SIMPLE AND EFFICIENT BURS TABLE GENERATION
by

Todd A. Proebsting

Computer Sciences Technical Report #1065

December 1991

Simple and Efficient BURS Table Generation

Todd A. Proebsting

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706
(608) 262-0018 toddQcs.wisc.edu

November 20, 1991

Abstract

A simple and efficient algorithm for generating bottom-up rewrite system (BURS) tables
is described. A small prototype implementation produces tables 10 to 30 times more quickly
than the best current techniques. The algorithm does not require novel data structures or
complicated algorithmic techniques, yet it generates compact tables very quickly. The algorithm
is optimized to exploit knowledge specific to BURS table generation. In addition, previously
published methods for on-the-fly elimination of states are generalized and simplified to create a
new method, triangle trimming, that is employed in the algorithm.

1 Introduction

Tree pattern matching combined with dynamic programming can be used in code generators to
create locally optimal code for expression trees [AGT89]. Code generators based on bottom-up
rewrite system (BURS) theory can be extremely fast because all dynamic programming is done
when the BURS pattern matching automaton is built. At compile time, it is only necessary to make
two traversals of the subject tree: one bottom-up traversal to label each node with a state that
encodes all optimal matches, and a second top-down traversal that uses these states to select and
emit code. Fraser and Henry [FH91b] report that careful encodings can produce an automaton that
executes fewer than 50 VAX instructions per node to do both traversals.

Two difficulties arise in creating a BURS-style code generator: efficiently generating the states
and state-transition tables, and creating an efficient encoding of the automata for use in a compiler.
A solution to the encoding problem is described by Fraser and Henry in [FH91b]. (Their techniques
were used in the implementation described in this paper.) Because all potential dynamic program-
ming decisions are done at table-generation time, they must be done efficiently. This paper describes
a simple and efficient table generation algorithm whose implementation is an order of magnitude
faster than the best current systems.

To efficiently generate BURS tables, we have designed and implemented a simple algorithm.
Simplicity has increased, not decreased, efficiency. Efficiency has been enhanced, and tables sizes
kept small, by the development of a new technique, triangle trimming, for eliminating most redundant
states. Triangle trimming is an uncomplicated optimization that, for complex grammars, reduces
both the table generation time and table sizes by over 50%. We also describe optimizations that take
advantage of special properties of BURS states.

2 Related Work

Naively generating BURS states and state-transition tables fails because the tables become too large.
A typical CISC machine description will generate over 1000 states.! Directly encoding the transition
table for a single binary operator would, therefore, require over 1,000,000 entries.

1The integer subset of a Motorola 68000 grammar has over 800 states (Figure 6).

Simple Grammar Canonical Form
Rule# | LHS RHS Cost | LHS RHS Cost
1. goal ~—+ reg (0) | goal — reg (0)
2. reg — Reg (0) reg — Reg 0)
3. reg — Int (0) reg — Int (0)
4, addr — Plus(reg, Int) (0) | addr -+ Plus(reg, n.1) (0)
4a. nl — Int (0)
5. reg — Fetch(addr) (2) reg -+ Fetch(addr) (2)
6. reg — Plus(reg, reg) 2 reg — Plus(reg, reg) (2)
7. reg — Plus(Plus(reg, reg), reg) (3) reg — Plus(n.2, reg) (3)
Ta. n.2 — Plus(reg, reg) (0)

Figure 1: Simple Grammar and Its Canonical Form

Chase [Cha87] discovered that many of the rows (and columns) of such transition tables are
identical and proposed the idea of indez maps to allow the creation of much smaller tables. Index
maps are vectors that map states of the automaton to representer states for indexing a transition
table. Many states may then share a given row or column of a transition table at the cost of a
single indirection. Chase demonstrated that these maps can be produced on-the-fly during table
generation so that no superfluous work will be performed.

Pelegri-Llopart, the originator of BURS theory ([PLG88], [PL88]), encorporated Chase’s ideas
into a system that that added cost information for dynamic programming at table generation time.
Balachandran, Dhamdhere, and Biswas [BDB90] also generalized Chase’s ideas to use cost informa-
tion.

