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Abstract

Three features common to modern programming languages are popular because they simplify the
development of efficient programs. The first, the assignment statement, allows the components of a data
structure to be redefined as a computation progresses. The second, dynamic allocation, allows memory for
data structures to be acquired, destroyed, and reused at need. The third, the reference (i.e., pointer) vari-
able, allows multiple data structures to share a common substructure. These three features, unfortunately,
make it difficult to estimate program behavior at compile-time. Such estimates play a crucial role in the
_ (automatic) improvement, modification, and reuse of existing software.

The first part of this thesis develops a family of algorithms that characterize a program’s data depen-
dences, with respect to an example structured language with assignment statements, reference variables,
dynamic allocation, and procedures. Intuitively, a data dependence p —>; ¢ asserts that a statement ¢
manipulates a data object that was first manipulated by p. The analyses developed here estimate a
program’s data dependences, with respect to the example language’s implementation semantics and an
arbitrary set of initial stores. (This claim is established with the aid of Abstract Interpretation, a formalism
for showing such analyses correct.) These algorithms are also flexible: they return a safe estimate of a
program’s dependences with respect to several common strategies for estimating program behavior (i.e.,
for using a bounded set of approximate states to estimate the unbounded set of states that a program might
generate). These strategies for estimating program behavior are surveyed and critiqued, and extensions to
one of these techniques, known as k-limiting, are proposed.

The second part of this thesis concerns the safety of using dependences to reason about program
behavior. Earlier authors have shown that specific types of dependence-based representations (i.e.,
dependence-depicting graphs) model specific facts about program execution. None of these results, how-
ever, apply to languages with reference variables, dynamic allocation, and procedures. This thesis proves
that pointer-language programs that have isomorphic dependence-based representations are behaviorally
equivalent.






ees
- I —

Table of Contents

3. DEFINING DEPENDENCE ........oconienitsiesissesessssssssmsssssssssissssssssssssossssssssnssssssassssrssassssnses
3.1. An Informal Introduction to the Notion of Dependence ........c.rmmisieecvesecsennesnannas

3.2. Definitions of Dependence for Language H ........ccvicnniecnnimnsiisisssonsssssensssosenses

3.2.1. CONrol AEPENAENCE ......ucvcerrreerarncerseirssconsseesssssmsenssnsssssssassssasesssssrsesssrsssissusssosssasassansons
3.2.2. Data dEPENACIICE ....c.ovoerveerrecrereererereneeseesssisressieeessssasssssssasssessssssesssssnesssnssssanassssasanassasass

3.3. Refining the Notion of Data DEpendence ........ccieveceeneseinesirensisessescsssnssssassssassssonsssessssssesss
3.4. Additional Background on the Notion of Dependence .........emienioimenesmcmnennn.

3.4.1. Historical DACKZTOUNT ....cccvviecricereceireereseenesnssneressssnesessenssrsssssesssnsssnssnessennossssassnsssassases
3.4.2. Def-use chains, support sets, and dOMINANCE .......cccocevcrirriesecsisisnssisstssessssssnsanssnsonssosse
343, CONMICIS .uivirrciiniininiaeiinisiesiieissiisss st asstessssisisssssssossensssesssrasss sesassssssssassnassasease
3.4.4. Logic-based and denotational notions of dependence .........ceecverenrreseernsneinssnonennas
3.4.5. Semantic dependence ............. reersrssensnesssanssrens

3.4.6. IMperative dePENAENCE ......ccevvirvrnircsnseniossesisssssusessosisesssseressesssssasssssssssassesasssessassas
3.4.7. Weak control dependence .......coeeirnreincersinninneni et ssssssssessssssavesasssesass
3.4.8. Approximate notions of data depPendence .......cccvvnmsmiersnserenreenisssniseinssasanssesessesserens

3.4.9. Dependences and intended BERaVIOT .....cccveereimsinsneniinesnenicnnir s ssessssssansssssessons
3.4.10. Distance of 2 dePEnAENCE .......ccoverrerrvreeiiecninniintn e issessssss s sesasssarssssesssenes
3.4.11. Declaration dEPENUENCE ......cveceivcriisisrisissessimesmsnisisssseasisssnasessossssasssssssosssssseressassens

