be invoked when a chip is tested or when the system is reset.
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where ¢4, is the access time to a cache without redundant memory, ¢, is the additional time penalty to
implement it, m is the miss ratio of the cache, and ty.m,y is the access time for main memory. For disa-
bling cache blocks, method (3):

@3y = ltoache + M (1+8) tmemory,

where !.4che, M, aNd {y.mory are the same as above and & is the relative increase in the cache miss ratio due
to faults. Rearranging the terms, we find that disabling blocks is superior to redundant memory when
ta > OM tyemory. If we assume that f.,4, > M memory, @ pessimistic assumption for all but the smallest
caches, then disabling blocks leads to better average access times whenever:

ta > 8tache.

As we will see, values for & from one or two faults are typically two to four percent, thus making disabling
cache blocks is an attractive option. Of course, in cases where a cache is fault-free, disabling cache blocks
is clearly faster, since =0 in that case. Furthermore, it is likely that performance of disabling cache
blocks can be significantly improved through the use of victim caches (7).

To the best of our knowledge, the only paper to do a detailed investigation of the effect on miss
ratios of disabling cache blocks is by Sohi [14]. Sohi investigated the degradation in cache performance by
randomly injecting faults into the cache and then running a trace-driven simulation. Results for each cache
configuration are the average of several simulations with different fault patterns. He presents results for the
percentage of faulty blocks ranging from 0% to 50% of the blocks in the cache for cache sizes of 256-
bytes, 1K-byte, and 8K-bytes. Three cache organizations (direct mapped, two-way set associative, and
fully associative) and three block sizes (8-byte, 16-byte, and 32-byte blocks) were simulated.

This paper extends Sohi’s work in several ways. This paper shows that the distribution of miss ratio
increases can be calculated from LRU distance probabilities for each set, while Sohi’s paper did not con-
sider this issue. One implication of our equations is to confirm the intuition that the mean of the miss ratio
for a cache with s sets and a single fault is equivalent to s — 1 sets seeing an unperturbed cache and a single
set seeing an associativity decreased by one.? For example, let mq be the miss ratio for a 64K-byte cache
with associativity four, and block size 32 bytes and no faults and m, be the miss ratio for a 48K-byte cache
with associativity three, and block size 32 bytes and no faults. Then the expected miss ratio for 64K-byte
cache with associativity four, and block size 32 bytes and one fault is (511/512)xmq + (1/512) X m;.

This paper also shows how all-associativity simulations [5] can be extend to collect information for
determining the effect of all possible patterns of faults to caches with many associativities and sizes (but
one block size) in one pass through an address trace. In Sohi’s paper, on the other hand, a simulation was
preformed per fault pattern per cache configuration. For this reason, Sohi estimates the mean miss ratio
increases from a small fraction of the possible fault patterns® and limits the cache configurations examined.
Our approach, on the other hands, allows us to calculate the exact mean, maximum and standard deviation
of miss ratio increases for a small number of faults and wider range of cache configurations. We concen-
trate on a small number of faults, because we believe that chips with large number of faults in the cache
will frequently have faults in other critical resources, and thus will be discarded regardless.

2 Assume that the miss ratio of a cache with associativity zero is one.
3 For m<cs, the number of ways to place m faults in s sets in O (s™)



4.

Results for the ATUM traces [1] indicate that the mean relative degradation in miss ratio from a few
faults decreases with increasing cache size, and is usually small (< 5% per fault). Furthermore, if no set is
completely disabled, mean degradation for large caches is negligible. Consequently, it is likely that the
effective access time of a cache with some blocks marked faulty will be less than that of a cache using
redundant memory.

The maximum relative change in miss ratio for a single cache fault — or for two cache faults in dis-
tinct sets — is acceptable (< 5%) if the associativity of the cache is 4 or greater and the block size is 8 or 16
bytes. Larger block sizes suffer greater penalties with permanent block invalidations. With a direct-
mapped cache, however, there is a probability (albeit small with a large number of sets) that the executing
program heavily references the faulty block(s), severely degrading the cache’s performance. We expect
that the overall impact of this worst-case behavior will not be significant for machines used to run many
different programs.

The rest of the paper is divided up as follows. Section 2 develops equations for the impact of cache
faults on the miss ratios. Section 3 discusses how data for many fault patterns in many cache
configurations can be gathered with a single pass through an address trace. Section 4 presents the results of
the investigation, and Section 5 concludes our discussion.

2. The Impact of Faulty Blocks

We now turn to the impact on the cache miss ratio of marking faulty cache blocks as unusable. We
show how the impact can be expressed from per-set simulation data for any pattern of faults and then
derive equations for some simple cases. These equations show what data needs to be gathered in trace-
driven simulation so that miss ratios for any fault pattern can be calculated.

Note that the following derivation makes no assumptions about the distribution of the reference
stream. Assume a cache has s sets labeled O through s - 1, and is referenced by a dynamic reference
stream of R references. Assuming all blocks within a set are ordered according to some stack replacement
algorithm such as LRU [10], define D;(j) to be the number of references to the j-th block in the i-th set and
D (j) be the number of references to the j-th block in any set. Then,

s—1
D) = X Di(j), j>0.
i=0

Let M (n) be the number of misses in an n-way associative cache with s sets accessed by R references.
Since a miss occurs when a reference is not to one of the first n blocks of a set,

M@) = R=3 D(), n>0

j=1

M@) = R.

