INTERCONNECT TOPOLOGIES WITH
POINT-TO-POINT RINGS

by

Ross E. Johnson and James R. Goodman

Computer Sciences Technical Report #1058

December 1991

Interconnect Topologies with Point-to-Point Rings

Ross E. Johnson
ross@cs.wisc.edu
Computer Sciences Department
University of Wisconsin - Madison
1210 W. Dayton Street
Madison, WI 53706
(608) 262-6617

and

James R. Goodman
University of Wisconsin - Madison

Abstract

The Scalable Coherent Interface (SCI) is a proposed IEEE standard (IEEE P1596) that provides
low-latency and high-bandwidth communication for (shared-memory) multiprocessors. The
basic mechanism for communication is a ring, consisting of a sequence of unidirectional, point-
to-point links. Many classical topologies can be synthesized with multiple rings, but the rings
add additional constraints that complicate the synthesis. This synthesis includes both the ring
mapping and the routing function.

In this paper we discuss the synthesis constraints and compare a number of classical topologies
that can be synthesized with rings. Ring mapping is not trivial because rings must be closed, the
ring size must be kept small, and the mapping must lead to a good routing function. Routing is
not trivial because no ring may be visited twice and deadlock between finite queues must be
avoided. After synthesizing five topologies, we compare their performance based on latency
and throughput.

KEYWORDS: Rings, Topology, Point-to-Point, Interconnects, SCI

This work was supported in part by NSF Grant CCR-892766 and a grant from Apple Computer, Inc.

1. Introduction

The Scalable Coherent Interface (SCI) is a proposed IEEE standard interface (IEEE P1596)
for providing bus-like functions to a collection of computing nodes [IEEE91,JLGS90]. It is
intended to scale to thousands of high-bandwidth nodes, up to 1 Gigabyte per second per node,
while providing a low-latency, cache-coherent, shared-memory interface. Achieving these
objectives precluded the use of a true bus. The basic mechanism for communication is a ring
consisting of a sequence of unidirectional, point-to-point links. The links are truly unidirectional
in that all signals flow in the same direction, i.e., there are no separate handshaking or flow-

control signals.

The interface provides cache coherence by maintaining a distributed directory through the
use of linked lists. The coherence protocol is carefully designed to assure that only a single
round-trip delay through the interconnect is necessary in order to achieve the most common
operations. It has also been designed with reliability in mind, guaranteeing recoverability in all

cases when a packet is lost in transit.

The basic interface consists of a single input link and a single output link. Packets passing
through the node normally experience very low latency — a few nanoseconds. In the absence of
contention, the progress of the packet around the ring is largely limited by speed-of-light
transmission delays and the number of intermediate nodes. Routing information is provided in

the first few bytes of each packet.

A simple SCI node contains a single interface and possibly a processor, memory, and
connections to other communication media (I/O). The node can send and receive packets. As a
receiver, it is capable of recognizing a packet addressed to it, and truncates the packet, turning it
into an echo packet which allows the sender to recognize that the original packet has

been received.

A switch is a simple node containing more than a single interface, with the capability for
routing packets from the input of one interface to the output of another. The basic ring topology,
then, can be enhanced to include any topology that can be constructed from a set of rings. This
paper explores some of the candidate topologies for a large-scale, regular multiprocessor

constructed from a set of SCI rings. While it is not immediately apparent that most of the

classical interconnection topologies can be synthesized from such rings, we demonstrate that

such is possible, and explore several well-known topologies that seem promising. The exclusive

use of rings presents new constraints that limit the options for some topologies or change the

trade-offs. Three constraints are particularly significant.

ey

()

3)

Favored switch setting. A switch can be constructed to have f input links and f output
links, but each input link has a unique preferred output link. Because of the ring
structure, routing to the corresponding output link will be significantly faster than the
others. Thus a topology that minimizes the number of ring switches will provide better

performance, other things being equal.

Different size rings. Any architectures that can be conceived of as a cylinder, ie., a
“‘dance-hall’’ architecture where the two sides are connected, can be constructed out of
rings. However, some of the connections may require two iterations or more through the
network to arrive back at the starting nodes, while others may not. Of course, an
arbitrary topology can be constructed by connecting adjacent nodes in a two-element
ring, simulating a bidirectional link with a ring, but we will demonstrate that much better

topologies can be constructed from rings.

Deadlock-free Routing. SCI inherently pipelines transfers through a link, and routinely
permits a packet to emerge from a node before it has been received completely.
However, deadlock avoidance for SCI is different than for wormhole routing [DaSe87]
because SCI provides sufficient buffering in a node to store the entire message. This
means that, for deadlock avoidance, much of the standard analysis of store-and-forward
networks may be applied [Tane81]. However, routing in SCI topologies is less restricted
than in simple store-and-forward networks because packets are only stored at nodes
where packets change rings. This allows routing solutions that are better than are

possible with either wormhole routing or simple store-and-forward networks.

A simple ring exhibits many of the properties of a bus. Like a bus, all processors can

quickly witness an event. In earlier work, we considered a large-scale, shared-memory

multiprocessor architecture that employs a snooping cache protocol over a grid of buses

[GoWo88]. In a sense this is a continuation of that work, investigating the best topologies for

large-scale systems. But the focus has shifted from buses, which exhibit severe physical and

electrical limitations, to rings which can provide much higher performance.

Traditional metrics of a topology include the average and worst-case distance between
nodes, though in practical networks an additional consideration is the bandwidth limitations of
the busiest links and other resources. While these metrics have been well studied for the
common topologies, the construction through rings adds a new factor to the evaluation: the
number of rings traversed. If topology A provides generally shorter paths between nodes than
topology B, but requires the traversal of more rings, is it better or worse? For purposes of this
paper, we consider the following metrics: (1) total distance (number of links traversed), (2)
number of rings traversed, (3) amount of uniform traffic through the busiest link, and (4) amount
of uniform traffic through busiest queue. We then demonstrate how these metrics can be
combined to determine the best topology for a given set of nodes, each with a fixed number .
of links.

The remainder of the paper is organized as follows. Section 2 discusses the constraints on
the synthesis of topologies and section 3 synthesizes five candidate topologies. Section 4
discusses the metrics and methods used for analyzing topology performance and section 5
presents the performance results. We conclude with a summary of this work in section 6. The

appendix contains the calculations for some of the performance equations.

2. Topology Synthesis

In this section we show how various topologies and routing algorithms can be defined for
point-to-point interconnects. Many of the traditional topologies can be synthesized with SCI

rings and this topology synthesis requires the definition of ring mapping and routing.

2.1. Ring Mapping

We number the nodes of a topology from 0 to N — 1, where N is the number of nodes. For
every node we number the input and output links each from 0 to f—1, where f is the node
fanout. Then, ring mapping is formally defined by the function that returns the node connected
to the given node via the given link. For simulation we have implemented this function (and

others) in C for each topology and the code is available from american.cs.wisc.edu

(128.105.2.60) via anonymous ftp; the file is ross/topology.c. For this paper, however, we keep

the description more intuitive.

The link numbering from 0 to f— 1 defines the rings by following the same numbered links
around a sequence of nodes, shown in figure 1. For every node, each input and output link is
numbered. In this figure, the numbers are redundant, but later we will add letters to these
numbers to make them unique and to help with the discussion of deadlock avoidance. Also, note
that the link numbering does not define uniquely numbered rings. For example, link 1 defines
the ring that connects nodes 1 and 2, but link 1 also defines another ring that connects nodes 5
and 6. This non-uniqueness is a result of our C code that uses link numbering from 0 to f—1 for

each node.