3.4.12. Limitations Of AEPENdENCE ......c.ceeeerereerreemrcnisisesissstasssassiisssssessessessssssrossossassasces

4. USING AN INSTRUMENTED SEMANTICS TO CHARACTERIZE DATA DEPEN-

4.1. Using Labels to Characterize DEPENAENCE ......ow.orsrereseressmessosssessssssssssessessssncessessesssssesssess

4.2. An Instrumented Semantics for Characterizing Flow Dependence ........ccnerermeoniicencenns
4.3. Relation t0 PrevioUs WOTK ......ccceercnnnnnninnisisnms s osesssssssssssmssssesssssssassnsssssssess
5. AN APPROXIMATION SEMANTICS FOR ANALYZING FLOW DEPENDENCE ............

5.1. An Approximation Semantics for Dependence COMPULALION ........ccoiinvimnrsrseseisernrssasenss
5.1.1. The domain Of abSITACE SLAES .....ccevererreresussseermmisesinesiisis et esests s s besassesenssanssasns
5.1.2. An approximate interpretation fOr H ... sesraesssns
5.2. Proving the Correctness of the Approximate INterpretation .......c.ccevvemeiciveecrennsisssnsessenes
5.2.1. AbSIract INtEIPrELALION .......cccovvsrseseracsessssensrssssmsessincsmsesessenssessasessssissssessassossesnsnsnsassseses

5.2.2. A static semantics for characterizing flow dependence .........coevierserensienesennnneeees

35
35
39
42
44
45
45
48
51
53
53



5.2.3. Relating MS g 10 MA 9

5.2.4. Relating dependences w.r.t. MA 4 and M %

iy -

........................................................................................

...............................................................

5.3. Using the Determinate Selector Property to Sharpen the IRLErpretation .......oiieniverens

5.4. Related WOrK ....cooveueenrceineieinenne

........................................................................................

5.4.1. Related abstraction LeChIIQUES ....eeceecrcrriniiiiisesisrssmsssstsenssssesnessnsissssisssssssssenssssesssssnassas

5.4.2. Related interpretations ...........

5.4.3. Related proofs of correcmess

........................................................................................

........................................................................................

5.4.4. Other graph-based store abstraction teChNIQUES ......ccorveeiriirsecrssisrsssssessnesencsisisasnieees

5.4.5. Other graph-based state abstraction tEChNIQUES .......cvverrsssnsstccnasnsienincnisnsessnens

5.4.6. Other state abstraction tEChMIQUES ....c.oecievresrinioniieineimsiniesssnssessssnssssisssssssnsenssnssnessae

5.4.7. Other interpretations ..............

6. STRATEGIES FOR ESTIMATING A
6.1. Abstracting Labeled Stores ..........
6.1.1. Partitioning strategies ............
6.1.2. Reduction strategies .............

........................................................................................

TATES ..ooeeeiereccecrenmsnvsnansseissassasnacnnn
........................................................................................
........................................................................................

........................................................................................

6.2. Abstracting Sets of Labeled SIOTES .....ccoruvuerieeeremrenissismatarisnsssssssssisssenssssssssssassssassanseesacss

6.3. Abstracting Occurrence Strings ...
6.4. Abstracting Sets of States .............
6.5. The Cost of Program Analysis .....

6.6. Other Related Work .....cccveeeceenenn.

........................................................................................

........................................................................................

........................................................................................

........................................................................................

7. DO DEPENDENCES CAPTURE A POINTER PROGRAM'’S BEHAVIOR? .......ccccovuuiuceens
7.1. The Use of Dependence-Based Representations in Program Analysis .......c.eeeesesesniscnisenss

7.2. A Dbr for Language H .....ccoecenene

........................................................................................

7.3. A Basis for Reasoning about Pointer-Language Programs ........ceececvinsmsiesninssnninsesiones

7.3.1.Language § ....cocerrvecvencrennns

........................................................................................

