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1 Introduction

We consider here the monotone affine variational inequality problem [Aus76, CGLS80] of
finding an Z in X such that

(z—2)T(Mz+¢)>0,Vz € X:={z]| Az > b,z > 0} (1)

where M is an n X n real positive semidefinite matrix (not necessarily symmetric) and A
is an m x n real matrix. When X is the nonnegative orthant, the problem becomes the
classical monotone linear complementarity problem (LCP) [CD68, Mur88]. Our principal
concern here is: Given an arbitrary point z in IR”, how far is it from the closed convex
solution set X of (1), assuming that X is nonempty? Global error bounds for (1) have
been given by [Pan86, Lemma 2] for positive definite M in terms of a “gradient projection”
residual as well as by Tseng and Luo [LT92, Theorem 2.1] locally for a general monotone
affine variational inequality. In [Man90b], global error bounds were also given for the case of
positive semidefinite M in terms of a gradient projection residual multiplied by a term that
involves the norm of the point z. In this work the error bound is motivated by the following
formulation of (1) of finding an Z € X such that

(m—a’c)T(Mm+q)ZO,\7’:c€,X={w|A:czb,zZO} (2)

This is equivalent to (1) when M is positive semidefinite. Thus, given any point z in IR",
we consider the convex quadratic program of finding a y(z) such that

. v

y(z) € argmin(y —2)"(My +q) + 5 lly — =" (3)
yeX

where v > 0. Note that when v > 0, problem (3) is a strongly convex quadratic program

and hence has a unique solution y(z). Furthermore, when z € X, it follows from the fact
that M is positive semidefinite that

(y—2)"(My+q) > (y—z)"(Mz+q) >0

Hence, the minimum value of zero can be achieved by setting y = z. Thus when z € X,
and v > 0, the unique solution of (3) is y(z) = z. The error bounds we propose here are
based on the quantity y(z) — & which is zero when z € X and y(z) = Z. This prompts us to
propose the following iterative procedure for solving (1)

2+ € argmin(z — )T (Mz + ¢) + i Ha: —
z€X 2

(4)

for which we have no convergence results at the present time. One advantage of (4) over
the original problem (1) is the induced symmetry of the quadratic term which permits the
potential use of successive overrelaxation (SOR) methods such as those of [DLM88] especially
for the monotone linear complementarity problem, that is when X is the nonnegative orthant.
In addition, (4) is strongly convex when v > 0.
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Qur principal tool in deriving our bounds here is the error bound that was obtained in
[MS86, Theorem 2.7] for the monotone linear complementarity problem. In Section 2 of this
paper we give a simplified version of this error bound, and in Section 3 we derive our error
bounds for (1), both for a possibly degenerate problem (Theorem 3) and a nondegenerate
problem (Theorem 6). We also establish (Theorem T7) a strong upper semicontinuity result
for the nondegenerate monotone affine variational inequality problem in terms of solutions
of linear programs ((34) below) obtained by linearizing around any sequence {z'} which
converges to a solution of the problem. From a certain 7 onward, all solutions of the linear
programs yield a solution of the variational inequality problem. This may be a useful result
for finitely terminating any convergent algorithm for variational inequalites.

A word about our notation. For a vector z in the n-dimensional space IR", z; will
denote the orthogonal projection on the nonnegative orthant IR}, that is (z, );: = max{z;, 0},
i = 1,...,n. The norm |-|]| will denote the Euclidean norm, while other norms will be
appropriately subscripted. The transpose of a matrix M will be denoted by M7. For an
m x n real matrix A, A; will denote the ith row, while A; will denote the set of rows A; for
i € J C{1,...,m}. Similar notation, b; and by is used for a vector b in IR™. The identity
matrix of arbitrary dimension will be denoted by I.

2 Preliminary Background

We begin by giving a simplification of the error bound of [MS86, Theorem 2.7} for the
monotone linear complementary problem

Nz+p>0,2>0,2T(Nz+p)=0 (5)

where N is a k X k real positive semidefinite matrix, not necessarily symmetric. We shall
assume that the solution set of (5), SOL(N,p), is nonempty. By slight modification of the
proofs of Lemma, 2.5 and Theorem 2.7 of [MS86] and making use of Theorem 2.6 of [Man90a]
we obtain the following simplified error bounds in terms of another “natural” residual s(z)
(see (8) below).

