POLYNOMIAL ROOT-FINDING:
ANALYSIS AND COMPUTATIONAL INVESTIGATION
OF A PARALLEL ALGORITHM

by
B. Narendran
P. Tiwari
Computer Sciences Technical Report #1061

December 1991

Polynomial Root-Finding : Analysis and
Computational Investigation of a Parallel Algorithm

B. Narendran *
P. Tiwari

Computer Sciences Department
University of Wisconsin-Madison
Madison, Wisconsin-53706.

Abstract

A practical version of a parallel algorithm that approximates the
roots of a polynomial whose roots are all real is developed using the
ideas of an existing NC algorithm. An new elementary proof of cor-
rectness is provided and the complexity of the algorithm is analyzed.
A particular implementation of the algorithm that performs well in
practice is described and its run-time behaviour is compared with the
analytical predictions.

1 Introduction

In this paper we describe and analyze the behaviour of an implementation of
a parallel algorithm that approximates the roots of a polynomial which has
only real roots. The polynomial root approximation problem we consider can
be defined as follows. Given a positive integer u, and a polynomial po(z) of
degree n, whose coefficients are m-bit integers and whose roots 1, zs,..., 25
are all real, we wish to compute p-approzimations Zy, &, ..., &, respectively
to these roots, where the y-approximation &; to the root z; is defined to be
the rational number 27#[2¢z;].

The primary goals of this implementation (the first such for this algo-
rithm) were to study its performance in practice, particularly with regard

*Partially supported by NSF under grant CCR-9024516.

to speedups attained by the parallel implementation. We also compare its
running times with those of another existing (sequential) root-finding rou-
tine. In addition, we do a careful analytical study of our implementation
with the intention of predicting its run-time behaviour.

In Section 2, we describe the algorithm and provide an elementary proof
of correctness. Section 3 discusses some of the implementation details. Sec-
tion 4 analyzes the time complexity of the implementation and Section 5
presents the actual running times obtained from the implementation.

2 The Algorithm

Ben-Or and Tiwari [BT90] describe an NC algorithm for the root approxi-
mation problem being considered. Our implementation is based on the ideas
used in this algorithm. We have not, however, implemented the NC version,
which, although theoretically efficient, is impractical due to the overheads
associated with its fine-grained parallelism.

In the following description of the algorithm, we will assume that the
given polynomial of degree n has n distinct real roots, for the sake of keeping
the algorithm description simple. Multiple roots are easily handled by a
simple modification of the algorithm that is described in subsection 2.3.

The algorithm can be conceptually divided into two stages. In the first
stage, we solve a Root Isolation problem, wherein a set of n intervals on
the real line are identified such that each of these intervals contains exactly
one root of the polynomial pg(z). In the second stage, we solve the Interval
problem where we compute the p-approximations to the roots, given the
isolating intervals.

I) The Root Isolation Problem

To isolate the roots 7 < 23 < ... < z, of po(z), we recursively com-
pute the roots of two other polynomials p;(z) and pa(2), whose degrees
are roughly half that of po and sum to n — 1. The polynomials p;(z)
and po(z) are chosen such that their roots yi,y2,...,yn—1 interleave
the roots of po(z), i.e.

2 <Y1 L2 <y <. < Yna1 S 2

The roots of p;(z) and py(z) thus provide the desired intervals that
isolate the roots of pg(z). We will call any pair (p1(z),p2(z)) that

has this property an interleaving pair for po(z). If po(z) is of degree
zero, then p;(z) is said to interleave po(z). Ben-Or and Tiwari [BT90]
define and describe the computation of a class of possible choices of
p1(z) and po(z) that satisfy these properties.

1I) The Interval Problem

Given an interval [a,b] with the property that there is exactly one root
A of the polynomial po(z) in this interval, there are several ways to
estimate the root. The method of bisection converges to the root by
performing a binary search on the interval. Newton’s method can be
guaranteed to converge quadratically if we start close enough to the
root. Other methods are described in [BT90].

The two steps described above can be applied recursively to compute the
roots of the two new polynomials p;(z) and pa(z). This recursive process
gives rise to a binary tree whose nodes correspond to polynomials with the
root corresponding to po(z). A node corresponding to a polynomial pi(z)
has two children po;r1(z) and pa;y2(z) whose degrees are roughly half that
of p;(z) and whose roots interleave those of p;(z). The leaves of the tree
correspond to linear polynomials, whose roots are easy to estimate.

It can be shown that computing all the polynomials in this tree is easy
once we have precomputed a certain sequence of polynomials related to
the given polynomial po(z). The computation of the tree polynomials is
described in Section 2.1. The algorithm used to solve the interval problems
is described in Section 2.2.

2.1 Computing the tree polynomials

The standard remainder sequence corresponding to the polynomial po(2)
is the sequence Fo(z), Fi(z),..., Fs(z) defined as follows (see, for instance
[Col67]). ! In the following definition, ¢; is the leading coefficient of the
polynomial Fi(z).

o Fo(z) = po(z), Fi(z) = po(z).
o Fy(z) = Qi(z)Fi(z) - 2 Fy(z).

1This is similar to the remainder sequence computed by the Euclidean algorithm to
compute polynomial geds (see, for instance [AHU74).

o Fiy1(z) is a constant multiple of the negative of the remainder poly-
nomial when c?F;_;(z) is divided by Fi(z) i.e.,

. . PV i
Q,(:I:)F,(xc)z o F'—l(m), where deg(F;41) < deg(F})
i1

Fip(z) =

e Fy(z) is a constant.

The sequence Q1(z),Q2(z),...,Qs-1(z) of quotients in the above defi-
nition is called the quotient sequence corresponding to po(z). Ben-Or and
Tiwari show that the polynomials in the tree can be computed as functions
of subsequences of the quotient sequence.

If the original polynomial po(z) had distinct roots, then it is easily ver-
ified that each @;(z) is a linear polynomial, s = n, and that the degree of
Fy(z) is n — i (see Theorem 1, Appendix A). Further, [Col67] shows that all
the F;(z)’s and Q;(z)’s have integer coefficients.

From the recurrence defining the F;(z)’s it is clear that each F;(z) in the
sequence can be expressed as a linear combination of Fy(z) and Fi(z) :

Fi(z) = Ai(z)Fo(z) + Bi(z)Fi(z),

where the “coefficient” polynomials A;(z) and B;(z) can be expressed as
follows. If we define the matrices

Sl = (02 !)7 (1)

\ ~4 Q1(z)

0 1
S = -2 Ous 2<i<n—1. 2
(& g) ssisnn o

Cie1 t

then the recurrences defining the Fi(z)’s can be expressed in matrix form as

(Fi(z) >=5,<E_1(x)>
Fiy1(z) ' Fi(z)

and

]

Fi(z) . Fo(z) .
(1) = 5o (26)) .
Ai(z) Bi(s) Fo(z)) (4)
Ait1(z) Bita(z) Fy(z)
The motivation for defining the sequences { Fi(z)},{Qi(z)}, {Ai(z)}, and
{B;i(z)} is the following. Let

il

Ai_1($)Bj+1(.'E) -— AJ‘+1(ZE)B,‘_1(.’E), 1 S 1 S] < n.
P j(z) = Fioa(2), 1<i<n, j=n (5)
1 1> 7.

Then the P; j(z)’s satisfy the following property :

Theorem 1 The polynomial P;;(z) has integer coefficients, is of degree
j — i+ 1 and has distinct real roots. In addition, if i < j, then, for any
1 <i<k<j<n, the polynomials P;;_1(z) and Piyy ;(z) are interleaving
polynomials for the polynomial P; ;(z).

Proof: See Appendix A L

The above theorem combined with the fact that Py ,(z) = Fo(z) gives us
the desired interleaving polynomials in the entire tree. In order to keep the
tree balanced, the two children of P; ;(z), i < j are chosen to be P;x_1(z)
and Pgy1,;(2¢) where k = |(j — i+ 1)/2].