7.3.2. Reducing pointer-language programs to pointer-free Programs .........uevesieessessssnnes

7.3.3. An equivalence lemma for language 5 .......ovurereuceninesccesescsinmiininnens st s

7.3.4. Using the reduction t0 Map frOm H 10 S ..eceveuerecierscsnisesensiseseienstnssensinscssnnssssasassasiacas

7.3.5. Flattening programs in Ianguage H ......cecceceemsmssssessssssessissssssassssssnnssstensssnssssssssasssesess

7.3.6. The Pointer-Language Equivalence TREOTEM ......cooeorcerenieinonsesiissessennisnssssssssesens

7.4. Practical Implications of the Pointer-Language Equivalence Theorem .........ccocoeuvmeienrnnines

TA4.1. Freelists ....ovnmrenenvnencenences
7.4.2. Procedure Activation Records
743, AOIMS ..oovicverirnnrinneiseesnsenaens
7.5. Related Work .vvvivvoncnniniinnninnnens
7.5.1. A brief history of dbrs ...........
7.5.1.1. The early history of dbrs

........................................................................................

.......................................................................................

........................................................................................

........................................................................................

........................................................................................

........................................................................................

53
56
57
57
58
58
59

61
62
62
65
65

72
76
78
79
79
81
82
83
85
88
94
95
98
101
106
110
111
111
112
112
114
114
114




7.5.1.2. Program dependence ZraphS ......oceevieersresmmsmssuersssesssiosssssssissssssisnss sessasassssessasass

7.5.1.3. Def-order-dependence-free dbrs .......mereieinessimmsisininincnnnss e
7.5.1.4. INEIPTELADIE dBFS .......ovveeeeeeceeccetirvretrrsrsrsicsnsssssssssssstssessans st s s sss sas s asns

7.5.1.5. System dependence graphs ........occmsernrsenisnsencnsessienin s

7.5.2. Previous soundness theorems fOI dBIS .. cicnecccrinsiisiissimenmeessnnessssmssssemiscasensss
7.6. The Limitations Of the HSAL ......ccceeeeecessesvismreirissrmonmississssssssnssensssssasasasssssssissssestassssnssssssncns

7.6.1. ¢ nodes vs. def-order depENdENCES ..oceveiiimreiricnnnsestsesisssisiensisnsn e sacanes
7.6.2. Why hsdgs aren’t encapsulated dbrs .......ccevevcennnne rreererreretaseestenenresenreesaesrsrtas
7.6.3. Why hsdgs have one initial definition and no final use Vertices .........cuvueeeeeerrasrunss
8. A FEW CONCLUDING REMARKS .....ccovviirivmmenrinirensniriisesnmsmsssmssmisesssssssssssassistsssisnesssssnses
9. ACKNOWLEDGMENTS AND DEDICATIONS ....ucciimmniincnmsnsnssismsesssssesessacnmssssssssassasens
Appendix 1. A Semantics for LANZUAZE H .....ccuveersesriseesisessnemssssesimscssmanimisssinssss s ssnacasscsssesns

Appendix 2. An Instrumented Semantics for Language H ........ocemcinimimninssressnsssississssissescesenss

Appendix 3. An Approximation Semantics for Language H .........ocummmmmsesssinmssisssienssenscsses

Appendix 4. Abstraction and Subsumption REIations .......c.eceeevircrscmnciimiisinssinsesssssnsessesensiiass

Appendix 5. The MONOONICILY Of @VAIPE g ...vevuereereeriserenenssisesisiinstssnssississ s ssassasens

Appendix 6. The Congruence of evalPt; and eVaAIPL 4 ...cceevcviviunenninerninemissssesssissesessesessnsieine

Appendix 7. A Semantics for LANGUAZE S ....ccvveerrieeismensiisrsietitsinitsnssnssns s cssnins

Appendix 8. Definition Of 8N SPAE .....cccvveerresrimmssrmsesses sttt s e

References .....

..................................................................................................................................

TNNAEX OF AULNOTS 1.vvvueeereecreerssereressssssessassssessasssnnsessesasasesssssssss ssssenssssusssrsssssssasassnnansesssnsassssssssssonsssssss

Index of Terms and DEfMIHONS ....coveeierrrresreeessrerecsssseesssesssssssessecsssesssnesssresasssnessssonsas sessnensssssssssssesns

List of Figures

.................................................................................................................................