Theorem 1 (Error bound for monotone linear complementarity problems) Let N be positive
semidefinite, let the solution set SOL(N,p) of (5) contain Z and let

A::%(N—}—NT) and d :=2Nz+p (6)
For any point z in IR® there exists a z(z) in SOL(N, p) such that [MS86, Theorem 2.7]

2= ()l < (N, p) (s(2) + s(2)?) (7)
where s(z) is the residual

s(z): = ” (=Nz - p,—2,27(Nz + p))+‘ , (8)
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and

(N, p):= \/kv(N,p) 7(N,p) (9)

v(N,p):= sesin, 11,2, Nz + p| (10)
( ”NTu—i-v—-—dﬁvi-N%zL:l\
(u,v,€) 20
r(N,p)i= sup {|lu,v,é,z|| Columns of IN' I d NZ], (11)
(u,v,€,2) corresponding to nonzero

elements of (u,v, z,¢),
are linearly independent

\ J

If the LCP (5) has some nondegenerate solution £, that is 24+ N2+ p > 0, then the bound
(7) simplifies to [Man90a, Theorem 2.6]

Iz — 2(2)|| < o(NV, p)s(2), (12)

with the term v(N,p) deleted from (9), and the terms Nzz and Nz deleted from (11).

It was noted in [MS86, Example 2.9] that the square root term in the bound (7) is
essential and cannot be dispensed with even locally.

In order to apply the above bounds to the monotone affine variational inequality problem

(1) we state an equivalent characterization of (1) as a linear complementarity problem in
IR™*™ as follows.

Proposition 2 A point  in IR® solves the affine variational inequality (1) if and only if Z
and some @ in IR™ solve the following linear complementarity problem

e[ ] ft] e o

Proof An 7 is a solution of (1) if and only if Z € arg Hél)r(l 2T(MZ + q). This is so if and

only if Z and some # satisfy the Karush-Kuhn-Tucker conditions (13) for the linear program
I’I(lEl]I{l T (MZ + q). 0

3 Error Bounds for the Monotone Affine Variational
Inequality

We first derive the global error bounds (14) and (32) below, for the monotone variational

inequality (1), by using the error bounds (7) and (12) on the equivalent LCP formulation
(13) of (1).

Theorem 3 (Global error bound for monotone affine variational inequalities) Let M be
positive semidefinite, v > 0, let (1) be solvable and let x be any given point in IR™. Suppose
one of the following three conditions holds:



(t) v>0, or
(ii) Mz — ATu+q >0 for some u >0, or
(ii%)

Ar >0

r>0 >::-=>'r:0
(M+M%yr=0

Then there exists a solution T(z) of (1) such that
1
lz — 2(z)|| < 7(M, A, q,b)(t(z) + i(2)?) + [ly(z) — 2|
where

y(z) € argmin(y — )T (My + ¢) + 1 ly —=|”,
veX 2

to)i= | (M + 417 (w(2) = 2), ~y(@) M + 211" (e) - ), |

(M, A,q,b):=0o(N,p)
and o is defined in (9) with

AT
N:{ A//i, 64 ],pz[_qb],k:n+m

(18)

Remark Condition (iii) of the theorem is equivalent to every eigenvector r of M + M7
corresponding to a zero eigenvalue which satisfies Ar > 0 having at least one negative

component.

Proof Note first that (15) has a solution. This is trivial under assumption (i), by strong
convexity and X # 0. For the case when vy = 0, this follows from the facts that X is

nonempty and the dual quadratic program [Man69], given by

rrz}%x{—-yT.My ~qfz + b’Tu’ (M+ My —MTc— ATu+q¢>0,u> O}

(19)

is feasible and hence the convex quadratic objective of (15) is bounded from below. That
the dual problem (19) is feasible follows from assumption (ii) by taking y = « in (19), or

from assumption (iii) since this implies

(M + MT)r =0,Ar > 0,0 # r > 0 has no solution r

and hence by Tucker’s Theorem [Man69, Theorem 2.4.3] there exist (y,u) such that

(M +MT)y — ATu>0,u >0



By multiplying this (y,u) by sufficiently large A > 0 it follows that
(M+ M)Ay — Mz — ATdu+¢> 0, u >0

and hence (\y, Au) is feasible for (19).
It now follows from duality [Man69, Theorem 8.2.4] that if y(z) is a solution of the convex
quadratic program (15), then y(z) and some u(z) must also solve the dual quadratic program
maxumze —yTMy+ 2|y - zl|> =17 (y — z) — ¢Tz + bl

