SPACE OPTIMIZATION IN DEDUCTIVE DATABASES
by
Divesh Srivastava
S. Sudarshan

Raghu Ramakrishnan
Jeffrey F. Naughton

Computer Sciences Technical Report #1063

December 1991

Space Optimization in Deductive Databases*

Divesh Srivastava S. Sudarshan Raghu Ramakrishnan!
Jeffrey F. Naughton?

{divesh,sudarsha,raghu,naughton}@cs.wisc.edu
Computer Sciences Department,
University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract

In the bottom-up evaluation of a logic program, all generated facts are usually assumed to be
stored until the end of the evaluation. Considerable gains can be achieved by instead discarding
facts that are no longer required: the space needed to evaluate the program is reduced, I/O costs
may be reduced, and the costs of maintaining and accessing indices, eliminating duplicates etc. are
reduced. Thus, discarding facts early could achieve time as well as space improvements.

Given an evaluation method that is sound, complete and does not repeat derivation steps, we
consider how facts can be discarded during the evaluation without compromising these properties.
Our first contribution is to show that such a space optimization technique has three distinct com-
ponents. Informally, we must make all derivations that we can with each fact, detect all duplicate
derivations of facts and try to order the computation so as to minimize the “life-span” of each fact.

This separation enables us to use different methods for each of the components for different parts
of the program. We present several methods for ensuring each of these components. We also briefly
describe how to obtain a complete space optimization technique by making a choice of techniques for
each component and combining them. Our results apply to a significantly larger class of programs
than those considered in [NR90].

1 Introduction

Bottom-up evaluation of a logic program proceeds by repeatedly applying rules to generate facts until no
new facts can be produced. Bottom-up evaluation has been shown to have several advantages over top-
down evaluation in the area of deductive databases (see, for example, [UlI89]). However, a disadvantage
of bottom-up evaluation is that all generated facts are usually assumed to be stored until the end of the
evaluation. Since the number of facts generated can be extremely large in the case of many programs,
reducing the space requirements of a program by discarding facts during the evaluation may be very
important. The following example (from [NR90]) illustrates this point.

Example 1.1 The program computes the length of the longest common subsequence (LCS) of two
strings a and b, and is representative of more general sequence analysis programs. The algorithm is from

*A preliminary version of this paper appeared in Proc. ACM SIGMOD '91.

tThe work of the first three authors was supported in part by a David and Lucile Packard Foundation Fellowship in
Science and Engineering, an IBM Faculty Development Award and NSF grant IRI-8804319.

$The work of this author supported by NSF grant TRI-8909795. A shorter version of this paper appeared in the
proceedings of the 1991 ACM SIGMOD International Conference on the Management of Data.

Hirschberg [Hir75]; we use the representation that if letter j of string a (resp. b) is «, then the database
contains the fact a(j, @) (resp. b(j,)).

R1: Icsgm, N,0).

R2 :les(M,n,0).

R3:les(M,N,X) —« M <m,N < n,a(M,C),b(N,C),les(M +1,N +1, X ~1).

R4 :les(M,N,X) - M < m,N < n,a(M,C),b(N,D),C # D,les(M + 1,N, X1),les(M,N +
1,X2), X = max(X1, X2).

Query: ?-les(0,0, X).

If the strings are of length m and n, then evaluating the program using the top-down Prolog evaluation
strategy gives a running time that is Q(('":")) Using the Magic Sets rewriting strategy followed by
bottom-up evaluation produces a running time that is O(mn), but is also space Q(mn). Suppose m and
n are 108, a value that we are likely to see in applications such as DNA sequencing. Then the number

of facts generated is around 10'?, which is clearly impractical to store.

Sliding Window Tabulation, as described in [NR90], evaluates this program in O(m + n) space and
O(mn) time, by discarding facts in the course of the evaluation. Storing 10° facts is certainly feasible,
as opposed to 10'2. Thus this improvement in the space complexity is essential if the program is to be
run on large data sets. O

In addition to improving the space requirements, discarding facts that are no longer needed can
have other advantages. I/O costs may be reduced, even eliminated, if the program can be evaluated
in main memory; the costs of maintaining and accessing indices, eliminating duplicates etc. are also
reduced. Thus, discarding facts early could achieve time as well as space improvements. We refer to
techniques that discard facts during the course of the evaluation of a logic program as space eptimization
techniques’.

While Sliding Window Tabulation is effective on the LCS example, the applicability of Sliding Win-
dow Tabulation as presented in [NR90] is fairly limited. For instance, suppose we extend the LCS pro-
gram so that instead of being base predicates, a and b are defined by additional rules in the program—this
will be the case if the program preprocesses “rough” base data before searching for common subsequences.
Sliding Window Tabulation cannot be used on this extension of the LCS program. Similarly, if the above
program is embedded in a larger program that uses the length of the longest common subsequence to
perform further analysis, such as find the region of a given DNA sequence that best matches the given
test sequence, Sliding Window Tabulation is again inapplicable.

One of the main contributions of this paper is to show that space optimization techniques have three
components:
1. Ensuring that each fact is used in every possible derivation even though facts may be discarded
before the end of the evaluation.

2. Ensuring that multiple derivations of a fact are detected, in order to avoid repeated inferences.

3. Synchronizing the evaluation to ensure that derivations of facts are “close” to all their uses, and
discarding facts soon after their uses.

1In this paper, we do not consider other space saving techniques, such as allowing facts to share parts of their structure
with other facts.

We describe these components in more detail in Section 3. This decomposition provides a framework in
which to reason about space optimization techniques. It also gives us the flexibility of choosing different
techniques for each component, and synthesizing new space optimization techniques.

In this paper, we also describe several new techniques for each of these three components, and briefly
discuss how to combine these techniques to generate space optimization techniques. We also discuss how
to automatically combine these techniques to get a space optimization technique for the full program.
Sliding Window Tabulation turns out to be just one particular way of combining techniques for each of
the components. Thus our techniques significantly extend the class of programs optimized in [NR9O0).
In particular, we can deal with some programs (rewritten using Magic Sets) in which a predicate p and
the corresponding magic predicate magic_p are mutually recursive whereas the techniques of [NR90] do
not handle such programs.

2 Definitions

In this paper, we consider Horn clause logic programs?, and assume the usual definitions including those
of terms, atoms and rules (clauses). We assume standard notation for dealing with logic programs (see
[U1188]). We assume familiarity with semi-naive evaluation, and in some of the sections of the paper we
also assume some familiarity with the Magic Sets transformation. We refer the reader to [U1189, NR89]
for an introduction. '

A program is treated as a set of rules and EDB facts. While analyzing the program, we do not need
to know the specific EDB facts, but we often make use of information such as functional dependencies
on EDB relations. A program fact is used to mean any fact that is used or derived by a program.

Assumption 2.1 In this paper we assume that all program facts are ground. O

A sufficient condition that guarantees this is range-restrictedness of the program, i.e., for every rule in
the program, every variable that appears in the head of the rule also appears in the body of the rule.

Definition 2.1 Evaluation: Consider a program P.

o A state in a program execution is a tuple < F,H >, where F is a set of facts, and H denotes
a hidden component of the state. (Initially F is the set of given facts in the program, and ¥ is

empty.)
o A state transition changes < Fi,’H; > to < F; UF,Hs >, where F is a set of facts such that each

fact can be derived from < F7,’H; > using a rule in P. (Note that there could be several state
transitions out of a given state.)

o A final state is a state such that no new facts can be generated.
An evaluation of P according to strategy M is a progression from the initial state to a final state,

through a sequence of state transitions according to M; each of the states in this progression is referred
to as a point in the evaluation of P.

The hidden component contains information about an execution that is irrelevant for our purposes.
[}

2This can be extended to include programs with stratified negation and aggregation.

A derivation step at state < F;,H; > consists of a rule R along with a substitution ¢ on its variables,
such that each positive body literal is present in the set F;3. Every fact p’ in F;4, — F; has one or more
derivation steps such that p’ is the head of R[c].

Definition 2.2 Semi-Naive Evaluation: An evaluation is said to be a semi-naive evaluation iff at
each state < F;, H; > every derivation step D made at state 7 is such that DD was not used earlier.

Such an evaluation is said to have the semi-naive property. O

Definition 2.3 Basic Semi-Naive Evaluation: We use the term Basic Semi-Naive evaluation
to refer to the semi-naive evaluation technique presented in [Ban85] (possibly with improvements sug-
gested by [BR87]). This evaluation technique proceeds in iterations; in each iteration it makes all new
derivations that can be made by using facts derived up to the previous iteration. 0O

Definition 2.4 Locally Semi-Naive Evaluation: An evaluation is said to be a locally semi-
naive evaluation iff at each state < F;,H; >: (1) no derivation step is repeated at the ith point in the
evaluation, and (2) every derivation step D made at the ith point in the evaluation is such that either:
(a) D was not used earlier, or (b) There is a j < ¢ such that D uses at least one fact that is present in
Fj — Fj-1, and there is no other use of D at any point k in the evaluation, j < k <. O

Suppose we modify a semi-naive evaluation by discarding facts during the evaluation. If a fact p
is discarded and then derived again at a later point in the evaluation, we may repeat some derivation
that uses the fact, and hence the modified evaluation would not be a semi-naive evaluation. However,
it would be a locally semi-naive evaluation. A locally semi-naive evaluation has the property of not
repeating inferences if no facts are discarded. By definition every semi-naive evaluation is also a locally
semi-naive evaluation. Several of the evaluations that we consider in this paper are locally semi-naive,
but not semi-naive.

In the following definition we weaken the notion of “base” predicates. In some cases, predicates
that are defined by rules (hence “derived”, under the usual sense) can be treated as base predicates
for a number of optimization and evaluation techniques. The following definition identifies a sufficient
condition for treating predicates as base in any of the techniques described in this paper. Since this
definition is strictly weaker than traditional definitions, the use of the traditional definition does not
affect the correctness of any of the results in this paper.

Definition 2.5 Base Set: Given an evaluation and a rule R, a set of predicates ¢1, ..., g, is said to
be a base set with respect to R if the following condition holds every time R is applied in the evaluation:
the set of facts for ¢;,1 < ¢ < n that are available to the application of R has the property that even if
every g¢; fact that could possibly be derived is actually made available, the result of the rule application
would be unchanged. O

Note that a rule may have more than one base set; however, the union of base sets is not necessarily a
base set. Hence, among all the base sets, one such set is chosen for each rule, and is referred to as the
base set for the rule; each predicate in it is a base predicate with respect to the rule. The other predicates
in the rule are derived with respect to the rule.

A predicate p; is said to be derived with respect to another predicate p; if, either (1) there is a rule
R such that p; is the head predicate of R and p; is derived with respect to R, or (2) there is a predicate
p3 such that ps is derived with respect to p; by (1) and ps is (recursively) derived with respect to ps.
Note that the relation pl derived-with-respect-to p2 is not necessarily symmetric.

3When negation is allowed, we also require that each negative literal cannot be derived.

3 Ensuring Soundness, Completeness and Non-Redundancy

In general, discarding a fact could result in the non-derivation of other facts that should have been
derived and thereby, in the presence of negation, derivation of facts that should not have been derived.
This could compromise completeness, and in the presence of negation, also soundness. The following
condition ensures that facts are used in all possible derivations and is used to ensure soundness and
completeness:

Condition U : A fact p(@) satisfies Condition U with respect to an evaluation, at a point el in the
evaluation, iff

1. Every derivation using it has been made at or before el, or

2. If p(a) is discarded at el, it will be recomputed at some later point €2 in the evaluation, and
any derivation that could have been made using p(@) after el (had p(@) not been discarded)
will be made after the fact has been recomputed at e2. Also, if the program has negation,
any derivation that would have been prevented by the presence of p(@) is not made between
el and e2.

a

The restriction of Condition U to a predicate occurrence in the body of a rule is defined in a straight-
forward manner, by considering only uses of a fact in a particular predicate occurrence in the body of
that rule.

The following proposition is straightforward.

Proposition 3.1 Condition U is satisfied by a fact p(@) at a point el in an evaluation iff, for each body
occurrence of p in every rule, the restriction of Condition U to that predicate occurrence is satisfied by
p(a). O

In this paper, we assume that an evaluation is a locally semi-naive evaluation. Such an evaluation as
the desirable property of not repeating inferences if no facts are discarded. However, if a fact is discarded
and subsequently rederived, we may not detect this duplicate derivation and thus may repeat some
derivations that use this fact. This could compromise the semi-naive property. Further, not detecting
duplicate derivations of a fact could compromise termination if cyclic derivations are possible. If every
fact that is discarded satisfies the following condition before it is discarded, then multiple derivations of
facts will be detected:

Condition D : A fact p(@) satisfies Condition D with respect to an evaluation, at a point el in the
evaluation, iff
1. It is not derived again at or after the point el, or
2. If p(@) is discarded at el, then for any later point €2 in the evaluation where p(@) is derived,

no inference using p(@) made at or before el is repeated after e2.