116
117
119
120
123
125
125
127
128
129
132
134
139
143
149
153
158
162,
164
165
179
183
190






1. INTRODUCTION

The proof of a system’s value is in its existence. —A. Perlis [Per82]

Classic imperative programming languages have important weaknesses—limitations and missing
features that make programs unnecessarily difficult to develop and understand. Some of these weaknesses
are described in an essay by John Backus [Bac78]. In his 1977 Turing Award lecture, Backus argues that a
good programming language should provide high-level operations on aggregate types. Backus observes
that high-level operators like Lisp’s map functionals allow users to develop succinct and clear statements
of algorithms. Backus also argues that languages should minimize the use of operators with side effects,
since these operators make it more difficult to assess a computation’s net effect. Conventional, imperative
languages like FORTRAN are criticized for making an operator that violates both precepts, the scalar
assignment statement, the basis of all computation.

Some authorities believe that these classic programming languages should simply be abandoned.
Backus, for example, proposed that future research into programming languages be limited to what are now
called declarative languages. A declarative language is a language that in theory allows a programmer 0
specify what a program computes, without having to specify a computation’s intermediate steps. It is
worth noting that declarative paradigms such as Backus’s functional programming [Bac78] have evolved to
where they are sometimes credible alternatives to imperative languages (cf. [Hud88]). Proponents of elim-
inating imperative languages, however, usually ignore the negative consequences of abandoning the user
community’s massive investment in imperative languages and software.

Other, more conservative approaches have been developed for coping with the flaws of imperative
languages. One such approach emphasizes the use of utilities that make programs easier to manipulate.
These utilities use information about a language’s semantics to make judgments about how programs
evaluate. Examples of such utilities include

* optimizing compilers [Kuc81], which automatically improve program efficiency;

* parallelizing compilers [Kuc81], which automatically transform programs into parallel programs;

* program-comparison utilities [(Hor90], which use semantic criteria to identify differences between
variants of a program; !

* program-integration utilities [Hor89], which merge multiple versions of a base program b into a sin-
gle program that preserves all non-conflicting changes to b; and

*  flowback debuggers [Mil88], which use information about a program’s form to minimize the size of
a stored trace.

A crucial component of many such utilities is a dependence-based representation of a program’s seman-
tics. A dependence is an assertion that one statement might affect how a second statement evaluates. A
dependence-based representation (dbr) is a graph that summarizes a program’s dependences. A dbr for a

! Semantic program comparators can be distinguished from text-based comparators like diff [Hun76], which, lacking information about
a program’s meaning, make imprecise—and emroneocus—judgments about how programs differ (cf. [Hor89)).
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program P consists of a set of vertices that represent P’s statements, and a set of labeled edges that
represent possible dependences between a program’s statements. An example dbr is depicted in Figure
1.1

Dbrs are popular because they simplify program analysis. A dbr, once constructed, gives a useful esti-
mate of a program’s threads of computation—one that is reasonably precise and easily manipulated. One
can, for example, determine whether a statement p might affect the evaluation of statement g by determin-
ing whether a program’s dbr contains a path from p to q. In this manner, dbrs expose a program’s potential
parallelism, and simplify the task of assessing program behavior.

Dbrs have three additional characteristics that make them well-suited to program analysis:

] Dbrs are flexible. The kinds of dependences that are represented in a dbr can be adjusted according
to that dbr’s intended use.

® Dbrs are tunable. An algorithm for computing a program’s dependences can be adjusted according to
an analysis’s available resources. Coarse (but fast) analyses yield rough but safe estimates of a
program’s dependences. Slower analyses yield dbrs that are no worse—and probably better—
estimates of program evaluation. Dbrs can also be tuned by hand. Utilities such as PTOOL [Ali86]
and Curare [Lar89] allow their users to specify that certain dependences cannot arise.