The definition of the P;;(z)’s gives rise to an alternate notation that
we will sometimes use to refer to the nodes of the tree. The tree node
corresponding to the polynomial P; ;(z) will be labeled [¢, j]. The root node
is thus labeled {1,n], and each leaf is labeled [¢, 1], for some i.

The P; ;(z)’s can clearly be computed from the sequences {A;(z)} and
{B;(z)} , which, in turn are computed using Eq. (4). However, in keeping
with the bottom-up traversal of the tree by the algorithm, we compute the
P, ;’s in a slightly different manner. Define the matrices T},; as follows :

Ti,jzc?_ISij_l...Si, n>j>2i1>1 (6)

and

Tl,jZSij_l...Sl, n>j>1 (7)

Then, it can be verified (see Appendix A) that for 1 <: < j < m,

P i(z) = T,',j(2,2). (8)

Thus, the polynomial in the tree corresponding to node [7, j]is an element
of the matrix T} ;. Further, given a particular node [7, j] in the tree and its
two children [i,k — 1] and [k + 1,j], the relevant T' matrix for the parent
node can be computed in terms of the T' matrices of its children as follows :

1
Ti;= Z'Q‘C'E—Tk+1,jSkTi,k_1. (9)
k¥k-1

2.2 The Interval Problems

In this section, we describe the algorithm used to compute p-approximations
to the roots of a polynomial, given the p-approximations to the roots of its
interleaving polynomials. If the coefficients of the given polynomial Fo(z)
are at most m bit integers, it is well known that all its roots (and con-
sequently the roots of all interleaving polynomials in the tree) lie in the
interval [2~™,2™] (see, for instance [Hou70]). In the rest of this section, we
restrict ourselves to the following situation. Po(z) is a polynomial of degree
n and Pi(z) and Py(z) are a pair of interleaving polynomials for Py(z). Let
{zg,21,...,Tn-1} be the set of distinct roots of Fo(z) sorted in ascending
order and let {y1,92,.-.,¥n-1} be the multiset of roots of Pi(z) and Pp()
sorted in ascending order. Also, let yg = 2™™ and y, = 2™. By the inter-
leaving property, we know that the interval [y;, yi41) contains precisely one
root of Py(z), namely z;. However, we do not know the actual roots yi, but
only their rational y-approximations §; and hence the intervals we have do
not necessarily isolate single roots of FPo(z).

We have the following cases for the value of a p-approximation &; to z; :

Case 1) If §; = Jit1, then clearly, #; = §;, and we are done.

Case 2) In this case, §i+1 — i = 27#. Root z; then lies in one of three disjoint
intervals : (% — 27, %), (Ji, §iz1 — 27#], or (Jig1 — 27#, Fig1]. These

cases can be distinguished as follows. Let sgn(z) denote the sign of
the real number z. Let 7; denote the number of roots of Py(z) in the
interval (—o0, §;). Then,

pomd if sgn(Po(—00)) = (~1)*sgn(Po(7:))
! i+ 1 otherwise

Now, we have the following sub-cases :

Case 2a) If r; = i + 1, then z; € (§; — 2%, %] and &; = §i.

Case 2b) If r; = i and sgn(Po(§:)) = sgn(Po(Fit1), then, z; € (Jit1 —
27, §ipa] and & = figa-

Case 2¢) If r; = i and sgn(Po(%:)) # sgn(Po(fi4+1), then, z; is the only
root of Po(z) in (i, Ji41 — 27#] and we can compute the p-
approximation #; to the isolated root as described below.

Once we have a true isolating interval (as in case 2c above), we can
use several different ways to compute an approximation to the root. Our
implementation uses a hybrid method based on Newton’s method. Let (a, b)
denote the isolating interval containing the single root {. Newton’s method
guarantees quadratic convergence if the iterations are started from a point
that is “sufficiently close” to the root £. We will call any such starting point
a good one. Our algorithm has two phases; the first phase serves to narrow
the given interval appropriately, so that any point in the resulting interval
is a good starting point.

The following Lemma due to Renegar [Ren87] makes precise the notion
of being “sufficiently close” to the root £.

Lemma 2.1 Let p(z) be a polynomial of degree < n, p(€) = 0, and let p be
the smallest of the distances from £ to the other roots of p(x). If a satisfies
|€ —a| < g25, then Newton’s iteration, starting at «, converges quadratically
from the start.

In view of Lemma 2.1, we follow the strategy outlined in [BT90] to
determine a subinterval (&,) of (a,b) that contains the desired root £, and
such that there is no other root of p(z) within 10(§ — @)n® of @ or within
10(¢ — b)n? of b. Then, Newton’s iteration, starting from any point in [&, b)
converges quadratically to the root §.

A “double-exponential sieve” is used to locate the interval (a,B) Let
Io = (a,b) and let lp = b — a denote the length of the interval Io. By

evaluating p(z) at a + lp/2, we can determine if £ < a + lo/2. Assume,
without loss of generality, that £ € (a,a + lo/2). Evaluate p(z) at points
a+1o/2%,i=0,1,2,..., to the maximum o such that £ € (a,a+ lo/2%").
Let 1 = (a a+ 10/220) and let I; be the length of I;. If £ > a + Lh/2,
then, we can isolate the desired interval (&, b) by log,(10n?) bisections of
the interval I;. On the other hand, if £ < a + I;/2, we repeat the same
procedure on I, to construct another interval I.

2.3 Handling repeated roots

In this section, we briefly sketch a modification to the algorithm that allows
it to handle the case where the original polynomial po(z) may have repeated
roots. For the sake of brevity, we do not provide proofs for the results stated
in this section.

Suppose po(z) has n* < n distinct real roots zy,22,...,Zn*, with mul-
tiplicities mj,ma,..., mpe respectively. Then, if we proceeded to com-
pute the remainder sequence as defined in Section 2.1, we would find that
Fre(2)| Fae_1(z) and consequently Freq1(z) = 0.2

We extend the remainder sequence (and the corresponding quotient se-
quence) in the following manner:

F;(:l:) = 1, n*<i<mn, (10)
Q,(.’IJ) = 1 n* <1< n. (1-2)

We define the matrices S; and T;; exactly as before in terms of this
extended remainder sequence. If we now let P;j(z) = T;;(2)(2,2), the
following version of Theorem 1 can be shown to hold:

Theorem 2 P, ;(z) has integer coefficients, and is of degree min{0,n" —i+

1,j — i+ 1}. If degree(P; j(z)) > 0, then P;;(z) has distinct real roots. In
addztzon, if degree(P; ;) > 1, then, for any 1 <1 < k < j < n, either the
polynomials P; _1(z) and Pryy,j(z) form an interleaving pair of polynomials
for the polynomial P; j(z), or degree(Piy1,j(z)) = 0 and P;p_1(2) = P, j(2).

Furthermore, it can be shown that Pj ,(z) (which has degree n*) has

roots 1, 22, .. ., Tne. Hence, we can now proceed as described in the previous
2In fact, Fne(z) is the polynomial gcd of Fo(z) and Fi(z) and has roots zo, Z1,.. -, Zn*
with respective multiplicities m; —1,m2 —1,...,mps — 1.

section, and by computing the roots of the polynomial at the root of the
tree, we would have determined all the distinct roots of pg(2).

3 The Parallel Implementation

The parallel root approximation algorithm described above was implemented
in the C language on a Sequent Symmetry shared memory machine with 20
processors. In this section, we present an overview of the implementation.

The parallel implementation uses a dynamic scheduling paradigm, where
the computations to be performed by the algorithm are divided into a set of
tasks that are maintained in a task queue . Whenever a processor becomes
free, it picks the first task from the queue to execute. Completion of a task
usually causes other tasks to be added to the queue. The “grain” of the
tasks was chosen small enough so as to keep all processors busy for as much
of the time as possible, and yet not so small as to make the overheads large.
The number of processors used by the algorithm was a parameter that could
be varied from 1 to the maximum value of 19.