0

The restriction of Condition D to a rule is defined in a straightforward manner, by considering only
derivations of a fact by that rule. A proposition similar to 3.1 holds for Condition D with “body predicate
occurrence of p” replaced by “rule defining p.”

For an evaluation of a program to be complete, all non-redundant derivations that can be made
using the program must in fact be made by the evaluation. In the case when the number of derivations
of a fact do matter, as when the multiset semantics of Maher and Ramakrishnan [MR90] is used, no
derivation is redundant, although in other cases some derivations may be redundant. We say that an
evaluation is derivation-complete if all derivations that can be made using the program are in fact made
by the evaluation.

The following propositions summarize how ensuring Conditions U and D when discarding facts in an
evaluation preserves soundness, derivation-completeness and the semi-naive property of the evaluation.

Proposition 3.2 Consider an evaluation E of a program such that E is sound, and derivation-complete,
and no facts are discarded during the evaluation. Suppose we modify E by discarding facls one at a time
during the evaluation. Then the modified evaluation is sound and derivation-complete iff Condition U is
satisfied by each fact whenever il is discarded. O

Proposition 3.3 Consider an evaluation E of a program such that E is sound, derivation-complete,
has the semi-naive property and no facts are discarded during the evaluation. Suppose we modify E by
discarding facls one at a time during the evaluation. Then the modified evalualion has the semi-naive
property iff Condition D is satisfied by each fact whenever it is discarded. O

From the above two propositions, the following result follows.

Theorem 3.1 Consider an evaluation E of a program such that E is sound, derivation-complete, has
the semi-naive property and no facts are discarded during the evaluation. Suppose we modify E by
discarding facts one at a time during the evaluation. Then the modified evaluation is sound, derivation-
complete and has the semi-naive property iff Conditions U and D are satisfied by each fact whenever it
s discarded. 0

In the rest of this paper, we assume that facts are discarded one at a time, and Conditions U and
D reflect this assumption. The discarding of one fact at a point in the evaluation could affect whether
or not another fact is rederived at a later point in the evaluation. In general, after discarding a fact
pl, Conditions U and D may need to be retested for other facts, say p2. In the special case of a fact
p2 such that all derivations using the fact have been made, discarding pl at a point el does not affect
the satisfaction of Condition U by p2 at el. Also, if pl satisfies Condition D when it is discarded,
the satisfaction of D by p2 is not affected by the discarding of pl. Conditions U and D can be easily
generalized to handle discarding a set of facts at a point in an evaluation and all the results in this paper
correspondingly generalize.

Theorem 3.2 Given a program P and an EDB D, and an arbitrary point el in an evaluation of program
P on EDB D, it is undecidable whether a given fact satisfies Conditions U and/or D at el.

Proof: Consider an arbitrary logic program L that defines p. Add the fact p; and the rule pye—p, p
to L to get L1. (Neither p; nor p, should occur in L.) The fact p; can be used to compute py iff ?p
is satisfiable in L. Since satisfiability is not decidable for logic programs it is undecidable if p; will be
used again after any point e; in the evaluation. Since there is no other derivation of p;, Condition U is
undecidable.

To show undecidability of Condition D, add the fact p and the rule R : p;—p to the logic program
L to get L2. Consider a point e; in a semi-naive evaluation of L2 after p; has been derived using the
given fact p and rule R. Since it is undecidable whether 7p is satisfiable in L, if p is discarded at e; it is
undecidable whether the derivation of p; (using R) is repeated after e;. O

Consequently, it is undecidable whether discarding a fact during an evaluation will compromise the
soundness, completeness or semi-naive property of the evaluation. Hence, we must look for sufficient
conditions for ensuring D and U for program facts. Even the stronger conditions that only test the first
parts of Conditions U and D are undecidable. Qur sufficient conditions are often based on the first parts
of Conditions D and U.

3.1 An Overview of Our Approach

We now present a brief overview of our techniques. In subsequent sections we look in detail at some of the
techniques that we outline here. Consider facts of the form p(@) in a program P. Consider an evaluation
of P and let % be a schedule for discarding p-facts in this evaluation. We justify 1 by establishing that
Conditions D and U hold for each p fact before it is discarded. At compile time we analyze the program,
and decide on the applicability of each technique. We then add extra tests and auxiliary computations
(that we describe along with each technique) to the compiled version of the program. In general these
tests are performed at run time to decide when a fact satisfies Conditions D and U. These operations
are quite efficient—see Section 9 for more details. Facts are discarded at run-time as soon as the tests
determine that they satisfy both Conditions D and U.

Ensuring Condition D : Condition D can be checked on a per-rule basis, and different techniques
can be used for different rules in a given program. Applicable techniques include the following:

1. Providing a bound on the total number of derivations of a fact.
If a program is duplicate free ((MR90]), we know that once a fact is derived it will not be
derived again. We look at this technique (and some extensions) for ensuring Condition D in
Section 4.1.

2. Using monotonicity constraints.
Monotonicity constraints ensure some monotone ordering on the derivation of facts. We look
at this idea in Section 5.1.

Ensuring Condition U : Condition U can be checked on a per-body-literal basis, and different tech-
niques can be used for different literals in a given program. Applicable techniques include the
following;:

1. Providing a bound on the total number of uses of a fact.
Suppose a rule in linear, i.e. there is only one predicate in the body of the rule which is derived
wrt the rule. Once a fact for the derived predicate is used (with all the facts for the base
predicates), we know that no new derivations can be made using that fact in that rule. We
look at this and more general ways of ensuring Condition U in Section 4.2.

2. Using monotonicity constraints.
In Section 5.2 we consider using monotonicity constraints to satisfy Condition U.

If none of these approaches for ensuring D or U succeeds, we always have the option of not
discarding any p-facts. We can still optimize the rest of the program, unlike the technique described
in [NR90].

Synchronization : If (all) derivations of facts are “close” to all their uses, facts can be discarded soon
after being derived. In Section 6 we consider techniques that can be used to order an evaluation
so as to maximize this property, and we call them synchronization techniques. These include:

¢ Delaying first use of facts.
The idea is to partition the set of derived facts into a set of “active” facts used in derivations
and a set of “hidden” facts whose use is delayed (until they become “active”). The goal is to
balance the derivation of new facts against the identification of facts that can be discarded
so that the number of facts that are stored at any one point in the evaluation is minimized.
(See Section 6.1.)

o Nested-SCC synchronization.
This technique can be understood as identifying “subgoals” that are to be evaluated by a
“subprogram” on each call. The idea is to generate facts for the subprogram as and when
they are needed by the main program. We describe this in detail in Section 6.2.

e Interleaved-SCC synchronization.
The acyclic graph of SCCs suggests a natural producer-consumer relationship. By interleaving
the evaluation of producers and consumers, it is sometimes possible to ensure that facts are
generated in a producer as and when they are needed by the consumers. This technique is
described in detail in Section 6.3.

Combining Techniques : The various techniques for synchronization and for ensuring Conditions D
and U are applicable to parts of a program (such as rules, predicate occurrences, etc). These
need to be combined to get a space optimization technique for the full program. These issues are
discussed in detail in Section 8.

4 Bounds on Derivations and Uses of Facts

4.1 Duplicate Freedom and Condition D

The simplest way to ensure that Condition D is satisfied for a fact p(@) at a point in a locally semi-naive
evaluation of a program is based on the following condition on the predicate p:

Condition DF1 : (1) No fact for p is derived by more than one rule, (2) there is at most one derivation
for each p fact by any rule, and (3) no derivation for any p fact is repeated.? O

The techniques of [MR90] can be used to test the first two parts of this condition—part (1) can be
tested by determining that no two rule heads unify and part (2) by checking that the head of the rule
functionally determines the body. If facts are discarded in a locally semi-naive evaluation, part (3) is
ensured if for all predicates ¢ such that g is derived with respect to p, we make sure Condition D is
satisfied by each ¢ fact before it is discarded. Although the third part appears to be cyclic, it isn’t really
s0; all we have to do is decide to discard facts only if they satisfy Condition D, and this part is satisfied
for all the predicates. The problem of how to test the first two parts is all that is left.

Proposition 4.1 If a predicate p in a locally semi-naive evaluation salisfies Condition DF1, Condition
D is satisfied by each p fact after it is derived. O

The essential idea is that no fact for p is derived more than once in this evaluation (i.e., p is duplicate
free). We can weaken Condition DF1 in several ways. If part (1) does not hold, we can still ensure

* This would be true if the evaluation is semi-naive. However if derivation of p facts is done in a locally semi-naive but
not semi-naive, fashion, this may not be true (see Section 7.2). The choice of locally semi-naive/semi-naive evaluation is
done before checking this condition.

Condition D using a run-time check to determine that a fact has been derived once by every rule that
could possibly derive it.

DF1 can also be weakened by modifying the requirement that “there is at most one derivation for
each fact by any rule” to the requirement that “if there is more than one derivation for any fact by
a rule, then the facts for the derived predicate occurrences in the corresponding rule instances are the
same.” Thus, multiple derivations would be allowed within a rule application (which is the join of the
“current” extents of the body literals). To test this weaker requirement, we can check whether the head
of a rule functionally determines the body occurrences of predicates that are derived (with respect to
this rule); the head need not functionally determine the base predicate occurrences. Provided part (3)
in DF1 is satisfied, once a rule has been applied to derive a fact, we know that no further derivations of
that fact will be made using that rule. To summarize:

Condition DF2 : Parts (1) and (3) as in DF1, and (2) if there is more than one derivation for any fact
by a rule, then the facts for the derived predicate occurrences in the corresponding rule instances
are the same. 0O

A proposition similar to Proposition 4.1 also holds in the case of DF2. Again, if part (1) does not
hold, we can ensure Condition D using run-time checks.

4.2 Bounds on Uses and Condition U

If we can determine a bound on the number of uses of p facts in a body predicate occurrence p’ of p,
once a p fact has been used in that many derivations in p’, we know that it can no longer be used in
this occurrence. The following condition seeks to capture this intuition. We use functional dependencies
over a relation composed of all instances of a rule in order to state the condition.

Condition Bounds_U : Consider an evaluation of a program P, and a rule
R: p2() « p(2), 6(), p1().

where b() denotes the join of all the base predicate occurrences (other than p(7), if it is base) in the
body of the rule, and p1() denotes the join of all derived predicate occurrences (other than p(?), if
it is derived) in the body of R. Suppose that no derivation steps for any p2 facts are repeated.’
Then the predicate occurrence p(f) in R satisfies Condition Bounds.U if it satisfies either of:

BU1 : p(%) functionally determines p1() in R, or
BU2 : p(%) functionally determines the head p2() of R.

a

Note that in the case when p(%) is the only predicate occurrence that is derived with respect to the
rule (i.e. R is a “linear” rule), Bounds_U is trivially satisfied. Once a fact for the derived predicate is
used (with all the facts for the base predicates), we know that no new derivations can be made using
that fact in that rule.

5See Condition DF1.

Proposition 4.2 Consider an evaluation of a program, and let a body predicate occurrence p(f) in R
satisfy Condition BUI. A fact p(@) will no longer be used in the occurrence p(t) if: (1) p(@) does not
maich any facts for b(), or (2) p(@) matches base facts, and it has been used in the occurrence p() in a
successful rule application. 0

Suppose some derivations using R and p(@) are repeated. If we discard the fact p(@) after one
successful derivation, we would prevent repetitions of that derivation and hence not satisfy Condition U.
There are indeed cases where such repeated derivations are essential for completeness of the evaluation—
see, for instance, the Nested-SCC Discarding technique in Section 7.2.

Condition BU1 can be generalized by requiring that p(f) along with b() functionally determine p1()
in R. Let #(p(@), p(f), R) denote the cardinality of the set of facts b(@;) that can join with p(@) used in
the occurrence p(f) in rule R. Then the fact p(@) can no longer be used in the occurrence p(%) of R, if
it has been successfully used in #(p(@), p(¥), R) derivations in the predicate occurrence p(Z) in R. Note
that if any derivations using R are repeated, the count of uses of p(@) in this occurrence may be wrong.