® The semantics of certain kinds of dbrs are well understood. For several example languages, it has
been proven that dbrs provide a sound characterization of a program’s meaning,

From the late 1960’s through the mid 1980’s dbrs were used primarily for parallelizing FORTRAN pro-
grams. An early paper by Ramamoorthy and Gonzalez [Gon69] introduces graph-based techniques for

program
sum:= 0
i=1
while i<11 do
sum := sum+i
1:=1+1
od
end (sumj

Key: ==t> control dependence
---== def-order dependence
+— loop-carried flow dependence
——> loop-independent flow dependence

Figure 1.1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable SUM.
The figure also shows a type of dependence-based representation for this program known as a pdg. (Dependences are
defined in Chapter 3, and pdgs in Chapter 7.)
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parallelizing FORTRAN. Kuck, Muraoka, and Chen, who cite the Ramamoorthy paper, were among the
first to recognize the importance of distinguishing among different types of data dependence [Kuc72].
Kuck et. al. later developed many of the fundamental dbr-based algorithms for restructuring FORTRAN
[Pad79,Kuc81]. Other important contributions that were made during the initial period of dbr research
include work by researchers at Rice University (e.g., [Al184]), Michigan Tech (e.g., [Ot84]), and IBM
(e.g., [Fer87)).

Current research on dbrs addresses other languages, other problems, and other concerns. New kinds of
dbrs have been developed that support languages with while loops and procedures [Hor89, Hor90a]. Oth-
ers have also been developed for studying specific aspects of program behavior (e.g.,
[Cyt86, Hor89, Yan90]). Another relatively recent development is the increased emphasis on understand-
ing the semantics of dbrs (¢f. [Rep89, Ram89, S¢l89]).

This thesis represents another step in the continuing search for a more general theory of dbrs. It is con-
cerned with the computation and characterization of dbrs for pointer languages—imperative languages
that support heap-allocated storage, reference variables, and assignment statements that overwrite the con-
tents of reference variables. There are four concemns that motivate the work reported in this thesis:

° Heap allocation, reference variables, and assignment statements are useful constructs: they simplify
the task of programming with shared and circular structures, and with structures whose size is not
known until run-time.

® Dbrs for programs that use pointers should provide a reasonable estimate of how such programs
might evaluate. Making worst-case assumptions about the use of pointers can yield estimates of pro-
gram behavior that are too coarse to be useful [Lan90].

° The semantics of pointer-language dbrs had not been investigated prior to the inception of this
research.

® Pointer languages are a challenging area of research. Destructive pointer updating complicates the
analysis of pointer languages by forcing the recomputation of aliases at every assignment statement.
Allocation complicates dependence analysis by forcing analyses to construct finite approximations to
potentially infinite sets of memory configurations. Finally, proofs about the semantics of dbrs must
account for how programs manipulate references and allocate storage.

The remaining seven chapters of the thesis can be divided into four parts. Chapter 2 describes an exam-
ple pointer language. Chapters 3 through 6 develop algorithms for computing a program’s dependences
w.r.t. this example language. Chapter 7 defines an example dbr for this language, and argues that this dbr
characterizes a program’s meaning. Chapter 8 then summarizes the work presented in presented in the
preceding five chapters. The following is a detailed synopsis of the presentation.

PartI. An Example Pointer Language

Chapter 2 defines the model language that forms the basis of this study. This language, called
language #; supports heap-allocated storage, reference variables, lexically-scoped recursive procedures,
and structure declarations. The semantics for language %, M., gives an operational characterization of
a program’s meaning,



PartII. Computing Data Dependences for Pointer Programs

Chapters 3 through 6 develop algorithms for computing a pointer program’s data dependences. They
also prove that the dependences computed by these algorithms are a safe estimate of (i.e., a superset of)
the dependences that a program exhibits w.r.t. M.

Chapter 3 defines a program’s dependences w.r.t. My. The chapter first explains the concept of
dependence. Chapter 3 then uses #{’s definition to formalize the standard notions of control and data
dependence, and to define a refinement of the notion of data dependence. This refinement, the carriers
of a dependence, characterizes how a data dependence interacts with a program’s loops and procedures.