Further define f to be an s-element fault vector (fg, f1, ", fs 1), where f; is the number of faulty
blocks in set i. Then the additional misses induced by f, A(n, f), and the number of misses in an n-way
associative cache with faults according to f, M (n, f) are defined as:

s—=1f~1

An, ) = Y Y Din-j), n>0, and
i=0j=0

M@, £) = An, H+Mn), n>0.
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Finally, the miss ratio of an n-way associative cache with fault vector f, m (n, ), can be be calculated
by dividing the number of misses by the number of references R, and the relative change in miss ratio in an
n-way associative cache due to f, 8(n, f), can be calculated by dividing the additional misses induced by f
by the number of misses with no faults:

m(n, f) = M—(I%’—Q, n>0, and
_MmnH-M@n) _ A D
S(Il,f) = M(n) = M(’l) , n>0.

Thus, the miss ratio of a cache with s sets and associativity n with any pattern of faults can be deter-
mined from D;(j) for i=0,s5-1 and j=1, n. Thus, trace-driven simulation can be done before fault pat-
terns are selected.

2.1. Single Faults

Here we develop equations for the mean, maximum and standard deviation of absolute miss ratio
increase from a single fault. Single fault vectors f; are a special case of a fault vector f where

fi=1 0<i<s~-1, and
fi =0, k=i

The effect of a fault in set / of an n-way associative cache is to cause a cache miss on references to block n
in set {, which would not have missed without the fault. The other n — 1 blocks in the set with the fault are
unaffected, as are the remaining s —~ 1 sets in the cache. The miss ratio with one fault is thus:

M(n, £f1) = M(n)+D;(n).
This implies that the additional misses induced by the fault vector f; are:
A(n, f1) = Di(n).
Since the number of sets s in a cache can be very large, it is worthwhile to distill the distribution of

A(n, f;) across all sets i. Assume that the fault is equally likely to be present in any set i. Then the stan-
dard deviation (STD), mean (E), and maximum (MAX) A(n, f;) are:

r 1 - 5= . 21+
STD | AGn, £)| = {E ZION zlp—‘g—"l }2,
- . =0 i=0
E[am 1) = lSzlz)( ) = D(”) nd
MAX | An, fl) = MAX [D (n)] o

Several substitutions may be made to aid in understanding the arithmetic means of A (additional
misses induced by f), m (miss ratio with fault vector f), and 8 (relative change in miss ratio due 1o f):

Din)  Mu-1)-MM@n)
s s ’

E [A(n, fl)} =
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E[m(n, fl)] = m(n)+ m(n—lz—m(n) = S;l m(n)+—s1-m(n-1), and (2)
1D _ 1 m-D-m@) _1{m@u-1
E[S(n, fl)} T s M(n) s mn) s [ m(n) 1]’ ®)

Equation (2) confirms the intuition that the expected mean of the miss ratio with a single fault is
equivalent to s — 1 sets seeing an unperturbed cache and a single set seeing an associativity decreased by 1.
Equation (3) above indicates that the expected relative change in miss ratio will be small to the extent that:

i)y sislarge,or
il) (m(n - 1)—m(n)) is small, as we expect with n > 2.

The standard deviation will not be pursued further. Suffice it to note that for a large number of
faults, exhaustive and thus quite expensive simulations must be done to determine the standard deviation.

2.2. Double Faults

The case of two faults may be subdivided into the case of the faults occurring anywhere (denoted no
restrictions) and the case where the faults are restricted so that there is at most one fault in a given set
(denoted different sets).

2.2.1. Double Faults, Different Sets
Double fault vectors f, ; are a special case of a fault vector f with two faults where:
fi=fi=1 0%ij<s~1, i#j, and
i =0, k=i, k#].

In words, the vector f, ; contains two faults, each in a distinct set. This effectively doubles the additional
misses induced by the fault vector:

A(n, £5,1) = Di(n) + Dj(n).
Assume that the first fault is equally likely to land in any set i and the second fault is equally likely to
land in any other set. Then,

l iy
s(s - 1)

i

S S [penm)

i=0 j=0,j=i

E [A(n, fm)]

D@, 1 S 1yDm
0

s s(s—1) ;2
_ 2D _ Z[M(n—l)—M(n)]
s s

i

2E [A(n, fl)} .

Similarly,

i

m(n)+-§—m(n -1), and

E [m(n, fz,l)] 2 ; 2

E [S(n, fz,l)] 2E [a(n, fl)] 4
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In general, the expected miss ratio and relative change in miss ratio for a fault vector with g faults, no two
of which map to the same set (0 < g < 5), are:

E[m(s, 0] = mm)+ [~ ‘)S""(")] & = 228 )+ Emin-1) )

E [S(n, fg,l)} =gkE [S(n, fl)]

2.2.2. Double Faults, No Restrictions
Double fault vectors f, , are the general case of a fault vector f with two faults where:
fi+fi=2, 0<i,jss—1, i#j, and
fi =0, k=i, k#].