The entire algorithm can be divided into two stages. The first stage is the
“precomputation” stage that computes the standard remainder and quotient
sequences for the given polynomial. The parallel implementation of this
stage is described in Section 3.1. As a run-time option, the implementation
allows this stage to be executed sequentially, if so desired. The second stage
of the algorithm involves computing and finding the roots of the polynomials
in the tree. This stage is described in Section 3.2.

3.1 Computing the Remainder Sequence

Computing the remainder sequence involves n - 1 iterations, where the ith

iteration, 1 < i < n — 1 involves computing Q; and Fi4; from F;_, and F}.
Each iteration is parallelized as follows. If we let

Q: = qgar+go and (13)
Fi = fini@" '+ fipmima™ N4+ fio (14)

and recall that ¢; = f;,_, then, from the recurrence relations defining the
Fi(z), (see Section 2.1), it is seen that

3An earlier implementation used a static scheduling policy

9

@1 = ficrpeit finei (15)

Ci—1Ci, (16)

Go = fin—ificin-i = fim-i-1 ficl,n—it1, (17)
s A I

fi+1,j — ft,] gio+ f:,3—21 qigq1 — C§ fz—l,; L 0<j<n—i-1 (18)

Ci-1

Thus, once ¢;; and ¢; o have been computed, computing the coefficients
of Fy;1 involves 3(n~1) multiplications, 2(n—4) additions and n—1 divisions.
Fach of these 5(n — i) operations forms a distinct task of this phase. 1A
process that performs one of the subtractions or divisions makes sure that
the corresponding multiplications required have been completed.

3.2 The Tree Computations

This stage of the algorithm involves computing the polynomials in the tree
and approximating their roots. Most of the work in this stage is done in
a bottom-up traversal of the tree, where tasks corresponding to a node
in the tree require the completion of other tasks in its children. Figure
3.2 shows the dependencies of the tasks both within a node of the tree
and across nodes.These dependencies require that the status of the tasks
completed at each node be maintained for synchronization purposes. The
actual construction of the tree and the initialization of the data structures
that record the status are done in a top-down phase. The various tasks are
described in greater detail below.

The top-down phase consists solely of RECURSE tasks. Initially, the
task queue contains a single RECURSE task corresponding to the root
node of the tree. When a RECURSE task corresponding to a particular
node is executed, it initializes a data-structure that is used later to record
the status of tasks completed at that node, and generates RECURSE tasks
corresponding to its two children. A RECURSE task corresponding to a
leaf node initiates tasks that begin the bottom-up phase at that leaf.

The bottom-up phase consists of several different kinds of tasks as shown
in Figure 3.2. Recall that the polynomial corresponding to a particular non-
leaf node [i, j] is computed as a particular entry of the corresponding matrix

4While this may seem to be too fine a grain of parallelism at first glance, it should be
noted that the coefficients of the Q; and the Fi grow rapidly as 1 increases.

10

pmm?

l COMPUTEPOLY l [SORT]

[i, k-1] [k+1, j]

Fiqg 3.2 Dependencies among Tas ks

T; ;. The task COMPUTEPOLY (3, j) computes this matrix 75 ;. However,
the computation is actually split into several tasks. Recall that the matrix
at [4,7] is computed from the matrices corresponding to its children:

T;; = “%“Tk+1,j Sk Ti k-1
CkCk—1

COMPUTEPOLY is not executed as a single task. The two matrix
multiplications involved are performed one after the other, with each multi-
plication being split into four distinct tasks, one for each entry in the result
matrix. '

The SORT task at node [4, j] merges the two sorted sequences of roots
from the two child nodes, to get a sorted sequence of roots that serve as
intervals for the parent node’s roots. This is performed sequentially as a
single task.

The PREINTERVAL tasks perform the preliminary computations de-
scribed in Section 2.2 that are needed before we can solve the real interval
problems. This involves evaluating the polynomial P;; at each of the inter-
leaving points, and each such evaluation is performed as a distinct task.

The INTERVAL tasks each solve the interval problem for one particular
interval as described in Section 2.2.

As described earlier, the status data structures corresponding to the
nodes of the tree are used to schedule the tasks. Typically, the completion
of a certain task at a node would cause an update of that node’s status.
Further, if the new status of the current node (and perhaps of its sibling)
enables the execution of another task (as determined by the dependencies
of Fig. 3.2), that task is added to the queue.

We note that the grain of the tasks in the tree computations phase is,
in general, larger than the grain in the phase that computes the remainder
sequence. This is justified by the fact that the tree computations generate
several tasks that tend to keep all the processors busy, and hence a larger
grain can be used without losing any parallelism.

3.3 Implementation of Multi-Precision Arithmetic

All the multi-precision computations required by our algorithm were per-
formed using the UNIX “mp” package that handles integer arithmetic for
arbitrarily long integers. This required some changes in the computations,
as the algorithm as described above involves arithmetic over the rationals.
However, since we only deal with u-approximations, every rational number

12

that we encounter can be identified with the integer 2#z. All computations
of the algorithm are performed in this scaled fashion.

The “mp” package uses the straightforward algorithms to perform the
basic arithmetic. Thus, addition and subtraction of two n bit numbers takes
linear time, and multiplication and divisions take quadratic time.

4 Analysis of Running Time

In this section we analyze the time complexity of the algorithm that was
implemented. Our analysis assumes that the running time of the algorithm
is dominated by the cost of multiplications performed. This is justified by
the fact that of the two arithmetic operations that take quadratic time in
the size of their arguments, the number of multiplications is far greater than
the number of divisions. > We also assume in the following analysis that
the roots of the original polynomial are all distinct.

We first estimate bounds on the sizes of all intermediate quantities com-
puted by the algorithm. We will use the following notation in the following
analysis. For an integer z, let ||z|| denote the size of z in bits. For a polyno-
mial p, ||p|| will denote the size of the largest coefficient of p. If A = (ai;) is
a matrix of polynomials, ||A|| denotes the matrix max; ;{||a;;]|}. In a similar
fashion, d(-) is used to denote the degrees of polynomials and matrices of
polynomials.

Recall that the input is a polynomial Fp(z) of degree n and m-bit co-
efficients and that g is the desired precision in the roots. Further, recall
that the algorithm induces a tree of polynomials that were referred to in
Section 2.1 using the notation P;;(z). For the purposes of this section, it
is useful to introduce an alternate notation for these tree polynomials. The
5t polynomial (counting from left to right) at the ith level of the tree (the
root being level 0) will also be denoted by P49,

We first look at the degrees of the polynomials. From Lemma 1, we
know that

d(F;)=n—1.
and

d(Q:) = 1.

SWe also have empirical justification of this assumption that indicates that 75 to 90
percent of the actual running time is spent in multiplications.

13

The following are easily verified from the definitions of these matrices
(see Equations (1), (6) and (7)).

d(s;) = 1, (19)

d(Tiipk-1) = d(Sigk-1Si4k—2...5%)
=k k>2. (20)

For the coefficient sizes, since ||¢;|| < || Fi(z)||, we will use ||F;(z)|| as an
estimate for ||¢;||. For i < 1, we have the following bounds.

