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Abstract

This document describes a very simple abstract interface to display
tree data structures in an X window. The interface consists of calls
to display a tree, and to delete a tree. In addition, the user must
provide an abstract interface to the trees to be displayed. This interface
includes a call to determine the maximum number of children a node
may have, a call to traverse the tree, and a call to get a siring to be
displayed to represent the node in the X window.

1 Introduction

To facilitate displaying trees, a very simple interface has been designed to
completely hide the details of X windows from the application. Trees may
be displayed and destroyed—nothing more, nothing less.

The routines provided automatically initialize the X window interface.
It is assumed that the application using these routines does not use any
other X window routines—if not, you will have to modify the initialization
routines in Xtree.c.

Each node in the tree is displayed as a box of text in the X window.
The text for a given node is determined by a call to the interface routine,
label().

More than one tree may be displayed at a time.



2 Availability

The files, which include an example program, are available via anonymous
ftp from kaese.cs.wisc.eduin the compressed shar file pub/xtree.shar.Z.
Some of the files come from a larger distribution of X routines that are de-
scribed in the book The X Window System: Programming and Applications
with Xt by Douglas A. Young (Prentice Hall, Inc.).

The routines require the Xw widgets library developed at Hewlett-Pack-
ard. If they are not installed at your site, they are freely available as part
of the MIT X distribution from prep.ai.mit.edu.

3 A Note on Types (VoidTree) and Header Files
("Xtree.h")

The following discussion uses two types: VoidTree which refers to the
struct type of your tree’s nodes, and Xtree which refers to the type of
the handle used by the X tree system.

Your calling routines must include the file "Xtree.h" that is in the
distribution. Prior to including this file, you must have a typedef of the
name VoidTree to alias the name of your structure’s type. In the example
Fibonacci routines, that type is called struct Fib. The following code
is taken from the example that builds and displays trees that represent
Fibonacci computations.

typedef struct Fib VoidTree;
#include "Xtree.h"

typedef struct Fib {
int index;

int v; /* fib(index) */

struct Fib *left; /* Tree representing fib(index-2) */

struct Fib *right; /* Tree representing fib(index-1) */
} Fib;



4 Routines Provided by the System

4.1 Xtree newXtree(VoidTree *root, child, label, numchildren,
upcall)

This routine should be called with the root node of a tree to be displayed,
and the routines necessary for displaying the tree. The return value is a
“handle” to be used when deleting the tree from the window.

The types for child, label, numchildren, and upcall are given in §5.

4.2 void deleteXtree(Xtree treehandle)

This routine should be called to delete a tree from the X window. The
argument is a return value from a previous call to newXtree().

4.3 void redrawXtree(Xtree treehandle)

For most simple applications, it will not be necessary (or useful) to use
redrawXtree(). This routine is provided to force all of the nodes of a dis-
played tree to redrawn—in effect, 1abel () will be recalled for each displayed
node. This will allow updates to a data structure to be displayed without
forcing a tree to be completely distroyed and recreated.

5 Routines Provided by the User

The routines provided by the user may be named whatever he likes. They
are passed as arguments to newXtree(). This allows different types of trees
to be simultaneously displayed.

5.1 VoidTree *child(VoidTree *n, int i)

This routine must be provided by the user in a call to newXtree(). It returns
a pointer to the i*® child (starting at 0) of the given node. NULL pointers are
handled just fine, but they are not displayed.



static Fib *

childXtree(n, i)

Fib *n;

int 1;

{
assert(n != NULL);
switch(i) {
case 0: return n->left;
case 1: return n->right;
default: return NULL;
}

}

5.2 char *label(VoidTree *node, int verbose)

This routine must be provided by the user in a call to newXtree(). It
returns a pointer to the string that should label the node in the X window
displaying the tree.

The first argument to the call is a pointer to a node in your tree, so
you can use it to determine what to print. The second argument refers
to whether a short or verbose string should be returned. The value of the
second parameter works as a toggle when the given node in the tree is
selected with the mouse—the default is for the short label to be used.

Note that embedded new-lines ("\n’) will give multi-line nodes in the X
tree. (As you would hope.)