The topologies in figures 1 and 2 indicate the naive way to map rings onto interconnect

topologies. This is done by converting every bidirectional link into a two node ring. Figure 1

Example Mesh Topology
0 o 11 0 o
I . I
0 1 2 3
0 0 11 o 0
2 2 2 2 2 2 2| A2
21 Tz 21 2 zl 2 2y 2
o op 101 0 0
4 5 6 | 7
0 0 11 0 0
3 3 3 3 3 | 3 3 3
3l Ts 31 Ta 31 3 3y 3
0 0 101 0 o
i S —
8 9 10 11
0 o 11 0 0
2l Tz zl 2 zl Tz 2 ¥
2 . 02 21 l2 zO 02' 2
12 13 | 14 15
" f——— et
0 0 101 0 0

Fig. 1: In this 2D mesh topology, 16 nodes are connected by 24 rings, where each node is connected to at most 4
rings. Each 2-node ring simulates a bidirectional link. Rings are composed of links with the same link number
(smaller font), although not every link with the same number is on the same ring.

shows a mesh that is mapped into rings such that each ring has two nodes and each node is on up

to four rings. Each input and output link is numbered to indicate the ring to which each belongs.

Figure 2 shows a ring mapping for a completely connected topology with four nodes. Each
ring has two nodes and each node is on four rings. However, the dotted lines show connections
that are not needed since they form rings that have only one node. The dotted squares indicate
nodes that are duplicated. Again, the links are numbered to indicate the ring to which each link
belongs. For example, link 3 of node 2 goes to node 1 and the ring is completed by following
link 3 from node 1 to node 2. Again, note that link numbering does not uniquely number the
rings, that is, link 3 also forms a ring between nodes 0 and 3; in this topology there are 6 rings,
but only 4 ring numbers. Of course, the completely connected topology is not a good topology
for large systems because the hardware (specifically links) per node grows in proportion to the

number of nodes.

Example Completely Connected Topology

Fig. 2: In the completely connected topology, f nodes are connected by (f+3) f/ 2 rings, where f=4 for this figure.
Dotted lines indicate unneeded links. Dotted squares indicate duplicated nodes. Excepting unneeded links, each
node is connected to f rings of size 2. Rings are composed of links with the same link number (smaller font),
although not every link with the same number is on the same ring.

While entirely general, this naive method of ring mapping (using only two-node rings) is
inférior to other mapping strategies that are able to use all output links of a node to achieve a
richer interconnection pattern. Simulating bidirectional links, a node with fanout f (f interfaces)
can only reach an upper bound of O((f— 1)¥) nodes in & hops while other organizations may be
able to reach O (%) nodes. This is because the use of bidirectional links forces one of the links
to connect to a previously-visited parent, visiting only f—1 new nodes at each stage. Other
organizations may be able to visit f new nodes per stage. Note, for example, that no interesting
topologies can be built the naive way unless at least some of the nodes have three or more links.
Connections to more adjacent nodes means lower diameter graphs, which is important because
the bandwidth required of the network is directly proportional to the average path length. A
second argument against simulating bidirectional rings is that changing rings along a path is
slower than continuing along the same ring for multiple hops. Therefore, we usually want rings

to have more than two nodes.

However, we also want ring sizes to be small because echo packets must continue the full
distance around every ring that is visited, even though send packets may only traverse a small
number of nodes. (A new echo packet is generated on every ring visited by the send packet.)
For send packets that travel a short distance on the ring, the echo packets waste a lot of
bandwidth. This is because the size of echo packets is not small (about 1/5 the size of the
average send packet, substantiated later). Also arguing for smaller rings, the returning echo
packet (acknowledgement) allows release of the buffer resources on that ring, so smaller rings

free up the resources faster. Therefore, very large rings are also bad.

2.2. Routing Functions

Given a mapping function, it remains to define the routing function. Routing is formally
defined by the function that returns the next link for a packet, given (1) the node that originally
generated the packet, (2) the current node through which the packet is traveling, (3) the node that
is the target of the packet, and (4) the last link that was used to reach the current node. Note that
the routing function defines the next link, not the next node; the mapping and routing functions
together give the next node. This means that the two functions collectively provide more

information than the traditional routing functions that do not deal with rings. Next, we discuss

the use of careful routing to avoid deadlock. After that, we discuss some other issues related to
routing, including the definition of a general routing function that is based on breadth-
first search.

2.2.1. Deadlock Avoidance

SCI is carefully defined so that forward progress is guaranteed on a single ring, but SCI
does not prevent deadlock for multiple rings. Entire send packets are stored in queues at nodes
where they switch rings, so circular wait and deadlock might occur if routing is not carefully
thought out. This is the classical deadlock problem for store-and-forward networks [Tane81]. It
should be stressed that there is nothing in SCI to prevent packets from being forwarded before
they have arrived completely, as is done for wormhole routing [DaSe87]. However, SCI
reserves sufficient space to store entire packets, so deadlock avoidance is easier to solve by
viewing SCI as a store-and-forward network. Then, the standard solution for deadlock
avoidance is to use some sort of queue partitioning [Tane81], where the storage is divided into
classes and the assignment of space is restricted to provide a partial order on the use of

the classes.

The problem with queue partitioning is that it is costly for SCI because space for an entire
packet must be reserved in each partition. Alternately, we can restrict the routing algorithm so
that queue partitioning is kept to a minimum, perhaps none. Restricting routing to help in
deadlock avoidance was explored by Dally and Seitz for wormhole routing [DaSe87], but we
explore the concept for store-and-forward networks in SCI. If the routing function requires no
more than n partitions in any queue to avoid deadlock, then we say that the routing is
deadlock—n. When queue partitioning is not required, the routing is deadlock—1, not to be
confused with the deadlock-free routing of Dally and Seitz that still requires queue partitioning
(virtual channels). If n=0(1) for all sizes of a topology, we say that the routing

is deadlock—constant.

Figure 3 shows a 12-node topology for which there is no deadlock—1 routing function. The
problem is that many of the communication routes must use two queues that belong to the

middle nodes. No matter how the routing is chosen, these routes form queue cycles that can lead

to deadlock. Note that the ring cycles have nothing to do with deadlock; the important resources

are the queues in the nodes where packets switch rings.

Figure 4 shows a topology for which there exists a simple deadlock—1 routing. The letters
relate to deadlock avoidance and will be explained shortly. The link numbers (following the
letters) show where the rings are, as usual. The routing algorithm is as follows: first send
packets on link 1 (if needed) and then on link 0 (if needed). For example, a packet sent from
node 3 to 2 goes through nodes 3, 6, 0, 1, and 2 in that order. And, the packet visits only the
queues in nodes 3, 0, and 2 because the packet changes rings at most once. In order to prove that
the routing is deadlock—1, we name every input and output queue with a letter. Then, it is easy

to show that there is no deadlock because packet are always transferred to queues with names

Deadlocked Topology

X! ;
2 Q 2
11 11
2——-——--3<2 » 4 > 5
1 1 1 1
1 Q 1 1 O 1
02 . '
6 7 > 8 («¥— 9
101 11

10 fe——— 11
2 2

Fig. 3: This 12-node topology has no deadlock—1 routing. There are 12 nodes and 4 rings. Rings are composed of
links with the same link number (smaller font), although not every link with the same number is on the same ring.
That is, the 4 rings of the topology all go clockwise; the center 4 nodes are not on the same ring. Deadlock can
occur because there are cycles between the store-and-forward queues, not to be confused with ring cycles.

that are strictly greater, alphabetically. That is, there can be no cycles in the graph and no
deadlock. Note that this deadlock—1 routing generalizes to arbitrary dimensions and ring sizes.
Also note that we were able to find a deadlock—1 routing in this k-ary n-cube, unlike Dally and
Seitz, because queues are not visited at every node; queues are visited only when

switching rings.