1Fo(2)l| = m,
| Fi(z)l] = | Fo(@)l] < m + logn,
and
1Q1(2)]l < 2m + logn.
For ¢ > 2, we use a result of Collins [Col67] that bounds the sizes of
the coefficients of Fi(z) by the determinants of certain (2¢ — 1) x (2¢ — 1)
matrices, whose first ¢ — 1 rows contain as entries the coefficients of Fo(z)

and whose last ¢ rows contain as entries the coefficients of Fi(z). Using this
fact, we have the following for ¢ > 2 :

IE(2)| < (i—=1)m+i(m+logn)+ (2i—1)log(2:— 1)

< (26—-1)m+ (31— 1)logn + (2¢ - 1). (21)
Q@) < [IE@)I +1Fima(2)l] +1

< 4(i— 1)m + (6i — 5)logn + (4i — 3). (22)

It can further be shown (see [Col67], [BT90]) that the coefficients of
A;i(z) and B;(z) are similarly bounded by determinants of (27 —2) x (2i —2)
matrices whose first i —2 rows contain as entries the coefficients of Fy(2) and
whose last ¢ rows contain as entries the coefficients of Fy(z). Using these
bounds, we have,

4@ € (i—2)m+ i(m+ logn) + (2 — 2)log(2i — 2)

< (20-2)m+ (3i—-2)logn + (2t - 2). (23)
|B:i(2)l < (i=1)m+ (i 1)(m+logn) + (2 - 2)log(2i - 2)
< (26-2)m+ (3t~ 3)logn + (2i - 2). (24)

14

It is convenient to let 8 = 2m + 3logn + 2, so that

IF@@) < B (25)
Qi(z)] < 21i8. (26)
|Ai(z)|| £ (i-1)8+logn. (27)
|Bi(z)ll < (i-1)B. (28)

Consequently, we have the following bounds on the sizes of the P; ;(z) :

1 Piive-1ll = ||Aic1(z)Bivs(z) = Aipi(z)Bioa(2)]]
< (204 k-3)8+2logn+1
< (2i+ k- 2)B. (29)
1Pinll = [[Fima(2)l]
< (@-1)p8, i>1 (30)
~Pi1i Piivk
Tii R — i+1,i+k--2 1,i+k—-2
1T ”(~Pitritk-1 Piisk

| Pig1ivk—1 (@)l
(20 4+ k- 1)B. (31)

IN A

In the following analysis, we ignore the costs incurred in scaling the
polynomials, the pre-interval problem and sorting the roots at each node of
the tree. These phases of the algorithm either perform no multiplications
at all or are dominated by other phases of the algorithm. The three com-
putationally intensive phases of the algorithm are computing the remainder
sequence, computing the tree polynomials and solving the interval problems.
These phases are respectively analyzed in the next three subsections. Ta-
ble 1 summarizes the asymptotic results. In addition to the bit complexity,
Table 1 also gives the arithmetic complexity (number of multiplications) of
the different phases. The arithmetic complexities are derived in essentially
the same manner as the analysis in the following sections, and we omit the
details.

15

Phase of Algorithm Arithmetic Complexity Bit Complexity
Computing Remainder Sequence O(n*) O(n*(m + logn)?)
Computing Tree Polynomials 0(n?) O(n*(m + logn)?)
Interval Problems (Worst Case) O(n?(logn + logZ X)) | O(n°*X(X + B)(logn + log® X)
Interval Problems (Average Case) O(n*(logn + log X)) O(n° X(X + B)(logn + log X)

Table 1: Asymptotic Complexity of Phases of the Algorithm

4.1 Computing the Remainder Sequence

In this section, we analyze the time taken to compute the remainder sequence
{Fi(z)} and the corresponding quotient sequence {Q;(z)}. The reader is re-
ferred to Section 3.1 for the description of the computations performed. The
ith iteration (i > 2) of the loop computes Q;(z) and Fi4;(z) from Fi(z) and
F;_1(z), using equations (15). Since we assume that the cost of the multi-
plications dominate, we are interested only in the 3(n — 1) multiplications®
performed in Eq. (15). Computing the products f; ;gio and f; j_1¢:1 involve
multiplying two numbers whose sizes are ||Fi(z)|| and ||Q:(z)||. The last
product, ¢? f;_;,; involves multiplying two numbers whose sizes are 2| Fi(z)||
and || Fi_1]| respectively. Using the size estimates derived in the previous
section, we find that the cost of the ith jteration is proportional to the
following quantity :

(n = 1) RIFE(@) Qi) + 2l F(@) | Fi-a(2)]]

IA

(n~ i) [43282 + 2i(i - 1)57]
6i%3%(n — 1).

AN

Ignoring lower order terms and summing up for ¢ = 2,...,n — 1 gives

n~1 n—1
662 [n Z ;2 Z 2-3] N n42g2

1=2 1==2
= O(ni(m +logn)?)

4.2 Computing the polynomials

In this and subsequent sections of the analysis, we will assume that the
degree n is of the form 2% — 1, so that the tree induced by the algorithm

®We are ignoring here the multiplications performed in computing Fi(z) and F2(z).

16

has K levels 0,1,..., K —1. Level ! has 2! nodes, each of which corresponds
to a polynomial of degree 2K~ — 1.

Under the above assumption, the following matrix multiplication is per-
-th

formed at the j' node on level [:
(T(2j+1)2}('—l-—1+1,(2]‘+2)2K—-l—1__1) (S(2j+1)2K-l—~l) (TQJ'ZK—I-I+1'(2]‘+1)2K—-141_1)

If the matrices are multiplied in the left-to-right order, the second mul-
tiplication’s cost dominates and hence we will analyze only that multiplica-
tion, namely :

(T(2j+1)21('-l~1+1’(2]‘_*_2)21\’—[_4) (szzl(—l-—l+1’(2]‘+1)21\‘—-lul_1) = TRTL

The degrees and coefficient sizes of the polynomials in Tr and Ty, are as
follows. Let o = 2K-/=1 _ 1. Then,

d(Tr)=a+1, dTL)=c
and, recalling from Eq. (31) that ||T;i+x-1]] < (2t 4+ k- 1)8,

| TRl ((47 +3)2K-"-1 + 1)

<
< (45 +4)(e+1)8. (32)

WToll < (2027251 + 1)+ 9K~-1-1 _ 9)3
< (45 + (e + 1)8. (33)

Now, for any matrix of polynomials 4 = (a;;), define
md(A) = max (deg(ai;)l|ai;1)

so that the cost of computing the product AB of two such matrices A and
B is bounded by the 8md(A)md(B).
Now,

md(Tgr) < (4 + 4)(a +1)°4),
md(Ty) < (47 + Do + 1)8).

17

and,

md(Tr)md(Tr) < (1652 + 205 + 4)a(e + 1)°B%. (34)
and hence,
202
Total work done at level I = Z 8(1652 + 205 + 4)a(a + 1)°5°
Jj=0
~ f;-n%ﬁ? + 20n%a?8% + 16na®3 (35)
Summing up over levels [=1,2,..., K -2 (i.e. a=%,%,...,2),
55 4 .0
Cost for all levels ~ ﬁn J¢}
= O(n*(m+logn)?) (36)

4.3 The Interval Problems

The predominant computation performed in solving the interval problems
is the evaluation of various polynomials with integer coefficients at rational
points. In our implementation however, we were constrained to use only
integer arithmetic. In order to overcome this, the polynomial coefficients
had to be scaled appropriately before evaluation. We first estimate the
computational cost of evaluating the polynomials in this fashion. Let z be
a rational point, and g > 0 an integer such that 2“2 is an integer. Let
p(z) = po + mz + pax?® + ... + psz? be the polynomial that we wish to
evaluate at z and let m = ||p(z)||. Let X = [|2#z||. Clearly, X > u. The
scaled version of the polynomial that we are interested in is

pu(z) = 2%po + 200" Vepz 4 L+ paa?,
Observe that

pu(2¥z) = Qd'up(fv)-

We use Horner’s rule to evaluate the polynomials. After the ith jteration
of Horner’s rule, the partial evaluation obtained is

E,(:IZ) = Qi“pd_.i + Q(i_l)“pd_i.*.ll‘ S QO“pdmi.

18

Now,

| Ei()] m + i max{X, u} + log(i + 1)
m+ i X + log(i + 1).
and hence,

Cost of the ith step < X(m+ (i — 1)X + logi)
< mX+X¥i-1)+ Xlogt.