In other words, both faults may or may not occur in the same set. Since necessarily f;, f; < n, this section
assumes n > 1. Assume that the first fault is equally likely to land in any set i, while the second fault is
independent of the first and equally likely to land in any seti. Then,

The additional misses induced by the fault vector f, , can then be described by:

D;(n)+ Dj(n), i#]
A B2) =1 Dimy+ Din - 1), =),

The expected means of A, 8, and m are then*:

E[A(n, fz,z)] -1 [sf il [D,.(n)+13,-(n)] +§ [Di(n)+D,~(n—1)”

i=0

‘:\E; [D;(n) +Di(n - 1)} }

{1 s [ty +D,m)

L
52
For s»1,

E [A(n, fm)} ~E [A(n, f,,,l)] 4 ;15- [D (n)+D(n - 1)]

E[A(ﬂ, fz,z)J
E [m(n, fz’z)} = m(n)+ _——‘R;“"’"*"
2D(n) + Dn)+D(n—-1) = mn)+ {25‘ + IJ Dn)+Dn-1)
A 52 S2

n

m(n) +

ZE[A(n, fl)] + siz [D(n) +D(n - 1)]
M(n)

u

E [S(n, fz,z)]

2E[a(n, fl)] N ;1-2- [ﬂ’—‘—ﬁ - 1]. ©)

m(n)
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Lastly, define the fault vector f, to be a fault vector f with faults according to:
fi=2, 0i<s~1, and
fi =0, k=i

Le., both faults occur in the same set. Then, the expected relative change in miss ratio is:

Mzi{ﬂw-l].

=L
E [8(11, fZ)J T s m(n) s m(n)

2.2.3. Multiple Faults, No Restrictions

Multiple fault vectors are the general case of a fault vector f where the number of faults m are in the
range 2 <m < sn; thus, all the blocks in the set may be faulty. These cases do not allow for concise
descriptions and require a probabilistic approach, since exhaustive simulation has time complexity of
O(s™).5

To do these calculations, it is necessary to determine the probabilities of a certain number of faults
occurring in a particular set given the total number of faults. Then, the expected miss ratio can be
described by:

PlY=0]mn)+P[Y=11lmmn-1D)+P[Y=2]mn-2)+ --- +P[Y=g]m(n~g),7)
P(Y=01+P[Y=1]1+P[Y=2]+ - +P[Y=g] N

E [m(n, f):' =

where P[Y =i] is the probability that a particular set has i faults when all m faults are uniformly randomly
distributed amongst s sets with associativity n and at most g fauilts are allowed in a particular set
(0 < g < n). Probabilities were calculated by iteratively determining all possible ways to distribute f faults
over s sets (a partitioning problem), and then using multinomials to calculate how many ways a particular
distribution may occur.

3. Methodology

In the last section, we showed how the D;(j)’s, the number of references to the j-th block in the i-th
of s sets, can be used to calculate the miss ratio for a single cache with any fault pattern. In this section, we
shows how to determine the D;(j)’s for many cache configurations with a single pass through an address
trace. We also describe the address traces that we will use.

All-associativity simulation [5] is an algorithm that calculates the miss ratios for caches of many
sizes and associativities with a single pass through an address trace, provided that all caches have the same
block size, use least-recently-used and do no prefetching. It does this by calculating, D(j)’s, the number of
references to the j-th block in any of s sets, for all associativities and number of sets of interest.

We extended all-associativity simulations to record D;(j)’s instead of D(j}'s by expanding the
metrics to keep track of which set is referenced. Thus, instead of recording that there is a reference to the
Jj-th block in one of s sets, we record that there is a reference to the j-th block in i-th of s sets. Doing this
simultaneously for all cache configurations being simulated expands storage for the metrics by a factor less
than the largest number of sets considered, but the storage for the metrics is still smaller than the storage

5 This approximation holds only for the range 0 < m < %
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for the contents of the caches being simulated. Furthermore, this change does not significantly affect simu-
lation run-time.

Once each D;(j) is known, exact calculations of new (mean and maximum) miss ratios can be per-
formed without additional trace-driven simulation. The faults are distributed in every possible way and the
relevant statistics extracted as by the equations presented in section 2. Since a direct mapped 32K cache
with a block size of 8 bytes contains 2!2 sets, exhaustively calculating all miss ratios for three faults in the
cache involves (21%)3 =2% calculations. Therefore, a probabilistic model was used for more than two
faults. Nevertheless, our results are based on more cases than Sohi’s, since we can calculate a new miss
ratio by summing appropriate D;(j)’s rather than performing a complete trace-driven simufation. QOur
results were validated by comparing, for a large number of cases, with the results of the exhaustive simula-
tions.