Henry [Hen89] developed optimization techniques that can be used to limit the number of BURS
states produced during table generation. With fewer states, a smaller automaton is produced more
quickly. His techniques are much more aggressive than the simple index map techniques, and there-
fore produce smaller automata more quickly, but at the cost of increased complexity. In [Hen89],
Henry states, “The table builder uses space and time voraciously, even though it uses very complex
algorithms designed to minimize these resources.” Our algorithm generalizes and simplifies his work,
resulting in substantial speed gains with reduced complexity in our implementation. Our system
can be directly compared to his on a variety of machine specifications, and shows a factor of 10 to
30 improvement in speed.

The algorithm described in this paper differs from earlier work in its simplicity and efficiency.
Previous algorithms rely on bit-vectors that encode information about pattern matching, and rely
on auxiliary data structures to maintain cost information. Our algorithm has a unified structure
that maintains cost information as well as a description of the pattern to be matched.

3 BURS Model

The input to a BURS-style code generator generator is a set of rules. Each rule indicates a tree
pattern, a cost, a replacement symbol, and an action. The set of all the rules is called the grammar.
Figure 1 gives a small sample grammar (without actions). The replacement symbol is a nonterminal
on the left of the rule—the linearized tree pattern it derives is on the right. In the sample, goal,
reg and addr are nonterminals. In addition to nonterminals, the grammar has operators of varying
arities. In the sample, Reg, Int, Fetch, and Plus are operators with respective arities of 0, 0, 1, and
2.

The goal of a BURS pattern matcher is to find a least-cost parse of a subject tree for the
grammar that reduces to the goal nonterminal. Every node in the tree will be labeled with a state
that indicates which rule is to be used when that node is to be reduced to a given nonterminal.

3.1 Normal Form Patterns

To simplify the generation of BURS tables, all patterns are put into the canonical form introduced
in [BDB90]. This form requires that all patterns be of the form “n — m” where both n and m are
nonterminals, or of the form “ng — op(n1,...,nk)’ where n; are all nonterminals, k¥ > 0, and op is
an operator. This regular form for rules does not reduce the expressiveness of the grammars—any
set of rules not in canonical form can be put into canonical form by introducing new nonterminals.
Putting the previous rules into canonical form gives the rules on the right of Figure 1.

4 Algorithm to Generate BURS Tables

The method we use to compute the states and state transition tables is an uncomplicated work-list
algorithm. This algorithm is outlined below in procedure Main(). Initially, the states corresponding
to each leaf operator (arity = 0) are computed, and added to the set of known states, States, and
to the list of states to be processed, WorkList. Then, one by one, each new state is removed from
WorkList and processed. For each operator with arity greater than 0, the state must be examined
to determine what transitions are induced by that state when combined with each of the already
processed states. These transitions may create new states to be added to the WorkList.

1 procedure Main()

2 States = §

3 WorkList = 0

4 ComputeLeafStates()

5 while WorkList # § do

6 state = Pop(WorkList)
7 Y op € Operators do

8 Compute Transitions(op, state)
9 end V
10 end while
11 end procedure

4.1 Data Structures Used to Generate BURS Tables

The set of known states, States, is a table that maintains a one-to-one mapping from individual
states to non-negative integers. These integers are used as indices into state transition tables via
index maps.

States in a BURS code generator encode three pieces of information at any node in a subject
tree: the nonterminals derived from patterns that match a rule at that node, the relative costs of
those nonterminals, and which rules generated each nonterminal (at a minimal cost). Such triples
are called items, and a collection of items describing a particular state is called an itemset. Itemsets
are implemented as arrays of {cost,rule} pairs that are indexed by a nonterminal. Itemsets are,
therefore, states. A cost of infinity (0o) indicates that, in this state, no rule derives the given
nonterminal. The empty state (§) has all costs equal to infinity. The relative costs are called delta
costs and are always normalized so that the nonterminal with the lowest cost derivation has a delta
cost of 0. Costs within an itemset are normalized by the routine NormalizeCosts() below.

