A TRANSFORMATION-BASED APPROACH
TO OPTIMIZING LOOPS IN
DATABASE PROGRAMMING LANGUAGES

by
Daniel F. Lieuwen
David J. DeWitt
Computer Sciences Technical Report #1060

December 1991

A Transformation-based Approach to Optimizing Loops
in Database Programming Languages

Daniel F. Lieuwen
David J. DeWitt

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

Database programming languages like O,, E, and O++ include the ability to iterate through a set. Nested itera-
tors can be used to express joins. This paper describes compile-time optimizations similar to relational transforma-
tions like join reordering for such programming constructs. This paper also shows how to use a standard
transformation-based optimizer to optimize these joins. An optimizer built using the EXODUS Optimizer Generator
[GRAES7] was added to the Bell Labs O++ [AGRA89] compiler. We used the resulting optimizing compiler to
experimentally validate the ideas in this paper. The experiments show that this technique can significantly improve
the performance of database programming languages.

The bulk of the implementation effort discussed in this paper was done by the first author at Bell Labs-Murray Hill. This research was partially sup-
ported by the Defense Advanced Research Projects Agency under contract NO0014-85-K-0788 and by a donation from Texas Instruments.

1. Introduction

Many researchers believe that an object-oriented database system (OODBS) must be computationally complete—
that programmers and database administrators must have access to a programming language to write methods and
application programs [ATKI89]. While the programming language for such a system must include the ability to
iterate through a set, giving programmers this power allows them to write programs that can be orders of magnitude
slower than the desired computation should be. In order to solve this problem, compilers must be extended to include

database-style optimizations.

It is especially important that compilers optimize set iterations that correspond (o joins. There are at least three
sources of such set iterations. First, it is unlikely that there will be a pointer between every pair of objects that are
related in some fashion. Some relationships are needed infrequently, and thus are not worth storing explicitly; other
relationships may be missed while designing the database. Thus, value-based joins will be needed, and they will
sometimes be produced using nested iterators. Second, following pointers within a set iteration leads to an implicit
join. If the system blindly follows pointers in the order specified by the user, the execution of the join may be
annecessarily slow [SHEK90]. Third, some joins will be produced by calling a function from within a set iteration—

since the function may also iterate through a set. This paper will concentrate on value-based joins.

Since database programming languages such as PASCAL/R [SCHM77], O, [LECL89], E [RICH89], and O++
[AGRAS89] provide constructs to iterate through a set in some unspecified order, it is possible to nest iterators in order

to express value-based joins. The following is an example of a nested iterator expressed in O++:

(1) for (D of Division) {
divisioncnt++;
for (E of Employee) suchthat (E->division==D) |{
D->print();
E->print();
newline () ;

}
} /* a group~by loop */

We call the iteration through a set and its nested statements a set loop—the f£or D loop is a set loop that contains the
statement divisioncnt++ and another set loop. Due to the enclosed statements, the method of producing
Division[X|Employee in (1) is more constrained than it would be in the relational setting—the join stream must be
grouped by Division. We call loops like (1), where set loops contain other set loops (and possibly other state-
ments), group-by loops. If each set loop, except the innermost, contains another set loop and no other statements, we
say the loop is a simple group-by loop. If the statement divisioncnt++ wasremoved from (1), query (1) would

be a simple group-by loop. We call variables like D and E iterator variables.

o1-

As illustrated by (1), nested iterators can be used to express a join with a grouping constraint. However, as demon-
strated in relational optimization, the associativity and commutativity properties of the join operator are vital proper-
ties during the optimization of a query. Thus, it is useful to remove as many ordering constraints as possible so that
the join computation can be reordered, and, hence, the execution time of the program reduced. However, the flow of
values through the program and the presence of output statements constrain the reorderings that can be made without
violating the program’s semantics. In this paper, we consider transformations that add exira set scans, use lemporary
sets, sort sets, and rewrite statements embedded in set loops to enable more reorderings to be made without modifying
the program’s semantics. These transformations are expressed as source-to-source transformations and as tree

rewrites.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 defines the class of
self-commutative statements. If a simple group-by loop contains a self-commutative statement, it can be optimized
like a relational join. Section 4 describes the tree representation of a generic group-by loop. Section 5 uses the con-
cept of self-commutativity and some analysis of the flow of values through the program to rewrite both simple group-
by loops and more complicated group-by loops into a more efficient form. Each transformation is given in source-to-
source form. Some representative transformations are also described as tree rewrites. Section 6 describes the imple-
mentation of these ideas in an optimizing compiler. Section 7 presents the results of experiments that demonstrate

that this optimization technique can be quite useful. Our conclusions are contained in Section 8.
2. Related Work

[LIEU91] presents the transformations contained in this paper in source-to-source form and analytically evaluates
the amount of 1/0 performed by the original and the transformed program assuming that all joins are computed using
the hybrid hash join algorithm. This paper extends our earlier work in two ways. First, it shows how a standard
transformation-based optimizer can be used to implement our program transformations. Second, this paper describes
our implementation of an optimizer that employs our transformations for the Bell Labs O++ compiler. The resulting
optimizing compiler is used to demonstrate empirically that using these transformations can significantly improve

performance for many programs.

[SHOP80] contains a slightly less-general version of the loop transformation called (T5) in this paper. [RIES83]
uses an algebraic framework to optimize loops in the ADAPLEX database programming language. The algebra han-
dles looping constructs more complicated than those covered in this paper. However, this algebra does not allow
breaking a group-by loop into several loops, a technique used extensively in this paper. This algebra also does not

recognize that certain nested loops are semantically equivalent to joins, an observation our optimizer exploits.

..

Our work is similar to work done in [KATZ82,DEMOS5] to decompile CODASYL DML into embedded relational
queries. Data flow analysis and pattern matching are used to transform CODASYL DML statements into DAPLEX-
like statements. This transformation makes some flow of control statements unnecessary, so these statements are
removed. Finally, the DAPLEX-like statements are transformed into relational queries. Both our work and theirs tries
to take an imperative program and make it as declarative as possible while maintaining the semantics of the original
program. Both use dataflow analysis and pattern matching. However, their work has a different objective than ours;
their goal is to identify set loops in CODASYL DML and rewrite them as embedded relational queries. In our setting,
the program syntax makes identifying set loops trivial. Our aim is to transform a group-by loop from the programmer
specified form to a more efficient form. A key difference is that [KATZ82,DEMOS8S5] ignored some semantic issues
that are central to this paper. They only looked at DML statements and a few other COBOL commands that affect the
flow of currency. Thus, they ignore grouping constraints, assuming that they exist only because COBOL DML cannot
express a join without grouping constraints. This is reasonable, but it does require that the programmer check the
transformed program to see if it has the proper semantics. Our use of the concept of self-commutativity allows us to
convert group-by loops into joins without modifying a program’s semantics. Their work (once modified to take

grouping constraints into account) can be used as a preprocessing step that allows our transformations to be applied.

The work in this paper is also related to work on transforming nested query blocks in SQL into equivalent queries
with no nesting. [KIM82,DAYA87,GANS87,MURAR9] start with a simple kind of nested query and show how to
rransform it into a join query without a nested query in the where clause. Other transformations take a more compli-
cated nested query and produce two or more subqueries that compute the same result. Some subqueries are not flat,
but their nesting patterns are simpler than the nesting pattern of the original query. These subqueries can be simplified
further by other transformations. We, too, break a complicated subquery into several parts. We then further

rransform the resulting subqueries just as they do.