T T T (20)
subjectto (M+MYy+y(y—2z)—-Mz—Au+q=20,u>0

and

(y(z) — 2)T(My(z) + q) = —y(2)"My() — yy(2)" (y(2) — 2) — "z + bTu(z)  (21)
We now apply the error bound, Theorem 1, to the linear complementarity problem (13)

(which is equivalent to (1)) at the point z = [ Zgg ] with N and p as defined in (18). We
note first that s(z) as defined by (8) is

= |([ 1| [ e s ottt

—u(z .
(22)
From the equality of (21) we have that
y(e)" My(z) + ¢"y(2) — b7 u(z) = —(y(z) — 2)"[M + 71]y(z) (23)
From the feasibility of y(z), u(z) for (20) we get
— My(z) + ATu(z) — ¢ < [M + 1) (y(2) — ) (24)

Using (23), (24), y(z) > 0, u(z) > 0 and Ay(z) > b in (22) we obtain (upon invoking the
monotonicity of the Euclidean norm)

s(2) < | (1M + 417 (4(0) - 2, 9@ M + 11 (4(@) - =)

where the last equality follows from the definition (16) of ¢(z). Using the expression (25) in
(7) we obtain that there exists

N = t(x) (25)

A
<
=
o~
=
=
~—
~~
o~
—~~
~——
—~
~—

S

) (26)




However, since
|z = 2(2)|| < llz —y(@)]| + lly(z) — ()] (27)
it follows that )
|z — &(2)|| < 7(M, A, q,b)(t(z) + t(z)?) + |z — y(z)|

which gives the required result upon noting that Z(z) solves (1). 0

We point out the difference between the two cases v > 0 and v = 0. In the former
case, the error bound (14) would seem to be weaker than the corresponding one for v = 0.
However, if z € X, it is easy to see that y(z) = z when v > 0, so the corresponding error
bound is zero on the solution set. There is no such guarantee for the case v = 0, since there
may be other solutions to (15). The following lemma and example make this clearer.

Lemma 4 Suppose that M is positive semidefinite and Z is in the solution set X of (1). Let

Y::{meX!EluZO,M:B—i—q---ATuZ0,(M+MT)(:E—-5E)=0,(.M:’é+q)T(a:—:i):O},

Z: = argmin(y — 2)T(My + q)
veX

and B
N:={z|M(z—-z)=0}

Then X CY C Z, ZNN C X and hence
XOAN=YNN=ZN
Proof In order to show that X C Y, suppose § € X. Then
(z—9)"(My+q)>0,Vze X
The fact that M is positive semidefinite and T € X gives
@ -9 (Mz+q)2(z~7)"(Mj+q) 20

Since z € X, it follows that (z — z)T(Mz +q) > 0 for all z € X, so § € X implies
(7 —z)T(Mz + q) > 0 and hence

(7 — 2)7(Mz + q) = (28)
Furthermore,
0 < (F—2)"M(y-2)
= (F-2)"(Mj+q)— (7 -2)"(Mz+q)
(7 —2)"(My+q)

IA
o



the second equality following from (28) and the final inequality following from the fact that
7 € X. Hence, (§ —2)TM(§ — z) =0, giving

(M + MT)(g - 7) =0

The proof that X C Y is complete if we can exhibit a u > 0 such that Mg + ¢ > ATu.
However, by Proposition 2, 7 € X implies that § and some @ solve (13), which by feasibility
of § and @ shows

Mg—ATa4+¢>0,a>0

as required.

We now show ¥ C Z. It is easy to see that Z € Z and so it follows from the charac-
terization of the solution set of a convex quadratic program given in [Man88, Corollary 1]
that

Z:{meXl(M+MT)(a;—a‘c)=O,(M:E+q)T(:c—:E):0} (29)

The inclusion Y C Z is now obvious.
To establish the last conclusions of the lemma, let z € Z. By the definition of Z, z and
some u must satisfy the following Karush-Kuhn-Tucker optimality conditions

(M+MT):c+q—~MTa'c—~ATu20 Az -b>0
eT(M+ Mz +qg— M7z~ ATu) =0 uT(Az—-b)=0 (30)
x>0 u>0

Hence, if z € Z N N, it follows from (29) that M7 (z —z) = 0 and consequently (30) becomes
(13) and so z solves (1), that is z € X. This gives the desired inclusion Z\N C X. Since
we already have that X C Y C Z, it follows that

XNN=YNN=ZNN
O

The following example from [MS86] shows that the inclusions in Lemma 4 may be strict,
even for the case when the linear complementarity problem (13) associated with (1) has a
nondegenerate solution.