1 procedure NormelizeCosts(state)

2 delta = miny; {state[i].cost}

3 V n € Nonterminals do

4 state[n].cost = state[n].cost — delta
5 end V

6 end procedure

4.2 Chain Rules

Itemsets are computed in a two-step process. Initially, nonterminals derived from the direct applica-
tion of rules of the form “n — op(...)” are generated (by procedure ComputeTransitions()). Next,
it is necessary to compute the closure of this set by finding all applicable chain rules. Chain rules
are rules of the form “n — m” where both n and m are nonterminals. These rules may introduce
pew nonterminals into an itemset, or they may introduce cheaper ways of deriving nonterminals
already in the set. Finding the closure of the set is done by iteratively trying all the chain rules and
repeatedly applying those that add new or cheaper nonterminals, until no changes are made. Clo-
sure() below implements this procedure. Because all costs are non-negative, and because a change
is made only if a strictly less expensive derivation is found, this process must terminate.

One nonterminal may be derived from another by zero or more chain rule applications-——and the
least cost derivation is denoted “n => m.” The cost of such least cost derivations is denoted by
“Cost(n = m)” and these values can be computed efficiently using a shortest path algorithm.

1 procedure Closure(state)

2 repeat

3 ¥ r: n — m such that m € Nonterminals do
4 cost = r.cost + state[m].cost
5 if cost < state[n].cost then
6 state[n] = { cost, r }
7 end if
8 end V
9 until no changes to state
10 end procedure

4.3 Computing States and Transitions

The computation of the states and the state transition tables begins by generating a state for each
leaf operator (with arity of 0) in the routine ComputeLeafStates(). Once these leaf states have
been created, they must be combined as children of each non-leaf operator, and new states will be
created. Each new state is added to the WorkList and will be subsequently processed to determine
the transitions that it induces.

Computing the state to label each leaf is straightforward. Inspection of all rules with a right
hand side of the given leaf operator determines which nonterminals are directly generated into the
itemset. Normalizing the costs and finding the closure of the itemset completes ihe computation of
the state corresponding to the leaf operator.

1 procedure ComputeLeafStates()

2 ¥ leaf € Leaves do

3 state = 0

4 Vr:n— leafdo

5 if r.cost < state[n].cost then
6 state[n] = { r.cost, r }
7 end if

8 end V

9 NormalizeCosts(state)

10 Closure(state)

11 WorkList = Append(WorkList, state)
12 States = States U {state}

13 leaf state = state

14 end V

15 end procedure

T
0 [el]

state
transition
table

e d

=y
[
[eay

Figure 2: Computing Transitions for §(,r) Using Index Maps.

For each dimension of a non-leaf operator?, an index map of representer states is maintained.
Representer states are constructed from an itemset by retaining only those nonterminals that may
contribute to a match in the given dimension for the given operator ([Cha87], [BDB90]). Suppose
that, for a given grammar, there is no rule with a tree pattern for the binary operator, 8, that has a
left child of nonterminal n. In this case, we would project n out of any state when that state is to
be examined as a possible left child (in the 1** dimension) of 6.

Project() will retain only those nanterminals in a given state that may be used in determining the
transitions that may be induced by that state as a given child of a particular operator. A representer
state also discards the rule field of each item because that information does not affect transitions
(only reductions). For each dimension, d, a table of representer states, op.reps(d], is maintained that
encodes a one-to-one mapping between those states and non-negative integers. Each dimension’s
op.map[d] table maintains a mapping from global states to representer states (op.map[d][s] is the
representer state to which s maps in the d*® dimension of o0p.)

Figure 2 illustrates the relationship between index maps and transition tables. Given the states
! and r for the children of binary operator 8, an indirection is used to lookup the state transition
for the 6 node.

1 function Project(op, i, state)

2 pState = 0

3 VY n € Nonterminals do

4 ifdr:m— op(ny,...,ni—1, N, Nig1,. .. ,Nop.arity) then
5 // Nonterminal n may be used in the :** dimension of op.
6 pState[n].cost = state[n].cost

7 end if

8 end V

9 NormalizeCosts(pState)

10 return pState

11 end procedure

Transition tables are computed based on representer states, not on the original states. This
provides a tremendous compaction in transition table size because many states may map to the
same representer state. At tree-matching time the cost of using this technique is the extra level
of indirection necessary to compute transitions. For each new state, ComputeTransitions() (given
below) is used to find all the transitions that this state may induce when used in combination with
other known states for a given operator.