2.2.2. SCI Routing Limitation

Deadlock-1 routing is one desirable property of the routing function. (If a deadlock—1
routing can not be found, queue partitioning can be used to avoid deadlock.) However, a
necessary property of the routing function is illustrated with the clock topology, shown in

figure 5. This topology illustrates one routing limitation of SCI that is not related to rings. It

Example Topology with Deadlock-1 Routing

N\
Al {Al A
DO co DO Cco DO [ed0]
6 = 7 8
Bl ‘Bl ‘Bl
—
Al Al A
DO Cco DO co DO Cco
3 B 4 & 5
Bl ABl Bl
al Al A
DO (ol¢] DO Cco DO Cco
0 1 2
Bl Bl Bl

Fig. 4: In the 2D torus topology, r? nodes are connected by 2r rings, where r=3 for this figure. Each node is
connected to at most 2 rings and each ring has r nodes. The letters show that the routing is deadlock~1, described in
the text. Rings are composed of links with the same link number (following the letters). However, not every link
with the same number is on the same ring,

would seem that node 2 could send a packet to node 7 by using the internal ring (entering at 3
and exiting at 6). However, this would generate two echo packets on the first ring, one echo
from 3 to 2 and another echo from 7 to 6. (Recall that one echo packet is generated for every
ring entry.) The problem is that echo packets contain the original source and final target nodes,
but not any information about which node generated the echo. Since these echos are possibly
identical and there is no ordering guaranteed by the ring, there is no way for nodes 2 and 6 to
determine which echo to take off the ring. This shows a limitation of SCI: a packet can not visit

the same ring twice (or more).

2.2.3. General Router

A general routing function for arbitrary topologies can be inferred from the mapping
function by breadth-first search, provided that special care is taken to prevent packets from
visiting the same ring twice. The general router with breadth-first search is cumbersome because

the routing function usually has a more concise definition for a given topology. However, a

Clock Topology
it et o Bol 1 K
, |
o/ - \o
1
10 2
.0 0
ol R
1
9] 3
1
b 0 0
0 ‘0
8 . 4
1
0 0
0 0
\o 765 'o/

Fig. 5: In the clock topology, similar to a chordal ring [Feng81], 12 nodes are connected by two rings. This
topology illustrates that the same packet can not visit the same ring twice.

-10 -

general routing function is useful when creating a new topology; the mapping function can be
developed using a general routing function before a more concise routing function is developed.
Our general router, available via anonymous ftp, uses breadth-first search and prevents packets
from visiting the same ring twice (for the topologies analyzed in this paper). Unfortunately, we
do not know how to define our general router such that it is deadlock—1 (or even deadlock-

constant), so deadlock avoidance must be guaranteed by queue partitioning.

3. Topology Candidates

Given the constraints placed on the mapping and the routing functions, we consider the
synthesis of five topologies: a k-ary n-cube [GoWo88, Witt76], a single-stage shuffle-exchange
network [Feng81,Ston71], and three versions of a multistage omega network
[Feng81, GGKM83]. We call these five topologies the Multicube, Shuffle, Butterfly, Deadfly,
and Livefly respectively. In this section we discuss the synthesis of each topology in turn, giving
pictorial examples of the mapping functions and outlining the routing functions. Formal
definitions of these functions in C are available from anonymous ftp at american.cs.wisc.edu in

ross/topology.c. We also address the issue of deadlock avoidance for each topology.

3.1. Multicube Synthesis

A Multicube is an r-ary f-cube with r/ nodes, where f is the number of dimensions and r is
f-1
the size of the rings. (If r varies with £, then the number of nodes is I}) r;.) The dimension of a
i
Multicube is determined by the fanout of the nodes. Two- and three-dimensional examples for
r=3 are shown in figures 4 and 6 respectively. Each node is connected to one ring in each
dimension and the link numbering (mapping function) corresponds to the dimension numbering,
starting at zero. Deadlock-1 routing is simple: move packets through the dimensions in a fixed
order. It is deadlock—1 because the queues can be partially ordered by the dimensions, as was

illustrated in figure 4.

3.2. Shuffle Synthesis

The second ring-based topology, which we call the Shuffle, is the single-stage shuffle-

exchange network of Stone [Ston71]. However, the nodes are numbered differently (because we

-11-

Example Multicube Topology

—_
n

/.(D
N’
T~ “\~\\\\\\

'\0

\Q
\

24 21 18 25 22 19 26 23 20
Fig. 6: The 3D torus with r3 nodes is shown for r=3. It is synthesized using 3 r? rings of size r. Each node is on 3

rings, shown by output links with the same link number (smaller font). However, not every output link with the
same number is on the same ring. The numbering of input links is similar, but not shown.

-12-

constructed the topology before consulting the literature) and this complicates the routing
function. The size of the Shuffle is ", where fis the fanout and r + 1 is the maximum ring size.
Two examples of link numbering (mapping function) are shown in figure 7. As of yet we have
not been able to derive a concise routing function and, therefore, we use the general routing
function described above. This means that we do not have a deadlock—1 routing for the Shuffle
and so we must use queue partitioning for deadlock avoidance. It is likely that we would have
found a concise routing function if we had used the node numbering as defined by Stone.

However, we do not believe that any deadlock—1 routing exists for the Shuffle.

3.3. Butterfly Synthesis

Consider the next topology. When designing a multiprocessor with the multistage omega
network, there are O (log(V)) switching elements per processor. This violates our constraint of _
constant hardware per processor and we propose a number of ways to fix this. One way to fix it
is to replace each processor with © (log(V)) processors so that there are constant switches per
processor; we call this the Butterfly. This solution creates two type of nodes, ones with zero
processors and ones with clusters of processors. Note that clustering the processors does not
exactly meet our hardware constraint because there still needs to be some multiplexing at the
clusters that is not needed for other topologies. However, we will still analyze this topology in
spite of the unfairness. Another way to satisfy the constant-hardware constraint is to embed the

processors in the network, but we will discuss this option later.

The size of the Butterfly is rff, where f is the fanout and r is the size of the shortest rings
(the number of interconnect stages). Synthesizing the ring-based Butterfly topology is not as

simple as it might first appear. There are two significant problems to solve.

After numbering the nodes and drawing the connections, the first problem is to determine
the mapping function. Note that the links must be numbered so that (a) no two input links of the
same node are numbered the same, (b) no two output links of the same node are numbered the
same, and (c) the size of all rings is minimized -— our goal is to have ring sizes that are no larger
than two times the number of stages in the interconnect. We have solved this problem. An
example of a ring-based Butterfly is given in figure 8. Notice the numbering of the links and the

rings (the mapping function). Some rings cycle once, straight through on one row. Other rings

-13.

Two Example Shuffle Topologies

— i
1 B l 1
2 & '/I 2
3 B 'l/’ 3
{/
2 'll 2
o P 4 " =K
0 [T 0 ; o"’ll'll B
e e * AN
T T 6 \ .':0:’.’4: ;'l' > 6
2 0 l 7 2 . o o':”‘%.";'l";' i
3 ["' 15 3 s B \ ‘.':3\?:0:‘:'?!;'2'5' f 5
T T 3 \\“h‘ “‘ "") 5
NNk B
[0 9 |+ \\\"“ \ Y ' e R
s ,‘o,‘o : ‘::;3:\:}&::»;';'4;o1'::«
5 [T '0:%:0" =% ~ \‘:ﬁt‘{&\?{’fﬂ#ﬁ -
NRHOK 1 AR AACEE 11
0 0.‘) , W "‘.,'A“"' i
[.:.:‘:.:0:‘:‘ 7 et ‘{{\\z':";'o:(‘:‘:;#:#:' 12
8 0) 0 8 N .'.“H"" o
— ':::0:‘:& - w R Ve
AT AN
1 1 s NI ‘:..""V' AV
v/ A\ C 15 ERNHEAAAES: 15
11 |0 “‘ 01 11 1 ;’l/l/'l,‘ ""A"'e“’ 1
0 0 W) ‘l""‘ %
2 \Cr G,
T Y 17 5 ,;’f:}".::,'l,,'o;\v‘m\' 7
s M8 1o E AN
14 [0 T 14 / "‘.'?0":'0‘:‘\“‘ 2
; 5 19 OO
0O N ‘\\‘ 19
15 [T 15 | RUXXIN 1
OO
........ 20 ":’.‘"“\‘\‘ Tt 20
21 [‘:‘:"\:\\\\ IS o1
22 \“\\‘\‘ ’ 22
23 B \“\\ 23
24 ‘\‘\ 24
25 O T 25
26 [I 2

Fig. 7: Two examples of the single-stage shuffle topology are shown with f” nodes. On the left is f=2 and r =4: on
the right is f=3 and r=3. Each node is connected to S rings and the rings have maximum size of r + 1. Rings are
composed of links with the same link number (smaller font), although not every link with the same number is on the
same ring,

-14 -

jump rows and cycle twice before completing. The definition of the mapping function is
relatively simple for binary fanout. But, the general case is fairly complex, relative to the
Multicube, because it requires divide and mod operations to mask part of the node number.