If the occurrence p(f) in R satisfies Condition BU2, and a fact p(@) matches at least one fact for
b() and has been used in this occurrence in a successful derivation, then no new facts can be generated
by any subsequent derivations using the same fact for this p occurrence. Condition U is not satisfied,
since it is possible that there are more derivations of the same head fact using the given p fact in
this rule. However, if we are not interested in the number of derivations, we may effectively consider
Condition U to be satisfied, without compromising soundness or completeness (although we do sacrifice
derivation-completeness). Condition BU2 can also be generalized in a fashion similar to BU1.

Note that the use of functional dependencies is conservative; if p — ¢, for example, we know that
there is at most one ¢ fact that can join with a given p fact, but there may in fact be no such ¢ fact
as the example below shows. The condition can therefore be refined by using a notion of dependencies
that requires the existence of exactly one such ¢ fact for each p fact, but we do not pursue this here.

Example 4.1 The program P,y is:

R1: aclch,Q,Q* Q).

R2 :ack(P,0,0) « P >0.

R3:ack(P,1,2) — P >0.

R4 :ack(P,Q,N)«~— P >0,Q > 1,ack(P,Q—1,N1),ack(P —1,N1,N).

Here, the FDs ack : {1,2} -— 3 and {1,3} — 2 hold. As a consequence, each body occurrence of ack
functionally determines the other occurrence of ack in rule (4). Also, each occurrence of ack in the body
of rule (4) functionally determines the head of that rule. Both Conditions BU1 and BU2 are therefore
applicable; since ack can also be shown to be duplicate-free, we can discard each ack fact after two uses.
However, there are several ack facts that can be used only once, and based on these conditions they are
never discarded. As a result, no asymptotic savings in space is achieved. O

The following example illustrates the use of bounds on derivations and uses of facts in space opti-
mization.

Example 4.2 Consider the program below.

anc(X,Y) « father(X,Y).

anc(X,Y) — father(X,Z),anc(Z,Y).
Suppose we know that the father relation is a tree of nodes. That is, we are given the following
functional dependency: father : 1 — 2, i.e. each node has only one father, and we also know that the

father relation is acyclic. Suppose also that the user gives a query 7 — anc(X,Y). We assume that if a
fact is an answer to the query, it is printed out straight away to the users terminal.

10

We can deduce the following about the program:

¢ The program is duplicate free: The techniques of [MR90] may be used to deduce this. Informally,
this is because the functional dependency shows that each fact can be deduced at most once by
each rule, and the acyclicity of father along with the functional dependency shows that each fact
can be deduced by at most one rule.

¢ Since the rule is linear, each derived fact for anc is used in at most one rule application. We can
then discard anc facts once they have been used in one rule application.

We now look at the benefits due to discarding facts in this program. Let n be the number of facts
in the relation father. The functional dependency on anc shows that for each node z, there is exactly
one ancestor at each distance 7. This means that at each point in the evaluation, at most n facts are
computed. Thus at most 2 * n anc facts are stored at any point in the evaluation. If facts were not
discarded, up to O(n?) facts may need to be stored, depending on the structure of the father relation.
Note that monotonicity based techniques (such as Sliding Window Tabulation and extensions discussed
in Section 5) are not applicable to this program, since there is no monotonicity inherent in the rules.

Even in the absence of the functional dependency and acyclicity requirements, facts for the anc
program can be deduced to satisfy Conditions D and U. If there is a node a such that no fact anc(-,)
(for any value “.”) is derived in a particular state of a locally semi-naive evaluation of this program, we
know that no fact anc(-, a) will be either be derived again or used again in the evaluation. Therefore all
such facts satisfy Condition D and U, and can be discarded. We expect the savings to be significant in
practice on graphs that are not strongly connected. This idea can be extended to more general classes

of programs, to derive another technique for ensuring Condition D. [

5 Monotonicity

In this section we look at how to use monotonicity to ensure Conditions D and U. Our results on the
use of monotonicity extend the results of [NR90].

We make extensive use of the ¢ function defined in [NR90]. The function ¢ can take any predicate
p as an argument and returns an arithmetic expression involving only the argument positions of p.
Further, ¢ can also take any fact p(@) as an argument, and returns an integer. Candidate functions for
¢ can be generated using the techniques discussed in [NR90]. We do not discuss this here, but assume
that possible ¢ functions are made available. The function ¢ has a natural extension that also can take
as argument an atom p(f), and returns an arithmetic expression involving only the variables in 7. For
instance, a ¢ that maps fac(l, N) to I would map fac(I+ 1, N1) to I +1. Such a ¢ also maps fac(4, -)
to 4.

5.1 Monotonicity and Condition D

Definition 5.1 Locally Saturated: Suppose that no derivation for any p fact is repeated in an
evaluation.® Then a set of facts S for derived body predicate occurrences of a rule R defining p is said
to be locally saturated with respect to R if every derivation that can be made using (1) R, (2) all facts

6See footnote 4, Section 4.1.

11

for the base predicate occurrences of R, and (3) the given set of facts S, has already been made. A set
of facts is said to be locally saturated with respect to a set of rules if it is locally saturated with respect
to each of the rules. 0O

Since all derivations that could be made using just the set of locally saturated facts have been made,
any new derivation requires at least one fact (for a derived predicate occurrence) that is not in the set
of locally saturated facts.

In the case of a Basic Semi-Naive evaluation of an SCC (where the set of predicates derived with
respect to p is just the set of predicates defined in the SCC of p), at any point in the n + 1th iteration,
the set of facts derived before the nth iteration is a set of locally saturated facts for p. If a different
evaluation or synchronization technique is used, the sets of locally saturated facts may change, but
the following results would not be affected. Thus we achieve a certain degree of independence from
evaluation techniques in the following results.

Definition 5.2 Monotonicity : A rule is said to be monotonically increasing with respect to a predi-
cate occurrence p’ in its body if, for every instance of the rule (with p(b) used in p'), ¢(head) > ¢(p(b)),
where head denotes the head of the instantiated rule. A rule is said to be monotonically increasing if
it is monotonically increasing with respect to each body occurrence of a predicate that is derived with
respect to the rule. O

The following is a sufficient algorithmic test for monotonicity. Consider a rule R:
R:ip(t) —pi),. .., palta).

The rule is guaranteed to be monotonically increasing if for every derived literal p;(¢;), the arithmetic
expression ¢(p(?)) — ¢(pi(%;)) is always > 0. This can be tested using symbolic manipulation on each

expression ¢(p(?)) — é(pi(%;)).

Condition Monotonicity D : Consider an evaluation of a program P. Let p be a predicate defined in
P, and S be the set of all predicates in P that are derived with respect to p (note that p € S). Let
R be the set of all the rules of P defining the predicates in S. The predicate p satisfies Condition
Monotonicity D iff every rule in R is monotonically increasing. O

Definition 5.3 Min-head-gap bounding function: For a predicate p as in Condition Monotonic-
ity.D, a function v mapping facts to integers is said to be a min-head-gap bounding function for p iff for
each instance R’ of any rule R defining p, if p(@) is the head fact and ¢(b) is a derived fact in the body
of R, (6(p(a)) — #(q(b))) > v(q(b)). O

Note that the constant function ¥ = 0 is always a min-head-gap bounding function—however, one
might be able to get a “better” function for the purposes of the subsequent theorem.

We can algorithmically determine a min-head-gap bounding function as follows. Suppose for each
rule R defining p and for each derived predicate p;(%;) in the body of R, each expression ¢(p(%)) — ¢ (p;(£:))
not only is non-negative but also (after simplification) has as arguments only variables from ;. Then
we can derive a min-head-gap bounding function for p by symbolic arithmetic manipulations on these
functions. The simplification above could include replacement of variables using arithmetic equalities
present in the body of the rule. For instance, if we have the rule

fae(X, X *N) — X >0,Y = X — 1, fac(Y,N).

we can replace Y by X —1 to get the min-head-gap bounding function (the constant function 1) for fac.

12

Theorem 5.1 Consider a semi-naive evaluation where predicate p satisfies Condition Monotonicity.D
and v is @ min-head-gap bounding function for p. Let S and R be as in Condition Monotonicity.D. In
this evaluation, let F' be the set of all the facts that have been derived for predicates defined in S, and
F' C F be a set of facts such that F' is locally saturated with respect to the set of rules R. Lel

m =min{¢(f) +v(f) | fe F - F'}

If a fact p(@) is such that ¢(p(@)) < m, then p(@) will not be derived again.

Proof: The set of facts F’ is locally saturated with respect to R. Hence, for any predicate ¢ € S (derived
with respect to p) any derivation of a q fact using some rule R (€ R) must use at least one fact that is
not in F’. Since the rules in R are monotonic, for any new fact ¢(b), ¢(¢(8)) > min{¢(f) | f € F — F'}.
Since v is a min-head-gap bounding function for p, no p fact with a ¢ value less than min{¢(f) + v(f) |
f € F — F'} will be derived. O

An analogous theorem holds with monotonically decreasing rules in place of monotonically increasing
rules in Condition Monotonicity_D. The theorem gives us a way of ensuring Condition D for facts when
the conditions on monotonicity are satisfied.

In an iteration of Basic Semi-Naive evaluation of an SCC, the set of facts in the p relations (i.e. the
facts derived two or more iterations before) constitutes F’ (as mentioned earlier) and the set of facts in
the ép relations (i.e. those derived in the previous iteration) and the facts derived during the current
iteration constitutes F' — F".

Note that although the set of derived predicates as well as the set of locally saturated facts depends
on the actual evaluation used, the theorem holds independent of the evaluation.

Example 5.1 Consider the following program that computes a list of factorials of all squares of integers
less than some constant n.

R1: faclist(0,[1]).

R2: faclist(N,[V | L]) «~ N > 0, N < n, faclist(N — 1, L), fac(N * N, V).

R3 : fac(0,1).
R4 : fae(N,N V) — N >0,N<n#n, fac(N - 1, V).

Let the ¢ function map fac.list(N,_) to N, and fac(N,) also to N. We deduce that rule R3 and R4 are
monotonically increasing. In rule R2, fac is a predicate from a lower SCC and hence is not derived wrt
R2. Hence we deduce that R1 and R2 are monotonically increasing. Thus Condition Monotonicity D
is satisfied by predicates fac as well as fac.list. We also deduce min-head-gap bounding functions: the
constant function 1 for fac as well as for fac.list.

From Theorem 5.1 we deduce that once a fac fact with index n is derived, no fac fact with index
less than n 4 1 will ever be derived again. We deduce similar results for fac_list. O

5.2 Monotonicity and Condition U

In this section we discuss how to use monotonicity of rules to satisfy Condition U. We make use of the
definitions and results in Section 5.1. Let ¢ be a function as described earlier in this section.

Definition 5.4 Body.gap: Let R be a rule and let p’ and ¢’ be predicate occurrences in its body.
Let R’ be an instance of R with facts p(@y) and ¢(@3) used in the occurrences p’ and ¢ respectively. We
then define body.-gap(R', p',q¢') = ¢(p(@7)) — ¢(g(az)). If R has at least one derived predicate occurrence

13

in its body, we define
body_gap(R',q') = max{body_gap(R',p’,q') | p' is a derived predicate occurrence in R}
If R has no derived predicate occurrence in its body, body.gap(R’',¢') = c0. O

Note that if there is only one derived predicate occurrence ¢’ in the body of a rule R, and R’ is any
instance of R, then body.gap(R',q') = 0.

Monotonicity can be used to infer that a fact can no longer be used in a body predicate occurrence
¢’ based on Condition Monotonicity .U and Theorem 5.2 below.

Condition Monotonicity U : Consider an evaluation of a program P. Let R be a rule with a body
predicate occurrence ¢’. Let p/,...,p) be the derived predicate occurrences in the body of the
rule R. Let ¥ be a function that maps ¢ facts to integers. The predicate occurrence ¢’ in R
satisfies Condition Monotonicity_U with function 7 iff, for each instance R’ (with ¢(@) used in the
occurrence ¢')
body-gap(R', ¢") < 7(¢(@)).

(]

Intuitively the theorem states that if two facts are used in a rule to make a successful derivation, the
indices of the facts are fairly “close” to each other. The function v provides an upper bound on the gap.

Suppose for each derived predicate occurrence p} in the body of rule R, ¢(p!) — ¢(¢’) (after sim-
plification) involves only the variables in the literal ¢’. Then, by a process similar to the derivation of
min-head-gap bounding functions in Section 5.1, we can derive a function ¥ as in Condition Monotonic-
ity_U.

Theorem 5.2 Consider a locally semi-naive evaluation of a program P. Let R be a rule in P and ¢ be a
body predicate occurrence in R such that ¢’ satisfies Condition Monotonicity.U with function ~v. Suppose
that no derivations using R are repeated.” Let m be an integer such that no fact for any pi,1<i<n
with index (under the function ¢) less than m will be derived again®. Suppose that the set of all facts
{pi(b) | 1 < i < n and ¢(pi(8)) < m} is locally saturated with respect 1o R.