The idea of interchanging loops appears frequentdy in work on vectorizing FORTRAN

[PADU86,WOLF86,WOLF89]. For instance,

(2) do I =1, N
do J =1, N
S =5 + B(I,J)
A(T,J+1) = A{(I,J)Y*B(I,d) + C(I,Jd)
enddo

enddo

cannot be directly vectorized. However, if we interchange the I and J loops, the definition of A (I, J+1) can be
vectorized. The definition of S involves a reduction operation. A reduction operation reduces the contents of an

array to a single quantity in an order independent manner—examples include producing the sum or product of array
_3.

elements. Reductions do not inhibit loop interchange if the user allows loop interchange Lo be carried out (because of
the finite precision of computer arithmetic, interchanging loops for a reduction can lead to a different answer even
though mathematically the same answer should be computed). The interchanges are only performed if loop-carried
dependences satisfy certain properties. We also use dataflow analysis to interchange loops. However, since our
emphasis is on sets and not arrays, our analysis has a different flavor. Thus the general idea is similar although the

analysis used is different.

Loop fission has been used to optimize FORTRAN programs. Loop fission breaks a single loop into several
smaller loops to improve the locality of data reference. This can dramatically improve paging performance [ABUS81].
Our transformations serve a similar function—breaking a large loop into several small ones to enable database-style

optimization.
3. Introduction to Self-commutativity

Before examining the different transformation strategies that we have developed, we first examine when a simple

group-by loop can be optimized like a relational join, since this is the base case of our optimization strategy. We

introduce O++ [AGRAS9] syntax for expressing a join'. The SQL query

(3) select(D.all, P.all) from D in Dept, P in Professor where D.did=P.did

can be expressed in O++ without adding unnecessary constraints as the following join loop:

(4) for (D of Dept; P of Professor) suchthat (D->did==P->did) |
D->print () ;
P->print ()
newline();
} /* a join loop */
Ignoring output formatting, the two statements are equivalent. To identify when a simple group-by loop can be
rewritten as a join loop, we introduce the concept of a statement being self-commutative relative to a set of nested

loops. Consider the following simple group-by loop:

(5) for (X; of Set;) suchthat (Pred; (X;))

for (X, of Sety) suchthat (Pred,(X;, ..., Xgp))
S:

Since the order of iteration through each of the sets Set,, Set,, .., and Set, is unspecified, after (5) has been
executed, there is a set of alternative program states that may be reached (a program’s state is determined by the

values of variables, the output produced, etc...). Since the actual state reached may vary from program run to program

'The syntax presented here is different than that presented in [AGRA89]. It is the syntax of the present O+ + compiler.

4.

run, programs containing statements like (5) are potentially non-deterministic. The meaning of (5) in a particular

starting program state is the set of states that may be reached from that starting state by executing (5).

Definition: The statement S in (5) is self-commutative relative to ¥, X,,..,and X, if the meaning of

(6) for (X, of Set;; ... ; X, of Set,) suchthat
(Pred; (X;) && ... && Pred,(Xy, ..., Xz))
S;

in any starting program state is identical to the meaning of (5) in the same starting state and this meaning is a single-

ton set (i.e. (5) and (6) produce an identical, deterministic result).

We will leave off the phrase relative to X,, X,, .., and X, unless it is necessary for clarity. This definition
requires that the inner/outer relationship among the sets can be permuted arbitrarily during the evaluation of the join
and that any join method can be used without changing the final computation of the program. It should be noted that
this definition is only satisfiable if none of the sets are physically or logically embedded in other sets (i.e. Ai<js.L.
Sety = X;->set). If such embeddings exist, the inner/outer relationships among sets must obey the partial order-
ing that if a set Set;, is embedded in an object of set Set,,,, then the join must have the set loop for Set;,

inside the set loop for Setg, .2

In this paper, we assume that computer arithmetic is associative and commutative. Given this assumption, the com-

putation of a sequence of aggregates is a self-commutative statement. For example, in

(7 for (D of Division)
for (E of Employee) suchthat (E->division==D) {
totpay += (E->basepay*D->profitshare) /100 + ChristmasBonus;
empcnt++;
}

the statement sequence that increments totpay and empcnt is self-commutative. Since integer addition is
assumed to be associative and commutative, an arbitrary pair of instantiations of the following two program state-

ments

(8) totpay += (E->basepay*D->profitshare)/100 + ChristmasBonus;
empcnt++;

such as

2 I there is another set that contains all the objects of an embedded set (for instance, if there is an extent, a set of all the objects of a particular type),
(5) could be rewritten to access them through this other set. The rewritten query might well have no embedded sets. Then S might be self-
commutative relative to the new list of sets even though it was not self-commutative relative to X, X,, .., and X, We will ignore such
rewrites in this paper; [SHEK90] employs this technique.

(9 totpay += (20000%110)/100 + 500; empcnt++;
totpay += (30000*120)/100 + 500; empcnt++;

can be flipped without changing the final value of empcnt or totpay. Statements like (8) are termed reductions
because they reduce a subset of a set or Cartesian product to a single value in an order independent manner. Reduc-

tions are self-commutative.? A more complete description of the class of self-commutative statements is presented in

(LIEUSL].
4. Introduction to the Representation

The compiler’s abstract syntax tree (AST) could be used as the query representation during the optimization of a
group-by loop. The transformations contained in this paper in source-to-source form have straightforward analogues

in AST-to-AST form. A typical AST representation of

for (D of Division) {
divisioncnt++;
for (E of Employee) suchthat (E->division==D) {
D->print ()
E->print ()
newline () ;

}
} /* group-by loop */

has a node representing the for D loop. One of the attributes of this node is a list of statements directly contained
in the for D loop—divisioncnt++ and the for E loop. While this is a good representation for generating
code from, it is a poor one for database-style optimization optimization. We wished to use an optimizer generator
[GRAE87,LOHMS8], a tool that take a set of rules and produces an optimizer. However, the EXODUS Optimizer
Generator, the only generator we had access to, expects all operators to have fixed arity. If we use an AST represen-
tation, a set loop is an operator with as many operands as there are statements directly contained in the set loop. Since
we wished to avoid designing a search strategy, this made an AST representation unacceptable. Even if we had been
willing to build the whole optimizer by hand, this representation would have been poor, because the optimizer would
need to regularly search lists of statements to see if they contain set loops. This could make the optimization process
much slower. In short, an AST representation doesn’t make set loops sufficiently prominent, which is a major limita-

tion since set loops are the most important constructs for database-style optimization.

To avoid these problems, we developed our own tree representation of set loops. We transform the AST into our

new representation as the first step in the optimization process. Consider the following generic template for a query:

*We are using FORTRAN optimization terminology. An APL/LISP reduction is not necessarily an order independent operation.

(10) for (X; of Set;) suchthat (Pred; ; (X;)) |
Sl,l;

for (X; of Set;) suchthat (Pred, ; (X;) && Pred;, ,(X;,...,%X;)){
Si,17
for (X, of Set,) suchthat (Pred, ;(¥X,) && Pred, ,(¥X;,...,%3)) |
Sn,l;
}
81,2;

}

S1,27

}

In (10), Pred;,;(X;) is a predicate that only involves X;, constants, and variables constant for the duration of (10).
Predy, ,(Xy,.,%X;) contains all clauses of the predicate belonging to the for X; loop that are not contained in
Pred;,;(X;). (The original query may not have the predicates in this form, and so the system may have to manipu-
late them into this form.) We represent the query (10) as the tree in Figure 1.
X[y (Pred: Pred;, (X1.X2))
// /\

X] veoe Var::Xi

— First = S
X TPred: P ; X1, X il
[X|__; (Pre rediy, 2(Xy.Xi4)) Second = S;

/\ StmtsDesc = <do data flow analysis>
Flow = <do data flow analysis>

v

X, SetName = Set
|X]:n—l (n)rcd: Predn, Z(Xli 'Xn)) SeleCLPred = Predil 1(Xi)

T

Xn-1 Xn

Figure 1: Tree Representation of (10) Figure 2: Contents of the X; Set Node

The transformation process is mechanical. Each leaf node represents a set iteration. For example, the left-most node
in Figure 1 corresponds to the for X, set loop in (10). We will identify a leaf node by the iterator variable of the
corresponding set loop (e.g. the node corresponding to the for X, set loop in (10) is called the X, node). Figure 2
describes the contents of the X; set node. The First field represents the code in the for ¥X; set loop that precedes the
embedded for X, setloop (e.g. in the X; node, since S, ; precedes the for X, loop, First has the value
S1,1). The Second field represents the code that follows the enclosed set loop. If there is no enclosed set loop, Firs

contains all the code enclosed in the node’s set loop, and Second is NULL.