Incidentally, the Butterfly is isomorphic to multistage omega networks.

The second problem is to determine a deadlock—1 routing such that no packet visits the
same ring twice. It is important that we have picked the correct mapping function, otherwise the
routing might be impossible. Our routing for the Butterfly modifies a traditional routing, where
the next node is found by changing part of the current-node number to match the target-node
number (masked substitution). This routing is modified to determine the next link rather than the
next node. The proof-sketch that this routing is deadlock—1 is that there exists a partial ordering
of the queues (no cycles) such that packets visit queues in strictly increasing order. One partial
ordering corresponds to the stages of the interconnect, except for the input queues of the first

stage (which are visited last).

3.4. Deadfly Synthesis

The Butterfly makes the processor-switch ratio equal to 1 by replacing each processor by
O (log(N)) processors. Another way to make this ratio equal to 1 is to place a processor at every
node in the topology, that is, at every switch. However, when we embed processors in the stages
and use the same routing, we get the possibility of deadlock. This is because packets can start at
an arbitrary stage and end at an arbitrary stage; the proof-sketch of deadlock avoidance no longer
holds true. For this reason we call this topology the Deadfly and, like the Shuffle, the Deadfly

requires queue partioning to avoid deadlock.

3.5. Livefly Synthesis

In order to find a deadlock—1 routing for the Deadfly, we modify the topology so that there
are two short-ring links instead of one, as shown in figure 9. The link numbering illustrates the
mapping function and we call this the Livefly. Deadlock-1 routing can then be accomplished in
three phases. First, the packet is sent to the first column via one set of the short-ring links; call
them the secondary links. Second, the packet is routed through the topology as normal, using
the other short-ring links as needed; call them the primary links. Third, the packet is delivered to

.15.

Example Butterfly Topology

B TR AR e
e A\ o W
—rew
: 1 30 i : 57 _%_\ [;u 3
: === e\
. e R RN = XIS -
S==20— /7 X\ FANROON .
e TG e e
9 % % ERC _\ e 9
s I\ =
S e e) o =
14 % 41 mc 68 > t 14
s T S S
17 % 44 —\/ \- 71 :Z:X t 17
ST =TI TN
I 3\&%2 TN
21 1’&%‘3 48 : 75 #””W\\\\\;\r: 21
2 = KX 5
S e P T AN\
He—= L RXGH \\ear
25 : : 52 Mx& 79 ﬂ/ \& 25
26 % 53 y \: 80 ﬂ &26

Flg 8: This is the Butterfly with r+f” nodes, where r=f=3. Each node is connected to f rings and each of the
f rings is connected to either r or 27 nodes. The short rings follow the straight links around once, but the

other links make rings after two cycles. Rings are composed of links with the same link number (smaller font),
although not every link with the same number is on the same ring.

-16 -

the correct column via the secondary links. Any of these three phases is skipped when the phase

would make no progress towards delivery of the packet.

The letters in the figure are an example of the proof-sketch that the routing for Livefly is
deadlock—1. In particular, each input and output queue is given a name so that the given routing
moves packets between queues of alphabetically increasing names. (Recall that queues are
visited only when a packet changes rings). Notice that the input queues of the first column are
labeled differently than the others and also notice that the input and output queues on the
secondary links are labeled differently. These differences result from the three-phase routing.
Finally, note that this topology has a performance disadvantage because one of the links is

dedicated to solve the deadlock problem. Essentially, two short-ring links are used instead of

Example Livefly Topology

12 J2 A2 J2 A2 B2 &t H
0 & el 8 [2ol 16 3 B 0 |

c1 p1 [A2 J2 ;
1 17 ol 9 = >t 17

12 a2 E] F1 g

=1 g(lJ » 10 §g PANY B | 18

c1 D1 [k1 / NELpf

¥ J2 :: 11 sg Jz;' 19

32
™0 20
o™ 12 [r>t 20

T2 bl 13 % _E__E 21

12 g2 ;X ><F1| i

o s>t 14 - F 22
c1 p1 | 1(21)/ \E‘l|'23

¥4 J24:_ 15 :

~ (=2] 15} + w N
o

Fig. 9: Here we show the Livefly topology with 2 short-ring links per node and r(f —1)" nodes, where f=3 and
r=3 for this picture. Each node is connected to frings. There are a total of) (f~1)" rings of sizes r and 2r.

The letters demonstrate that the routing is deadlock—1, discussed in the text. Rings are composed of links with the
same link number (following the letters), although not every link with the same number is on the same ring. The
short rings follow the straight links around once, but the other links make rings after two cycles.

- 17 -

partitioning the one short-ring queue into two parts. Incidentally, a corollary to this proof-sketch
shows that there exists a deadlock—2 routing for the Deadfly, but we chose not to explore

deadlock—2 routings in this paper.

4. Metrics and Methods

In the previous sections we considered problems and solutions pertaining to the synthesis of
topologies with point-to-point rings. Now that we have synthesized the five topologies, we
consider their performance. First, we describe the metrics to be used. Then, we give analytical
solutions for the tractable performance metrics. When a given metric is not analytically
tractable, we rely on deterministic simulations. This simulation involves tracing every packet
through the topology and counting the resources used. In many cases we also use simulations to
verify the analytical solutions. For all comparisons we continue with the restriction of constant

hardware per processor, noting exceptions when appropriate.

4.1. Metrics

It is important to know how a topology supports efficient communication under both light
and heavy loads. For this reason we compare the given topologies under two scenarios. To
consider light loads we compare worst-case latency when delivering one packet, assuming no
congestion. For heavy loads we consider the worst-case bandwidth requirements to deliver

packets between every pair of nodes in the topology.

For light loads we are mainly interested in the worst-case number of nodes visited by one
packet. We call this the topology distance. The number of visited rings, called the ring hops, is
also important for two reasons. First, moving packets between nodes on different rings often
takes longer than moving packets between nodes on the same ring. Second, some topologies do
not have deadlock-constant routings and need non-constant queue partitioning for deadlock

avoidance; this requires queue resources that can hold at least ring-hops packets.

Given the distance and the ring hops we can combine these two metrics into one metric of
latency under light load. Preliminary studies suggest that under a variety of light-loading

conditions the time to pass through a node and change rings is approximately four times the time

-18 -

to simply pass through a node. Assuming this, latency is the weighted sum of the distance plus

three times the ring hops.

For heavy loads we consider the worst-case bandwidth requirements to deliver packets
between every pair of nodes in the topology. We do not consider waits or retries after collisions.
We merely determine the total bandwidth used per resource to complete all packet deliveries.
This will show the topology bottlenecks and, subsequently, the capacity of each topology under
uniform load. We determine the bandwidth used for each link and each queue to deliver the
O (N?) packets. We call these traffic metrics hot link and hot queue respectively. The maximum
rate at which processors can send and receive packets, as limited by the hot link for uniform

traffic, is called the throughpur. Throughput is inversely proportional to the hot-link traffic.