Then, a fact q(a1) can no longer be used in the predicate occurrence ¢’ of R if ¢(q(a7))+~(q(ar)) < m.

Proof: Since the set of facts {p;(b) | 1 < i < n and ¢(p:(B)) < m} is locally saturated with respect
to R, and no p; fact with ¢ value less than m will be derived again, any new derivation must use at
least one derived fact with ¢ value of m or more. But by Condition Monotonicity U if a fact ¢(a7) is
used to make a derivation, all derived facts used with it are sugh that their ¢ values are less than or
equal to ¢(g(ar)) + 7(q(@1)). Hence a fact g(@7) cannot be used beyond this point in the evaluation if

¢(q(@r)) +(g(@)) <m. O

Note that the theorem makes no mention of whether g is derived with respect to the head of the rule
or not. An analogous theorem holds when the body.gap of the rule with respect to ¢’ is bounded from
below, and no fact for any p} with index (under ¢) greater than some m will be derived again.

A special case of the function v is the constant function k (for some k). The above theorem generalizes
the conditions of Sliding Window Tabulation ([NR90]), since only such constant functions could be used
for v in Sliding Window Tabulation. Example 5.2 shows the need for allowing general functions.

"See footnote 4, Section 4.1.
8 Theorem 5.1 may be used to ensure this.

14

Example 5.2 We use the program from Example 5.1 again. Consider Rule R4:
R4 : fac(N,N*V)— N >0,N < n#n, fac(N ~ 1, V).

There is only one derived predicate in the body of this rule, hence a fac fact can be used at most once
(Condition Bounds_U). Another way of looking at this is using monotonicity. A v function on fac that
bounds body_gap is the constant function 0. Hence if no fac fact with index less than n will be derived
henceforth, fac facts with indices less than n will no longer be used in this rule. A similar result holds
for uses of fac.list facts in rule R2 shown below:

R2: faclist(N,[V | L]) «~ N > 0,N < n, faclist(N — 1, L), fac(N * N, V).

The one predicate occurrence left is the occurrence of fac in rule R2. Now we derive a function
v on fac facts that satisfies Condition Monotonicity U, using the technique described earlier: v maps
fae(N*N,)to N —1— N N, and hence fac(M,.) to VM — M — 1. Using this we deduce that if
no fac.list facts with index less than n will be produced and there are no fac_list facts with index less
than n in the differential é relations, then fac facts fac(M,) such that M + VM~ M -1 < n wil
no longer be used. But from Example 5.1 we know how to find what fac_list facts will no longer be
produced: if a fact fac.list(n,.) has been produced in an iteration, no fac.list fact with index less than
n + 1 will be produced hence.

Thus in a Basic Semi-Naive evaluation, one iteration after fac_list(n,) has been produced we know
that any fac(m,.) fact with \/m — 1 < n can no longer be used in the occurrence of fac in rule £2. O

6 Synchronization

A synchronizing technique orders derivations in the evaluation of a program so that derivations of facts
are “close” to their uses; this helps reduce the “life-spans” of facts. Intuitively, if each fact computed
in an evaluation is stored for only a short while during the evaluation, the total space required for the
overall evaluation is reduced. We begin with an example where synchronizing helps in improving the
space utilization of a program evaluation. In the rest of this section we present three techniques for
achieving synchronization.

Example 6.1 Consider the following program, where n is some constant.

R1: facgo,l).
R2: fac(N,N % X1) «~ N >0, fae(N — 1, X1).
R3: faclgn,l).
R4 : facl(N,N x X1) ~ N >0, facl(N - 1, X1).

R5: fae2(n,1).
R6: fac2(N +1,Y *Y1xY2) — fac2(N,Y), fac(N,Y1), facl(N,Y2).
Query: 7-fac2(m, X).

Let us consider the case when m > n; for m < n, the answer set to the query is empty. If each fact in
this evaluation is used as soon as it is derived (or in the following iteration as when Basic Semi-Naive
evaluation is used), we would have to store n + 6 facts at any point in the evaluation (from the n 4 1th
iteration onwards, although less in previous iterations) based on satisfaction of Conditions U and D.
However, if all uses of a facl(N,_) fact are delayed till fac(NV, -) has been derived, we need store only
six facts at a point in the evaluation. Since n can be arbitrarily large, synchronizing the evaluation helps
considerably in improving the space utilization of the program evaluation. O

15

6.1 Delaying First Use of Facts

An integral part of Sliding Window Tabulation is the idea of keeping all uses of a derived fact “close”
together in the evaluation—this is done by delaying the first use of a (derived) fact. Each fact is assigned
an integer index by a ¢ function. At each point in the evaluation, there is an active “window” of facts;
a fact whose index is not in this window is not available for immediate use in rule applications—it is
hidden and can be used only when its index falls in the current window. In this section, we generalize
this idea of [NR90] and see how it helps in synchronization of evaluation.

Condition Hiding Facts : An evaluation of an SCC satisfies Condition Hiding_Facts if:

1. All the rules of the SCC are monotonically increasing, and

2. Suppose a derived fact p(b) is used in an occurrence p’ of an instance R’ of a rule in the SCC.
Then there exists a function 4’ mapping facts to integers s.t. body-gap(R',p’) < ¥/ (p(b)).

3. There is a finite bound min, such that ¢(p(b)) > ming for all facts p(b) for each predicate p
defined in the SCC.

0

Proposition 6.1 Consider an evaluation of an SCC that satisfies Condition Hiding_Facts. Let mp
be any integer. Let F' be the set of p(b) facts for which ¢(p(b)) + 7' (p(8)) = mp. Facls q(c) with
¢(q(¢)) < mp must be made available to rule applications, for facts in F' {o be completely used. ¢(C)
facts with ¢(q(¢)) > mp cannot be used along with any fact from F in any rule application.

Proof: Since for rule instance R’ (with p(b) used in predicate occurrence p’) body-gap(R',p') < v (p(b)),
any derived fact used in R’ must have a ¢ value less than or equal to ¢(p(b)) + 7'(p(b)). Hence for any
fact p in the set F, if a derived fact ¢ is used in an instance of a rule in the SCC along with p, then
¢(g) < mp. Facts with greater ¢ values cannot be used in a rule application with any fact from F. O

6.1.1 Evaluation With Hiding Facts

Proposition 6.1 provides a basis for the hiding of facts to reduce space utilization. Consider an SCC
S that satisfies Condition Hiding_Facts. The value min, may be determined in one of several ways: it
may be determined by analysis of the program (as in Example 6.1); or, if magic rewriting is used on the
program and the magic predicates corresponding to the predicates in S are in a lower SCC, it may be
determined based on an evaluation of the SCC containing the magic predicates®.

At a point in the evaluation of S, let mp be the greatest integer such that the set of all program
facts with ¢ values < mp is locally saturated with respect to all the rules in the SCC. Initially, mp is
set to ming. Since the SCC S has monotone rules, the value of mp can be determined at later points
in the evaluation as discussed in Section 5.1. We modify the evaluation of S by always hiding derived
facts with indices greater than mp. The value mp could increase each time facts are derived; it can be
updated, for instance, at the end of each iteration in a Basic Semi-Naive evaluation of the SCC.

To see how delaying the first use of facts can improve space utilization, consider ¢(¢) facts with
¢(q(¢)) > mp. Any p(d) fact that can be used in a rule application with such a ¢(¢) fact would have

#(p(d)) + 7' (p(d)) > mp. Since facts with a ¢ index of mp can still be derived, such a p(d) fact cannot
be discarded at this point in the evaluation based on Theorem 5.2 to ensure Condition U. If these q(e)

9For some programs neither of these techniques may be applicable.

16

facts are used along with p(d) facts in a rule application, new facts can be derived but none of the (p(d)
or ¢(¢)) facts used to derive these new facts can be discarded. By hiding ¢() facts with a ¢ value greater
than mp, derivations that use these facts are delayed until some of the p(d) facts that can be used along
with the ¢(¢) facts can be discarded; this can improve the space utilization of the program. Note that if
the set of facts with a ¢ index of mp are also hidden, the set of locally saturated facts would not change,
the value of mp would not increase and evaluation would not proceed any further.

As seen in Example 6.1, hiding facts in this fashion could greatly reduce the space utilized by a
program.

Our contribution in this section is twofold. Firstly, we isolate the synchronization achieved by hiding
facts in an evaluation from other components of space optimization techniques. Secondly, [NR90] had
the restriction that the body_gap be bounded above by a constant. We generalize this to handle the
body_gap being bounded by an arbitrary function of facts.

6.2 Nested-SCC Synchronization

Consider a program P, with two SCCs, S; and S3. Let p be a predicate that is defined in 53 and used
in S1. Let P™ be the magic rewritten program ([Ram88]) obtained from P. P™9 can be partitioned
into: R, obtained by applying the magic transformation to the rules in S treating predicates that
are not in S; as base predicates; Ry, obtained similarly from S3; and R.z:, which is the set of magic
rules generated from body occurrences in S of predicates defined in Sy. The Nested-SCC technique
essentially views the rules in R.;: as generating subgoals, and solves them by obtaining the fixpoint of
Ra.

Nested-SCC synchronization should be used only if R, is safely computable [KRS88]. The following
algorithm assumes that P contains only S; and S,, but can be easily extended to the general case, where
P also contains SCCs other than S; and S,.

Algorithm Nested-SCC_Synchronize (R1,R2)
Let Ry,..., R, be the rules in R;.
Let mR;1,...,mR; m, be the (magic) rules in Rz derived from R;,
in some total ordering consistent with the sip order in R;.
Repeatedly apply the rules in Ry, subject to the following restrictions, until a fixpoint is reached.
(1) Before applying a rule R; from Ry, do for k= 1...m;
2) Apply mR; ;. and then compute the closure of the set of rules R.
end Nested-SCC_Synchronize

As long as R is safely computable, the technique is guaranteed to be sound and complete.

Proposition 6.2 IfR; and Ry are evaluated using Nested-SCC synchronization, each predicate defined
in Ry is base with respect to every rule in Ry. O

Several of the techniques for satisfying Conditions D or U used the notion of predicates being base
with respect to rules. By using Nested SCC synchronization we may enable the use of one of those
techniques in a place where it may not otherwise be applicable. In Section 7.2 we see another way in
which Nested SCC synchronization can help is in discarding facts.

17

6.3 Interleaved-SCC Synchronization

Interleaved-SCC synchronization is a form of synchronization that exploits SCC structure. The intuition
behind the technique is as follows. Consider a predicate p defined in an SCC. A p-fact must be retained
until Conditions U and D are satisfied by it in this (“producer”) SCC; in addition, it must be retained
until it has been used completely in all occurrences of p in other (“consumer”) SCCs. If our evaluation
proceeds SCC-by-SCC, the producer SCC evaluation must be completed before evaluation of the con-
sumer SCCs can begin, and p-facts must therefore be retained at least until the end of the evaluation of
the producer SCC. However, it is sometimes possible to use the p fact in all consumer SCCs soon after
it is produced by interleaving the evaluation of SCCs, thereby making it possible to discard it sooner,
while retaining all the advantages of an SCC by SCC semi-naive evaluation.

We present the technique by describing the interleaving of a producer SCC (defining a single predicate
p) and one or more consumer SCCs for p. Any SCC (other than the producer) that contains occurrences
of p must be treated as a consumer and the producer and all consumer SCCs must satisfy the following
condition for the technique to be applicable!?.

Condition Interleaved-SCCs :

e The producer and each of its consumer SCCs must contain only monotonically increasing
rules.

e In each consumer SCC S, for each rule R that contains a body predicate occurrence p’ of p,
either (1) for each occurrence ¢’ of any derived predicate ¢ in the body of R, there exists a
function v,/ ¢+ that maps ¢ facts to integers such that for each instance R’ of R (where say
q(b) is used in the occurrence ¢'), body_gap(R',p’,¢') < Y1 g1(q(B)); or (2) there is a bound
magz, such that for any fact p(b) that can be used in the occurrence p/, ¢(p(b)) < mazp: .