Traces were obtained using the ATUM [1] microcode-generated trace method. Table 1 shows the
number of instruction fetches, data reads, and data writes for each of the traces used, as well as a brief
description of their origins. Due to the large number of traces, results can not be provided for each trace
individually. Instead, for most purposes the traces will be simulated together, with cache flushes separating
the individual traces. The combined trace will be denoted by all. Two traces representative of the others
will be individually analyzed. Since the traces are each only about 400,000 references long, cache sizes >
64K are not simulated since they are doubtlessly too large to provide reliable results.

4. Results

Figure 1 shows the mean and maximum miss ratios of the *‘all’” simulation with one fault (f,) for various
associativities and cache sizes. Unless otherwise indicated, the block size will be 16 bytes. The miss ratios
ostensibly follow the behavior pattern for faultless cache miss ratios as reported in the literature [2,4,5]: for all
associativities, the miss ratios decrease with increasing cache size and for a given cache size, the miss ratios
decrease with increasing associativity. This comes as no surprise, since equation (2) predicts the mean miss
ratio to be equivalent to a cache with s — 1 unperturbed sets and one set with an actual associativity of n — 1.

Thus in the worst case (n = 1) the mean miss ratio will degrade by —;~

Figure 1 by itself in not very informative; it should be plotted against the miss ratio with no faults.
Instead, this information will be condensed into a single metric: the relative change in miss ratio in the next
section.

Results for the standard deviation will not be provided. The general trend for the standard deviation in
relative change of miss ratio with increasing cache size is for a steady, small decrease for associativities greater
than one and for a constant or slightly increasing standard deviation for a direct mapped cache. The standard
deviation in relative change of miss ratio decreases with greater associativity.

4.1. Relative Change in Miss Ratio

Figure 2 shows the relative change in miss ratios for the *‘all’” simulation. Figure 2a reveals that as the

associativity or number of sets increases, the mean relative change in miss ratio decreases. With an associa-

D(n)
s

will miss. As the associativity increases, the effect of the fault is to simply reduce the associativity of a particu-

lar set by 1. Locality of references reduces the impact of this with larger associativities; at the extreme of an

additional references

tivity of 1, an entire set is invalidated with a fault in the cache; thus, on average,
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Data Data Instruction . ..
Name ) Description
Reads Writes Fetches

dec0.000 106459 72500 183023 DECSIM behavioral simulation of some
cache hardware

dec0.003 103906 73001 176533 Same as previous

fora.000 108979 79156 199799 FORTRAN compiler compiling airco.for

forf.000 108048 85845 207284 Two FORTRAN compilations: 4x1x5.for
and linpack.for

forf.001 110027 73093 203595 Same as previous

fort.002 105131 91233 217509 Same as previous

forf.003 107969 69328 190915 Same as previous

fsxzz.000 78265 37840 123229 ULTRIX file system exerciser, 20 tasks

ivex.000 97335 41123 203510 Interconnect verify

macr.000 96904 57222 188702 Macro assembler assembling linpack2.mar

memxx.000 126660 99139 219050 ULTRIX memory exerciser, 10 tasks

mul2.001 112102 71845 201866 Multiprocessing 2 jobs: ALLC (Micro-
code address allocator, bit string inner
loop) and SPIC (Spice simulating output
buffer)

mul2.002 106329 74357 201941 Same as previous

mul2.003 96662 64884 205295 Same as previous

mul8.001 126139 74749 207538 Multiprocessing 8 jobs: Unknown jobs

mul8.002 105813 74881 208900 Multiprocessing 8 jobs: Unknown jobs

mul8.003 141126 88851 199455 Multiprocessing 8 jobs: Unknown jobs

null.000" 73217 15660 139615 ULTRIX Null job (daecmons running)

savec.000 130288 85373 215867 ULTRIX C compiler

ue02.000 98385 59452 199973 UETP (User Environment Test Program, a
VMS diagnostic), 2 tasks

uel0.000 98494 61476 212150 UETP, 10 tasks

ue20.000 100670 62188 201582 UETP, 20 tasks

Table 1 Traces used in the simulations. A dagger (1‘) indicates the trace was not included in the ‘‘all’’ simulation.

all-associative cache, the cache size is merely reduced by the block size, resulting in a nominal impact on the
miss ratio.

As the cache size increases with a given associativity, the mean relative change in miss ratio decreases
for all associativities simulated. This is caused by the fact that as the cache size increases while holding the
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Mean Miss Ratio with One Fault Maximum Miss Ratio with One Fault
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Figure 1a Mean miss ratio of the **all’’ simulation with Figure 1b Maximum miss ratio of the *‘all”’ simula-
one fault for various associativities tion with one fault for various associativities

These figures show the maximum and mean miss ratios for simulating all the ATUM traces. Caches were
flushed between each of the different traces. The replacement policy is LRU; the block size is 16 bytes.

block size and associativity constant, the number of sets in the cache increases; from equation (3) we glean that
. . . . . 1 . mn-1
the expected relative change in miss ratio is proportional to —. The fraction -——(—?—)—)— also tends to decrease
s m(n
with increasing cache size, since the ‘‘derivative’” of the cache miss ratio tends to monotonically decrease with
cache size (i.e., increasing cache size provides an increasingly smaller improvement in miss ratio). Thus we

can be confident that this mean relative change behavior will be observed over a wide variety of programs.