The StmisDesc (statements’ description) field contains some aggregate information about the code represented by First

and Second. The SimtsDesc field has the value self-comm if the sequence $=S; ;; Sy, , would be self-commutative

relative (o a simple group-by loop over Set,-Set; with S as the inner statement?, empty if the sequence is empty, and
not-self-comm otherwise. This labeling is useful for our purposes because a sequence of transformation applications may
produce a simple group-by loop over the sets Set,-Set; (or over temporary sets produced by applying selections and
projections to Set;-Set;) containing just S, S;, i, or S;,, (or a version of the statement S, S;,;,0r Sy
modified to use the temporary sets instead of the original sets). If S is self-commutative in the sense above, the simple

group-by loop subquery will contain a self-commutative statement.

The Flow field describes the flow of values: noflow means no values flow from the statements represented by First or
Second to the enclosed X;,, set loop or from the X;,; set loop to the for X; loop; flow-in means values flow from
First or Second into the X;,, set loop, but no values flow from the X;,; set loop to First or Second; aggregate means
that the the X;.; loop calculates an aggregate (i.e. values flow from First to the X;,; loop and from the X,,; loop to
Second, but in a constrained way); innermost means no set loop is contained in the X; loop. If output is produced in
First or Second and in the X,,; loop, but there is no other flow of values from the X;., loop to First or Second, Flow is

labeled io-flow-in. If none of these conditions hold, the Flow field will have the value flow-out-from-inner.

The [x|_3 V3 1<j<n operator’s left-hand child represents the for X loop and all the statements contained in it
except the for X, loop. The right-hand child represents the complete foxr Xy set loop, except for those parts of
the predicate that refer to the iterator variables X, -X; or to variables modified in the group-by loop (10). Those parts of

the predicate (i.e. Predys,, (X1,...,Xy41))are assigned to the JPred field of the [x|__; node.

The representation presented here is 0o simple for optimizing loops that modify elements of the sets being iterated
over. Simple extensions could be made that mark the X; set node if any of the elements of Set; may be modified by
the group-by loop. If so, the optimizations described below that involve projecting Set; to produce a temporary set and
then using the temporary set instead of the original set must be suppressed. In this case, we need access to the original
objects; access to projected sub-objects in a temporary set will not suffice. Since this extension is straightforward, we
leave out the necessary details to avoid cluttering the exposition. We assume that none of the predicates have side-
effects. We also assume that the predicates do not use variables modified by program statements. This is not strictly
necessary—predicates involving such variables can be handled, but handling them requires complicating the representa-

tion and the exposition.

“Making the StmtsDesc field single-valued does eliminate some oplimization possibilities since a statement may be self-commutative relative to some,
but not all surrounding loops. However, there are only three classes of statements in [LIEU91] where this is true. The first is a reduction operation on
variable v where v is used in the predicate of a surrounding loop. Not only are we not covering this case in this paper, it also seems like a rare case.
Thus being able to handle this case better is an insufficient reason to justify complicating the optimization process. The second is an insertion into a set
being iterated through. This is a fixed point query, and so other lechniques are more appropriate to handling it. The third is the deletion from a sel being
jterated over. However, it will almost always be the case that the deletion will be from the innermost set—in which case, the statement will not be self-
commutative relative to any nesting of loops. Thus, this choice of representation appears 1o be the best choice; it is simple, and it allows the optimiza-
tion of plausible programs.

The tree representation used here is different from a typical representation used to represent relational joins, the left
deep query tree [GRAES7]. A tree’s cost function cannot be evaluated bottom up unless each leaf node maintains infor-
mation about how many times the set loop corresponding to the node is expected to be executed (e.g. For the X, node in
(10) the value would be one. For the X, node, it would be the number of selected objects from Set; since the for
X, loop will be executed once for each of them.) This makes it more difficult either to evaluate the cost functions or to
apply the wransformations. However, this representation has two major advantages. First, it is easier (o represent the
rransformations contained in this paper via tree manipulation using this representation than would be the case using a
more conventional tree representation of a join. Second, subqueries are represented naturally as subtrees, and a subtree
can be optimized independently of the overall tree. In a left-deep query tree representation, no subtree corresponds to the

for ¥, loopin (10) Vi l<i<n.

The First and Second fields are not used during optimization. The fields StmisDesc and Flow contain sufficient infor-
mation for the optimization process. In fact, during optimization, the code sequences in the First and Second fields are
not updated by our implementation. Instead, a log of transformations that would require the statements corresponding to
First and Second to be rewritten is maintained. For the plan that is chosen by the optimizer, the transformations used to
transform the initial plan to the final plan are found in the log. The appropriate transformations of the First and Second
fields are then applied to produce the final query. Since the code sequences can be fairly long, this approach can poten-
tially speed up optimization by eliminating useless work. However, in the examples below, we update the First and

Second fields so that the correspondence between the textual and tree representations of the code is kept clear.
5. Transformations

In the wansformations that follow, Ta and Tb will represent arbitrary trees, while X and Y will represent either set itera-
tion nodes or Supernodes. A Supernode represents a nested set loop. Nested set loops with no intervening statements can

be treated as a single set loop over an implicit set. For instance, in the query

(11) for (X of SetX) suchthat (Pl (X))
for (Y of SetY) suchthat (P2(Y) && P3(X,¥Y)) {

S1;

for (2 of SetZ) suchthat (P4(2) && P5(X,Y,2))
52;

$3;

}

the two outer loops can be treated as a single loop to produce:

(12) for (X of SetX; Y of SetY) suchthat (P1(X) && P2(Y) && P3(X,Y))
/*sort*/ by (X->key) |{

Si;

for (Z of SetZ) suchthat (P4(Z) && P5(X,Y,2))
S$2;

s$3;

}

In (12), the join of SetX and SetY is produced and then sorted by the key of SetX (which may be the object
identifier). The observation that allowed query (11) to be transformed to (12) can also be represented using Figure 3.
We represent a [X|__ operator with [x]e if the left-hand child’s StmesDesc is empty. The node with a Var value of V on
the right-hand side of a transformation corresponds to the node labeled V on the left-hand side. In each of the tree

ransformations, the right-hand side will show only those fields of the V node that have changed from the left-hand side.

[x|e = x|
/\ /\
X > Var = Supernode Tb

/\ First = Y.First
Second = Y.Second
StmtsDesc = Y.StmtsDesc
Flow = Y.Flow
SetName = NULL

SelectPred = TRUE

|

[xle

T

X Var=Y
First = NULL
Second = NULL
StmtsDesc = empty
Flow = noflow

Figure 3: Supernoding
Since the operator on the left-hand side of Figure 3 is |xle, the First and Second fields of the X node are NULL. This
corresponds to the empty statements that precede and follow the for ¥ loop in (11). We move the First, Second,
StmtsDesc, and Flow fields of the ¥ node up to the Supemode, which represents the observation that the for X and
for Y set iterations can be treated as a single set loop over an implicit set. This implicit set has no name, and there is

no selection predicate on it.