0

We now describe the Interleaved-SCC synchronization technique, which works on any subprogram
that satisfies Condition Interleaved-SCCs. Consider a rule R in a consumer SCC S;. Let p’ and ¢’ be
occurrences in the body of R of predicates p and ¢; p defined in a producer SCC (of S;) and ¢ derived
with respect to R. We define the following indices:

m(p',q) = max{{-c0} U{4(g(})) +7p,¢:(2(8)) | ¢() is an available fact}}

M(p') = min{m(p’,¢') | ¢ is a derived predicate occurrence in the body of R}
= mazy if there is no derived predicate occurrence in the body of R
¥(p,S;) = max{M(p')|p’ is an occurrence of p in the body of any rule in S;}

m(p’,q') is the index of the largest (under the ¢ function) p fact that can possibly be used in p’ with
an available ¢ fact in ¢’. M(p’) is the index of the largest p fact that can be used in the occurrence p’
(with the set of currently known facts in S;). The index of the largest p fact that can be used with the
set of currently known facts in S is given by ¢(p, S;) and this index is available to the SCC that defines
p- Using these indices, Interleaved-SCC synchronization can be expressed as follows!!:

10 Although we consider only a single predicate defined in a producer SCC and require that all consumers of the predicate
satisfy Condition Interleaved-SCCs, we can extend the condition as well as the synchronization technique to relax these
restrictions.

11 This definition assumes concurrent threads of execution, but it can be reformulated, with a loss of concurrency and
some extra checks, as a sequential iteration.

18

Algorithm Interleaved-SCC_Producer (S)

(1) repeat
2 Let top = min;{1¢(p, S;) | S; uses p and is waiting on S}.
j i) | 9; 2
3) Evaluate S till no facts p(b) such that ¢(p(b)) < top can be derived.
/* Tested using monotonicity; any technique may be used to evaluate § */
4 Release any SCCs S; waiting on S such that 9(p, S;) = top.

(5) forever
end Interleaved-SCC_Producer

Algorithm Interleaved-SCC_Consumer (.S;)
(1) Evaluate S; with the following restriction:

(2) Whenever new facts are made available for derived predicates in S; do
(3) Update the indices m, M and .
(4) Wait on producer SCCs of Sj.

end Interleaved-SCC_Consumer

Although the discussion so far assumed “monotonically increasing,” if “increasing” is uniformly changed
to “decreasing”, the above results and algorithms hold with simple modifications.

Theorem 6.1 If SCCs Sy, S1,...,Sm are evaluaied using Interleaved-SCC synchronization with Sy as
the producer and Sy, ...,Sn as its consumers, each predicate defined in Sy is base with respect to every
rule in S1,...,Sn.

Proof: Consider a single predicate p and a single consumer SCC S; that uses p. In order to prove the
theorem, we only need show that 1(p, S;) is indeed the largest ¢ value of any p fact that can be used
in a derivation with any of the current set of derived facts in S;. It then follows from the algorithm
that any p fact that could possibly be used is indeed made available, and hence p is base with respect
to every rule in Sj.

We show that v(p, S;j) works as claimed by starting with m(p', ¢'). By the body_gap requirement of
Condition Interleaved-SCCs and the definition of m(p’,¢’), m(p', ¢’) is indeed the index of the largest
(under the ¢ function) p fact that can possibly be used in p’ with an available ¢ fact in ¢’. For a given
rule R, if p facts with index greater than some value n cannot be used in predicate occurrence p’ with
the available g facts for some predicate occurrence ¢, they cannot be used in a successful derivation with
the available facts for the derived predicates. Hence in the definition of M(p') we take the minimum
over all derived body predicate occurrences ¢'; M(p') is then the index of the largest p fact that can
be used in the occurrence p’ with the set of currently available facts in S;. Since in the definition of
¥(p, S;) we take the maximum over all predicate occurrences, ¥(p, S;) works as claimed. O

Example 6.2 Consider again the program from Example 5.1, which we repeat below for easy reference.

R1: faclist(0,[1]).
R2: faclist(N,[V | L]) «- N > 0,N < n, faclist(N — 1, L), fac(N * N, V).

R3:fac£0,1).
R4 : fac(N,N % V) «~ N >0,N <n*n, fac(N - 1,V).

This program has two SCCs, the lower one containing the predicate fac and the upper one containing
faclist. Let us call the lower SCC which is a producer of fac as S1 and the higher SCC, which is a
consumer of fac, as S2. There is only one rule R2 in S2 that uses the predicate fac. This rule has a
derived predicate fac.list. We assume that we use Basic Semi-Naive evaluation for the consumer SCC.

19

We derive the function v that maps fac.list(N — 1,.) to N2 — N + 1, (and hence fac_list(N,.) to
N? 4+ N + 1) to bound body-gap(R2, fac(N * N, V), facdist(N — 1,L)). SCCs S1 and S2 satisfy Con-
dition Interleaved-SCCs with this function v that bounds body-gap. We can then use Interleaved SCC
evaluation to evaluate this program.

After each Basic Semi-Naive iteration of the consumer SCC (in Procedure Interleaved_SCC_Consum-
er) new facts are produced. Using these facts we find the maximum value of ¢(fac.list(N,))+~v(fac_list
(N, -)). But this function simplifies to N2+2N +1. Thus if fac.list(n,) has been produced, we need fac
facts with indices up to n?+2n+1. We then call Procedure Interleaved .SCC_Producer(S1). SCC S1 then
iterates, producing fac facts. Due to monotonicity of rules in S1, we know that when fac(n®+2n+1,.)
has been produced, all fac facts with indices < n? + 2n 4 1 have been produced. Hence Procedure
Interleaved SCC_Producer returns, and Procedure Interleaved SCC.Consumer continues with its next
iteration.

Suppose we use Interleaved-SCC synchronization on this program, along with monotonicity to test
for Conditions D and U, and discard a fact once it satisfies Conditions D and U. The next question is,
how much space is used? It is easy to see that in SCC S2, only two fac.list facts are retained at any
point in the evaluation; each fac_list fact uses O(n) space. As for SCC S1, we store at most facts with
indices from (n — 1)? to n?, which means at most 2n — 1 facts are stored. Thus we use a total of O(n)
space using this space optimization technique. If we do not discard any facts during the evaluation,
we would store O(n?) facts. By discarding facts during the evaluation, we have achieved an order of
magnitude improvement in the space utilized in evaluating this program. O

6.4 Using Inverted Rules

In several cases (such as monotonically increasing SCCs that have been rewritten using the Magic Sets
transformation), the conditions for Interleaved SCCs are almost met, except that the two SCCs are
monotone in opposite directions. By using the notion of inverted rules, we can still use Interleaved-SCC
evaluation in some cases. Consider the following example:

Example 6.3 The following Magic rewritten program Pr., is used to compute the nth Factorial num-
ber.

Rl :m_fac(n).

R2: fac(0,1) — m_fac(0).

R3 :m_fac(N —1) «— m_fae(N),N > 0.

R4 : fac(N,N x X1) — m_fac(N),N > 0, fac(N —1,X1).

There are two SCCs in this program—SCC S1 defining m.-fac and SCC S2 defining fac. Unfortunately,
the conditions for Interleaved-SCC synchronization are not satisfied, since the two SCCs are monotone
in opposite directions. Each m.fac(z) fact is used in the computation of m. fac(i—1) (using rule R3) and
in the computation of fac(i) (using rule R4). Since none of the rules defining fac can be applied until
all the m_fac facts have been computed, the two uses of an m_fac fact are considerably “separated” in
the evaluation.

If an m-_fac fact is not discarded until it has been used to compute the corresponding fac fact, we
do not achieve any savings in the space complexity of this program; we still need to store O(n) facts. O

Naughton and Ramakrishnan [NR90] introduced the notion of inverted magic rules. Suppose a set of
rules is monotone. The set of fringe facts for these rules are those that do not generate any new facts.
We can in some cases use the original set of rules in reverse—feed them the head facts and regenerate

20

the body facts. This is done using “inverted” rules created by swapping the head and one of the body
literals in a rule. We now generalize the notion of inverted rules and see how inverted rules could be
used to guarantee Condition U.

Definition 6.1 Inverted Rules: Consider a set of monotonically decreasing (or, increasing) rules
R such that the evaluation of these rules, using a set of base facts B, computes a set D of derived facts.
A set of monotonically increasing (resp. decreasing) rules R’ is said to be the set of inverted rules with
respect to R, if there exists a set D' C D (called “fringe” facts in [NR90]) such that D' U the set of
facts computed by the evaluation of R’ using B U D' is exactly equal to D.

A set of rules R is said to be invertible if there exists an R’ that is the set of inverted rules with
respect to R. 0O

In general, a set of rules may not be (non-trivially) invertible. In some cases, the technique used by
[NRYQ] (of interchanging the head and derived body predicates) can be used (with minor modifications)
to generate inverted rules. This technique does not always succeed; the resultant rules may compute
more facts than were computed by the original rules. However, computing a superset of the desired set
of derived facts may still be acceptable in some cases and could achieve space improvements; see [NR90]
for a further discussion.

If a given set of rules R is invertible, the inverted rules R’ provide a mechanism to ensure that any
(non-fringe) fact computed by an evaluation of R can be discarded without violating Condition U—these
facts will be recomputed using R’ (if R’ is evaluated after R); any derivation that uses these facts can
be made once these facts are recomputed.

Condition Inverted Rules : A set of SCCs Sp, 51, ..., Sk, Sk41,- - ., Sm satisfies this condition if:

e These SCCs satisfy the conditions for Interleaved-SCC synchronization with Sy as the pro-
ducer SCC and Si,..., Sy, as consumer SCCs, except that the rules in Sy are monotonic in
the opposite direction to the rules in (the non-empty set of SCCs) Siy1,.. ., Sm.

e The set R of rules in Sy is invertible.
o The evaluation of SCCs S11, . .., Sn does not need to be done before or during the evaluation

of SCCs 54, ..., Sk.
O
Note that the last condition depends on the synchronization technique chosen for the other parts of the

program. One way of making this choice is described in Section 8.2. If the above condition is satisfied
for a set of SCCs, we can use the following variant of Interleaved-SCC synchronization:

Algorithm Inverted.Rules_Eval (Sp, {S1,...,5m})
Let the set of inverted rules obtained from Rq be RY.
(1) Evaluate Sp and Sy, ..., S using Interleaved-SCCs synchronization.
(2) Evaluate the set of rules Rf (with the fringe facts) and Sp41,...,5m
using Interleaved-SCCs synchronization with R{, as the producer SCC.
end Inverted_Rules_Eval

Theorem 6.2 Consider a set of SCCs in a program that satisfies Condition Inverted_Rules and is eval-
uated using Algorithm Inverted_Rules.Eval. Assume that in Step (2) of the algorithm, facts computed in

21

o satisfy U and D before they are discarded. If the restrictions of Conditions U and D to So, Sy, ..., Sk
are satisfied by any non-fringe fact computed in Sy, Conditions U and D are satisfied by that fact in the
evaluation.

Proof: Suppose the restrictions of Conditions U and D to S, S1,...,S) are satisfied by a non-fringe
fact p(@). The fact will be computed again by the inverted rules (by Condition Inverted_Rules and
Algorithm Inverted_Rules_Eval). Since the inverted rules and SCCs Sk+1, ..., 5m are evaluated using
Interleaved SCC Synchronization, p is base with respect to the rules in Siy1,...,Sn. Hence this fact
will be computed again before the first time it could be used in one of Sp41, ..., S;n. There are no other
uses of the fact, so Condition U is satisfied by the fact. Further, Condition D is also satisfied since the
fact is used only in S, ..., Sy initially and only in Sg41,. .., Sm when it is derived again, and these two
sets of SCCs are disjoint. O

Example 6.4 We continue with Example 6.3. Condition Inverted_Rules is satisfied by the pair of SCCs.
The pair of SCCs are monotone in opposite directions, but satisfy Condition Interleaved-SCCs otherwise.
A v function which is the constant function 1 is used for rule R4. For rule R2 we have a bound 0 such
that any m._fac fact used here has index < 0. The rules in the producer SCC S1 can be inverted. There
is only one inverted rule which is as follows!?:

R':m_fae(N + 1) — m_fac(N),N < n.

In the first phase of Algorithm Inverted_Rules.Eval we evaluate S1. Facts other than fringe facts can
be discarded during the evaluation of S1 once they satisfy Conditions D and U with respect to S1 alone.
We can use either monotonicity or bounds on number of uses of facts to satisfy Conditions D and U.
In either case, we store only two facts during this evaluation. A fact m.fac(é) is discarded once it has
been used to compute m-fac(i — 1); since however m_fac(i) is needed in the computation of fae(?), it
is recomputed in the second phase of Algorithm Inverted-Rules_Eval using the inverted magic rule R'.

In the second phase we use Interleaved-SCC synchronization with the producer being rule R’ and
the consumer being S2. We skip the details here, but note that at most two m_fac facts and two fac
facts are stored at any point in the evaluation. We have thus reduced the space complexity from O(n)
to O(1). Sliding Window Tabulation is applicable on this program, and would also use O(1) space.