Figure 2b illustrates that, with an associativity of 1, the maximum relative change in miss ratio increases
with cache size after a dip with a 2K-byte cache, while with other associativities the maximum relative change
slowly decreases over the whole range of cache sizes simulated. The odd behavior with n = 1 is explained by
the observation that when a particular cache block is referenced exceedingly often, increasing the cache size

does not affect how often it is referenced. Increased cache size only reduces contention for a particular set, not

mAx

the number of accesses to a particular block. Thus ;

[Di(l)] may not decrease very much as » increases.

Table 2 presents data to aid in understanding this better. In it, the number of hits® to the set accessed least

MIN MAX D(1)
A

often ; [D,-(l):l , the set accessed most often i [D,«(l)] , the mean number of hits to a set ,

and the number of misses in a cache of the specified size with no faults (M(1)) are shown. Recall that the

6 A hit is defined as an access to the cache that is not a miss.
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Mean Relative Change in Miss Ratio with One Fault Maximum Relative Change in Miss Ratio with One Fault
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Figure 2a Mean relative change in miss ratio of the “*all”’ Figure 2b Maximum relative change in miss ratio of

simulation with one fault for various associativities the *‘all’’ simulation with one fault for various associa-
tivities

These figures show the mean and maximum relative change in the miss ratio of simulating all the ATUM traces
with a block size of 16 bytes and one fault vs no fault. As the cache size increases, the mean relative change in
the miss ratio decreases. However, the maximum relative change in miss ratio vacillates with smaller associa-
tivities, with an apparent minimum, and steadily decreases with larger associativities.

MAX
mean relative change in miss ratio, 8(n, fy), is " _A-/I—(l-;’ and the maximum relative change is 70
It is apparent from the table that in the transition from 32 to 64 and from 64 to 128 sets the maximum relative
Max
i
MAX

cache sizes, the reduction in i [Di(l)] bottoms out; at the extreme in an infinitely-sized cache, the max-

imum number of references to a set will be equal to the maximum number of references to a particular memory
block. In smaller caches, the maximum number of references to a particular set consists of references to
numerous memory blocks mapping to the same set; as the cache size increases, the maximum becomes increas-
ingly dominated by the references to a particular memory block.

change decreases because [Di(l)] decreases proportionately faster than M(1). However, with larger

This is further demonstrated by considering the final column in Table 2, labelled ‘‘Next Block™, which
indicates the number of hits at depth 2 to the block that receives the most hits at depth 17. The infrequent hits to
this depth with larger caches indicates that references are already being made almost exclusively to a single
memory block that maps to the set in question; several memory blocks competing for block D,(1) would lead to

MAX

7 Le.,letD,(1) = i [D,-(l)]; then *‘Next Block’’ refers to the number of hits at D, (2).
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Sets M(1) Max Mean Min Next Block
4 || 3804106 | 1089301 | 1031731 | 955855 274075
8 || 3164487 686390 595818 | 528229 125116
16 || 2627118 414123 331494 | 264980 68197
32 || 2148000 272690 180719 | 139381 40233

64 || 1720476 | 207438 97039 | 50462 8752
128 || 1322866 | 112895 51626 | 23559 3036
256 || 971398 | 100479 27186 8003 3445
512 || 732006 77351 14060 3335 213

1024 || 535274 73039 7222 844 97
2048 || 394121 71676 3680 226 12

Table 2 Block access statistics for the ‘‘all’” simulation, n =1

Table 2 presents the number of block references for the “*all”’ simulation with an associativity of 1 and various
cache sizes (number of sets). Included are the number of hits to the block referenced most (m and least

(min) often, the total number of hits at depth 1 (D (1)), and the mean number of hits per set Dil) . In addi-

tion, the table shows the number of hits to the next block for the set referenced most often. Le., let k be the set

such that D;(1) has the maximum number of accesses in the cache as shown in the table. Then ‘‘next block"’
refers to D, (2).

a large D(2), as can be seen in the table for smaller caches. The upshot of this discussion is that the maximum
relative change in miss ratio will inevitably deteriorate with larger cache sizes in a direct-mapped cache.

However, with increasing cache size, the maximum and mean miss ratios do continue to improve (see
Figure 1). Therefore, the maximum relative change (Equation (1)) increases with increasing cache size for a
direct mapped cache.

4.2. Changing Block Size

Figure 3 depicts the effect of changing the block size on the relative change in miss ratio for the *‘all”’
simulation. All the graphs in Figure 3 include block sizes of 8 bytes, 16 bytes, and 32 bytes. Figure 3a indi-
cates the mean relative change in miss ratio for associativities of 1 and 2 and Figure 3b does so for associativi-
ties of 4 and 8. Qualitatively, the results do not digress from the observations made in the previous section; the
lines for a block size of 16 are unchanged from Figure 2. The most notable aspect of these graphs is expected:
the larger the block size, the greater the relative change in miss ratio. Invalidating a 32-byte block is for all
practical purposes equivalent to invalidating two ‘‘adjacent”’8 16-byte blocks. Thus on the average it seems
reasonable to expect an approximate doubling in the additional misses caused by invalidating a B-byte block

vis-d-vis a —g—-bytfa block; some discrepancy is caused by the fact that the miss ratios for equal sized B-byte

8 Adjacent in the sense that the mapping function from the real address to the appropriate set in the 16-byte block cache
sees a difference only in bit 5 of the real address.
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block and %-bytﬁ block caches will differ.