Once a representer state has been constructed, it is checked to see if it has already been processed.
If the representer state has been previously processed, then no additional work must be done with this

?Each operator of arity n has a transition table of n dimensions.

state for this dimension. If the representer state is new, the transition table must be extended along
the given dimension for all possible combinations of the representer states of other dimensions (along
with this representer state). This is done by generating all such combinations and then searching
for rules that can apply to the given combinations. Once these rules have been applied, the delta
costs are normalized, and the itemset is closed. If the generated state has not been previously seen,
then it is added to States and WorkList.

(The postponement of Closure() until after the check for the state’s existence in States is an
optimization justified in §5.4. Trim(), the routine responsible for reducing the number of states
produced, is discussed in §4.4.)

1 procedure ComputeTransitions(op, state)

2 Vi€ l..op.arity do

3 pState = Project(op, i, state)

4 op.mapli][state] = pStale

5 if pState ¢ op.reps[i] then

6 op.reps(i] = op.reps[i] U {pState}

7 Y (81, ..., 8i-1, pSlate, 8i41, ..., Sop.arity) such that each s; € op.reps[j] do
8 result = @

9 Yr:n— op(my,...,Mop.arity) do

10 cost = r.cost + pState[m;].cost + 3. ; sj[m;].cost
11 if cost < result[n].cost then

12 resultfn] = { cost, r }

13 end if

14 end V

15 Trim(result)

16 NormalizeCosts(result)

17 if result ¢ States then

18 Closure(result)

19 WorkList = Append(WorkList, result)

20 States = States U {result}

21 end if

22 op.transition[sy, ..., 8i—1, pState, siy1, ..., Sop.arity] = result
23 end V

24 end if

25 end V
26 end procedure

4.4 State Trimming

Many of the states created by the ComputeTransitions() are nearly identical. The state-generation
algorithm can be made to run faster if it can increase the likelihood that two created states will,
in fact, be identical. Two states can often be made identical by trimming unessential nonterminals
from the itemset. A nonterminal is unessential (in a particular state) if it can be proven that it
will never be needed to produce a least-cost cover of any subject tree. Henry devised two ad hoc
techniques, “sibling,” and “demand” trimming [Hen89], to identify when one “{ cost, rule }” item
(representing a nonterminal) can be safely removed from a state because another item subsumes it.

4.4.1 Triangle Trimming

By generalizing Henry’s trimming techniques, we have developed a new technique, triangle trimming,
for safely removing unessential nonterminals from an itemset. Triangle trimming considers all pairs

of nonterminals in a particular itemset and determines if, for each pair, given their respective costs,
one of the nonterminals can be removed. A nonterminal can be removed if, in all dimensions of
all rules where it is applicable, another nonterminal can be used (in a possibly different rule) to
generate the same resulting nonterminal at no greater cost. Informally, a nonterminal, ¢, can be
removed from an itemset if it can be shown that everywhere i can lead to a pattern match, another
nonterminal, j, in the itemset can also lead to a comparable pattern match at no greater cost.

Determining if j subsumes i requires comparisons that have a triangular shape (see Figure 3).
For a given operator, §, and in a given dimension, d, two (possibly identical) rules must be found
such that both rules represent patterns for #, and one rule, r, can employ 7 as its d* child, and
the other rule, ¢, can employ j as its d" child. (It is not necessary that these rules use i and j
directly-—they may use nonterminals that are derived from i and j via chain rules.)

Since rule r reduces to nonterminal n,, it must be shown that t can also produce 7, at no greater
cost. We, therefore, start by assuming that rule r has matched. From this it can be determined if
rule ¢ can also match. Rule ¢ can also match if its children in dimensions other than d can be derived
via chain rules from the corresponding children of rule r. (All we are assuming is that r matches,
therefore all we may assume in determining if p; ; exists for a match of rule ¢ is whether p; ; may
derived from p,; via chain rules.)