Sliding Window Tabulation is not applicable, however, on the magic program obtained from the
fac.list program (described in previous sections), whereas Inverted_Rules_Eval is applicable. O

7 Combining Techniques I: Examples

In this section, we give a few examples of combinations of synchronization techniques with techniques
to ensure U and D to obtain space optimization techniques for subprograms.

7.1 Sliding Window Tabulation

The Sliding Window Tabulation scheme of [NR90] is an example where the technique of adding inverted
rules to a program is used in conjunction with delaying the first use of facts for synchronization and

*2The inverted magic rule generated in [NR90] did not have the condition N < n in it, but the algorithm ensured that
evaluation did not proceed beyond n.

22

monotonicity of derivations and uses to ensure D and U. Sliding Window Tabulation works on programs
that satisfy the following condition:

Condition Sliding Window Tabulation :

1. The magic program P™¢ has exactly two SCCs—-the lower SCC S only containing the magic
predicates (and rules defining them), and the higher SCC S; only containing the (derived)
predicates (and the corresponding rules) of the original program.

2. The rules in S; are monotonic in the opposite direction to the rules in S,.

3. The set of rules R in Sy can be inverted to get R4—the set of fringe facts being those magic
facts derived using R, that do not generate any new magic facts, and

4. In P™9, the body_gap in each rule with respect to each of the (non-magic and corresponding
magic) predicates is bounded by a constant.

(]

If the rewritten magic program P™Y satisfies these conditions, the evaluation can be understood as
follows:

Algorithm Sliding_-Window_Tabulation_Eval (51, S2)

Let the set of inverted magic rules obtained from the set of rules R in S, be R%.

(1) Evaluate the rules R using monotonicity to satisfy Conditions D and the
restriction of U to the uses of magic facts in Sy. The first use of facts is delayed
by hiding facts based on the body.gap of the (magic) rules in Ss, and fringe
facts are not discarded.

(2) R4 and the set of rules in S; are evaluated using Interleaved-SCC Synchronization®
Monotonicity is used to satisfy Conditions D and U and the first use of facts is
again delayed by hiding facts. The “lowest" fact defined in S; can be determined
since R4 is evaluated before S;.

end Sliding.Window_Tabulation_Eval

3

Using our generalized techniques for ensuring U, D and achieving synchronization based on mono-
tonicity, the basic techniques of Sliding Window Tabulation can be extended in many ways beyond the
class of programs described by Naughton and Ramakrishnan. One possible extension is based on using
Algorithm Inverted_Rules_Eval for synchronization of multiple consumer SCCs for a single producer; an-
other extension permits the body_gap of the rules to be bounded by some function of the facts, not just
a constant.

7.2 The Nested-SCC Discarding Technique

The Nested-SCC Discarding technique combines Nested-SCC synchronization with a rather straightfor-
ward technique for ensuring U, described below, that may discard a fact even though it may not have
been used to make all the derivations that it should have.

13 Actually, we need to extend Interleaved Evaluation a little to handle the full generality of Sliding Window Tabulation.
Sliding Window Tabulation can handle some exit rules for which no bound mazy (defined in Condition Interleaved-SCCs)
exists. It treats these rules as though they were derived rules, and make only some magic facts available to them at a time.
Although Interleaved SCC evaluation can be extended to handle such cases, we omit the tedious details of the extension.

23

Let 51,52, R; and Ry be defined for a program P and its corresponding magic program P™¢ as in
Section 6.2 and let R be safely computable. Algorithm Nested-SCC_Discard describes the evaluation
when P consists of only two SCCs S; and Ss; its extension to more general cases is straightforward.

Algorithm Nested-SCC_Discard (R1,R2)
(1) Evaluate R; and R, using Nested-SCC Synchronization, with the following technique
for discarding facts.

(2) While computing the closure of Ro, discard facts computed in R,
(other than those that match the set of external subgoals) based on the
restrictions of D and U to the rules of Ry; the external subgoals can
also be discarded after computing the closure.

3) After applying a rule in R, discard all answers to external subgoals

generated by the rule.
end Nested-SCC_Discard

Example 8.1 shows the asymptotic improvements in space complexity that could be achieved via the use
of this technique.

Theorem 7.1 Facts discarded in Steps 2 and 3 of Algorithm Nested-SCC_Discard satisfy Condition U
when they are discarded. However, they do not necessarily satisfy Condition D when they are discarded.
0

Derivations may be repeated when using the Nested-SCC Discarding technique, and hence the eval-
uation is not a semi-naive evaluation. However, it is a locally semi-naive evaluation (see Definition 2.4).
The evaluation of the closure of R, is entirely independent of the techniques used to evaluate R;. Com-
putation within R, can be synchronized using any applicable technique—the rules in Ra need not all
be evaluated together. Although facts that are discarded may not satisfy Condition D overall, within a
single call to Ry no derivations in R5 are repeated.

Since Nested-SCC_Discard does not satisfy Condition D in general, computation may be repeated by
the evaluation. However, in some special cases no derivations are repeated.

Definition 7.1 Independence of External Subgoals: Consider a program P with an SCC S
defining a predicate p;, and let P™¢ be the magic rewritten form of P. Assume we are given a set of
external subgoals for predicates defined in S. A set of external subgoals is said to be independent with
respect to py if no p; fact is used in the derivation of answers to more than one external subgoal in the
set. A set of external subgoals is said to be independent with respect to S if it is independent with respect
to each of the predicates defined in 5. O

In terms of derivation trees, independence of external subgoals s; and s; with respect to a predicate p
means that no p fact is common to the derivation trees of answers to s; and s-.

Theorem 7.2 Consider a program as in Section 7.2 thatl is evaluated using Nested-SCC_Discard. Let
p1 be a predicate defined in Sy. Suppose that the set of external subgoals generated by R (for the
predicates defined in Sy) is independent with respect to p;. Then, p; facts discarded in Steps 2 and 3
of Nested-SCC.Discard satisfy Condition D when they are discarded, provided that no external subgoal is
repeated. 1

Several programs satisfy the conditions of Theorem 7.2. These including the Quicksort program to
sort a list and PR to reverse a list (when the list elements are all distinct). However, determining
whether these programs satisfy the conditions of Theorem 7.2 is based on checking non-trivial properties

24

of the program; this may be hard to determine automatically.

7.3 The Nested-SCC Cutset Technique

In this section, we combine the Nested-SCC synchronizing technique with another technique for satisfying
Conditions U and D. Consider a program and let S, and Ry be as in Section 7.2. This technique differs
from the Nested-SCC Discarding technique in that we retain a subset of the facts computed while
evaluating the closure of R, in response to an external subgoal, instead of retaining just the answers
to the external subgoal. In the case when this subset of facts forms a “cutset,” as defined below, we
may improve the space requirements of the evaluation while satisfying Condition D even if the external
subgoals are not independent with respect to the predicates in S,. This space optimization technique is
referred to as the Nested-SCC Cutset technique.

Definition 7.2 Fact Graph: The fact graph is a directed graph, with a node corresponding to each
fact derived during the bottom-up evaluation of the program. There is an edge from p;(a7) to p2(@s) if
there is a rule instance deriving p,(@3) that has pi(a7) in the body. 0

Definition 7.3 Cutset: Given a directed graph G = (V, E), a set of nodes Ve C V is said to form
a culset between a set of nodes, V4 C V, and another set, Vg C V, in the graph, if every directed path
from any node in V4 to any node in Vg and every directed path from any node in Vp to any node in
Va using the edges of F passes through a node in V. O

We say that a subgoal (magic fact) is completed at a point e in the evaluation if all derivations of all
answers to the subgoal have been made before e.

Condition Nested-SCC_Cutset : Consider a program and let Sy, R1, R and R.s: be as in Section
7.2, where R, is evaluated using Nested-SCC Synchronization with respect to R;. Consider an
evaluation of the program such that no derivation using R is repeated. The evaluation of the
program satisfies Condition Nested-SCC.Cutset if for any point el in the evaluation there are sets
of facts A, B and C such that:

1. BUC contains all subgoals that are completed at el and all the answers to the subgoals.

2. A contains all subgoals that are either generated at or before el but not completed at el or
are generated externally after el and also contains the answers to all these subgoals.

3. C contains completed subgoals such that: (a) B forms a cutset between A and C in the fact
graph for the program, and (b) all answers to subgoals in C are also present in C.

(]

Note that A, B and C partition the facts that are computed by R, at or before el. In order to gain some
space benefits, we also desire that C' be non-empty, except possibly at the beginning of the evaluation
of Rg .

Theorem 7.3 Consider an evaluation of a program that satisfies Condition Nested-SCC_Cutset and let
el, A, B and C be as in the condition. Then:

1. No fact in C (resp. A) occurs in the body of any instantiated rule whose head is a fact in A (resp.
C).

2. At point el, facts in C satisfy Condition D and the restriction of Condition U to Ro.

25

Proof: The proof of part (1) of the theorem is trivial since B forms a cutset between C and A in the
dependency graph for all p and m_p facts.

From part (1) of the theorem (that no A fact occurs in the body of any instantiated rule used to
derive a C fact), we know that no A fact can be directly used to compute a C' fact. Hence only B and
C facts can be used to compute C facts. However we know that the subgoals in B and C' are completed
at el hence there are no new derivations of C facts. Since no derivation using R, is repeated, it follows
that that facts in C satisfy Condition D at el.

Again from part (1) of the theorem we know that C facts cannot be used in the body of a rule (€ R3)
that derives an A fact. Since the subgoals in B and C are completed, C facts cannot be used to make
any new derivations of B or C facts using rules in R2. Since no derivations in R+ are repeated, facts in
C satisfy the restriction of Condition U to Ry at el. D

The above theorem gives us a technique for ensuring that facts satisfy Conditions D and U in the
case when Nested-SCC synchronization is used, and Condition Nested-SCC_Cutset is satisfied.

7.3.1 Sufficient Conditions for the Cutset Property

In general, determining if a subprogram has the cutset property and can satisfy Condition Nested-
SCC_Cutset is quite difficult. However, in some restricted cases, we can easily determine whether a
given program has the cutset property, and if so determine what the cutsets are.

For a monotonically increasing rule R and an instance R’ of R, we define maxz.head_gap(R') as
max{¢(head) — #(q') | ¢’ is a fact in the body of R’ for ¢ derived with respect to R}.

Condition Monotonic_Cutset : Consider a magic subprogram R that defines only predicates p and
the corresponding magic predicate m_p. Let the only rules defining m_p be the magic rules obtained
from body occurrences of p in the rules defining p. R satisfies Condition Cutset with function ox
if:

1. m_p has only one argument (this is also an argument of p) and this argument takes only
integer values,

2. the function ¢ maps p and m_p facts to the value of this integer argument,

3. all the rules defining p are monotonically increasing,

4. or maps facts to integers such that for each instance R’ of each rule R defining p in R,
maz_head.gap(R') < or(head),

5. the function ¢(fact) — or(fact) is monotonically increasing with respect to ¢, and
6. there exists a rule m_p(I — 1)~m._p(I),I > a in R, for some constant a such that p(J,.) facts
are only defined for J > a.
[

Lemma 7.1 Consider a subprogram R that satisfies Condition Monotonic_Cutset with function ox.
Then for any k,

1. The set of p and m.p facts with indices in the range [k — or(p(k,@)) + 1, k] forms a cutset between
facts for these predicates with indices < k — or(p(k,@)), and facts for these predicates with indices
> k in the dependency graph for all p and m.p program facts.

26

2. Each of the p and m_p facts in this range are computed if the seed magic fact m_p(k) s added to
R.

Proof: If an instantiated rule defining a p fact has a p or m_p fact with index < k — or(p(k,@)) in its
body, parts (4) and (5) of Condition Monotonic_Cutset ensure that the index of the head fact cannot be
greater than k.

Since the rules defining p are monotonically increasing, maz_head.gap(R') > maz{body_gap(R’,p") |
p' is a derived predicate occurrence in rule R defining p}. Now, the magic rules (defining m_p) are
derived from occurrences of p in the rules defining p. Hence, the absolute value of the maa_head_gap for
an instance of a magic rule is less than or equal to the maz_head_gap for a corresponding instance of the
rule from which this magic rule was derived. This shows that if an instantiated rule defining an m_p fact
has a p or m_p fact greater than & in its body, the index of the head fact cannot be < & — or(p(k,a)).
This completes the proof of part (1) of the lemma.