As an example of this transformation, consider:

-10 -

(13) for (X; of Set;) suchthat (Pred;,; (X;))
for (X, of Set,) suchthat (Pred, ;(X;) && Pred, ;(¥;,%;))
for (X3 of Set3) suchthat (Pred3,1 (X3) & & Pred3,2 (Xl,X2,X3)) {

S1;

for (X, of Set,) suchthat (Pred,,; (X;) && Predy ,(Xy,...,%4))
52;

53;

}

which can be represented using our tree notation as shown in Figure 4 (some unnecessary detail has been omitted).

Applying the Supernoding transformation twice produces Figure 5 (the X;-X; nodes have Firsi=Second=NULL in Fig-

ure 5).
[X|e (Pred: Pred,, »(X;.X2)) IX|__ (Pred: Predy, 5(Xy,..X4))
X1 |X|O(IPred:Pred3l 2(X1,X2,X3) Var:Supemodc X4
First = NULL First= Sl First = S2
Second = NULL Second = S3 Second = NULL
X, [X|__ (Pred: Predy, 5 (X1.X4)) 1

First = NULL /\ [X|® (Pred: Pred; ,&;,%,.X3)
Second = NULL, -
X3 Xy / T

First = S1 First = §2 Var = Supemode X3

Second = $3 Second = NULL First = NULL
Second = NULL

|

[X|e (JPred: Pred;, ;(X1,X,))

/\

X3 X3

Figure 5: Tree Representation of (13) after

Figure 4: Tree Representation of (13) L) i A)
two applications of Supernoding transformation

Note that the tree representation in Figure 5 would closely resemble a standard tree representation for relational joins,

the left-deep query tree [GRAES87], if the Supernodes were removed from the tree.
5.1. Simple group-by loops
Having introduced our basic terminology and the tree representation that is used for unoptimized queries, we next con-

sider a variety of transformations that we have developed. The simplest loops that may be rewritten are of the form:

(14) for (Xl Of Setl) Suchthat (Pred1 (Xl))

for (X, of Sety,) suchthat (Pred,(X;, ..., Xz))
S;

If s isa self-commutative statement, then, by the definition of self-commutativity, (14) is equivalent to:

S11-

(T1l) for (X, of Set,; ... ; X, of Set,) suchthat
(Pred; (X,) && ... && Pred,(X;, ..., Xu))
S
Even if S is not self-commutative, if S does not modify Set,-Set, or the variables used in the predicates, (14) can

be rewritten as a join followed by a sort:

(T2) Temp = {};
for (¥, of Set;; ... ; X, of Set,) suchthat
(Pred1 (Xl) && ... && Predm (Xll ..y Xm))
Insert <Needed(X;), ..., Needed(X,)> into Temp;

Sort Temp on composite key (Xy, X, ..., Xpa)’

for T in Temp /* in the sorted order */
sr;

In transformation (T2), the Temp set loop contains a statement S’ that looks like S, except that uses of the fields of
Set; Vi 1<i<m are replaced by uses of the fields of Temp. Needed (X;) refers o the fields of Set; that either
are used in statement S or are needed for the sort. It includes a unique identifier for ¥,-¥,_; for use in sorting; if the
user has not supplied a primary key, Needed (¥X;) includes the object identifier (oid) of X; as the identifier. The
asymmetric treatment of X, in transformation (T2) allows the transformed program to maintain the proper semantics
while minimizing cost. Statement (14) has a non-deterministic execution order. Program semantics do not require iterat-
ing through the sets in the same order each time; they only require that X, varies the most slowly, followed by X,, Xj,
... Sorting on the composite key maintains something slightly stronger than this semantic requirement. The transformed
program will behave as if it was iterating through Set,-Set,.; in the same order each time, although it may behave as
if it was iterating through Set, in a different order each time. Thus, the asymmetric treatment maintains the program

semantics without wasting space in each Temp object for a unique identifier for the relevant X, object.

Since (T1) and (T2) are so similar, we will only show the tree transformation for (T2). (T2) can be represented as Fig-
ure 6. The wee form of transformation (T2) will apply if Y is a set node, and Y.SomisDesc is not empty (i.e. X|x|#Y is not

the child of a Supernode).

212

X JPred =P(X,Y)) =

/\ A
X Y Temp = {} s
x| (IPred = P(X,Y)) ’

relational

T T~ SORT

X Var=Y
First = Insent <Needed(X), Vvar=T

Needed(Y)> First = Y.First’
Second = Y.Second’

into Temp
Second = NULL StmtsDesc = Y.StmisDesc
StmtsDesc = self-comm Flow = innermost
Flow = innermost SetName = Temp

SelectPred = TRUE

Figure 6: Transformation (T2)

The correspondence between (T2) and Figure 6 is straightforward. The , operator represents sequencing—the actions
of the left child are performed before those of the right child. Since the original operator on the left-hand side of the
transformation is |XJe, we know that the X loop contains the Y loop and no other statements in both the original and the
transformed version. Also, since X can be either a set node or a Supernode, it can represent either one or several sets; it

corresponds to the (m—1) outer sets in (14). The x| subtree corresponds to the first set loop in (T2), the loop

relational

that inserts into Temp. The optimizer knows that the elements of the X |x| Y join stream can be produced in any
relational

order. Remember that we have already made the tree on the left-hand side of Figure 6 closely resemble the left-deep
query tree for a relational join by applying the Supernoding transformation. The oplimizer can use slightly modified ver-

sions of standard relational transformations to optimize the X |X} Y subquery. Since the standard relational
relational

transformations are well-known and have natural analogues here, we will not cover them in this paper. The SORT node
in Figure 6 corresponds to the sort in (T2). The 7 set node corresponds to the final loop in (T2)~in both, we loop through

the temporary set executing a modified version of the statement contained in the innermost loop.
5.2. General Group-by Loops

The group-by loops exemplified by (14) are the simplest possible—each set loop except the innermost contains a single
statement, a set loop. Only the innermost loop contains a statement sequence. In general, however, each set loop will

contain a statement sequence. In other words, the query

213

(15) for (X of SetX) suchthat (Predl (X)) {

S1;

for (Y of SetY) suchthat (Pred2(Y) && Pred22(X,Y))
52;

S3;

}

exemplifies the general case. In the following sections, we will assume that S1, S2,and S3 do not modify SetX or
SetY.
5.2.1. General Group-by Loops Without Flow Dependencies into the Inner Loop

In (15), if a variable is defined in both S2 (the inner loop) and in S1 or S3 (the outer loop) and both definitions
reach a use outside the inner loop, we will say the two loops interfere. Suppose the loops do not interfere, and no values
flow from the outer to the inner loop or from the inner to the outer loop, then (15) can be rewritten as (T3) provided that
at least one of the following three conditions hold: (1) the sequence $1; S3 is self-commutative relative to X; (2} S2is
self-commutative relative to X and Y; or (3) SetX isiterated over in the same order in both set loops in (T3).

(T3) for (X of SetX) suchthat (Predl (X)) {
S1;

$3;

}
for (X of SetX)) suchthat (Predl (X))
for (Y of SetY) suchthat (Pred2(Y) && Pred22(X,Y))

S2;

Requiring that one of the three conditions mentioned above hold is necessary in order to avoid subtle forms of incon-
sistency. [L.IEU91] contains an example of a violation of program semantics thal can occur if transformation (T3) is

applied when these conditions are not met.

As an example of a case where rewrite (T3) is profitable, consider counting the number of professors on each floor

assuming that all the professors of a given department work on the same floor.