Figure 3¢ shows the maximum relative change in miss ratio for n = 1 and n = 2, while Figure 3d shows
the same for n =4 and n = 8. Note that the scale of the two figures differs by a factor of 10. Again, the lines
for BS = 16 are the same as in Figure 2. No qualitative differences are found here, either. As with the mean,
the maximum relative change in miss ratio is approximately proportional to the block size.

4.3. Two Faults

Figure 4 shows the maximum and mean relative change in miss ratios for the “‘all”’ simulation and fault
vectors f, ; and f,. Block size is 16 bytes to allow for comparison with Figure 2. All graphs show results for
associativities of 1, 2, 4, and 8.

Figure 4a displays the mean relative change in miss ratio with the two faults restricted to be in different
sets. Equation (6) indicates that the mean relative change of f, , should not be much different from f; 1, since
the additional misses generated by having two faults in the same set are amortized by the preponderance of dis-
tributions with one fault in each of two different sets. Therefore the fault vector f,, in which both faults occur
in the same set, is shown in Figure 4b, highlighting the effect.

The behavior of the f,; cache is qualitatively as with a single fault: the mean relative change is mono-
tonically decreasing for all associativities, and the maximum relative change is increasing after a slight dip for
the direct mapped cache and slowly decreasing for associative caches. The greatest difference between Figures
4a and 4c and Figures 2a and 2b is the scale. Equation (4) states the mean for the fault vector f, ; will be twice
that for f;; that assertion has been verified.

Figure 4c demonstrates the maximum relative change in miss ratio with the two faults restricted to be in
different sets. The maximum relative change in miss ratio in Figure 4c is always under twice the corresponding
values in Figure 2b. Basically, the maximum in Figure 4c is the sum of the number of references to the two
largest D;(n)’s. Thus the maximum relative change for two faults in separate sets is less than or equal to twice
the maximum relative change for a single fault.

The maximum relative change in Figure 4d for a 2-way associative cache is almost the same as for the
direct mapped cache. In both cases, an equal number of bytes are invalidated. The maximum for the 2-way
associative cache (usually) occurs when the two faults are in the same set. This has the net effect of eliminating
an entire set from the cache. Although there is a similarity between this and the single fault for a direct mapped
cache case, there are many differences. For one, in the double-fault, 2-way associative cache, twice as many
bytes are invalidated. Yet the greatest discrepancy arises from the fact that, given the same cache size, the
direct mapped cache has a significantly higher miss ratio, particularly for small cache sizes. Thus, an equal
absolute increase in the number of misses ~ which occurs when both caches have an entire set invalidated --
results in a larger relative change for the 2-way associative cache. In general, as the assaciativity of a cache
increases while maintaining a constant cache size, so will the relative change in miss ratio caused by eliminat-
ing an entire set.

4.4. Large Numbers of Faults

Figures 5 demonstrate the impact of a large number of faults on the maximum and mean miss ratios for
the “‘all’’ simulation for a cache with 16-byte blocks and 64 sets. Associativity is varied from one to eight. In
Figure 5a, a given set is constrained to have at most one fault in it; results are presented for direct mapped and
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2-way and 4-way associative caches. In Figure 5b, each set is allowed to have at most two faults in it; results
are shown for 2-way, 4-way, and 8-way associative caches. Figure 5c shows results for at most 4 errors per set;
the associativities shown are 4 and 8. Lastly, Figure 5d shows the resulting miss ratios for an 8-way associative
cache with both a maximum of 6 and a maximum of 8 faults in a given set. For all the graphs, all possible dis-
tributions of faults were considered; in some simulations, as many as 10**° distributions are possible. Of
course, with as many faults as were simulated in these cases, the probability is nearly O that all of the faults
would occur in non-critical resources, such as tags and data bits.

The maximum and mean miss ratios are equal at the endpoints since the endpoints correspond to the
cases where either none or all possible blocks — based on the maximum number of faulty blocks in a given set —
are faulty. Also note that the mean and maximum miss ratios in Figure 5a for a 2-way associative cache when
64 of the blocks are faulty is equal to the miss ratios for a direct mapped cache with no faults and the same
number of sets; essentially, the 2-way associative cache has been rendered direct mapped. A similar
phenomenon occurs in Figure Sb between the 2-way associative and 4-way associative caches.

In Figure 5a, the mean miss ratio is a straight line with slope —;- as described by Equation (6). The slopes

for the other graphs are more complicated but are described by polynomials whose degree is bounded by
MIN (n, maxFPS ), where maxFPS is the Maximum number of Faults per Set allowed.