The cost of the entire evaluation is thus bounded by

d 2 _
Z(mX+X2(i—-l)+Xlogi) < de+—¥-ii%———l-)-+
=1
Xdlogd.
X2%d?
~ mXd-+ 5 (37)

To compute the roots of the above polynomial, we need to solve d interval
problems. For each of these interval problems, the hybrid algorithm we use
performs I(X,d) evaluations of the polynomial, where

I(X,d) = -;—mg? X +1log(10d?) + O(log X)) (38)
~ %k)ng + 2log d. (39)

where the three terms in Eq. (38) correspond to the number of eval-
uations performed in each of the three phases of the algorithm : “double
exponential sieve”, binary search and Newton’s method respectively (see
Section 2.2 and [BT90]).

Thus the overall complexity of solving all the interval problems for a
polynomial of degree d, with m-bit coefficients is asymptotically

2.2
dI(X,d)(mXd+ XQd

However, I(X,d) in Eq. (38) is a worst-case estimate on the number of
iterations performed, and results in a poor estimate in practice. The main

1, 5o Lo X2
) ~ (§log X +2logn)(mXd +__?:_._) (40)

19

reason for the overestimate is that the double-exponential sieve typically ex-
ecutes far fewer than %1og2 X iterations before it identifies a suitable interval
for the start of the bisection phase. In fact, if we make the assumption that
the desired root is distributed uniformly in the original interval, then it is
easy to see that the double-exponential sieve takes only a constant number
of iterations. In this case, the bisection and newton phases dominate, and
we can estimate the average number of iterations as

Iavg(zx, d) ~ 10g(10d2) +].Og ([M‘%ET).]) . (41)
(42)

where the second term is the number of iterations performed by Newton’s
method given the log(10d?) bits of accuracy already attained by the bisection
phase. We will use this average case estimate rather than the worst-case
estimate of Eq. (38) in fitting the analysis to the observed data in Section
5.

Having established the cost of all the interval problems corresponding
to a generic polynomial in our model of computation, we now turn to the
analysis of the specific interval problems that our algorithm solves. Recall
that level [in the tree (0 < I < K — 1), has 2/ polynomials, each of degree
d(l)=2K-t_1.

Let p be the precision required in the computation of the roots. Fur-
ther, suppose all roots of the original polynomial (Fy(z)) lie in the interval
[—28 2F]. Then, throughout the algorithm, all evaluations of polynomi-
als are performed at rational points z that are p-approximations and lie in
[—28 2F]. Thus, we can use R + p as an upper bound for X = ||z|| for all
possible points & at which our algorithm might evaluate a polynomial *.

Now consider the jth polynomial at level ! of the tree. Observing that

PO () = Pior-iyq (j41)25-t-1(7)

and using the size estimates derived earlier, we have

dPUI(z))y=d(l) = 2F-'-1 (43)

"Recall from Section 2.2 that if || Fo(z)|| = m, then R < m

20

1P ()] < (252K 4 2K~ - 18 (44)
< 2K-42j+1)8, 1<I<K-1; 0<j<2 1. (45)
and
‘—-
IPU D)~ [|Fgi_qyax-i(@)]] (46)
< (2F-2%NE, 0<I<K -1 (47)

Equations (40), (43), (44) and (46) give us the following cost estimates
for the polynomial evaluations:

For the rightmost nodes in the tree, by summing up over all levels 0 <
| < K — 2, we obtain an asymptotic cost of:

(lEX + 2l0gn) (£6Xn + 1X%n%). (48)

And for the non-rightmost nodes, we obtain the asymptotic cost to be

2 .
(1og2 X + 2log n> (%ﬂer + lan"’) .

6

The overall complexity of the interval problems is thus

O(n®X (X + B)(logn + log? X)),
where X = R+ p and 8 = 2m + 2 4 3logn.

5 Empirical Results

In this section, we report the actual running times observed from our im-
plementation of the algorithm. We ran the algorithm on polynomials of
degrees 10,15,20,...,70 , and for each degree 3 different polynomials were
generated. The results of this section were obtained by running the algo-
rithm on these inputs several times. The input polynomials we used were
the characteristic equations of randomly generated symmetric matrices over
the integers. Thus, for each degree n, the size m, of the coefficients of the
polynomial we generate depended both on n and the sizes of the entries
of the random matrix chosen to generate the polynomial. For the data in

21

n | m(n) 7

4 8 16 24 32
10 2 2.7 3.2 5.7 8.0 11.8
15 4 5.1 8.0 15.5 26.7 41.0
20 7 12.6 19.3 38.7 66.8 102.6
25 9 31.5 45.4 84.2 143.8 217.1
30 | 12 78.7 107.2 177.1 288.5 423.8

35| 14 174.7 222.5 342.2 521.2 744.8
40 | 17 385.5 458.5 644.5 911.5 | 1264.2
451 20 799.8 919.3 | 1210.0 | 1613.6 | 2120.2
50 | 23 1517.0 | 1690.4 | 2108.0 | 2692.1 | 3412.2
551 26 2860.3 | 3076.5 | 3659.0 | 4446.3 | 5455.2
60| 29 4877.4 | 5228.0 | 6019.3 | 7122.2 | 8476.1
65| 32 7785.8 | 8248.6 | 9305.2 | 10746.5 | 12506.9
70 | 36 | 12930.5 | 13557.8 | 14963.7 | 17270.8 | 19243.2

Table 2: Single processor Running Times

this section, the matrices generated were random 0-1 matrices, and hence
the tables use m(n) to denote the coefficient sizes. Note that it is fairly
easy to obtain analytic bounds on m(n), but in what follows we have used
the empirical values observed from the actual inputs we generated. We also
note that, not unexpectedly, the polynomials we generate all had distinct
roots, and hence we can apply the analysis of the previous section to our
experimental data.

5.1 Sequential Running Times

Table 2 shows the running times for the algorithm on a single processor for
different values of n and p.

The primary motivation behind the analysis presented in Section 4 was
to see how closely our theoretical estimates matched the actual run-time
behaviour of the algorithm. As a first step in this direction, we attempted
to validate the analytical expressions for the arithmetic complexity of the
algorithm. To this end, a algorithm was run (on a single processor) and
the actual number of multiplications performed in the different phases were
traced. Of course, for the purposes of this section, the analytical estimates
we used were much more precise versions of the asymptotic expressions pre-
sented in Section 4. Furthermore, we considered all phases of the algorithm

22

mu = 8 digits
300000 x .

Analytical Estimate ——
Actual Count -+--

250000

200000

150000

Number of multiplications

100000

50000 L . .
35 40 45 50 55 60 65 70
Degree of polynomial

Figure 2: Predicted and Observed Multiplication Counts (u = 8 digits)

instead of just the dominant phases as was done in Section 4. Figures 2
through 5 plot the predicted and observed number of multiplications for a
subset of the inputs that were considered. Note that the predicted counts
match the observed counts quite well, especially for larger input parameters.

In predicting the bit-complexity, however, our analytical expressions did
not provide as good bounds as the ones above. A typical case is illustrated
by comparing Figures 6 and 7. Fig. 6 plots the predicted and observed
number of multiplications for a particular phase of the algorithm (in this
case, the bisection sub-phase of the Interval Problems.) The excellent fit
exhibited here translates to a rather weak upper bound in Fig. 6 when we
incorporate the size bounds on the polynomial coefficients and compare the
resultant bit-complexity estimate with the actual bit multiplication costs.
Thus, in order to be able to predict run-times with accuracy, we would
need much tighter bounds on the sizes of polynomial coefficients than those
provided by the results of Collins that we used in Section 4. However, these
estimates may still be used to provide weak upper bounds on the run-times.