(16) for (D of Dept) {
deptcnt++;
for (P of Professor) suchthat (P->did==D->did)

cnt [D->flooxr]++; //S2
}

(T3) and a loop interchange can be applied to rewrite (16) as:

(17 for (D of Dept)
deptcnt++;

for (P of Professor)

for (D of Dept) suchthat (P->did==D->did)
cnt [D->flooxr]++; // Calculate number of professors/floor

- 14 -

If the Professor extent does not fit in the buffer pool, but the Dept extent does, (17) will be incur fewer I/Os than
(16) no matter what join algorithm is used to evaluate (16). Query (17) will scan Dept once to load Dept objects into
the buffer pool and calculate deptcnt. The Professor|x[Dept join will only require a single scan of the Pro-
fessor exient since Dept is already in the buffer pool. Query (16), on the other hand, must reread part of the Pro-
fessor extent whether it evaluates the join with a hybrid hash [DEWI84], a sort-merge, or a nested loops join algo-

rithm. Thus, query (16) will incur more 1/Os than (17).
5.2.2. General Group-by Loops With Flow Dependences into the Inner Loop
Transformation (T3) can be applied if no information flows in either direction between the inner and outer loop. In

statements of the form:

for (X of SetX) suchthat (Predl (X)) |{

Sl;

for (Y of SetyY) suchthat (Pred2(Y) && Pred22(X,Y))
32;

S3;

}
however, values computed in the outer loop will often be used in the inner. If no values flow from S2 to the outer loop,
the loops do not interfere, and $2 does not modify any elements of SetX, but values do flow from S1 or S3 into the
inner loop, a somewhat more complicated transformation than (T3) is required. Let vy, ... ,v, be the variables written

by S1 and $3 thatare used by expressions in the inner loop. Then this query can be rewritten as:

(T4) Temp = []; //empty sequence
for (X of SetX) suchthat (Predl (X)) {
S1;
Append <Needed(X), vy, ... ,v,> to Temp.
S3;
}
for (T of Temp) /* in insertion order */
for (Y of SetY) suchthat (Pred2(Y) && Pred22(X,¥Y)’)
s27;
52 is 82 rewritten to use fields of Temp instead of wv; Vi 1<i<n and instead of fields of SetX.
Pred22 (X,Y)' is Pred22(X,Y) similarly rewritien. Needed (X) contains the fields of X used in
Pred22 (X,Y) and $2. Note that if Predl (X) is very resirictive or objects in Temp are shorter than objects in
SetX, (T4) will sometimes be preferable 1o (T3) because the cost of storing and rereading the necessary objects will be
less than the cost of recomputing the stream. It should also be kept in mind that neither transformation (T3) nor (T4) will

be useful unless the simple group-by loop produced by the transformation can be further transformed, S1 or S3 con-

tains a statement that may cause disk activity (i.e. pointer dereferencing or a set loop), or multi-query optimization can be

-15-

used to eliminate the cost of the extra scan of SetX.

Since Temp is a sequence (i.e. an ordered set) (T4) iterates through Temp in insertion order. This ensures that both
the original and the transformed program behave in the same manner. If, however, S$2 is self-commutative, it is not

required that (T4) iterate through Temp in any particular order, and so Temp may be a set.
Transformation (T4) can also be expressed using the tree shown in Figure 7.

] | (Pred =P(X,Tb)) =>

, /\

Flow: flow-in Temp = /\

Var=X [¥}® (OPred = P(X,Tb)’)
First = T1.First;
Append <...> /\ ,
1o Temp Var=T b
Flow = innemmost ~ First = NULL
Second = NULL
SumtsDesc = empty
Flow = noflow
SetName = Temp
SelectPred = TRUE

Figure 7: Transformation (T4)

Th' means that the predicates and statements in tree Th must be rewritten to use fields of Temp instead of v
Vi 1<i<n and instead of fields of the outer set(s) included in the X subtree. As an example of a case where rewrite (T4)
is profitable, consider counting the number of professors on each floor assuming that all the professors of a given depart-
ment work on the same floor. Suppose the floor of a Dept is not directly stored in the Dept object. Instead, it is con-
tained in an object that contains information about the part of the building belonging to the Dept. Query (18) will then

calculate the desired result.

(18) for (D of Dept) /{
floor = D->buildinginfo->floor; //S1
for (P of Professor) suchthat (P->did==D->did)
cnt [floor]++; //82
}

(T4) and a loop interchange can be applied to rewrite (18) as:

(19) Temp = {}; //S2 is self-commutative
for (D of Dept) |{
floor = D->buildinginfo->floor;
Append <D->did, floor> to Temp;
}
for (P of Professor)
for (T of Temp) suchthat (P->did==T->did)
ent [T->floor]++; // Calculate number of emps/floor

216 -

If the Professor extent does not fit in main memory, but the Dept extent does, (19) will be incur fewer I/Os than
(18) no matter what join algorithm is used to evaluate (18). Both queries require the same number of I/Os to calculate
D->buildinginfo->floox. If Dept fits in main memory, so will Temp. Query (19) will scan Dept once to
create Temp and load it into the buffer pool. The Professor|X|Temp loop will only require a single scan of Pro-
fessor since Temp is already in the buffer pool. Thus, (19) requires only a single scan of the Dept and Profes-
sor extents. Query (18), like query (16), must reread part of the Professor exlent no matter what join algorithm is

used to evaluate the join. Thus, query (19) will incur fewer I/Os than (18).
5.2.3. General Group-by Loops Used As Aggregates On Grouped Values

The transformations presented so far do not allow the optimization of aggregate functions such as:

(20) select(D.name, count(*)) £rom D of Dept, P of Professor where D.did=P.did
group by D.name

This SQL query can be expressed in O++ as:

(21) for (D of Dept) {
cnt = 0; //s1
for (P of Professor) suchthat (D->did==P->did)
cnt++; //S2
printf ("%s %d", D->name, cnt); newline(); //S3

}

We consider a transformation from [SHOPS0] to rewrite queries involving aggregate functions such as (21). Consider

(22) for (X of SetX) suchthat (Predl (X)) {

Si;

for (Y of SetY) suchthat (Pred2(Y) && Pred22(X,Y))
S2;

$3;

Suppose that S1 can be partitioned into two sets of statements: those whose values flow only to S1 and to outside the
for X loop and those that assign constants to variables v, ..., v,. The wvq, .., v, must be assigned to during each
pass through S1. In S2, they may only be employed in reduction operations; in §3, they may be read but not written.
Statements in 3 may only have values flow back to S3 and to outside the for Xloop. S$2and $3 must not modify
any elements of SetX. Finally, SetY must not be nested inside an object of SetX. If these conditions are met, (22)

can be rewritten as:

(T5) Temp = []; //empty sequence
for (X of SetX) suchthat (Predl (X)) {
S1;
Insert <Needed(X), vy, ..., vy> into Temp.

}
for (T of Temp; Y of SetY) suchthat (Pred2(Y) && Pred22(X,Y)')
s27;

for (T of Temp)
837;

provided $27 is self-commutative relative to Y and T. Needed (X) are the fields of SetX mentioned in S2, S3,
and Pred22 (X,Y). $27, 837, and Pred22 (X,Y)’ are rewritten versions of S2, S3,and Pred22 (X,Y) that
replace uses and definitions of v; with uses and definitions of T->v;. They also replace uses of fields of SetX with
uses of the fields of Temp (i.e. X->aisreplaced with T->a). If S1 or $3isself-commutative, Temp can be a set

provided SetX is an explicit set and not the implicit set resulting from a join (like the outer loop in (12)).