Figure 3 shows how i and j, and the rules r and ¢ must relate for j to subsume i. Once rule r
is found to use ¢ to derive n,, a (possibly different) rule must be found that can employ j and can
also derive n,. Notice that for any rule r that employs i, it is only necessary to find one such rule ¢
employing j for j to subsume .

Subsumption is based not only on feasibility, but also on costs. A nonterminal cannot be removed
if its removal would force more expensive reductions to be found than had it been retained. For
the pair of rules, r and ¢, in Figure 3, it is possible to remove i from the itemset containing j if the
inequality in Figure 4 holds. The cost of using r is the sum of the cost of ¢, the cost of deriving pr,q
from %, and the cost of r. Since our premise is only that rule r matches and that ¢ and j are present
in some itemset, the computation of the cost of using ¢ with j to indirectly produce n, will require
not only the costs of ¢, j, and py 4 3 7, but will also require the costs of deriving the other p; from
pr,k and the cost of deriving n, from n;.

The inequality in Figure 4 is the basis for finding the minimal cost difference between two
nonterminals to allow one of them to be removed for a given rule. In general, to safely remove i,
it is necessary to examine all contexts in which 7 can be used and find the cost difference that is
sufficient to guarantee that ¢ can be removed based on the relative costs of ¢ and j. The routine,
Triangle(), calculates this minimal difference for any pair of nonterminals. (When it is impossible
for nonterminal j to be used in place of i, regardless of their respective costs, Triangle() returns co.)

// Compute C, such that if state[i].cost > state[j].cost + C then i can safely be removed from state.

1 function Triangle(i, j)

2 if i = Goal then

3 return co // Do not remove the goal nonterminal, tempting as it may be.
4 end if

5 Maz = —o0

6 VY n € Nonterminals—{i} do

7 if Maz < Cost(n = j) — Cost(n = i) then
8 Maz = Cost(n = j) — Cost(n = i)

9 end if

10 end VY

11 Y op € Operators do

12 VY d € 1..0p.arity do

13 Vr:n, — Op(pr,h- . ~1Pr,op.arity) do
14 C; = C'ost(p,.,d = i)

15 if C; < oo then

*

Ruler: n, — 68(pra, ..., Prdy -.-s Drarity)
n* Jl* ﬂ* Jl* Jl*
Rule#: ne — 0(pegy, ...y Ptdy ooy Prarity)
¥
J

Figure 3: Triangle Trimming Relationship (for j to subsume %)

state[i].cost + r.cost + Cost(pr.a = 1)

> state[j].cost + t.cost + Cost(n, = n.) + Cost(pe,a = j) + Z Cost(pe,x = pr,i)
k#d

Figure 4: Inequality that must hold for i to be removed if j is present.

16 LocalMin = oo

17 Vi:ny — 01’(1’:,1,- . -:pt,op.arity) do
18 C,: = Cost(n, = nt)

19 Cj = Cost(ptyd =])

20 Cr = Zk;édCOst(pt,k = Drk)
21 C =Crt+ Cj + Cr + t.cost — r.cost — Cj
22 if C < LocalMin then

23 LocalMin = C

24 end VY

25 if LocalMin > Maz then

26 Maz = LocalMin

27 end if

28 end if

29 end V

30 end V

31 end V

32 return Maz

33 end procedure

4.4.2 Chain Rule Trimming

Two states are identical if they represent the same nonterminals at the same costs with each respec-
tive nonterminal generated by the same rule. Triangle trimming removes nonterminals from states
whenever possible, thereby eliminating the possibility that two states differ on the particular costs
or rules involving those nonterminals. To further minimize the number of states, it is necessary to
bias the algorithm towards using the same rules whenever possible. We have chosen to bias the
algorithm towards using chain rules whenever possible to increase the likelihood that two states
will have used the same rules to derive a given nonterminal. This bias can be forced by removing
nonterminal entries from an itemset prior to closure when it can be determined that Closure() will
restore those nonterminals at an equal or lesser cost using chain rules.