Chapter 4 develops new definitions of data dependence that simplify the task of dependence compu-
wation. In Chapter 3, the notion of a data dependence is defined as function of the sequence of states
that computations generate. In Chapter 4, data dependence is redefined as a function of the individual
states that computations generate. These new definitions of dependence are based on a second seman-
tics for language # This semantics, MI,, is an extension of M, that labels objects in stores with
values that characterize a computation’s history. These labels, for example, identify those statements
that might have read or written the various structures and references in a program’s stores. Chapter 4
shows that the new definitions of dependence w.r.t. Ml are equivalent to the definitions of dependence
w.r.t. My given in Chapter 3.

Chapter 5 uses Ml to develop algorithms for estimating a program’s dependences. These algo-
rithms first estimate the set of all states that a computation might generate w.r.t. MI,. This set of states
is then used to estimate the set of data dependences that a computation might exhibit w.r.t. MI,. The
semantics that generates these estimates of program behavior, MA, is an extension of M, that uses
abstract (i.e., “approximate”) stores to obtain a conservative, terminating characterization of a
program’s behavior. The claim that MA, can be used to estimate a program’s dependences w.r.t. ML,
is proved with a theoretical framework known as Abstract Interpretation [Cou77]. This assertion that
MA,’s characterization of dependence is safe w.r.t. MI,’s, when combined with the assertion that
MI,, and M,, give equivalent characterizations of a program’s dependences, implies that these algo-
rithms compute a proper superset of a program’s dependences w.r.t. My,

The definition of MA,, given in Chapter 5 does not specify how termination is to be achieved; it
merely assumes that an analysis has been supplied with an operator that, intuitively, limits the number
of distinct states that an analysis can return. Chapter 6 explores possible definitions for this operator.
The greater part of Chapter 6 is devoted to a comparison of techniques for estimating stores. Chapter 6
also proposes a modified version of a standard store-limiting technique known as k-limiting, and argues
that the modified -limiting operator can be used to obtain space-efficient abstract stores.

PartIII. A Dependence-Based Representation for Pointer Programs

Chapter 7 argues that a pointer program’s dependences can be used to reason about its meaning.
This chapter first defines an example dependence-based representation for language #. This dbr, the
heap-language system dependence graph (hsdg) is related to an earlier dbr for languages with pro-
cedures, the system dependence graph (sdg). Chapter 7 next argues that programs with isomorphic
hsdgs have equivalent meanings. Chapter 7 then concludes with a critique of this dbr, and suggests
avenues for further research.




PartIV. Conclusions

Chapter 8 summarizes the work presented in this thesis. It also lists open problems, and discusses
possible extensions to the framework developed in Part II.

The author has tried to simplify the reader’s task in the following five ways. Chapters 3 through 7 are
prefaced with short introductions that sketch these chapters’ contributions to the literature. Comparisons
with related work are typically relegated to the end of each chapter; the lone exception is Chapter 6, which
can be regarded as a gloss on Chapter 5. Semantic definitions and the proofs of certain low-level lemmas
have been consigned to appendices. The proof of another crucial resuit, the Pointer-Language Equivalence
Theorem (cf. §7.3), is sketched before being given in detail. Finally, there are two special indices at the
back of the thesis: the first lists authors, and the second lists definition sites for special terms—technical
terms that appear in bold italics (names of lemmas, section headings, and terms in the concluding chapter
excepted).

OTHER REMARKS ABOUT THE THESIS

Backus described two deficiencies of common imperative languages: their reliance on side effects, and
their lack of support for aggregate data structures. This thesis is concerned with one specific approach for
dealing with the first of these deficiencies. The data structure that is at the heart of this approach, the dbr,
characterizes one kind of assertion about program behavior—-the dependence. Approaches to understand-
ing how programs evaluate that use other facts about program behavior (e.g., [Ger75, Par83]) are beyond
the scope of this thesis. Ideas for ameliorating the aggregate problem—e.g., extensions of FORTRAN that
support APL.-like matrix primitives [Ame89]—are also beyond the scope of the thesis.



2. AN EXAMPLE LANGUAGE WITH DYNAMIC ALLOCATION

Be careful in the beginning, and you have no trouble in the end. —the I Ching, cited in [Cle88]

This thesis is concerned with languages that support dynamic allocation. Dynamic allocation is a strategy
for managing program memory that sets aside space for structures “on demand”—i.e., when certain opera-
tors, called allocation operators, are evaluated. These structures persist until they are no longer needed or
the computation terminates. Dynamic allocation is one of three common strategies for managing program
memory. The other two strategies, static allocation and stack allocation, differ from dynamic allocation—
and from each other—according to how structures are created and destroyed. Each of these strategies has
certain advantages. Dynamic allocation simplifies the task of programming with structures whose size and
useful lifetime are unknown at compile-time.