Consider applying (T5) to the following loop:

(23) for (D of Dept) f
ent = 0; //81
for (P of Professor) suchthat (D->did==P->did)
cnt++; //82
printf ("%s %4", D->name, cnt); newline{(); //83
}

Applying (T5) to (23) produces:

(24) Temp = [];
for (D of Dept) |
cnt = 0; //S1
Insert <D->did,D->name,cnt> into Temp;

}

for (P of Professor)
for (T of Temp) suchthat (T->did==P->did)
T->cnt-++;
for (T of Temp) {
printf ("%s %d", T->name, T->cnt); newline(); //S3
}

If the Professor extent does not fit in main memory, but the Dept extent does, (24) will be incur fewer I/Os than
(23) no matter what join algorithm is used to evaluate (23). If Dept fits in main memory, so will Temp. (24) will scan
Dept once to create Temp and load it into the buffer pool. Since Temp is already in the buffer pool, the
Professor|{x|Temp loop will only require a single scan of the Professor extent, and the final scan of Temp will
not incur any I/Os. Thus, query (24) requires only a single scan of the Dept and Professor exlents. Query (23),

like queries (16) and (18), must reread part of the Professor extent no matter what join algorithm is used. Thus,

query (24) will incur fewer I/Os than (23).

S 18 -

6. System Architecture of the Implementation

We implemented these ideas in the O++ compiler being developed at Bell Labs-Murray Hill. The O++ compiler is a
cfront 2.1 C++ compiler extended to handle database programming language constructs. Like cfront, it parses a single
program unit (e.g. a variable declaration, a typedef, or a function definition). The compiler then passes the parse tree
to a print routine that emits C++ code corresponding to the O++ code that was just parsed (all calls to the underlying
storage manager are encapsulated in C++ classes). It then parses the next program unit, and so on. While processing a

program unit, it also makes symbol table entries.
6.1. Optimizer

To add our optimizations to the O++ compiler, we modified the print routine of the set loop construct. Instead of
printing the parse tree itself, the print routine passes the parse tree Lo a routine that massages it into the query tree

representation described in Section 4. This new tree is then passed to our optimizer.

The optimizer was built using the EXODUS Optimizer Generator, which was the only publicly available tool that
allowed us to build an optimizer without having to write a search strategy. The transformations presented in the paper as
well as standard relational transformations and several utility transformations (for instance, transformations to ensure
that the tree rewrites required to produce 76’ for (T4) in Figure 7 are performed) were encoded in the Optimizer
Generator’s rule syntax. The Optimizer Generator transformed the rules into a set of routines that implemented the rules.
While the rules could be expressed quite concisely, most rules required that we write a substantial amount of C++ sup-
port code to handle the transfer of arguments from the original to the transformed tree. Using the Optimizer Generator, it
was easier to add new transformations than it would have been in a hand-coded optimizer. Each new transformation
added at most two dozen lines to the rule file given Lo the Optimizer Generator. Support code had a particular form
imposed by the Optimizer Generator, which made the coding more uniform (and hence comprehensible) than it otherwise

might have been.

The optimizer produced by the Optimizer Generator takes an initial query tree as input and uses transformations to pro-
duce equivalent plans. The optimizer explores the space of equivalent queries searching for the cheapest plan. This plan

is then passed to a routine that emits C++ code corresponding to the optimized query plan,

6.2. System

We used a different run-time system than the one that the original (++ compiler generated code for.> That system

SIAGRA91] contains a description of the original O+ + run-lime system. It also contains examples of translating O+ + code into C++ code

.19 -

swizzled all objects into main memory until the end of transaction. This works well if all the data needed by the transac-
tion fits in main memory. However, our optimizations are intended to improve the performance of queries where only
some of the data fits in main memory; they have only minimal impact on performance if all the data fits in main memory.

Thus, we needed a different storage manager.

We used Version 1.2 of the EXODUS Storage Manager to hold our test database. In order to minimize the number of
changes that needed to be made to the O++ compiler, we wrote C++ classes with interfaces that were very similar to the
interfaces of the classes used by the original O++ storage manager for accessing and creating EXODUS Storage
Manager data. We didn’t build the complete set of classes or interfaces provided by the O++ storage manager, just

enough to create data and to run read-only queries.

Since the current O++ implementation does not provide indexes or any join algorithms other than tuple-at-a-time
nested loops, we do not provide them either. This implies that the major join optimization is to ensure that the innermost
set fits in the buffer pool. If none of the sets of a group-by loop will fit in the buffer pool, even after they are selected and
projected, our optimizer can do nothing to prevent the query from running quite slowly. We plan to extend the optimizer
when indexes and new join methods are added. Since unanalyzed group-by loops must be evaluated with a tuple-at-a-
time nested loops join algorithm (possibly with an index), and adding more facilities will improve the quality of optim-
ized plans, these extensions should make the difference in performance between optimized and unoptimized plans even

more impressive than in the examples in the following section.
7. Experiments

In this section, we consider two queries, and compare the performance of the optimized and unoptimized forms of
each. The purpose of this section is not to exhaustively enumerate the types of queries that can be optimized, but rather

to demnonstrate that the ideas in this paper can be implemented and can significantly improve performance.

Our experiments were run on a DECstation 3100 with 20 megabytes of main memory and a 10 megabyte (2500 4K
page) buffer pool. Each experiment was repeated three times and the observed response times were averaged. In the
experiments, there were 100 Dept, 2000 Professor, and 3000 Enroll objects. The Dept extent contained 25
pages, the Professor extent 500, and the Enroll extent 3000. Each Dept had 20 Professors. Half the Pro-
fessors taught one class; the other half taught two. The objects from each extent were clustered together. In this sec-
tion, we show the original query and an O++ representation of the C++ code produced by the optimizer. The names

created by the compiler for the optimized code were simplified by hand.

220 -

The first query optimized was:®

(25) for (P of Professor) suchthat (P->pid<upper && P->pid>=lower) {

pcount++;

for (E of Enroll) suchthat (P->pid==E->pid) |
printf ("%s %s %d ",P->Pname,E->name,E->studentcount) ;
ecount++;

}
(25) is optimized by applying (T4) to pull the pcount++ statement out of the Professor loop. (T4) also pro-
ying P p

duces a selected, projected subset of Professor called Tempsp,.r. Now there are two loops, the second of which is a

simple group by loop over Tempp,or and Enroll. (T2) is then applied to the simple group by loop to produce:

(26) Temppyor = (1}
for (P of Professor) suchthat (P->pid<upper && P->pid>=lower) {
pcount-++;
Insert <P->pid, P->Pname> into Tempp,or;
}
Tempyoin = {17
for (E of Enroll)
for (T of Tempp,or) suchthat (T->pid==E->pid)
Insert <T->Pname,T,E->name, E->studentcount> into Tempisi,;
Sort Tempisi, by T->T_oid; //use oids from Tempp.; to sort
for (T2 of Tempysin) |
printf ("%s %s %d ",T2->Pname, T2->name, T2->studentcount) ;
ecount++;
}
Remember that tuple-at-a-time nested loops is currently the only join method in the system. In (25), the inner set
Enroll is allocated 2482 pages out of a 2500 page buffer pool for pinning pages. These pages only need to be read
once. The join must, however, read the remaining 518 pages once for each selected Professor. Let sel, be the

number of selected objects from Professor. We would expect (25) to cost

500 pages of Professor
+2482 pages of Enroll that can be pinned in main memory
+518 x sel, pagesof Enroll that cannot be pinned

page reads. Query (26), on the other hand, reads Professor once. Since bolh Temp,,.r and Tempy,;, fit in the
buffer pool, the join that produces Tempjo;, requires only a single scan of the Enroll extent. Since Tempiq;, fits
in the buffer pool, neither the sort nor the final scan incur any 1/Os. Thus (26) requires only a single scan of the Pro-

fessor and Employee extents.