The routine, Trim(), uses both triangle and chain rule trimming to prune nonterminals from
itemsets so that they will be more likely to be identical, thereby reducing the size of the generated
tables and the table generation time.

1 procedure Trim(state)

2 VY n € state do

3 VY m € state (m# n) do

4 C = Cost(n = m)

5 if state[n].cost > state[m].cost + C then

6 state[n] = { c0, L } // Remove n from state.
7 end if

8 end V

9 end V

10 ¥ n € state do

11 V m € state (m# n) do

12 C = Triangle(n, m)

13 if state[n].cost > state[m].cost + C then

14 state[n] = { 00, L } // Remove n from state.
15 end if

16 end V

17 end V

18 end procedure

5 Speed Optimizing Techniques

The previous routines provide many opportunities for speed optimization. Some of the improvements
are general techniques not specific to BURS table generation; other improvements rely on subtle
knowledge of the problem of BURS table generation.

5.1 Attempt Cheaper Alternatives First

It may appear that the two sets of nested loops in Trim() could be jammed into a single pair of nested
loops for improved efficiency. Both loops have the intended side-effect of removing nonterminals from
the states. Since the loops iterate over only the nonterminals that remain in the state, the second
set of loops will normally iterate fewer times that the first set. This should speed the program
because triangle trimming is an expensive operation relative to chain rule trimming. It is much
more efficient to try to remove all possible nonterminals via chain rule trimming and then attempt
triangle trimming only on the remaining nonterminals.

5.2 Precompute Values

In the previous routines, many situations exist where values can be computed once and used many
times. For instance, Project() requires the knowledge of which nonterminals can appear in the ith
dimension of operator op. Because this list is invariant for a given rule set, it can be computed once
and used repeatedly.

Efficiency is also enhanced if the list of rules is partitioned by the operator of the pattern, so
that ComputeTransitions() will only iterate over the list of applicable rules.

The cost of transitive closure rules (Cost(n = m)) is precomputed advantageously since it is
used often by Trim() and Triangle().

5.3 Lazy Computations

There are O(N?) possible pairs of 2 nonterminals that may be used in a call to Triangle(), but in
practice only very few pairs are ever used. Our original implementation precomputed the results
of calling Triangle() with all possible combinations of nonterminals and then used table lookup for
these values. Using this strategy, Triangle() consumed over 75% of the execution time generating
tables for a VAX grammar. With 179 nonterminals in the (canonical form) grammar, Triangle() was

called 32041 times, but fewer than 1000 of those values were ever referenced! Changing the program
to compute those values by need increased the speed tremendously. Once computed, these values
are cached for subsequent calls with the same arguments.

5.4 Defer Closure

If two itemsets are equal before closure, then they must be equal after closure. Because two itemsets
are chain-rule trimmed before closure, it is also the case that if two itemsets are equal after closure,
they must have been equal before closure. By maintaining both pre-closure and post-closure copies
of an itemset in a table, we can check for the existence of an itemset in the table by comparing their
pre-closure representations. This allows the closure computation to be deferred until it is known
that the state is indeed new and must be added to the table.

5.5 Itemset Equivalence

Determining whether an itemset is already in a table of states is an expensive operation, and this
test is done for every entry in every transition table. The integer subset 68000 grammar required
over 425,000 calls to determine itemset equivalence. Making itemset equivalence testing efficient
is extremely important. For two itemsets to be equal, they must be equal for all of their items.
Fortunately, two observations make testing for equivalence much more efficient: two itemsets created
as members of transition tables for different operators can never be equal, and for any given operator
it is only necessary to compare the entries corresponding to the left-hand sides of the rules for that
operator.

By keeping a reference to the generating operator as part of an itemset’s representation, many
itemsets can be determined to be unequal by recognizing that those entries differ. Should those
entries be the same, it is only necessary to check that the nonterminal entries for the relevant
nonterminals are equal for both itemsets. This check must be done after the states have been
trimmed.

The same routines are used to implement the global States table, and each of the local op.reps(]
tables. These tables are implemented as hash tables. Computing the hash function is also made
more efficient by examining only the relevant nonterminals.