The memory management of the strings returned by label is handled
by the user’s program. The memory management of the X tree routines is
handled entirely by the X tree routines themselves.



static char *
labelXtree(n, verbose)
Fib *n;
int verbose;
{
static char buf[BUFSIZ];

assert(n != NULL);
if (verbose) {
sprintf(buf, "Fib(d)\n%d", n->index, n->v);
} else {
sprintf(buf, "%d", n->v);
}
return buf;

}

5.3 int numchildren(VoidTree *node)

This routine must be provided by the user in a call to newXtree(). It returns
the maximum number of children the given node could have. In the actual
node, some may be NULL.

static int
numchildrenXtree(n)
Fib *n;
{
assert(n != NULL);
switch(n~->index) {
case 0:
case 1:
return 0;
default:
return 2;
}
}

5.4 void upcall(Xtree t, VoidTree *root, VoidTree *node)

It is possible to allow the trees to react to the event of being selected with
the center button of the mouse. By clicking with the center button of the
mouse, a user-supplied routine is called—this routine is given by the upcall



argument to the call to newXtree(). The arguments provided to the call of
upcall are the Xtree involved, the node selected, and the root of the tree
containing the selected node.

These routines are used for side-effects such as setting flags (as in the
Fibonacci example).

It is legal to pass a NULL value to newXtree() for the upcall argument.
If a NULL value is passed to newXtree(), no action will result from selecting
a node with the middle button.



static int upcall_flag;

static void
upcallXtree(t, root, f)

Xtree t;
Fib #*root;
Fib *f;
{
upcall_flag = 1;
}
void
main(void)
{
int 1i;
printf("Select tree node with CENTER button to get next tree.\n");
for (i = 0;; i++) {
Fib *f;
Xtree xtree;
f= £ib(i);
/* create an X tree from a user tree */
xtree = newXtree(f,
childXtree,
labelXtree,
numchildrenXtree,
upcallXtree);
upcall_flag = 0;
/* Busy Wait---for user to select tree with center button. */
while ('upcall_flag) { /* do nothing */ }
deleteXtree(xtree); /* delete the given X tree */
}
}



6 User Interface

The window-based user interface is primitive. Three commands are allowed:
clicking on a node with one of the three buttons.

Left Button Clicking with the left button on a node of a displayed tree
toggles the display of that node between its abbreviated and verbose
forms.

Center Button Clicking with the center button on a node of a displayed
tree causes the user-supplied routine, upcall, to be called with the

selected node as one of its arguments. The routine is described in
§5.4.

Right Button Clicking with the right button on a node toggles the subtree
between being elided or not. This helps by allowing uninteresting
subtrees to be removed from view. An elided subtree’s node will be
augmented with “ above and below the normal text for that
node.

7 Multiple, Differing Trees

It is possible to have trees of differing types displayed at the same time. To
do this you will need to overload the use of VoidTree. The best way to do this
is use a typedef void VoidTree. (If your compiler complains about using
void then simply use char.) Once you have done this, it will be necessary in
the routines you supply to cast from this type to the type you are actually
expecting. This could have been done for the numchildrenXtree() routine
in the Fibonacci example as follows:

typedef void VoidTree;
#include "xtree.h"

int
numchildrenXtree(VoidTree *node)

{
Fib *n = (Fib #)node;
/* the rest of the routine uses n instead of node */



A Building the Software

Building the software is not complicated. All that is required is that you
compile the files Xtree.c and Tree.c, and link them and the appropriate
libraries (-1Xw -1Xt -1X11) to your application.

You should not need to change any of the source files to get this to work.

B Running X Remotely

It may be the case that you find yourself running your X application on
one machine while sitting at another. Do not despair, with a few simple
commands, you can run an X application remotely—you simply tell the
remote machine where you are sitting, and you tell the local machine to
accept X commands from the remote machine.

The appropriate commands are given below in italics (of course, you
must use the correct machine names):

On the local machine:

local-machine, zhost +remote-machine-name

On the remote machine:

remote-machine), setenv DISPLAY local-machine-name:0.0

After the session is over, you will want to remove the privileges of the
remote machine for writing to your machine. This is done as follows:

On the local machine:
local-machine¥, zhost —remote-machine-name