Parts (1), (2), and (6) of Condition Monotonic.Cutset ensure that the m_p facts for each possible p
fact in the range [k — or(p(k,@)) + 1, k] are computed when the seed magic fact m_p(k) is added to R.
Since the rules defining p are monotonically increasing and the magic predicate in the bodies of rules
defining p does not restrict the computation, each of the p facts in this range is computed during the
bottom-up evaluation. This completes the proof of part (2) of the lemma. O

From Theorem 7.3 and Lemma 7.1, we get the following result:

Theorem 7.4 Consider a program and let S3,R1,R2 and R.p: be as in Section 7.2, where Ry is
evaluated using Nested-SCC Synchronization with respect to Ry. Further, let R satisfy Condilion
Monotonic.Cutset with function or,. Lel ey be any point in the evaluation of the program such that all
m.p(N) facts generated using Regp after e; are for N > k; also let the magic fact m_p(k) have been
generated and the answers to it computed by evaluating Ro. Then the set of p and m_p facls with indices
<k~ or,(p(k,@)) satisfy Condition D and the restriction of Condition U to Ry af el.

Proof: Since the magic fact m_p(k) has been generated and the answers to it computed, it follows from
Lemma 7.1 that all p and m_p facts in the range [k — or(p(k,@)) + 1, k] will have been generated by
el. These facts form a cutset between facts for these predicates with indices < & — o (p(k,@)), and
facts for these predicates with indices > k in the dependency graph for all p and m.p program facts.
Since the set of external m_p(N) facts generated after el are for N > k, p and m_p facts with indices
< k - or,(p(k,@)) satisfy Conditions D and the restriction of Condition U to R at el, according to
Theorem 7.3. O

It can be seen that U, in Example 8.2 satisfies the above theorem with o = 1; fac(k, .) and m_face(k)
form a cutset between all fac and m.fac facts with indices less than k and all such facts with indices
greater than k.

8 Combining Techniques II: Framework

Recall that every space optimization technique has three components—ensuring Condition U for facts
before they are discarded, ensuring Condition D for facts before they are discarded, and synchronization
techniques to ensure that as new facts get computed, others become eligible for discarding. We now look
at how these techniques (for synchronizing evaluation and for ensuring Conditions D and U for parts
of a program) can be combined to obtain a space optimization technique for the full program. We first

27

discuss which techniques are orthogonal to each other (and hence, any applicable combination can be
chosen) and which techniques are not (and hence, cannot be combined arbitrarily).

8.1 Orthogonality of Techniques

The first point to note is that synchronization techniques are not orthogonal to the various techniques for
ensuring Conditions U and D-—some techniques for ensuring U and D may be applicable only with certain
synchronization techniques. For instance, Nested-SCC synchronization sets up subgoals when some facts
are needed in a rule application; when the answers are computed (in a nested fashion) and used in the
rule application, they automatically satisfy Condition U with respect to this predicate occurrence. This
technique for satisfying Condition U, however, cannot be used with other synchronization techniques.
Further, since synchronization techniques determine which predicates can be treated as base (with respect
to a rule or predicate) in an evaluation, they could affect the applicability of techniques (to ensure U
and D) that depend on which predicates are base and which derived. This suggests that techniques
for ensuring U and D for a subprogram be chosen after choosing a synchronization technique (for that
subprogram).

The second point to note is that, given a synchronization strategy for a subprogram, the techniques
for ensuring U and D (for those subprogram facts) may be chosen independently. Note, however, that
the applicability of techniques to ensure U for subprogram facts may depend on ensuring D for (possibly
other) subprogram facts though it does not depend on which techniques are used for this purpose. Also,
different techniques may be used to ensure U (or D) for different body predicate occurrences (resp.
rules). If, however, several techniques for ensuring U, for instance, are applicable to each body predicate
occurrence, the choice one makes in practice may depend on the relative “efficiency” of each of the
techniques as well as the overheads incurred by the use of separate techniques. How to make this choice
is a topic for future research.

In Section 8.2 we describe an algorithm that chooses synchronization techniques as well as techniques
to ensure Conditions D and U, using some heuristics, to obtain a space optimization technique for the
full program.

8.2 Automatically Combining Techniques

In the following discussion we assume that we are given a program-query pair < P, @ >, and wish to
obtain a space optimization technique for the Magic rewritten form P™9 of the program. (We also assume
that no rewriting is done on the program subsequent to Magic.) This assumption helps in presenting
the algorithm concisely, but is not essential for the use of space optimization techniques on the program.
(Also, we expect some variant of Magic rewriting to be used quite extensively in query optimization.)
Algorithm Discard outlines the order in which the synchronization techniques and techniques to ensure
U and D are chosen. The heuristics used to guide these choices are discussed subsequently.

For the purpose of this section, a program is treated as a set of units, {Uy,...,Un}, where each unit
contains a set of predicates as well as a set of rules. The units are a partitioning of the predicates and
rules of the program in that each predicate and each rule is contained in exactly one unit. Note that if a
predicate p; is contained in a unit Uj;, not all the rules in the program defining p; need be contained in
Uj. We define the unit graph as follows: the units U; form the nodes of the graph, and there is an edge
from U; to Uj iff some predicate contained in U; is used in the body of a rule contained in U;. The unit

28

graph is a directed graph, and its edges may be given labels. We require that all unit partitions used in
this section are such that the unit graph is a DAG. An example of such a unit partition is one where
each unit contains a maximal set of mutually recursive predicates, along with the set of rules defining
the predicates.

The edges of this graph may be given labels from the following set: Sequential, Nested, Interleaved,
Inverted. The edge labels specify how the program must be evaluated. If there is a Sequential edge from
unit 1 to unit 2, then unit 1 must be evaluated before the evaluation of unit 2 is begun. The meaning
of the other edges is similarly defined.

Algorithm Discard (P, P™9)
(1) Create_Nested_Units.
(2) Create_Nested_Edges.
(3) Create_Interleaved Edges.
(4) Create_Sequential _Edges_and_Cleanup.
(5) Create.Nested_Sub-units.
(6) Decide_Hiding.Facts.
(7) Analyze_UD_Applicability.
(8) Choose_UD_Techniques.
(9) Evaluate_Program.

end Discard

Create_Nested .Units starts with the predicate-SCCs S, ..., Sy of P™? as the initial units Uy, ..., Un.
Each of these units U; contains the predicates of the corresponding predicate-SCC S; as well as every rule
defining each of these predicates. If a unit U; (of P™7) contains predicates from two predicate-SCCs A;
and Aj of P and there is a path from A, to A in the predicate-SCC graph of P, U; is split into two units
Uir and Ujs. Ujp contains the predicates of A; as well as the corresponding magic predicates (these were
also contained in U;); U;z contains the rest of the predicates in U;. U;; contains all the rules (except
the external magic rules) from U; defining the predicates in U;;. The external magic rules defining
magic predicates in Uy (these were originally contained in U;) are now put into the units containing the
(modified) rules from which they were derived. The remaining rules in U; are now put into Ujs and Uj;
is labeled as a Nested-Unit. (Note that the unit graph is still acyclic.) This is repeated until no unit
contains predicates from two or more SCCs of P.

Create_Nested_Edges creates edges < U, U;, Nested > if some predicate in U; is used in a rule in
Uj,i # j and U; is labeled as a Nested-Unit. (Thus, all edges out of a Nested-Unit are labeled as
Nested.)

Create.Interleaved_Edges checks each unit U that is not a Nested-Unit. If Condition Interleaved-
SCCs' is satisfied by U and all its consumers, create edges < U, U;, Interleaved > for each U; # U that
has a rule using a predicate in UU. If Condition Inverted-Rules is satisfied by U and all its consumers,
create a unit U’ that contains the inverted rules of U. (Note that U’ does not contain any predicates.)
Create edges < U, U’, Inverted >, < U, U;, Interleaved > for each consumer U; that is monotonic in
the same direction as U and < U’,U;, Interleaved > for each consumer U; that is monotonic in the
opposite direction to U.

Create_Sequential_Edges.and_Cleanup first creates edges < Ui, Uj, Sequential > iff some predicate

‘ 14 Although the various synchronization strategies in this paper were described in terms of SCCs, they are also applicable
to units.

29

contained in U; is used in a rule in U;, and there is no other edge between U; and U;. After the creation
of such Sequential edges, we could have the following situation: for a pair of units U;, U; one path of
edges in the edge graph from U; to U; indicates that U; must be evaluated before U; and another path
from U; to U; indicates that they must be evaluated in an interleaved fashion. This can happen if there
is a Sequential or Inverted edge in the first path and there is an Interleaved edge in the second path
and all other edges in the second path are Interleaved or Nested edges. In such situations, Interleaving
is unlikely to be very helpful and, as a heuristic, we transform this situation by relabeling some of
the Interleaved edges as Sequential edges. Similar situations can arise in other ways and the Cleanup
procedure relabels edges to avoid such situations. We omit tedious details of the procedure.

Create_Nested.Sub-units analyzes Nested-Units (these contain both non-magic, say p, and the corre-
sponding magic, m._p, predicates) U; to obtain a synchronization technique that can be used to evaluate
U; during each “call.” If within Uj, the rules are such that p and m_p are not mutually recursive to
each other, then the rules for m._p need not be evaluated along with the rules for p. In such a case,
two sub-units U;; and U;p are created within U;; U;; contains the magic predicates (and corresponding
rules) and U;, contains the other predicates (and corresponding rules) from U;. These two sub-units can
now be analyzed for the applicability of Condition Inverted_Rules (Condition Interleaved-SCCs will not
be satisfied)—if this is satisfied, a sub-unit containing inverted rules is created and appropriate edges
added between the sub-units (as is done by Create_Interleaved_Edges). If Inverted.Rules is not applicable
a Sequential edge is created from U;; to Ujs.

Decide_Hiding-Facts analyzes each unit (and sub-unit) U; for the applicability of delaying the first use
of facts during an evaluation of U;, based on Condition Hiding_Facts.

Analyze_UD.Applicability checks the applicability of all the techniques for ensuring U for each body
predicate occurrence and for ensuring D for each rule in the resultant program. Note that the various
techniques for ensuring U and D are independent of each other.

Choose_UD_Techniques examines the set of applicable techniques for ensuring Conditions U and D
and makes suitable (heuristic) choices based on their relative “efficiency” and the overheads incurred.
For instance, if a Nested-Unit that has no incoming edges and no non-trivial technique for satisfying
Condition D is applicable, we may decide not to satisfy Condition D and use Nested-SCC Discarding—
the improvement in space requirements will hopefully outweigh the cost of recomputation. (Note that
in this case, not satisfying Condition D for this unit does not adversely affect ensuring U for facts in
other units.) For other Nested-Units if none of the non-trivial techniques for satisfying Condition D are
applicable, we may decide to use the (trivial) technique of not discarding any facts for predicates in that
unit to satisfy D.

Evaluate_Program takes the resultant set of units and evaluates the program based on the edge labels
between units. (The Cleanup operation ensured that such an evaluation can be done consistently.) This
results in a space optimization technique for the full program.

Theorem 8.1 Ewvaluation of a safely evaluable program using Algorithm Discard is sound and complete.

Proof: (Sketch) Were no facts to be discarded in the evaluation, the correctness of each of the synchro-
nization techniques ensures the soundness and completeness of the evaluation using Algorithm Discard.
We now show that discarding facts in such an evaluation does not affect the soundness or completeness;
if Condition D were satisfied by each unit in the evaluation, the soundness and completeness would
follow from Corollary 3.1 and the correctness of each technique used to ensure Conditions D and U.
Now, the only technique that does not ensure D is the Nested-SCC Discarding technique; since this is
used only for units that do not depend on other units, none of the techniques used to ensure U or D for

30

Figure 1: Unit Structure for Pq.

facts in other units are adversely affected. Since no derivations are repeated during a single call to these
Nested-Units, techniques used to ensure U or D for facts in such units are also not adversely affected. O

We next describe how Algorithm Discard can be used to obtain space optimization techniques for
some example programs.

8.3 Obtaining a Space Optimization Technique for Example Programs

We first describe how a space optimization technique can be obtained for PR , the magic program used
to compute the reverse of a list. We next do the same for Py%.;, the magic program used to compute a
variation on the list of factorials.

Example 8.1 The following magic program Pp., can be used to compute the reverse of a list. The
original program Ppg,, can be obtained from rules R2, R4, R6 and R8 by deleting all occurrences of
magic predicates from the rule bodies.

R1 : m_rev([..]).

R2 : rev(nil, nil) « m_rev(nil).

R3 : m_rev(T) w m.rev(H | T).

R4 :rev(H | T,T1) — m.rev(H | T), rev(T, T2), append(T2, H | nil, T1).
R5 : m_append(T2,H | nil) < mrev(H |T),rev(T,T2).