Figure 10 summarizes the metrics used. We use both analytical methods and simulation to
determine the values of the various metrics. For the lightly loaded scenario we can use
analytical methods because the math is tractable. For the heavily loaded scenario we also use
analytical methods (verified by simulation), but only for symmetric topologies. We were unable
to find analytical solutions for heavily-loaded asymmetric topologies, so we rely entirely on

deterministic simulations for these.

Comparison Metrics

A packet between any one pair of nodes:

Distance The maximum number of visited nodes
Ring Hops The maximum number of visited rings
Latency The weighted sum of the distance and ring hops

| Packets between every pair of nodes:

Hot-Link Traffic The most bandwidth required of any one link

Hot-Queue Traffic ~ The maximum number of packets passing through any one queue
Throughput Rate at which processors can send uniform traffic

Fig. 10: This is a listing of the comparison metrics.

-19-

4.2. Analysis

The latencies for the five topologies are derived in the appendix and summarized in
figure 11. From the figure we can estimate the latency in nanoseconds by multiplying by the

time to simply pass through a node, approximately 10ns for a prototype ECL
implementation [Kris91].

The equations for the hot link and hot queue are derived in the appendix. The results are
summarized in figure 12. In order to use the equations in the figure, we need to know e;, the
ratio between the sizes of send packets and echo packets. For the common cache-coherence
transactions in SCI, half of the send packets will be 16-byte requests and the others will be
80-byte data packets. Since each packet is preceded by a 2-byte idle symbol [IEEE91], the
average send packet consumes 50 bytes of bandwidth. Echo packets are 8 bytes plus the 2—byte
idle, so the expected ratio is close to e;=5. This is also an upper bound for all packets related to

cache-coherent data. A lower bound is 1.8, when all send packets are 16-byte request (or

Topology Latency
Ring Hops | Distance Latency

Topology rings links (¢ = 1)-rings + links
Multicube f frm—f frm+t(c-2)f
Butterfly ry ry cry
Deadfly ra+1 2ry—1 (c+Dry+(c—2)

Livefly ri+2 3ri-2 (c+2)ri+Q2c—-4)

Shuffle re re Crg

Fig. 11: Here we give the latency and its components, where f is the fanout and r is related to the ring size.
Subscripted variables are used for r to indicate that r is not necessarily the same for different topologies with the
same fanout and number of nodes. The hop penalty, c, is the ratio of latencies through a node, depending on
whether or not the packet switches rings. See figure 10 for other definitions.

-20-

response) packets. To determine the bytes on the hot link we substitute 5 for e; and multiply the

formula by the average send packet size of 50.

Furthermore, we can determine the maximum issue rate, in bytes per second per processor,

by taking the N —1 packets issued per processor, dividing by the hot-link traffic, and multiplying

by the SCI throughput of 1 Gigabyte per second per link. Since each packet in the interconnect

Topology Hot Links and Hot Queues
Tovolo Hot Link Hot Queue
pology send packets + eg-echo packets send packets
. e m— rm—1
Multicube (1+e;) ——N N
2 'm
ry'N (—1] -

Butterfly "f {1+es 1+2(rb—1)-f?—3— N 1+(rb-1)i-f—1}

Deadfly ()

. . rg'N -
(long-ring links) d l+eg |14+2(ry—1) f-1
f _ f)
f-1_1
Deadfty fd'N{(r pfrl_ 1, L, N|l+ra f o org
) — ¢ —
(short-ring links) f-1 2ra f N
2ra+f-=5 2ry4-3 f..3+rd—1 1
s 2 f 2r, 2 N
Livefly
simulation simulation
Shuffle

Fig. 12: Here we give the hot link and hot queue traffic, where N is the topology size, f is the fanout, and r is the
ring size. Subscripted variables are used for the ring sizes to indicate that r is not necessarily the same for different
topologies with the same fand N. The ratio between the sizes of send packets and echo packets is e;. See figure 10
for other definitions. Except for the Butterfly, these equations have been verified by simulation.

-21-

is preceded by a 2-byte idle symbol, we also multiply by the ratio of processor bandwidth to
interconnect bandwidth, namely 48 / 50. The result is maximum throughput in Gigabytes per

second per processor, as limited by the hot link for uniform traffic.

5. Discussion

In this section we present the performance of the five selected topologies: Multicube,
Shuffle, Deadfly, Livefly, and Butterfly. Recall that we have assumed constant hardware per
processor, but have violated this constraint for two cases. First, the Shuffle and Deadfly require
queue partitioning to guarantee forward progress. This partitioning requires additional
information (a hop count) in each packet and more hardware complexity per node for the queue
partitioning. Second, the Butterfly must multiplex O (log(NV)) processors at each processor
cluster, adding significant complexity. In spite of these constraint violations, we compare these

topologies in terms of latency and throughput and mention the violations as appropriate.

For all graphs, the keys order the topologies with respect to system sizes of 1024. Some
graphs have missing data points for larger sizes for the shuffle. This is because the simulations
required too much time to complete. Also, since the Livefly with fanout 2 is functionally

equivalent to a single ring, the graphs do not show the Livefly for fanout 2.

5.1. Latency Graphs

We first compare the latency of the topologies with respect to latency under light load. One
aspect of latency is ring hops, the maximum number of rings visited by any one packet,
characterized by the graphs in figure 13. The ring hops for the Multicube is constant, making the

shape of the curve significantly different than the others that have logarithmic shapes.

The other aspect of latency is the distance, the maximum number of links visited by any
one packet, characterized by the graphs in figure 14. The difference between the Multicube and
the others is most accented by the graph with fanout 2, where the distance grows as the square
root for Multicube, rather than as approximately log (base two) for the others. This is because
the Multicube’s dimensionality (fanout) is held constant, rather than the radix (ring size), due to
the constant-hardware assumption. Some claim that this is the wrong way to grow Multicubes.

However, it is the only way to grow them, given the constant-hardware assumption.

-22.

. Ring Hops (fanout = 2) o Ring Hops (fanout = 5)

10 4

O sbuffle T A—————pf multicube
deadfly % 9 J [I - livefly

8 deadly

8] shuffie

e butterfly

g -
.- DX
w

4 8 16 32 64 128 256 512 1024 4 8 16 2 64 128 256 512 1024

Fig. 13: These semi-log graphs show the maximum number of rings visited by any one packet as the fanout is
varied from 2 to 8, some graphs not shown. Livefly, Deadfly, and Butterfly are always ordered as given for
fanout 5. Multicube crosses the others at fanouts 3 and 4. Shuffle crosses Deadfly at fanout 3 (at about 80 nodes).

This toot versus log phenomenon is also present in the curves for latency, shown in
figure 15. Recall that the latency is a weighted sum of the ring hops and the distance. We also
use the fact that a link hop is about 10ns [Kris91], not considering the wire-length delays.
Clearly, Butterfly has the lowest latency for all configurations, but it must multiplex many
processors per node. For low fanout and small systems, Multicube is competitive because it has

fewer ring hops. The graphs also show that Multicube has more choices of system size for a

given fanout.

As the topology size increases, so does the physical size of the multiprocessor. Some have
considered the effects of three-space on the performance of topologies [Bian89, Dall90], but this
is beyond our scope. Essentially, the physical layout of the topology becomes increasingly
important for increasing system size, affecting the accuracy of our results on latency. On the
other hand, three-space does not need to affect throughput because signals can be pipelined on

the wire [ScGo91] and SCI exploits this pipelining.