€A simple group-by loop similar to (25) was optimized as well. The resulting graph looked very similar 1o Figure 8, the graph for (25) and (26), so it was
not included.

In Figure 8, the response time for queries (25) and (26) over a range of values of sel, is presented. The selection
predicate was chosen so that the number of elements in Professor[x|Enroll was 1.5 times the number of selected
Professor objects. The timing information in Figure 8§ comes from using the UNIX command gettimeofday

before the transaction that evaluates the query begins and after it ends.

Time in seconds Time in seconds
800 1400
(25) actaal 1300
700 1200
v 1100
600 1000
500 900
800 -
400 7001 (27) expected I/O time
600
300 500
. 400
7@ d
200 (25) expected I/O time 300
200
100 .-_.---_.,-_-w*__(_z.Glégl}l?}, 100 (28) actual
0 ol
0 20 40 60 80 100 0 20 40 60 80 100
Selected Professor objects Selected Professor objects
Figure 8 Figure 9

We include the expected /O time required for query (25). We calculated the expected disk speed of the machine to be
84.674 pages/second by running a simple program that sequentially scans a large file by doing an lseek and then a 4K
read. Itrepeats this sequence 4000 times. The getrusage and gettimeofday commands were used in the same
way as above to produce this estimate. We did not include the estimate for (26), since it coincides with the actual time of
(26) in the graph. It was actually about 1.5 seconds too low, but this difference didn’t show up on the graph. The time for
(26) is approximately flat across the range because the query is I/O bound, and the amount of I/O is the same for each
value of sel, since both Professor and Enroll are only read once, and Tempyp,or and Tempy,;, can be kept
in the buffer pool. The actual run time for (25) is closely approximated by the expected I/O time of the query. The actual
run time is somewhat higher for at least two reasons. First, the expected I/O time is based on sequential reads, and (25)
requires some random I/Os. Second, (25) causes many more page reclaims (i.e. page faults that find the desired page in a
list of pages the UNIX kernel plans to write to disk) than (26) does (the estimating program caused no page reclaims).
Both these costs increase as sel, increases, which is why the slope of the actual response time curve is steeper than the

slope of the the expected 1/O time curve.

S92

The second query optimized was:

(27) for (D of Dept) {
deptcnt++;

for (P of Professor) suchthat
(P~>did==D->did && P->pid<upper && P->pid>=lower) {
studentstaught = 0;

for (E of Enroll) suchthat (E->pid==P->pid)
studentstaught += E->studentcount;

printf ("%s %s %d",D->Dname,P->Pname, studentstaught);
}

The optimized form of (27) used (T4) to move deptent++ out of the main loop and to project Dept to produce a

temporary set, Temppey,. - 1t then applied (T5) to produce:

(28) Temppep, = {1}
for (D of Dept) {
deptcnt++;
Append <D->did,D->Dname> to TemPpept ;
}
Tempjoin = []:
for (TD of Temppept)
for (P of Professor) suchthat
(P~>did==TD->did && P->pid<upper && P->pid>=lower) {
studentstaught = 0;
Append <TD->Dname,P->Pname,P->pid, studentstaught> to Tempigin/
}

for (E of Enroll)
for (T of Tempioi,) suchthat (E->pid==T->pid)
T->studentstaught += E->studentcount;

for (T of Tempygi,)
printf ("%s %s %d",T->Dname, T->Pname, T->studentstaught) ;

The timing results are shown in Figure 9. In (27), the inner set Enroll is allocated 2477 pages for pinning pages in the
buffer pool. The remaining 523 pages must be reread sel, times. Since there are no remaining pages for pinning
Professor pages, Professor must be read once for each Dept. Query (27) must also read Dept once. Query
(28), on the other hand, reads the Dept extent once. Since Temppep:, TeMpPioin,and Professor can all fitin the
buffer pool at the same time, the second loop in (28) requires only a single scan to pin all the pages of Professor.
Since Temps,;, is already in the buffer pool, the third loop costs only a single scan of Enroll, and the final loop
incurs no I/Os. Thus, (28) requires only a single scan of the Dept, Professor,and Enroll extents. The curve for

(28) is almost flat because (28) is I/O bound and the amount of I/O is the same for all values of sels.
8. Conclusions and Future Work

This paper demonstrates that standard transformation-base optimizer technology can be used to optimize group-by

loops in a database programming language. An optimizer built using the EXODUS Optimizer Generator was added to

.23

the Bell Labs O++ compiler. The resulting optimizing compiler was used to experimentally validate the ideas in this
paper. The experiments show that this technique can significantly improve the performance of database programming

languages.

Future work includes finding new transformations, particularly transformations that combine several loops that appear
sequentially in the program text into a single large loop (in some ways finding an inverse of transformations (T3) and
(T4)—closely related to multi-query optimization [SELL88]). Pointer-based join optimizations [SHEK90] will also be
explored. We are very interested in techniques for optimizing more complicated set loops—particularly loops that employ
an O++ Dby clause or its equivalent. (The by clause allows a user to specify the iteration order for a set loop. For
instance, the user might specify iterating through the Dept extent in alphabetical order of the Dept names.) Having
seen parallels between this work and work on parallelizing FORTRAN, we would also like to determine whether or not

our analysis will enable the parallelization of sequential set iteration code written in a database programming language.
Acknowledgements

We are thankful to Bell Labs-Murray Hill for providing us access to the O++ compiler and for supplying a summer of
funding for the first author. The bulk of the implementation effort discussed in this paper was done during this summer at
Bell Labs. We are indebted to Narain Gehani and Shaul Dar for helping us understand the compiler. Without their help,

the implementation would have taken much longer to complete.

9. Bibliography

[ABUSB1] Walid Abu-Sufah, David J. Kuck, and Duncan H. Lawrie. On the Performance Enhancement of Paging Sys-
tems Through Program Analysis and Transformations. /EEE Trans. on Computers C-30,5 (May 1981), 341-
355.

[AGRAR89] R. Agrawal and N. H. Gehani. Rationale for the Design of Persistence and Query Processing Facilities in the
Database Programming Language O++. Proc. Znd Int. Workshop on Database Programming Languages,
June 1989.

[AGRAS1] R. Agrawal, S. Dar, and N. H. Gehani. The O++ Database Programming Language: Implementation and
Experience. AT&T Bell Labs Technical Memorandum, 1991.

[ATKI89] Malcolm P. Atkinson, Francois Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and Stanley Zdonik.
The Object-Oriented Database System Manifesto, invited paper, Ist Int'l Conf. on Deductive and QObject-
Oriented Databases, Japan, December, 1989.

[DAYA87] Umeshwar Dayal. Of Nests and Trees: A Unified Approach to Process Queries That Contain Nested
Subqueries, Aggregates, and Quantifiers. Proceedings of 1987 Conf. Very Large Databases, August 1987.

[DEMOS85] G. Barbara Demo and Sukhamay Kundu. Analysis of the Context Dependency of CODASYL FIND-
statements with Application to Database Program Conversion. Proc. 1985 SIGMOD, May 1985.

[DEWI84] David DeWitt, Randy Katz, Frank Olken, Leonard Shapiro, Michael Stonebraker, and David Wood. Imple-
mentation Techniques for Main Memory Database Systems. Proc. 1984 SIGMOD, June 1984,

[GANSS87] Richard A. Ganski and Harry K. T. Wong. Optimization of Nested SQL Queries Revisited. Proc, 1987 SIG-
MOD, May 1987.

[GRAEST7] Goetz Graefe. Ph.D. Thesis. Rule-Base Query Optimization in Extensible Database Systems. University of
Wisconsin (1987).

=24 -

[KATZ82]
[KIM&2]
{LECL89]

[LIEU91]

R. H. Katz and E. Wong. Decompiling CODASYL DML into Relational Queries. ACM Trans. Database
Syst. 7,1 (March 1982), 1-23.