We also compared the one-processor run-times of our implementation
with the performance of a sequential root-finding algorithm in the PARI
multi-precision package [BBCO91]. Unfortunately, we were unable to run

23

mu = 16 digits
300000 T r T Y T T
Analytical Estimate ~~—/

4

250000

200000

150000

Number of multiplications

100000

50000 () 1 1 L 1
35 40 45 50 55 60 65 70
Degree of polynomial

Figure 3: Predicted and Observed Multiplication Counts (u = 16 digits)

mu = 24 digits
350000 T . T . v r
Analytical Estimate ——
Actual Count -+--
300000

250000

200000

150000

Number of multiplications

100000

50000 Il 1] 1 A 1
35 40 45 50 55 60 65 70
Degree of polynomial

Figure 4: Predicted and Observed Multiplication Counts (u = 24 digits)

24

mu = 32 digits

350000 T T

Analytical Estimate ——
Actual Count ~+--

300000

250000

200000

150000

Number of multiplications

100000

L L I

50000 : . .
35 40 45 50 55 60 65 70
Degree of polynomial

Figure 5: Predicted and Observed Multiplication Counts (g = 32 digits)

140000 ¥ L} T L} L] ¥

Analytical Estimate ——
Actual Count -+3z¢

120000 -

100000 .

80000 -

T

60000 i

Number of multiplications

40000 .

1 !

20000 : L . .
35 40 45 50 55 60 65 70
Degree of polynomial

Figure 6: Multiplication Counts for Bisection phase (u = 32 digits)

25

5.5e+08 T 7 r : T

I Analytical Estimate ——
5e+08 Actual Count -+~

4.5e+08
4e+08
3.5e+08
3e+08
2.5e+08
2e+08
1.5e+08
1le+08
5e+07

0 1 [])] i
35 40 45 50 55 60 65 70
Degree of polynomial

Bit complexity$

Figure 7: Bit Complexity of Multiplications in Bisection Phase (p = 32
digits)

the PARI algorithm on polynomials of degree larger than 30. The compar-
ison for degrees less than 30 and p = 30 digits is shown in Figure 8. For
degrees larger than 15, our implementation takes less time to compute the
roots. For smaller values of the precision parameter p, while our algorithm’s
cost decreased significantly, the PARI algorithm seemed insensitive to this
parameter,

5.2 Speedups

Figures 9 through 13 plot the execution times of the algorithm with increas-
ing number of processors for different values of n and p. Tables 3 through 7
present the same information in the form of speedup figures with respect to
the parallel program with one processor. Appendix B presents the complete
set of run-times for all input combinations that were considered in our ex-
periments. We observe that the algorithm exhibits good speedups for small
numbers of processors. The speedups begin to drop at 16 processors, since
in the range of input parameters that we considered, the granularity of the
tasks used was not fine enough to keep all the processors busy at all times.
Another somewhat anomalous situation is the fact that in going from one

26

1800 T T

T T
This Implementation -+—
1600 PARI algorithm —+-- 1
/

1400 | / .
1200 | / .
1000 | /]
800 | ;]

Elapsed Time

600
400

200 t

10 15 20 25 30 35
Degree of polynomial

Figure 8: Comparison with PARI algorithm (g = 30 digits)

to two processors, the speedups attained are often more than two. This
phenomenon is probably due to the effect of decreased cache misses when
more processors are used.

6 Conclusions

The implementation described in this paper has demonstrated that a prac-
tical version of the NC algorithm of Ben-Or and Tiwari is capable of at-
taining good performance and realizes good speedups on a shared memory
multiprocessor. Furthermore, this version of the algorithm seems to quite
competitive with other existing root-finding algorithms and does not suffer
from problems of stability that characterize many other implementations.
A careful analysis of the algorithm and a comparison of the analyti-
cal estimates with the actual run-time characteristics shows that while the
behaviour of the algorithm is well understood and predictable with good
accuracy, the main bottleneck in attempting to predict the actual execution
times is the lack of good analytical estimates on the sizes of intermediate
quantities computed by the algorithm, expressed in terms of the size of the
original input. It would be interesting to see if improved estimates on these

27

14000 T T T Y T r T

4 geg=g(5) mu=4 ——
L eg=06 mu=4 -+-- |

12000 i deg=60 mu=4 -e--

i deg=65 mu=4 -

10000 F ! deg=70 mu=4 ——- -

8000

6000 |

Elapsed Time

4000

2000

0 2 4 6 8 10 12 14 16
Number of Processors

Figure 9: Effect of Number of Processors on Execution Times (¢ = 4 digits)

14000 e
i geg:gg mu=g ——

" i eg= mu=8 -+--
12000 \\ deg=60 mu=8 -s9--
i deg=65 mu=8 ~x--

10000 1 deg=70 mu=8 —--
i
£ |
& 8000 | % ! .
o Bt
2 Y
& 6000 | Y \\' J
35| SN
P Y \
4000 kN .
N Tl
\\ EL~‘ .‘"‘._x ~-
2000 + \\\:\E-.-:.:,..n,,_q
\Qt-.'_';:;:-

0 2 4 6
Number of Processors

Figure 10: Effect of Number of Processors on Execution Times (1 = 8 digits)

28

16000 ¥ ¥ ¥ T T T T

i deg=50 mu=16 ——
14000 + i deg=55 mu=16 -+-- -
! geg=60 mu=16 -&--
- eg=65 mu=16 -»- |
12000 \\ deg=70 mu=16 —-
2 10000 f 1 _
=
b 8000 |
%
= 6000 |
4000 |
2000 |
0

0 2 4 6 8 10 12 14 16
Number of Processors

Figure 11: Effect of Number of Processors on Execution Times (p = 16
digits)

18000 ; . . . ‘ . .
*-\ deg=50 mu=24 —~—
16000 % deg=55 mu=24 -+-- 1
\ deg=60 mu=24 -e--
14000 deg=65 mu=24 -~
\ deg=70 mu=24 —-
o 12000 } i |
£ x|
B 10000 | ! |
3 b
2 8000 b i]
= LIRS
= 6000 F i]
WX \
4000 F Ny e T 1
\\ T Y T~
2000 1 \j
e LT _“__;——-—__w.
0 i 1 i

0 2 4 6
Number of Processors

Figure 12: Effect of Number of Processors on Execution Times (p = 24
digits)

29

20000 T T T T .

' deg=50 mu=32 -+—
18000 \.‘ 3eg=55 mu:gg D
. eg=60 mu=32 -e-- |
16000 b i deg=60 mu=32 -=--
14000 } i deg=70 mu=32 —-- |
2 \
g | %\
£ 12000 %}
"§ 10000 }
& 8000}
=]
6000
4000 r
2000
0

0 2 4 6 8 10 12 14 16
Number of Processors

Figure 13: Effect of Number of Processors on Execution Times (u = 32
digits)

degree Processors

1 2 4 8 16
35 1.0 2.03]3.86]|6.15] 5.90
40 1.0 | 2.06 | 3.98 | 6.95 | 7.65
45 1.0 | 2.06 | 4.03 | 7.27 | 8.94
50 1.0 | 2.05 | 4.06 | 7.08 | 8.54
55 1.0 1 2.08 [4.12 | 7.61 | 8.94
60 1.0 | 2.06 | 4.09 | 7.29 | 10.61
65 1.0 | 2.06 | 4.10 | 7.55 | 10.50
70 1.0 | 2.05|4.08} 7.56 | 9.22

Table 3: Speedups with respect to single processor execution of algorithm
(1 = 4 digits)

30

degree Processors

1 2 4 8 16
35 1.0 | 2.02 {3.81|6.34| 6.83
40 1.0 12.04 |3.94|7.22| 877
45 1.0 | 2.05 | 4.03 | 7.28 | 9.60
50 1.0 | 2.06 | 4.06 | 6.92 | 8.47
55 1.0 | 2.06 | 4.07 | 7.55 | 9.77
60 1.0 } 2.05 | 4.01 | 7.55 | 10.91
65 1.0 | 2.05 | 4.08 | 7.54 | 10.07
70 1.0 | 2.04 | 3.96 | 7.25 | 7.63