-23-

Distance (fanout = 2) Distance (fanout = 5)

T b

L N — livefly
s———# deadfly
164 oo shuffle
Vo butterfty

124

L L
i i
n n 10
k k
s s
8
6
4
2 V//
0 T T v ¥ L) ¥ T L 0 T L] L] ¥ T L4 T L]
4 8 16 32 6 128 256 512 1024 4 8 16 32 6 128 256 51z 1024
Nodes Nodes

Fig. 14: These semi-log graphs show the maximum number of links visited by any one packet as the fanout is varied
from 2 to 8, some graphs not shown. The topologies are always ordered as given for fanout 5, except that Multicube
is lower than Livefly for fanout 3 and up to 128 nodes.

5.2. Throughput Graphs

One indicator of throughput is the hot link, which we measure by counting the maximum
number of bytes through any one link when all pairs of nodes communicate at once with average
sized packets. The hot link is shown in figure 16. Generally, Butterfly is best by this metric. It
is interesting to note that the Shuffle is better than Multicube, even though it is not completely
symmetric. The reason for this is that its asymmetry can be better characterized by its few cold

links rather than its many near-average hot links.

The graphs of throughput, as limited by the hot link, are shown in figure 17. As predicted
by the hot-link graphs, the Butterfly is best. However, these graphs point out that Multicube is
best for small fanouts and very small system sizes. The bottom graphs show that smaller ratios
with small fanouts make Multicube look better. This is because packets in Multicube visits

fewer rings (ring hops), causing fewer echo packets to be generated.

.24 -

Latency (fanout = 2, hop penalty = 4) Latency (fanout = 5, hop penalty = 4)

600 600
Ay, poualiticubs I SU—y
O suffie g i
500 ;e deaily { 0] &———8
A s 4 bustertly A [o 4

anpODo6a®w OSmE
mabonow oumZ

] 0
4 8 16 1 & 18 256 N2 14 4 s 16 31 6 123 6 Sz 1w
Nodes Nodes
Latency (fanout = 4, hop penalty = 1) Latency (fanout = 4, hop penalty = 8)
600

/- S -3 toulticubo [e livefly
L — livetly Am—d muliicube

0] B———8 deatty so0) B———=E desdty
> stfie OO stuffis
PRy butertly B butterfly

wosobow oOsZ
& g g
g 8 &

100 4 100
° r v v . r v " o Y T v ' T T Y
4 8 16 2 64 128 256 512 1024 4 8 16 n] 128 256 512 e
Nodes Nodes

Fig. 15: These semi-log graphs show the worst-case latency of packet delivery as the fanout and hop penalty vary,
some graphs not shown. The hop penalty is the the ratio of latencies through a node, depending on whether or not
the packet switches rings (switching rings takes longer).

As the fanout varies from 2 to 8 with fixed hop penalty of 4 (on the top), the topologies usually remain ordered as
shown for fanout 5. Fanout 2 is an exception, as shown, and Multicube is lower than Livefly for fanout 3. As the
hop penalty varies from 1 to 16 with fixed fanout of 4 (on the bottom), the topologies are ordered as shown. The
crossover point shown on the right begins at hop penalty 5 and stays fixed around 100 nodes as the hop
penalty increases.

.25-

Hot Link (fanout = 2, ratio = 5) Hot Link (fanout = 5, ratio = 5)

1000 o 1000
LA multicube A & livefly
900 4 L] shuffls 900 4 S deadfly
M desdfly - A A Iticut
800 4 A — 4 butterfly 800 Gy shuffle
4 butterfly
700 J
K K
) L 600
1 1
o o
B B 500
y y
t t
e o 400 4
1]
300 J
200
100 .
v v v . T r r 04 + : . u T v -
0 128 256 38 512 640 768 896 1024 0 128 25 384 512 640 768 896 1024
Nodes Nodes

Fig. 16: These graphs show the maximum number of bytes passing through any one link when all pairs of nodes
communicate once. The ratio parameter is the ratio of sizes between send packets and echo packets. Shuffle size is
not fully represented because some of the simulations required too much time to complete.

Generally, for fanouts of 2 to 8, the topologies are ordered as shown for fanout 5. But for fanouts of 2 to 4,
Multicube is higher than Deadfly. At fanout 2, Deadfly and Butterfly are equal. Shuffle is always slightly lower
than Multicube and it is about equal with Butterfly for fanouts 6 to 8.

Figure 18 shows the hot-queue traffic, which is the number of packets passing through any
one queue when all pairs of nodes communicate at once. The hotter the queue, the more likely
that the finite queue will fill up. When the queue fills up, tree saturation [PfNo85] can occur,
causing large losses in performance. In other words, the hot queue approximates the topology’s
tolerance to fluctuations in traffic flow (temporary hot spots). Since the Shuffle and Deadfly
require queue partitioning to avoid deadlock, the graph lines for these topologies reflect a
multiplier corresponding to the number of required partitions. This makes them look
significantly worse, especially for low fanouts. For the hot queue overall, the Butterfly is best,

except for fanouts 2 and 3, when the Multicube is best.

-26-

Throughput (fanout = 2, ratio = 5) Throughput (fanout = §, ratio = 5)

20, 20,

? Py bunerfly ? Vo S} bugertly
3 Grer——tf) deatfly M

: —0 wmm ;

{ Ay, mukticube ’;

L] 1]

] 1]

famw maw

not ~ow

Gy duflo
B————(f deatfy
154 B livefly
10
0.5

0.0

wnomeRnOOmY now
O ®®a N 0T - o

Nodea
Throughput (fanout = 2, ratio = 2) Throughput (fanout = 5, ratio = 2)
20 20

- -
7 P bty H A——a oukal
g et deatfly M R tunedly
; P SUS——-Y e ; [S— | deadfly
y f———fA mukicubs v Qe shulle
1 t
o 154 o 154 &#—a lvetly
1] 1 1
13 P
-] [
r i g
s s
o e 104
c <
3 P
e [
14 t
] P
r r 054
] o
< <
L] L]
1] L]
] L]
9 o
14 r

0.0 g T v Ll Ad t
4 3 16 12 6 128 256 S12 1w

Fig. 17: These semi-log graphs show the maximum throughput as limited by the hot link. The ratio parameter is the
ratio of sizes between send packets and echo packets. Shuffle size is not fully represented because some of the
simulations required too much time to complete. Generally, for fanouts of 2 to 8 and a ratio of 5 (on the top), the
topology ordering is as shown for fanout 5. However, Deadfly is higher than Multicube for fanouts 2 and 3 and
larger system sizes; they are about equal for fanout 4.

Generally, for fanouts of 2 to 8 and a ratio of 2 (on the bottom), the topology ordering is as shown for fanout 5.
However, Multicube is the lowest for fanouts of 2 and 3 for more than about 100 and 500 nodes respectively. Also,
the Shuffle is higher than Deadfly for fanouts 6 to 8, but the Shuffle is the lowest for fanout 2 and up to 128 nodes.

.27.

Hot Queue (fanout = 2) Hot Queue (fanout = 5)
70000 - 70000 -

o shufflo [z S—.. | deadfly
s — | deadfly L —— stuffle
60000 4 L — livefly
A, multicube

Ve Ry butierfly

10000 J

Fig. 18: These graphs show the maximum number of packets passing through any one queue when all pairs of
nodes communicate once. Shuffle size is not fully represented because some of the simulations required too much
time to complete.

Generally, for fanouts of 2 to 8, the topologies are ordered as shown by fanout 5. However, Multicube is the lowest
for fanouts 2 and 3 and Livefly is lower than Multicube at fanout 8. Shuffle is the highest for fanouts 2 to 4 and
slightly better than Deadfly for fanout 8.

6. Summary

The Scalable Coherent Interface [IEEE91,JLGS90] is a proposed IEEE standard (IEEE
P1596) that provides low-latency and high-bandwidth communication for (shared-memory)
multiprocessors. The basic mechanism for communication is a ring, consisting of a sequence of
unidirectional, point-to-point links. Many classical topologies can be synthesized with multiple
rings, but the rings add additional constraints that complicate the synthesis. This synthesis

includes both the ring mapping and the routing function.