R6 : append(nil, L, L) «— m.append(nil, L).

RT : m_append(T, L) — m_append(H | T, L).

R8 : append(H | T,L,H | L1) — m_append(H | T, L), append(T, L, L1).

Choosing Synchronization techniques:

Figure 1 shows the unit structure (and edge labels) obtained using Algorithm Discard. We describe
below how this labeled unit graph is obtained. There are two SCCs in Pp.J, Uy (containing the predicate
m.rev and rules R1 and R3) and U (containing the predicates rev, append and m.append and the other
rules of the program). Since U, contains predicates (rev and eppend) from two SCCs of Pgrey, it is
split into two units U ; (containing append, m-append and rules R6, R7 and R8) and Us » (containing
rev and rules R2, R4 and R5). Uy is labeled as a Nested-Unit, and an edge < Us 1, Us o, Nested > is
created. (This results in append becoming base with respect to rule R4.) Since the rules in U; are not
invertible (though the other requirements for Condition Inverted-Rules are satisfied for U/; and Uss),
an edge < Uy, Us 2, Sequential > is created. (This results in m.rev becoming base with respect to the
rules in Uy 2.) Since Uz ; is a Nested-Unit and append and m_append are not mutually recursive to each

31

other in Us 1, two sub-units Us 11 (containing m_append and rule R7) and U, » (containing append
and rules R6 and R8) are created within U ;. However, since the rule in Us y ; is not invertible, an edge
< Ua1.1,Ua.1.9, Sequential > is created. (This results in m.append becoming base with respect to the
rules in Uy 1.2.)

Though Condition Hiding Facts is satisfied by each of the units Uy, Us 2, Un 11 and Us 1 o, every rule
in each of these units is “linear.” As a consequence, delaying first use of facts is not useful in any of the
units in this program.

Choice of techniques for satisfying Condition D:

The rules in U; and U, o satisfy Condition Monotonicity D as well as DF1. Since Us ; is a Nested-
Unit that has no incoming edges and the Nested-SCC Cutset technique is not applicable, we decide not
to satisfy Condition D for Us; and Nested-SCC Discarding is chosen for this unit. (Unless the list to
be reversed has no duplicate-elements, Condition D will not be satisfied for append and m_append facts
if Nested-SCC Discarding is used.) However, D can be satisfied during each evaluation of Us ; since the
rules in Us 1.1 and Uy 3 are monotonic as well as duplicate-free. Since using DF1 involves no overheads
(whereas using monotonicity involves maintaining some indices), it is the strategy of choice.

Choice of techniques for satisfying Condition U:

Either of BU1, BU2 or monotonicity may be used for ensuring U for the occurrences of m_rev in the
rules in U; and Uy 5. Either of BU1 or monotonicity may be used for ensuring U for the occurrences of rev
in the rules in Us ;. Either of BU1, BU2 or monotonicity may be used for ensuring U for occurrences of
m_append in the rules in U 1.1 and Uy 1 5. Since Nested-SCC synchronization is used, U is automatically
satisfied for append in the body of rule R4 (in Uz 2); BU1 or monotonicity may be used for the occurrence
of append in the body of rule R8 (in Uz 2). Monotonicity (having fewer overheads than BU1) is the
strategy of choice in this case.

Evaluation:

Given the choice of synchronization techniques and techniques to ensure Conditions U and D for
the various parts of the program, Pp.J, can be evaluated as follows. First U; is evaluated; no facts are
discarded during this evaluation. m.rev and rev facts are discarded during the evaluation of Us 5. Us)
is evaluated using Nested-SCC Discarding with respect to Us 3. During a call to Uy, first U is
evaluated; no facts for m_append are discarded. This is followed by the evaluation of U 1 1; during this
evaluation append facts (not matching the external subgoal) and m.append facts are discarded. The
append fact computed in response to an external subgoal (by computing the closure of Us ;) is used in
rule R4, and then discarded.

Improvements in Space Complexity:

Using this space optimization technique, we reduce the asymptotic number of facts stored from O(n?)
(in case no discarding of facts is done) to O(n). However, since each fact could have a list of length n;
hence, the total space utilized is O(n?) (without discarding facts, the space complexity was O(n?)). If
facts can share parts of structures with other facts we can reduce the total space utilized to O(n). Note
that if the space optimization techniques described above were not used, sharing of parts of structures
alone would result in a space complexity of O(n?).

Since Condition D is not satisfied in general by append and m_append facts (due to the use of Nested-
SCC Discarding for U;; with respect to Us), some of these facts could be recomputed. However, it
can be easily verified (manually) that the worst case time complexity of the program is not affected—in

32

Figure 2: Unit Structure for Py%,

some cases the actual time needed to evaluate the program may increase (as when the list has duplicate
elements), but in most cases the increased time needed to evaluate the program is not considerable. O

Note that using Pg.J for computing the reverse of a list is given here purely for pedagogic purposes.
There is a more efficient program to compute the reverse of a list that can be evaluated storing just
a linear number of facts (without using any space optimization technique), which can be found in any
standard text on logic programming.

Example 8.2 The following magic rewritten program Py %, produces a list of factorials, such that
mod_fl(n,Y) is true for Y = [fae(fac... fac(3)...),..., fac(fac(3)), fac(3), 3], where the list contains
n + 1 elements. (The original program Ppspy can be reconstructed if desired by deleting the occurrences
of magic predicates from the bodies of rules R2, R4, R5 and R8, and discarding other rules.)

R1: m_mod_fli(n).

R2: fae(0,1) — m_fac(0).

R3 :m_fac(N ~ 1) — m_fac(N), N > 0.

R4 : fac(N, N * X) —m_fae(N),N > 0, fae(N ~ 1, X).

R5 : mod_fl(0, [3]) «— m.mod_fl(0).

R6 : m_fac(H) — m_mod_fl(I),I > 0,mod_fl(I — 1,[H|X]).

R7:momod_fl(I - 1) « m_mod_fl(I),I > 0.
R8 : mod_fI(I,[N|H|X]) « I > 0,mod_fl(I - 1,[H|X]), fac(H, N).

The unit structure (and edge labels) obtained using Algorithm Discard is indicated in Figure 2. Each
unit in the figure also indicates the predicates and rules it contains. The inverted rules corresponding
to the rules in Uy (rule R7’) and the rules in Uz ; (rule R3’) are given below:

R3 :m_fac(N) «m_fac(N —-1),N > 0.
R7 :m.mod_fl(I) «— m_mod_flI(I - 1),1 >0,I <n.

Every rule set in each of the units satisfies DF1; this is the strategy used for ensuring D, though
monotonicity could also be used. The Nested-SCC Cutset technique is used to evaluate Us with respect
to Us, thus satisfying Condition D for U, as well-—the cutset that is retained after computing the closure
of U, (in response to an external subgoal m_fac(M) generated by R6) is the external subgoal m._fac(M)
and the answer to that subgoal fac(M,).

Monotonicity can be used to ensure U for each of the predicate occurrences in the program (except
for the occurrence of fac in R8, where the use of Nested-SCC Synchronizing ensures U), though BU1 is
also applicable.

33

The evaluation of Py %, proceeds as follows. U; is evaluated and all non-fringe magic facts are ap-
propriately discarded. Then U] and Us are evaluated using Interleaved-SCC synchronization; m_mod_fI
and mod._fl facts are discarded using the techniques mentioned earlier for ensuring the satisfaction of
Conditions D and U. The Nested-SCC Cutset technique is used to evaluate Us with respect to Us. Each
call to U, is evaluated as follows: Us; is evaluated using the external m_fac magic fact as a seed; all
non-fringe m_fac facts are discarded (except the external sub-goal) based on satisfying U and D to
the rules in Us.;. Then Uj, and U, ; are evaluated using Interleaved-SCC synchronization in a similar
fashion to the evaluation of U] and Us, discarding m-fac and fac facts suitably. The answer fac(M,)
to an external subgoal m_fac(M) is retained along with the corresponding magic fact even after it has
been used in the occurrence of fac in R8 since this forms a cutset—all subsequent external subgoals
m_fac(N) will have N > M and the corresponding answers can be computed without using m_fac(N1)
and fac(N1,.) facts for any N1 < M.

Using this space optimization technique, the evaluation can be done storing just a constant number
of facts. OO

9 Overheads

There are three aspects to the overheads involved with these techniques.

e Compile-time time overheads.
Suppose we are given (a) dependency information about all predicates in the program, (b) dupli-
cate-freedom information, (¢) ¢ functions for all predicates in the program, and (d) v functions for
different predicates as necessary. Then the cost of testing various conditions is linear in the size
of the input. We have indicated briefly how to derive some of the functions, and we expect our
algorithms to be efficient in practice.

e Run-time time overheads.

These overheads are minimal for tests based on bounds—in some cases there is no overhead for
any tests, and at most, in other cases, a few simple counts need to be maintained for each fact,
and updated when the fact is used. Tests based on monotonicity are a little more complicated.
When a fact is derived we need to compute its ¢ value, and possibly its value under some of the
v functions. This computation is constant time per fact and quite efficient. The only important
cost here is the cost of secondary indices on the ¢ value so that facts can be discarded when index
m (from Theorem 5.1) reaches a certain value.

o Run-time space overheads.
For bounds based techniques, there is no overhead in some cases, and a constant overhead of one
to a few integers per stored fact in other cases. For monotonicity based techniques, we can choose
to either store various function values for each stored fact, or recompute them on demand and thus
avoid all space overheads. There is at most a constant space overhead per stored fact, even if we
decide to store the function values. When the number of facts stored is reduced by an order of
magnitude, a constant space overhead per stored fact is clearly negligible.

34

10 Conclusion

In this paper we have described how to reduce the space required during bottom-up evaluation of
logic programs by discarding facts. We showed that any space optimization technique that discards
facts during the evaluation has three basic components: (1) ensuring that all derivations are made,
(2) ensuring that derivations are not repeated, and (3) synchronizing the derivation and use of facts.
We presented some techniques for ensuring each of these three components, and showed how they can
be combined to get a space optimization technique for the full logic program. Since Sliding Window
Tabulation [NR90] can be shown to be just one way of combining techniques for each of these three
components, our results subsume those in [NR90].

We presented a variety of techniques to ensure Conditions D and U. These are of course not exhaus-
tive, and other useful techniques may be discovered, such as the one mentioned in Example 4.2.

Incorporating these optimizations into an actual deductive database runtime system, and enhancing
the compiler/interpreter to test for and use these optimizations is being considered for CORAL, a
deductive database system being developed at the University of Wisconsin, Madison.

Future work in this area includes finding more methods for ensuring each of the three components
of an effective space optimization technique. For instance, the generate and test paradigm could benefit
from a form of synchronization where facts are generated and tested in a synchronized fashion, and may
be discarded once they have been tested. Work is also needed in determining which technique to use
when more than one technique is applicable to a given part of the program.

References

[Ban85] Francois Bancilhon. Naive evaluation of recursively defined relations. In Brodie and My-
lopoulos, editors, On Knowledge Base Management Systems — Initegrating Database and Al
Systems. Springer-Verlag, 1985.

[BR87] 1. Balbin and K. Ramamohanarao. A generalization of the differential approach to recursive
query evaluation. Journal of Logic Programming, 4(3), September 1987.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341-343, June 1975.

[KRS88] Ravi Krishnamurthy, Raghu Ramakrishnan, and Oded Shmueli. A framework for testing safety
and effective computability of extended datalog. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 154-163, Chicago, Illinois, May 1988.

[MR90] Michael J. Maher and Raghu Ramakrishnan. Dé&jd vu in fixpoints of logic programs. In
Proceedings of the Symposium on Logic Programming, Cleveland, Ohio, 1990.

[NR89] Jeffrey F. Naughton and Raghu Ramakrishnan. A unified approach to logic program evalua-
tion. Technical Report 889, Computer Sciences Department, University of Wisconsin, Madison,
November 1989.

[NR90] Jeffrey F. Naughton and Raghu Ramakrishnan. How to forget the past without repeating it. In
Proceedings of the Sizieenth International Conference on Very Large Databases, August 1990.

35

[Ram88} Raghu Ramakrishnan. Magic templates: A spellbinding approach to logic programs. In Pro-

[RSS90]

[U1188]

[U1189]

ceedings of the International Conference on Logic Programming, pages 140~159, Seattle, Wash-
ington, August 1988.

Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Rule ordering in bottom-up fix-
point evaluation of logic programs. In Proceedings of the Sizteenth International Conference
on Very Large Databases, August 1990.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer
Science Press, 1988.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2. Computer
Science Press, 1989.

36