As can be seen from the graphs, even with a large number of faults, the miss ratio is not exceedingly
large as long as the maximum number of faults per set remains below the associativity, i.e., as long as an entire
set is not allowed to be faulty. For example, for the 4-way associative cache in Figure 5a, even 64 faults only
cause a 52% mean and maximum relative change in miss ratio — from 0.1427 with no faults to 0.2169 with 64
faults — as long as only one fault occurs in each set. The maximum usually occurs when all the faults are
conglomerated in a minimum number of sets since D,(j) tends to decrease as j increases and k is constant. The
mean is dominated by a more even distribution, which implies fewer faults in a particular set when the number
of faulty blocks is small compared to the total number of blocks. The actual distribution depends on the proba-
bility distributions alluded to by Equation (7). The fewer the number of faults, the higher P[Y =0] and the
lower P{Y =h], where h = MIN (n, maxFPS§ ).

4.5. Well-behaved Programs

The relative effect of faults on miss ratio are displayed in Figure 6 for a trace (forf.000) representative of
well-behaved traces. By well-behaved traces we mean that the number of accesses to each set in the cache is
relatively evenly distributed. Figure 6a is virtually identical to Figures 5a and 5b.

The maximum relative change in miss ratio shown in Figure 6b is greater than those in shown in Figures
3c and 3d, particularly for large caches. This difference can be attributed to the lower miss ratio of the forf.000
trace and its larger referencing bias for large cache sizes. For example, with a block size of 16 bytes the miss
ratio for the direct mapped, 512-byte cache of the forf.000 trace is 0.2618 and for a 32K-byte cache is 0.0375.
With the same cache parameters, the “*all”’ simulation has miss ratios of 0.2708 and 0.0497 for a 512-byte and

. in
i

32K-byte cache, respectively. The number of references to the most heavily referenced set {MAX [Di(l)}

a direct mapped cache with a block size of 16 bytes, the total number of references to the cache that hit (D (1)),
MAX
i D i (1)
and the percentage of all references to the cache that these comprise —-——-—l—j—a—)-————- are shown in Table 3 for
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Mean Relative Change in Miss Ratio with One Fault Maximum Relative Change in Miss Ratio with One Fault
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fault for the “*forf.000"" wace for various associativities and with one fault for the *‘forf.000"" trace for various asso-
block sizes ciativities and block sizes

Figures 6a and 6b show the impact of a fault in the miss ratios of the ‘‘forf.000"" trace, which is representative
of the majority of traces that were simulated. Doubling the block size approximately doubles the mean relative
change in miss ratio; increasing the cache size decreases the mean relative change in miss ratio. However, the
maximum relative change in miss ratio increases with low associativities and increasing cache size. Block size
is 16 bytes.

the “*all’’, forf.000, and null.000 simulations for various set sizes. The table demonstrates why the maximum
relative change for forf.000 is greater than for ‘“all’’. For a particular trace, the maximum number of references
to a block scales worse than when traces are combined: different traces tend to favor different sets in the cache.
To assess the impact of increasing the associativity to 2, the next block information is also included (see section
4.1) in the table,

4.6. Poorly-behaved Programs

The relative effect of faults on the miss ratio of poorly-behaved programs is exemplified by Figure 7,
which shows the results of simulating null.000. A poorly-behaved program is one in which the reference pat-
tern is highly skewed toward particular blocks. The fact that null.000 fits this description can be verified with
Table 3. Even with 2048 sets, over 41% of the program’s references are to a single 16-byte block! This per-
centage only decreases to 31% for a block size of 8. When instruction fetches are simulated independent of
data accesses, 51% of all references that hit in a direct mapped, 8-byte block, 32K-byte cache are to the same
block. When the block size is increased to 16 bytes, an adjacent block which is also referenced very often joins
the most-referenced block. Then over 67% of all instruction references that hit in a 32K-byte cache are to the
same block.
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all forf.000 null.000

Sets
Max Total Max % Next Max Total Max % Next Max Total Max % Next
4 1089301 4126927 26.39 274075 63257 206608 30.62 12708 102418 189611 54.01 2511
686390 4766546 14.40 125116 38635 241282 16.01 4585 97070 198163 48.98 572
16 414123 5303915 7.80 68197 24253 269771 8.99 2968 95485 202701 47.11 151
32 272690 5783033 4.71 40233 19634 296133 6.63 914 93951 208156 45.13 170
64 207438 6210557 3.34 8752 14728 316634 4.65 614 93210 211141 44.15 14
128 112895 | 6608167 1.70 3036 || 11836 | 339157 3.49 207 93190 | 219795 42.40 16
256 100479 6959635 1.44 3445 11472 357041 3.21 158 93143 221302 42.09 4
512 77351 7199027 1.07 213 11429 370704 3.08 137 93112 222508 41.85 7
1024 73039 7395759 0.98 97 11279 380234 2.97 25 93107 224055 41.56 6
2048 71676 7536912 0.95 12 11248 386143 291 19 93068 224744 41.41 7

Table 3 Comparison of the various traces simulated

MAX [pn)]

for the three traces simulated in this

Table 3 compares the values for M’?X [D;(l)] D(1), and

study. The caches for the particular simulations presented had a block size of 16 bytes. The large number of
references to a single block by the null.000 trace makes it particularly sensitive to a fault in a direct mapped
cache. To provide some insight into the consequences of changing the associativity to 2, the next block infor-
mation is also included (as defined in section 4.1).