Won Kim. On Optimizing an SQL-like Nested Query. ACM Trans. Database Syst. 7,3 (September 1982),
443-469.

C. Lecluse and P. Richard. The O, Database Programming Language. Proc. 1989 Conf. Very Large Data-
bases, August 1989.

Daniel Lieuwen and David DeWitt, Optimizing Loops in Database Programming Languages. Proceedings of
3rd Int'l Workshop on Database Programming Languages, August 1991.

[LOHMS88] Guy Lohman. Grammar-like Functional Rules for Representing Query Optimization Alternatives. Proc.

1988 SIGMOD, June 1988.

[MURAS89] M. Muralikrishna. Optimization and Dataflow Algorithms for Nested Tree Queries. Proceedings of 1989

[PADUS6]

[RIES83]

[RICH&9]
[SCHM77]

[SELL8S]
[SHEK90]

[SHOPS0]

[WOLF86]
[WOLF89]

Conf. Very Large Databases, August 1989.

David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for Supercomputers. CACM
29,12 (December 1986), 1184-1201.

Daniel Ries, Arvola Chan, Umeshwar Dayal, Stephen Fox, Wen-Te Lin, and Laura Yedwab. Decompilation
and Optimization for ADAPLEX: A Procedural Database Language. Computer Corporation of America,
Technical Report CCA-82-04, Cambridge, Mass., September 1983.

Joel Richardson, Michael Carey, and Daniel Schuh. The Design of the E Programming Language. Technical
Report #824, Computer Sciences Department, University of Wisconsin, February 1989.

Joachim Schmidt. Some High Level Language Constructs for Data of Type Relation. ACM Trans. Database
Syst. 2,3 (September 1977), 247-261.

Timos Sellis. Multi-Query Optimization. ACM Trans. Database Syst. 13,1 (March 1988), 23-52.

Eugene J. Shekita and Michael J. Carey. A Performance Evaluation of Pointer-Based Joins. Proc. 1990
SIGMOD, May 1990.

Jonathan Shopiro. Ph.D. Thesis. A Very High Level Language And Optimized Implementation Design For
Relational Databases. University of Rochester (1980).

Michael Wolfe. Advanced Loop Interchanging. Proc. 1986 Int. Conf. Parallel Processing, August 1986.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge, Mas-
sachusetts, 1989.

Appendix: Optimization Example

To give a better feel for how the optimizer works, we will trace the steps the optimizer goes through to transform a
query to a more efficient form. The example will only consider the steps taken along a single transformation path; the

optimizer will also consider a number of plans that are not included in this section. Consider the following query:

(29) for (D of Dept) {
deptent++;
for (P of Professors) suchthat (P->did==D->did) {

studentstaught = 0;

for (E of Enroll) suchthat (E->pid==P->pid)
studentstaught += E->studentcount;

printf (“%s %s %d",D->Dname,P->Pname, studentstaught);

}

The optimizer first transforms (29) into the tree representation that is shown in Figure 10 (the /sSeq and SelectPred

fields are not included in our example trees).

IXI__ (JPred: P->did==D->did)

// ///\~

Var: D [X|__ (Pred: E->pid==P->pid)
First: deptent++
Second: NULL /\
StmtsDesc: self-comm
Flow: noflow Var: P Var: E
First: studentstaught=0 Firsw: studentstaught+=
Second: printf{...) E->studentcount
SuntsDesc: not-self-comm Second: NULL
Flow: aggregate StmtsDesc: self-comm
Flow: innermost

Figure 10: Tree Representation of (29)

The printf statement makes the P node not-self-comm since permuting printf slatements will cause the program
to produce a different output stream (i.e. the statement sequence printf ("a"); printf ("b") produces a dif-
ferent output stream than printf ("b"); printf ("a") does).

The optimizer notes that the D node’s StmisDesc field has the value noflow. It applies transformation (T3) to produce

the tree in Figure 11:

=26 -

Var: P [X]e (TPred: P->did==D->did)

First: deptent++
Second: NULL /\

StmtsDesc: self-comm

—

Flow: innermost :1:[;ULL X[(TPred: E->pid==P->pid)

Second: NULL /\

StmtsDesc: empty

Flow: noflow Var: P Var: E
First: studentstaught=0 First: studentstaught+=
Second: printf(...) E->studentcount
StmtsDesc: not-self-comm Second: NULL
Flow: aggregate StmtsDesc: self-comm

Flow: innermost

Figure 11: Tree Representation of (30)

which corresponds to the following code:

(30) for (D of Dept)
deptcnt++;

for (D of Dept)
for (P of Professors) suchthat (P->did==D->did) {
studentstaught = 0;
for (E of Enroll) suchthat (E->pid==P->pid)
studentstaught += E->studentcount;
printf ("%$s %s %d",D->Dname,P->Pname, studentstaught);

}

The optimizer next considers the right-hand branch of the , operator in Figure 11 (which corresponds to the second
loop in (30)). Since the D node’s StmtsDesc field has the value empty, it applies the Supernoding transformation (o pro-

duce:

Var: D X[(IPred: E->pid==P->pid)

First: deptcnt++

Second: NULL /\

StmtsDesc: self-comm)

. Var: SuperNode Var: E

Flow: innermost . .
First: studentstaught=0 First: studentstaught+=
Second: printf(...) E->studentcount
StmtsDesc: not-self-comm Second: NULL
Flow: aggregate StmisDesc: self-comm

1 Flow: innermost

[X]® (JPred: P->did==D->did)

—
/ \\\\
T ——

Var: D Var: P

First: NULL First: NULL
Second: NULL Second: NULL
StmtsDesc: empty SuntsDesc: empty
Flow: noflow Flow: nofiow

Figure 12: Alternative Tree representation of (30)

Figure 12 also corresponds to (30). The Supemoding transformation does not change the code that will be generated; it
allows the optimizer to recognize that (T5) may legally be applied to the second loop in (30). After applying (T5) to the

right branch of the , operator in Figure 12, the following tree is produced:

_98.

Var: D
First: deptent++
Second: NULL
StmtsDesc: self-comm
Flow: innermost

b N
Temp={] //// T

Var: SuperNode //"’

irst: tudentst ht=0 . .
First studentstaug [x} (Pred: E->pid==T->pid)
Second: Append <...> to Temp relational
StmtsDesc: not-self-comm ///\
Flow: innermost Var: o Var: =
I First: NULL First: T->studentstaught+=
E->studentcount
|X|® (IPred: P->did==D->pid) Second: NULL Second: NULL
/\ SumtsDesc: empty StmisDesc: self-comm
Flow: noflow Flow: innermost
Var: T
Var: D Var: P Birst: fntf(..)
Firsu ~ NULL Firs:. NULL s NULL
Second: NULL Second: NULL N ’ ’
StmtsDesc: not-self-comm
StmtsDesc: empty SiumtsDesc: empty - .
Flow: innermost
Flow: noflow Flow: noflow

Figure 13: Tree representation of (31)

Figure 13 corresponds to the code fragment:

(31) for (D of Dept)
deptcnt++;

Temp = [];
for (D of Dept)
for (P of Professors) suchthat (P->did==D->did) {
studentstaught = 0;
Append <D->Dname,P->Pname,P->pid, studentstaught> to Temp;

for (T of Temp; E of Enroll) suchthat (E->pid==T->pid)
T->studentstaught += E->studentcount;

for (T of Temp)
printf ("%s %s %d",T->Dname, T->Pname, T->studentstaught) ;

The optimizer’s final transformation of Figure 13 will be to choose 10 make Temp the inner set and Enroll the

outer set for the x| subtree.
relational

299