Calling NormalizeCosts() after Trim(), but before Closure(), allows it to limit the nonterminals
it must inspect. Again, the same nonterminals that are relevant to determining itemset equivalence
are those that must be normalized prior to a call to Closure().

5.6 Specialize Memory Allocation

Our program allocates and deallocates an enormous amount of memory during the computation of
the itemsets and transition tables. The primary source of allocation and deallocation of memory in
the algorithm is the tentative allocation of itemsets by ComputeTransitions() and Project(). Only
after the itemset is allocated and computed can it be determined if an equivalent state has already
been seen, thereby allowing the deallocation of the itemset. Redundant itemsets really must be
deallocated—for a 68000 grammar the program computed over 100,000 redundant itemsets.

Fortunately, knowledge of the the allocation/deallocation pattern of particular data can lead to
very efficient memory management [Han90]. This is the case with itemsets. Itemsets, after allocation,
are computed and then either retained forever or immediately released. It can never be the case,
therefore, that two itemset deallocations occur sequentially without an intervening allocation. This
allows the creation of specialized deallocation and allocation routines for itemsets. The deallocation
routine simply maintains a reference to the last discarded itemset, and does not return the space to
the heap. Allocation checks this reference, and if the reference is not null, it returns the reference
to the previously deallocated value (and clears the reference); only if the reference is null does the
allocator request space from the heap.

10

5.7 Minimize space

On a machine without enormous amounts of RAM, it is important to avoid over-allocating mem-
ory and thrashing. The single biggest user of memory is the itemset representation for all of the
computed states. It is important to keep the representation of itemsets as small as possible. This
can be done, in part, by minimizing the number of nonterminals in the canonical form grammar.
A naive translation of a grammar into canonical form may produce too many nonterminals if it
creates different nonterminals that represent identical patterns. It is important (and easy) to reuse
previously created nonterminals as much as possible.

6 Unprofitable Optimizations

Two additional techniques were not implemented because either the speed-up did not merit the
additional complexity, or because the resulting code would only reduce the number of states, without
also speeding up the code.

6.1 Closure Speedup

Because least-cost transitive chain rules are precomputed for use by Trim(), they are available for
speeding up the Closure() routine. Closure(), however, represents less than 4% of the execution time
of the program, and using these transitive rules only speeds that routine by 10-20%.

6.2 Post-pass State Minimization

It is possible to further eliminate states after they and the transition tables have been generated by
isolating and removing states that differ only in the respective costs of each constituent nonterminal.
State minimization for BURS is similar to DFA state minimization. Because state minimization is
a post-pass, it cannot make the program faster—it must make it slower.> We decided the space
savings was not worth the additional complexity or time and, therefore, did not attempt to add a
state minimization pass.

7 TImplementation Results

Our algorithm has been implemented in ANSI C. The input has two parts: a description of the
operators (including the arity and identifying value of each), and a list of grammar rules. The
operators are limited to being nullary (leaf), unary, or binary. (The arity was limited because the
intended application required only nullary, unary, and binary operators.) Each rule includes an
arbitrarily complex pattern, the nonterminal the pattern derives, its cost, and a unique external rule
number (for identification). The front end of the table generator puts the rules into canonical form.

As output the program creates C routines and tables for labeling and reducing a subject tree.
The program can output either a simple table driven tree labeler and reducer, or a hard-coded
labeler and reducer. The hard-coded routines incorporate the time and space saving techniques in
[FHI1b].

The entire program is under 4000 lines of code that splits evenly between table generation routines
and input/output routines. Figure 5 gives the number of lines of code used to implement the table
generator.

Our program runs quickly on both simple and complex inputs. We compare our system to
Henry’s table generator (his system was derived from the CodeGen system [Hen89].) His system
consists of over 20,000 lines of C code. It is not clear, however, how much of this code is a direct
consequence of algorithm design, and how much is an indirect consequence of the fact that his BURS
system was derived from the much bigger CodeGen distribution.

Figure 6 gives a description of 4 sample input grammars and the execution times for each system
on each grammar. The first two grammars (used to generate code generators for lcc [FH91a]) are

3Henry [Hen89] found that the additional time for the post-pass was negligible (< 1%) in his system.