Table 4: Speedups with respect to single processor execution of algorithm
(p = 8 digits)

degree Processors

1 2 4 8 16
35 1.0 1.99|3.74 | 6.29 | 7.92
40 1.0 {2.02{3.93|7.15| 9.58
45 1.0 | 2.04 | 3.99 | 7.32 | 10.39
50 1.0 | 2.03 | 4.00 | 7.20 | 9.25
55 1.0 | 2.05 | 4.04 | 7.44 | 10.40
60 1.0 | 2.05 | 4.05 | 7.70 | 11.24
65 1.0 | 2.04 | 4.07 | 7.86 | 11.23
70 1.0 | 2.04 | 4.05 | 7.74 | 10.80

Table 5: Speedups with respect to single processor execution of algorithm
(1 = 16 digits)

31

degree Processors

1 2 4 8 16
35 1.0 {1.98 | 3.77 | 6.55 | 9.06
40 1.0 | 2.00 {392 7.17] 10.33
45 1.0 { 2.02 | 3.98 | 7.35 | 11.10
50 1.0 1 2.02 {393 |7.16 | 9.34
55 1.0 | 2.02 { 3.99 | 7.43 | 10.19
60 1.0 [2.02 | 4.04 | 7.76 | 11.79
65 1.0 | 2.04 | 4.05 | 7.84 | 11.47
70 1.0 | 2.03 396 |7.32]| 941

Table 6: Speedups with respect to single processor execution of algorithm
(= 24 digits)

degree Processors

1 2 4 8 16
35 1.0] 1.96 | 3.77 | 6.58 | 9.40
40 1.0 11.99 1392 7.15| 10.43
45 1.0 | 2.01|3.96 | 7.37| 11.78
50 1.0 199393735 9.13
55 1.0 | 2.03 | 3.95 | 7.64 | 11.49
60 1.0 | 2.03 | 4.01 | 7.74 | 12.09
65 1.0 1 2.03 | 4.03 | 7.85 | 11.46
70 1.0 | 2.04 | 4.05 | 7.66 | 11.35

Table 7: Speedups with respect to single processor execution of algorithm
(1 = 32 digits)

32

quantities can be obtained.

7 Acknowledgements

We would like to thank Anne Condon, who, during the Spring of '91, taught
the Parallel Algorithms course at the University of Wisconsin-Madison that
served as a starting point for this project. We also thank Alain Kagi, Afroditi
Michailidi and T. N. Vijaykumar for their participation in an early version
of the implementation.

References

[AHU74]

[BBCO91]

[BT90]

[Col67]

[Hou70]

[Ren87]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
MA., 1974.

C. Batut, D. Bernardi, H. Cohen, and M. Olivier. User’s Guide
to PARI-GP, February 1991.

M. Ben-Or and P. Tiwari. Simple Algorithms for Approximating
All Roots of a Polynomial with Real Roots. Journal of Complez-
ity, 6:417-442, 1990.

G. E. Collins. Subresultants and Reduced Remainder Sequences.
Journal of the Association for Computing Machinery, 14:128-
142, 1967.

A.S. Householder. The Numerical Treatment of Single Nonlinear
Equation. McGraw-Hill, New York, 1970.

J. Renegar. On the Worst-Case Arithmetic Complexity of Ap-
proximating Zeros of Polynomials. Manuscript, 1987.

33

A Appendix A : Proof of Theorem 1

Theorem 1 Let Fy(z) be a polynomial of degree n with integer coefficients
such that all its roots are distinct and real. Let the polynomials P; ;(x) be
defined as in Eq. (5). Then,

i) P;;(z) has integer coefficients, and is of degree j — i + 1. For any
j < n, the leading coefficients of all the P; ;(z), 1 < i < j, have the
same sign.

i) P;; has distinct real roots. In addition, if i < j, then, for any 1 <
i < k < j < n, the polynomials P;j_1(z) and Ppy1;(z) form an
interleaving pair of polynomials for the polynomial P; ;(z).

Proof: Let {Fi(z)},{Qi(z)}, {Ai(z)}, and {B;(z)} be as defined in Section
2.1. Define the function sgn(z) defined on the reals as follows :

_} 0, ifz=0,
sgn(z) = Tﬁ—[, otherwise.

We first prove statement (i) of the Theorem. Collins [Col67] shows that
the Fi(z), A;(z) and the B;(z) have integer coefficients. The integrality of
the coefficients of the P;;(z) thus follows from their definition (Eq. 5). It
is clear that the leading coefficients of all the Fj(z) have the same sign, and
that the Q;(z) are linear polynomials with positive leading coefficients. Let
¢; be the leading coefficient of the polynomial F; for 7 > 1 and let ¢o be the
the sign of the leading coefficient of Fy(z). ® Let

0 1
Si = 2 Qg |, 1<i<n—1 49
(g ga) e “
T;; = ¢218;8j1...5, 1<i<j<n-1 (50)

Then,for 1<t < j< n,

Ti; = ¢TI (51)

-1

A; B; A; B;
C? 7 7 11 t1 52
-1 (Ajyn By) (A; B; (52)

8Note that this definition of co is a somewhat different from that described in Section
2.1. Defining co in this manner avoids having to treat certain frequently arising boundary
cases differently in the proof.

34

C?__l A; B; B; -B;_ (53)
det(T1,i-1) \ Aj+1 Bjs -A;i A
~Pi1,-1 Pij-1 ,
= ' : 54
(~Piy1; B (54)
From the definition of the Fi(z), it is clear that Piy1, = Fi(z) is of

degree n — 1.
From the above matrix equations, we see that

Pii(z) = Tii(2,2) (55)
= Qi(z) (56)
and, for 1 <i< j<n,
Pij(z) = Ti;(2,2) (57)
= 'c%l (Ti41,55:)(2,2) (58)
c?il Qi(z)

= == [=Pip2;(z) + Piy1,i(2) (59)

c? L

Given that Q;(z) is a linear polynomial, it is clear from the above that
P;;(z) is a polynomial of degree j — i + 1. Further, since @;(z) has a
positive leading coefficient, the leading coefficient of P; ;(z) has the same sign
as Piy1,;(z), and hence by induction the leading coefficients of all P;;(2),
1 <1 < j, are all positive.

We will denote by P(i,j,k) the predicate that asserts property (ii) in
the statement of the Theorem for P; ;(z). We first prove P(i, j, k) for the
case k = 1.

We will consider the cases j = n and j < n separately. For the former
case, we need to show that the polynomial Fi(z) interleaves the polynomial
Fi_i(z), 1 < i < n. We show this by induction on i. Fi(z) = Fi(z) clearly
interleaves Fy(z) by Rolle’s Theorem. For i > 1, we have

Qi-1(z)Fia(z) - ¢2_ Fia(z)
Ci-2

Fi(z) = (60)

Consider two consecutive real roots z; and x5 of F;.i(z). By the induc-
tive hypothesis, F;_s(z) interleaves F;_i(z) and hence

sgn(Fi(z1))sgn(Fi(z2)) = sgn(Fi_a(z1))sgn(Fi-2(z2)) < 0.

35

Thus, F;(z) has an odd number of roots in (21, z2). Since the degree of Fj(z)
is n—1t, F;(z) has ezactly one root in each interval formed by successive roots
of F;_1(z). The interleaving property just proved also guarantees that the
polynomial F;(z) has n — ¢ distinct real roots.

For the case j < n, we need to show that Py j(z) interleaves P;;(z),
for 1 < i < j. We show this by downward induction on ¢. For ¢ = j — 1,
Equation (54) gives us the following relation between P;;(z) = Q;(z) and
Pj_1,5(2).