Example 5
1 0 -1 1 — 2
| 55 e[ e
Then X = {(1,1)}, Y = {(z,1)|2>1} and Z = {(z,1)| = > 0}.
If the monotone affine variational inequality (1) is nondegenerate in the sense that the
corresponding LCP (13) has some nondegenerate solution, then by using the corresponding

error bound (12) of Theorem (1), the error bound (14) given above simplifies as follows.
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Theorem 6 (Error bound for nondegenerate monotone affine variational inequality) Let M
be positive semidefinite, v > 0 and let (1) be solvable with & being some nondegenerate
solution of (1), that is & and a corresponding @ solve (13) such that

g+ Mé—-ATa4+¢>0,a+A2—-5>0 (31)
Suppose one of the following three conditions holds:

(i) v>0, or
(ii) Mz — ATu+ ¢ > 0 for some u >0, or
(ii)

Ar >0

r>0 >::::>r:0
(M+MT)yr=0

Then there exists a solution Z(z) of (1) such that

Iz~ 2(@)] < (M, 4,4, ¢(z) + (=) ~ <] (32)
where .
y(@) € argmin(y — =) (My + )+ 21y = ol
yeX
)= | (1M + 91 @) = ), =) + 20w = ),
and ) .
[ o —de], =1
(1,0,€) 2 0
r(M, A,q,b): = VE sup { [lu,v,¢]| | Cotumns of V0 I d,
(u0,) corresponding to nonzero

elements of (u,v,§),
are linearly independent

with N and p and k defined by (18).

Remark Theorems 3 and 6 can be specialized to the monotone linear complementarity prob-
lem by taking X to be the nonnegative orthant in IR™. In this case, y(z) as defined by (3)
simplifies to

y(z) € argmin(y — ) (My + ) + 5 Iy - =
y20

We now derive a strong upper semicontinuity result for the nondegenerate monotone
affine variational inequality problem based on a similar result for the monotone linear com-
plementarity problem [FM89].



Theorem 7 (Strong upper semicontinuity of nondegenerate monotone affine variational in-
equalities) Let M be positive semidefinite and let (1) be solvable with & being some nonde-
generate solution of (1), that is & and a corresponding @ solve (13) and such that (31) holds.
Let {z'} be a sequence in X converging to an T € X such that there exist {u'} satisfying

Mzt — ATui 4+ ¢>0,u' >0 (33)
Then for sufficiently large i, y* € X, where (y',u') solve
Iglin (M + MT)z' 4 ¢)Ty — bTul My — ATu+¢>0,Ay > b,y,u > O} (34)
Proof By Corollary 14 of [FM89], there exists an 7, such that for all 7 > ¢

a,rgmin{((M-i~ MDYz 4 ¢)Ty — bTu‘ My —ATu+q¢>0,Ay > b,y,u> 0} C SOL(N, p)
yu

where SOL(N,p) is the solution set of (13). That is any solution of a linearization of the
quadratic program

rg}iun{yTMy+qu_ bTui My — ATu+q¢>0,Ay > by, u> O} (35)

associated with the LCP (13) around (z¢,u') yields an exact solution of (13) and hence zt is
an exact solution of (1). 0

Remark It is interesting to note that since the quadratic program (35) is linear in u, the
sequence {u‘} is not needed in solving the linearization (34). From a practical point of
view, this leads to finite termination of any convergent algorithm for solving (1) in the
nondegenerate case by periodically solving the linear program of (34).

4 Conclusion

We have presented error bounds for the monotone affine variational inequality problem,
both for the degenerate and nondegenerate cases. These bounds may potentially be useful
in constructing an iterative quadratic programming algorithm for solving affine variational
inequalities. We have also derived a strong upper semicontinuity results for the nondegerate
monotone affine variational inequality problem which may be useful for finitely terminating
any convergent algorithm by periodically solving a linear program.
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