11

[Function [Lines (C/Yacc) |

Table Generation 1981
Front End 633
Table Output 1345
Total 3959

Figure 5: Code size for our BURS table generator

Grammar Description Henry’s System Our System Ratio
Generation Generation
Machine | #Rules | #Nonterms | #States | Time (seconds) | #States | Time (seconds)
vax 291 48 1017 467.7 1015 14.4 32
MIPS 136 9 125 21.4 125 0.6 36
vax.bwl 524 179 493 146.8 586 15.5 9
mot.bwl 462 80 499 251.5 838 14.4 14

Figure 6: Timings

for the VAX and the MIPS R3000 RISC processor. Two others that were developed as part of
the CodeGen project are integer (byte, word, and long) subsets of the VAX and Motorola 68000
processors. The timings were taken on a DECstation 5000 with 96Mb of RAM.*

The differences in the number of generated states between the two systems for the CodeGen
grammars can be attributed to the presence of a state minimization post-pass in Henry’s system
that is not present in our system.

It should be noted that if triangle trimming is disabled, the number of states generated and the
running times are about 100-200% higher than those reported here.

8 Conclusion

The algorithm presented is a simple and efficient method of producing BURS tables. To the best
of our knowledge our system is significantly faster than any other BURS system that does aggres-
sive state trimming. The prototype implementation required fewer than 2000 lines of C code for
producing the BURS automata. It was able produce these tables over 30 times more quickly than
the previous “state of the art” optimizing system. Our system does not sacrifice table compaction
optimizations to achieve this speed—to the contrary, the compaction techniques increase the overall
speed of the implementation by reducing the number of states that must be examined.

The algorithm employs only simple data structures and routines to generate these tables quickly.
We believe that, to a large degree, this design simplicity increases efficiency. To further increase
speed, optimizations that exploit the specific nature of BURS table generation were isolated and are
described here.

To reduce the number of states created a new technique of trimming states, triangle trimming,
has been developed to isolate nonterminals that can be removed from a state. This trimming provides
a many-fold reduction in the number of states and a commensurate speed-up in table generation.

9 Acknowledgements

We would like to thank Robert Henry for making his system available for comparison and for
explaining much of his early work in BURS table generation.

4The timings are more favorable towards our implementation on machines with limited amounts of RAM.

12

References

[AGT89] Alfred V. Aho, Mahedevan Ganapathi, and Steven W. K. Tjiang. Code generation using

[BDB9O]

[Cha87]

[FH91a]

[FH91b)

[Han90]
[Hen89]

[PL88]

[PLGSS]

tree matching and dynamic programming. ACM Transactions on Programming Languages
and Systems, 11(4):491-516, October 1989.

A. Balachandran, D. M. Dhamdhere, and S. Biswas. Efficient retargetable code generation
using bottom-up tree pattern matching. Computer Languages, 15(3):127-140, 1990.

David R. Chase. An improvement to bottom-up tree pattern matching. In Proceedings
of the 14th Annual Symposium on Principles of Programming Languages, pages 168-177,
1987.

Christopher W. Fraser and David R. Hanson. A code generation interface for ANSI C.
Software— Practice and Ezperience, 21(1), September 1991.

Christopher W. Fraser and Robert R. Henry. Hard-coding bottom-up code generation
tables to save time and space. Software—Practice and Ezperience, 21(1):1-2, January
1991.

David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes.
Software— Practice and Ezperience, 20(1):5-12, January 1990.

Robert R. Henry. Encoding optimal pattern selection in a table-driven bottom-up tree-
pattern matcher. Technical Report 89-02-04, University of Washington, 1989.

Eduardo Pelegri-Llopart. Rewrite Systems, Pattern Matching, and Code Generation. Phd
Thesis, Technical Report UCB/CSD 88/423, Computer Science Division, University of
California, Berkeley, 1988.

Eduardo Pelegri-Llopart and Susan L. Graham. Optimal code generation for expression
trees: An application of BURS theory. In Proceedings of the 15th Annual Symposium on
Principles of Programming Languages, pages 294-308, 1988.

13