In this paper we discussed the synthesis constraints and compared five topologies that can
be synthesized with rings. Ring mapping is not trivial because rings must be closed, the ring
size must be kept small, and the mapping must lead to a good routing function. Routing is not
trivial because no ring may be visited twice and deadlock between finite queues must be

avoided. Also, the required routing functions are not trivial modifications of standard routing

-28 -

functions. This is because the ring mapping and routing functions collectively provide more
information than the standard topologies and associated routing functions that do not deal with
rings. Concerning deadlock, we showed how some store-and-forward topologies can be
synthesized without deadlock and without partitioning the queues, called deadlock—1 routing.
This is important because queue partitioning complicates the implementation and makes the

queues (of the same size) more vulnerable to tree saturation.

After the topologies were synthesized, they were compared with the constraint of constant
hardware per processor. They were compared by four metrics: ring hops, distance, hot-link
traffic, and hot-queue traffic. The first two were converted into a combined metric of latency and
the second two were discussed in terms of throughput and temporary hot-spot tolerance. Where
possible, analytical solutions were presented in the appendix; otherwise simulation data

was given.

In summary of the graphs, we have compared Multicube, Shuffle, Butterfly, Deadfly, and
Livefly. In general, the Butterfly performed better, by both metrics of latency and throughput.
However, more hardware is require to implement the multiplexing of the processor clusters.
Furthermore, it is not clear about how the layout in three-space will affect the wire lengths and,
subsequently, the latency for large systems. As an alternative, Multicube is competitive for
small system sizes and small fanouts, especially with large penalties for switching rings. It also

has more choices of system size for a given fanout.

7. Acknowledgements

We thank Steve Scott for valuable comments on earlier drafts. This work was supported in

part by NSF Grant CCR-892766 and a grant from Apple Computer, Inc.

-29 .

8. References
[Bian89]

[DaSe87]

[Dall90]
[Feng81]

[GoWo088]

[GGKMS83]

[IEEE91]

[JLGS90]
[Kris91]

[PfNo85]

[ScGo91]

[Ston71]
[Tane81]

[Witt76]

Ronald Bianchini, "Ultracomputer Packaging and Prototypes,” Ultracomputer
#152, Courant Institute, Ultracomputer Research Laboratory, NYU, January 1989.

William J. Dally and Charles L. Seitz, "Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks," IEEE Transactions on Computers 36,
5 (May 1987), 547-553.

William J. Dally, "Performance Analysis of k-ary n-cube Interconnection
Networks," IEEE Transactions on Computers 39, 6 (June 1990), 775-785.

Tse-yun Feng, "A Survey of Interconnection Networks," IEEE Computer 14, 12
(December 1981), 12-27.

James R. Goodman and Philip J. Woest, "The Wisconsin Multicube: A New
Large-Scale Cache-Coherent Multiprocessor,” Proceedings of the Fifteenth
Annual International Symposium on Computer Architecture, May 1988, 422-431.

Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph and Marc Snir, "The NYU Ultracomputer—Designing an MIMD Shared

Memory Parallel Computer," IEEE Transactions on Computers 32, 2 (February
1983), 175-189.

"SCI - Scalable Coherent Interface: Logical, Physical and Cache Coherence
Specifications," in The Scalable Coherent Interface, David B. Gustavson and
David V. James (eds.), IEEE Press, Montvale, New Jersey, January 1991. Draft
for sponsor ballot review.

David V. James, Anthony T. Laundrie, Stein Gjessing and Gurindar S. Sohi,
"Scalable Coherent Interface," IEEE Computer 23, 6 (June 1990), 74-77.

Emnst H. Kristiansen, SCI prototype under construction, personal communication,
Dolphin Server Technologies, Oslo, Norway, November 1991.

G. F. Pfister and V. A. Norton, "*““Hot-Spot’’ Contention and Combining in

Multistage Interconnection Networks," ACM Transactions on Computer Systems
34, 10 (October 1985), 943-948.

Steven L. Scott and James R. Goodman, "Performance of Pipelined K-ary N-cube
Networks," Computer Sciences Technical Report #1010, University of
Wisconsin-Madison, February 1991.

H. S. Stone, "Parallel Processing with the Perfect Shuffle," JEEE Transactions on
Computers 20, 2 (February 1971), 153-161.

Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981.

Larry D. Witde, "Efficient Message Routing in Mega-Micro-Computer
Networks," Proceedings of the Third Annual International Symposium on
Computer Architecture 4, 4 (January 1976), 136-140.

-30-

9. Appendix

Here we derive the equations for latency and throughput, including metrics of distance, ring

hops, hot link, and hot queue.

9.1. Latency Analysis

Consider the Multicube with N = rf nodes, where r is the ring size and f is the fanout at
each node. What is the distance of the topology? In the worst case a packet must visit all nodes
in a ring (all links minus one) before going to the ring in the next dimension. Since it must do
this in all dimensions, the distance is (— 1) f and the ring hops is f. Given a ring change penalty
of c, the latency is then fr +(c —2) f.

Consider the Butterfly with N = r-f" nodes, where r is the size of the short rings and fis the
fanout at each node. Recall that r processors are clustered at each node on first column. Notice
that a packet must travel exactly once around the fly to get to the correct node, so the distance is
r. The packet can change rings at each hop, so the ring hops is . Given a ring change penalty of

¢, the latency is then c-r.

Consider the Deadfly with N = r-f” nodes, where r is the size of the short rings and fis the
fanout at each node. Recall that processors are embedded in the interconnect. In the worst case
a send packet must travel once around the fly to get on the correct row and then almost another
time around to get to the target in the correct column. So, the distance is 2r — 1. The packet can
change rings at each hop for the first time around the fly, but must stay on the same ring after
being lined up. So, the ring hops is r+1. Given a ring change penalty of c, the latency is

then (¢ +1)r+(c —-2).

Consider the Livefly with N = r«(f—1)" nodes, where r is the size of the short rings and fis
the fanout at each node. Recall that processors are embedded in the interconnect. In the worst
case a send packet must travel almost once around the fly to get to the first column, once around
the fly to get on the correct row, and then almost another time around to get to the target in the
correct column. So, the distance is 37 —2. The packet can change rings at each hop for the first
time around the fly, but must stay on the same ring for the first and third phases. So, the ring

hops is r +2. Given a ring change penalty of ¢, the latency is then (¢ + 2)r+2c-4).

-A-1-

Consider the Shuffle with N = f” nodes, where r +1 is the maximum ring size and f is the
fanout at each node. The worst-case distance is between nodes 0 and N —1, so the distance is

logAN)=r; this is also the ring hops.

The latencies for the five topologies are summarized in figure 11. Note that the ring sizes
for these topologies are not exactly the same for identical values of N and £, illustrated by the

different subscripts. In particular, r is logq(N) for Shuffies, NYf for Multicubes (which is at

. In(logf(N))
most log(N) when r <f), approximately log (V) —logs(logAN)) + W for the Butterfly
: In(logs -1 (V) :
and Deadfly, and approximately logs_; (N)—logs_; (logs 1 (N)) + W for the Livefly.
f-1

9.2. Throughput Analysis

Next we consider the scenario of packets being sent between every pair of nodes. What are
the metrics of the hot link and hot queue as defined earlier? We derive the equations for the
Multicube, Butterfly, and Deadfly. These equations have been verified by simulation. Since the
equations for single-stage perfect-shuffle topologies do not seem tractable, we get results by
simulation alone. Also, we use simulation for the Livefly because we have not yet derived

those equations.