Analyses of the program trace reveals that the large number of accesses to a single block are due to a
tight loop which is used to test two memory locations. The entire loop is contained within a 16-byte block.
One of the two longwords referenced in each iteration of the loop is to a word which coincidentally maps to the
same block as the loop itself’. Thus, for an 8-byte block, 32K-byte direct mapped cache, 27% of the data refer-
ences are to the same block. There is an equal number of references to the immediately adjacent block; how-
ever, it would require a 64-byte block size to have the data items map to the same block.

There are several interesting facets about Figure 7. The first concerns the magnitude of the maximum
relative change in miss ratio for the direct mapped caches, which approaches 3500% for a 32K-byte cache.
This is due, as explained above, to the large number of references to the same block. With an associativity of 4,
the maximum relative change occurs with a block size of 32 bytes and a cache size of 2K-bytes, and is less than
7%.

The most striking feature of Figure 7a is the bizarre behavior of the mean relative change in miss ratio for
a block size of 32 bytes in a direct mapped cache. When the number of sets increases from 32 to 64 (cache size
changes from 1K to 2K), the miss ratio drops from 0.3111 to 0.0484, because two different blocks — one for
data, one for instructions — that contend for the same set with 32 sets resolve the contention with 64 sets. Since

the mean number of additional misses due to the fault [QQ—)—} is only approximately cut in half - changing
s

from 5077 with 32 sets to 3451 with 64 sets — the relative change increases substantially.

? These references are not to set 0, as may seem intuitive.
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fault for the *‘null.000’’ trace for various associativities and with one fault for the ‘‘null.000"’ trace for various asso-
block sizes ciativities and block sizes

Figures 7a and 7b show the impact of a fault in the miss ratios of the ‘‘null.000"’ trace, which is representative
of the minority of traces that were simulated. The erratic behavior is caused by a particular block that is refer-
enced frequently. Worst-case behavior causes a forty-fold increase in the miss ratio. Block size is 16 bytes.

The other striking feature is the rapid decrease in the mean relative change for a 2-way associative cache
with 32-byte blocks. In this case, the miss ratio only varies by a factor of 4.5 between cache sizes of 512 bytes
D)
sM2)°
attributed to the doubling of s, particularly for the 512-byte — 2K-byte improvements. The large downward
jump at the 4K-byte cache is caused by the dive in D (2) from 59508 with 32 sets to 3058 with 64 sets!0. This
jump is again caused by the resolution of the contention between an often-referenced data and often-referenced

instruction block.

and 4K bytes. Equation (3) indicates that the mean relative change is Part of the decrease may be

Since the poor performance of this trace can be attributed to its spinning for the arrival of data, it appears
that the longer delays associated with cache misses in the spinning loop are acceptable. However, if no
second-level cache exists to supply the data, a tremendous amount of memory bandwidth will be unproduc-
tively consumed.

10 Recall that for a 2-way associative cache, M(2)=R —D(1)~D(2). With one fault, AD(2)=-AM(2), where
AD(2) < 0 is the increase in the number of hits at depth 2 due to a fault and AM (2) is the increase in the number of misses
D(2) o D(2)+ AD(2)
sM(2) K-AD@2) °

in a cache of associativity 2 due to a fault. Therefore, the mean relative change with one fault

where the constant K = M(2) - D(1) - D(2).
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5. Conclusions

We have attempted to provide insight into the affect on cache miss ratio of tolerating non-critical faults in
an on-chip microprocessor cache. Since a cache is a non-critical resource — it is primarily used to increase the
performance of, not ensure the correct operation of, a processor — it becomes a reasonable alternative to use a
microprocessor chip that contains a processing fault in one of the data blocks or tag bits. The performance of
this microprocessor is reduced by some factor; for medium to large caches, this factor may still result in a faster
memory system than results from a cache that uses redundant memory.

We first how the miss ratio a cache with any fault pattern can be calculated from the number of refer-
ences to the j-th block in the i-th of s sets. We then show how to extend all-associativity simulation to calculate
these metrics for many cache configurations with a single pass through an address trace. Lastly, we applied this
technique to the ATUM traces.

Results indicate that the mean relative degradation in miss ratio from a few faults decreases with increas-
ing cache size, and is usually small (< 5% per fault). Furthermore, if no set is completely disabled, mean degra-
dation for large caches is negligible. Consequently, it is likely that the effective access time of a cache with
some blocks marked faulty will be less than that of a cache performing error detection and correction on all

cache references.

The maximum relative change in miss ratio for a single cache fault — or for two cache faults in distinct
sets — is acceptable (< 5%) if the associativity of the cache is 4 or greater and the block size is 8 or 16 bytes.
Larger block sizes suffer greater penalties with permanent block invalidations. With a direct-mapped cache,
however, there is a probability (albeit small with a large number of sets) that the executing program heavily
references the faulty block(s), severely degrading the cache’s performance. We expect that the overall impact
of this worst-case behavior will not be significant for machines used to run many different programs.
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