_ Qi(2)Qj-1(z) — el 4
= 2

Cj--l

P;q,5(2) (61)
Let z; < z be the two real zeros of the linear polynomials ;(z) and
@j-1(z). Since both Q;(z) and Q;_1(z) have positive leading coefficients
and since (cjcj_2)* > 0, Pj_;; must have two distinct real zeros a and b
such that a < z; < 29 < b.
For i < j - 2, we have

cf_ iz
Pij(z) = =54 | = Piya,(2) + Pi+1,j(1‘)£‘z§Q (62)

1 €

Since Pj42;(z) interleaves Piyj ;(z) by the induction hypothesis, for two
successive roots z; and 22 of Pi1y ;(2), we have

sgn(P; ;(21))sgn(P;;(z2)) = sgn(Piye,j(21))sgn(Piy2,;(z2)) < 0

and hence P; ;(z) has at least one root in (21, z2).

Let a and b be the leftmost and rightmost roots, respectively, of P11 ;(2).
To complete the proof of the interleaving property, we need to show that
P; ;(z) has precisely one root in each of the intervals (—oc0,a) and (b,).
From (i), we know that the polynomials P; j(z) and P42 ;(2) have degrees
of the same parity and their leading coefficients are of the same sign. Thus,

sgn(P; j(—00))sgn(Piys,;(—0)) = sgn(P; ;(00))sgn(Piyz,;(00)) > 0
However, from Eq.(62),
sgn(Py j(a))sgn(Piyq,j(a)) = sgn(P;j(b))sgn(Pit2,;(b)) < 0

Since Piy2,;(z) has no roots in the two intervals of interest, P;;(x) must
necessarily have unique real roots in those intervals. By counting arguments,

36

it follows that P; ;(z) has a unique root in each interval formed by the roots
That completes the proof of the case k = 7. Now consider the case where
j > k > i. We have,

Tepr; = 0251‘51'-1 oSk (63)
= Cl%Sij—l o Si(SkSk-1...5:) (64)
= T Ty (65)

Using Equation (54), this expands to

—Pry2-1 Pryrj—1 =2 ~Pit15-1 Pij P —P; k-1
= Ppyoj Pt ' =P, F; ; Pk —Piprk-1
(66)

From the above matrix equation, we get

Piy1,(2) = ¢} [Pit1,j(2) Pik-1(2) = Pij(2) Pir1,k-1(2)] (67)

Consider two consecutive roots z, and x4 of P; ;(z). By the case already
proved, we know that Py ;(z) interleaves P; ;(x) and thus changes sign in
the interval [z1,z2]. If z; (22) is a root of Pix_1(z), it is also a root of
Piy1,;(2), and we can use it as the interleaving root for the interval [z, z2).
Otherwise, at least one of P;x_1(z) and Pgi1,j(z) changes sign in [z1, 2]
and we again have an interleaving root for the interval.

B

37

)

B Appendix B : Empirical Data

n Number of processors

1 2 4 8 16
10 2.7 2.0 2.4 3.3 6.2
15 5.1 3.4 2.9 3.5 6.2
20 12.7 8.3 5.4 4.5 8.7
25 31.5 16.4 9.9 8.0 124
30 78.8 40.4 21.6 14.0 18.1
35 174.7 86.2 45.3 28.4 29.6
40 385.5 | 187.5 96.8 55.5 50.4
45 799.8 | 388.3| 198.3 | 110.0 89.5
50 | 1517.1 | 738.5| 373.7| 2143 | 177.6
55 | 2860.4 | 1372.7 | 694.7 | 375.9 | 320.1
60 | 4877.5 | 2368.9 | 1193.1 | 668.7 | 459.7
65 | 7785.8 | 3782.0 | 1901.2 | 1031.2 | 741.3
70 | 12930.5 | 6297.1 | 3171.9 | 1711.0 | 1402.2

Table 8: Running Times for p = 4 digits

38

n Number of processors

1 2 4 8 16
10 3.3 2.4 2.3 4.5 4.9
15 8.1 6.0 4.0 3.8 7.9
20 19.4 10.8 6.9 6.2 10.0
25 45.5 23.5 13.9 9.6 10.2
30 107.3 54.7 30.0 20.6 17.7
35 222.5 | 110.2 58.4 35.1 32.6
40 458.6 | 225.0 | 116.4 63.5 52.3
45 919.4 | 448.5| 2284 | 126.3 95.8
50 | 1690.4 | 822.5| 416.8 | 244.2 | 199.5
55| 3076.6 | 1496.8 | 755.1 | 407.6 | 315.0
60 | 5228.0 | 2554.8 | 1303.5 | 692.9 | 479.4
65 | 8248.7 | 4019.1 | 2020.7 | 1093.5 | 819.3
70 | 13557.8 | 6644.6 | 3425.4 | 1871.3 | 1776.3

Table 9: Running Times for p = 8 digits

n Number of processors

1 2 4 8 16
10 5.7 3.4 3.3 3.9 5.0
15 15.6 9.2 6.0 5.0 6.4
20 38.8 20.8 14.2 10.5 11.6
25 84.3 43.4 23.8 15.8 15.8
30 177.2 91.3 50.0 30.1 28.3
35 342.2 | 1723 91.4 54.4 43.2
40 644.5 | 319.7 | 163.9 90.2 67.3
45 | 1210.0 | 594.0 | 302.9 | 165.2| 116.5
50 | 2108.1 | 1036.7 | 526.6 | 292.9 | 227.9
55| 3659.1 | 1786.7 | 904.8 | 491.9 | 3519
60 | 6019.4 | 2942.6 | 1487.6 | 781.4 | 535.5
65 | 9305.2 | 4552.5 | 2284.2 | 1184.3 | 828.4
70 | 14963.7 | 7328.1 | 3692.5 | 1933.9 | 1385.2

Table 10: Running Times for p = 16 digits

39

n Number of processors

1 2 4 8 16
10 8.0 4.9 3.9 5.0 6.7
15 26.7 14.8 8.9 6.6 7.3
20 66.9 35.1 19.9 14.5 14.7
25 143.8 74.9 41.2 25.1 20.8
30 288.5 | 146.5 79.0 43.8 32.8
35 521.2 | 263.4| 138.4 79.6 57.5
40 911.5 | 456.8 | 232.8 | 127.1 88.2
45 | 1613.6 | 797.6 | 405.2| 219.6 | 1454
50 | 2692.1 | 1335.2 | 684.6 | 376.2 | 288.1
55 | 4446.4 | 2198.0 | 1113.5 | 598.1 | 436.4
60 | 7122.2 | 3517.2 | 1762.5 | 918.3 | 604.0
65 | 10746.5 | 5273.3 | 2653.1 | 1370.4 | 936.6
70 | 17270.8 | 8505.1 | 4364.1 | 2357.9 | 1835.9

Table 11: Running Times for p = 24 digits

n Number of processors

1 2 4 8 16
10 11.8 7.2 5.2 4.8 7.8
15 41.0 22.3 12.9 9.3 9.0
20 102.6 53.6 30.1 22.0 17.2
25 217.2 | 1124 61.3 38.1 26.1
30 423.9 | 215.0| 115.3 62.9 44.1
35 744.8 | 380.1| 197.4 | 113.2 79.2
40 | 1264.2 | 634.0 | 3224 | 176.7| 121.2
45 | 2120.3 | 1056.4 | 536.0 | 287.6 180.0
50 | 3412.3 | 1711.9| 867.4 | 464.3 | 373.8
55| 5455.2 | 2691.9 | 1382.5 | 714.4 | 474.6
60 | 8476.1 | 4181.9 | 2111.2 | 1095.3 | 700.8
65 | 12506.9 | 6161.1 | 3100.3 | 1592.7 | 1091.6
70 | 19243.2 | 9455.9 | 4754.5 | 2511.8 | 1695.5

Table 12: Running Times for p = 32 digits

40