9.2.1. Multicube Analysis

Consider the Multicube with N = rf nodes, where r is the ring size and fis the fanout at
each node. What is the hot-link traffic, the most bandwidth required of any one link? Since the
Multicube is symmetric, we can add up the traffic over all links and divide by the total number

of links. There are N2 packets to deliver, counting the zero-bandwidth "packets” that have the

r
same source and target. On average, each send packet traverses

links in each of f

dimensions, giving a total traffic of N2 —’-‘2-1— f. Since there are fN total links, the individual

link traffic for send packets is =" N. When echo packets are added, the entire rings are

traversed, using r links in each dimension traversed. However, every dimension is not always

used. The average links used per dimension is » — 1 because one out of every r packets does not

-A2-

need to be routed in the given dimension. This yields a total traffic of N 2.(r—1)f and an

individual link traffic of (— 1) N when echo packets are the same size as send packets. The

general formula for the hot-link traffic is then (1+e¢;) r-1

N, where e; is the ratio of sizes

between an echo packet and the average send packet.

To find the hot-queue metric we first determine the average number of rings visited by each

packet. Since 1 out of every r packets is not routed in a given dimension and since there are f

r-;l f. Multiplying by the

dimensions, the average number of rings visited by each packet is

number of messages, N2, and dividing by the number of nodes, N, gives the hot-queue
r—1

metric of fN.

9.2.2. Deadfly Analysis

Consider the Deadfly with N = r-f" nodes, where r is the size of the short rings and fis the
fanout at each node. What is the hot-link traffic? We will determine this by first finding the
hot-link traffic with e;=0 (send-packet traffic) and then finding the hot-link traffic with e;=1
(total traffic). Note that packets are delivered in two rounds of the topology: the first round lines
up the packet on the correct row (short ring) by hopping from ring to ring; the second finishes
the delivery using only one ring. Of course, some packets find their target during the first round
and do not require the second. To determine the hot-link traffic we first find the traffic during
each round, assuming that all packets require two rounds. Second, we subtract the error due to
the two-round assumption. In the derivation we also make use of the fact that the topology is
symmetric. In particular, each node has 1 link that belongs to a ring of size r and f—1 links that

belong to rings of size 2r.

Consider the first round with the two-round assumption and find the send-packet traffic per
long-ring link. Each node is the root of balanced tree for sending N packets, the targets of which

are evenly distributed among the leaves. Each of these N 2 packets traverses r of the f*N links.
So, each link supports transmission of (r-N)—]1; packets in the first round. Note that none of the

long-ring links are used in the second round because only the short-ring links are used after a

-A-3-

packet is lined up. Also, note that the error due to the two-round assumption only affects the

short-ring links because packets are lined up after reaching their targets.

Next, find the hot-link traffic on long-ring links for e;=1. Consider the average number of
f-1
f

long rings visited by one packet. The first traversed link has probability that it is a long-

ring link. Each subsequent link has conditional probability of % ! ;1 + f ;1 ! }2 that it is a

new long-ring link (depending on the previous link type) and this occurs r — 1 times. Adding
these together gives the average number of long rings touched by a packet. Multiplying this sum
by the total number of packets, N2, dividing by the total number of long-ring links, (f— 1) N, and

multiplying by the size of a long ring, 2 r, gives the total number of packets traversing any one

long-ring link. So, the hot-link traffic for e;=1 is (r-N) [%+2 (r-1) I}}LJ and the hot-link

metric for the long-ring links of the Deadfly is (rN) [—Jl-; + e [—]1; +2(r—-1) %—LH

Consider the hot-link traffic for short-ring links, first for e;=0. Under the two-round

assumption, each short-ring link supports the same amount of traffic during the first round as do

the long-ring links, namely (r-N) —jl-; send packets. In the second round the distances traveled by

a packet are evenly distributed between 0 and r -1, so the total traffic in the second round is
r—1

N? > -é Dividing this by the number, N, of short-ring links (because no long-ring links are
k=0

used in the second round) gives (rN) (r-1) -él; Now, consider the error induced by the two-

round assumption. Note that for every packet with a target that was reached in the first round,

r—1
we added the distance of one full short ring. The number of erroneous targets is Y Vil
k=0

Multiplying this by the error per target, —r, and the number of packets per target, N, and then
dividing by the total number of short-ring links, N, gives the error term

—rN[(f.ll)r_(f—ll)N}. So, the hot-link traffic for shoﬁ-ring links and e;=0 is
1 1 1 1 e . r-N fel 11

TFTT - : Lif - -=+=.

(rN)[f+(r D 2r (f—-l)r+(f_1)NJ Simplifying gives f—-l[(r) 27 7 NJ

A4

. Finally, find the hot-link traffic on short-ring links for e;=1. Consider the average number

of short rings visited by one packet. The first traversed link has probability L that it is a short-

f
-1 1
ring link. Each subsequent link has conditional probability of —11;0+ f—f—l 7 that it is a new

short-ring link (depending on the previous link type) and this occurs r —1 times. Adding these
together gives the average number of short rings touched by a packet. Multiplying this sum by
the total number of packets, N2, dividing by the total number of short-ring links, N, and

multiplying by the size of a short ring, r, gives the total number of packets traversing any one

short-ring link. So, for the first round we have (r-N) {-}lc— +(r-1) fﬁl—] packets per short-ring

link. For the second round the probability is that a packet arrived on a long-ring link and

f-1
f

starts a new short ring. So, the second-round traffic contribution per link is (»-N) -]::i Now,

f

consider the error term. For every target that was reached in the first round and if the previous

link was a long-ring link, the two-round assumption adds one full short ring. This gives us

4 -1
> 1k f erroneous targets plus one for the target that is the same as the source. To get the

=1 S
error term we multiply by the number of sources, N, divide by the number of short-ring links, N,

multiply by the size of the short rings, », and make it negative. After simplification the error

term becomes -(r-N)%. So, the hot-link traffic on the short-ring links for e;=1 is

1 f-1 -1 1
(rN) 7+(r—-1)-—}—§-—+Lf—-—-}—

formula for short-ring hot-link traffic on the Deadfly is

- : - - - -1 1
rN[(r__l)f-i-l 1.1 rN_ |2r+f-5 _2r-3 f-3 r

-1 71 2 5 2r £ NJ

or rN)(r-1) {f;—z—l— + —’1_—} Therefore, the general

To find the hot-queue metric we need to first determine the average number of rings visited

by each packet. From above we know that each packet visits an average of

2 _
et S W) =1

o 12 f

long-ring links and % +r=1) 1;2—1- +L=1 -i— short-ring links. If we

-A-S-

add these together, multiply by the total number of messages, N2, and divide by the total number

f-1 1
f

r

of nodes, N, then we get the hot-queue metric, {1 +r

9.2.3. Butterfly Analysis

Now consider the hot link and hot queue of the Butterfly. Since exactly one full round is
needed for the Butterfly, the short-ring links support the same number of send packets as do the
long-ring links. However, the short-ring links must support fewer echo packets since the ring
size is smaller. Therefore, the hot links are the long-ring links and this hot-link metric is already
derived for the Deadfly.

Now consider the hot queue traffic. From above we know that each packet visits an

- —1y2
average of ! fl +(r-1) (fle) long-ring links. So, each packet visits an average of
_ 132
_J_f—f_l- -f—}—l—+(r—l) (fle) rings. Multiplying this by the number of packets, Nz, and

dividing by the number of nodes, N, gives the hot queue metric, [l +(r—1) %—L]N

Figure 15 summarizes the equations for the hot-link and hot-queue metrics. The hot-link
metric for the Deadfly is the maximum of the metrics for the long-ring links and the short-ring
links. Also, recall that the values of r are not exactly the same between topologies. In
particular, r is logs() for the Shuffle, N'// for the Multicube (which is at most logs(N) when
In(logAN))

r £f), and approximately log(N) - log(log(N)) + logAN)

for the Deadfly and Butterfly.

This ends the derivations of the equations.

-A-6-