Dynamic allocation is typically implemented by providing each program with a pool of auxiliary
memory locations known as the heap. Allocation operators acquire structures from the heap by

® obtaining unused locations from the heap’s set of free locations (i.e., its Sreelist);

) removing these locations from the freelist; and

e (optionally) tagging the set of newly-acquired locations with a fype that identifies these locations as a
single, logical entity.

Other operators are then used to access and update heap-allocated structures. Some languages (e.g., Pascal
and C) also support an explicit deallocation operator—an operator that returns a structure to a freelist (i.e.,
when its useful lifetime ends). Other languages, such as Lisp and CLU, automatically return structures that
can no longer be accessed to the freelist. This process of automatically retrieving inaccessible locations
from the store is known as garbage collection.

The paragraphs that follow define an example language, #£ that exhibits properties of languages that sup-
port dynamic allocation. Language #{is a structured, first-order language that provides user-defined types;
non-nested, recursive procedures; statically-scoped variable declarations; an allocation operator; and a
pointer-updating assignment statement.

Figure 2.1 defines # s abstract syntax. A program in language #{is a two-part object that consists of an
optional set of structure declarations, followed by a set of procedure declarations. Structure declarations
define a program’s allocatable structures. Procedure declarations define a program’s executable code. An
example program is depicted in Figure 2.2.

Appendix 1 gives the formal definition of language #{’s meaning function, M,. Semantics M, is an
operational, state-transition semantics for language #—the sort of semantics that could be used to imple-
ment A, The use of an operational semantics allows one to reason about the sequence of intermediate
states that a computation generates (§3.2.2).

A program in language #{is interpreted as a partial function from an input store to an output store. Intui-
tively, a store is a directed labeled graph that represents memory. More formally, a store is a map that
assigns a unique address (i.e., element of Loc) to each of a program’s structures. A structure § consists of a
type; an atom, which identifies s’s value (if s is atomic); and a map m that names s’s successors. This map
m maps selectors such as hd and ¢ to elements of Loc . Every selector that a structure of type s does not




Program — {Structs;} {Procs} Stmz —» while Cond do Stmts od

° t Stmt Ise Stmu.
Structs  — Struct {; Struct} - If Cond then Stms {else Stmis} fi

Struct - struct TYPE s <Sels > > SelExp = Exp
Sels - SEL {, SEL}" —» call IDENT ( SelExps )
- return
Procs - Proc {; Proc) Cond - typeOf (SelExp) Is TYPE
Proc — Recproc
s Stdproc ~— SelExp Eq SelExp
— SelExp > SelExp
Recproc  —s recursive Stdprocs endrec — SelExp &= SelExp
Stdprocs — Stdproc (; Stdproc)” > Sellxp < SelExp
Stdproc  —~» procedure Stdp end — not Cond
Stdp — Proc_hd {Local}} Stmits Exp — new (TYPE )
Proc_hd — IDENT ( {/dents} ) — PRIMOP( {SimplExps} )
Local  —>local Idents - SimplExp

ldenss  —IDENT {, IDENT) SimplExps — SimplExp {, SimplExp)*
SimplExp - ATOM | SelExp

SelExps ~ — SelExp {, SelExp)”
SelExp — IDENT{.SEL}"

Stmts  — Stmt {; Stmu)®

SEL is a set of alphanumeric names. TYPE is a set of alphanumeric (type) names that includes atom and env. IDENT
is a set of alphanumeric (variable and function) names.

PRIMOP is an unspecified set of primitive operations on atoms. PRIMOP includes '+’ and other arithmetic operations.
ATOM is a topped and lifted set of primitive objects that includes nil.

Figure 2.1. The abstract syntax of language #.

support is mapped to L, the error location.

Language # defines two types of built-in structures. Environments are structures that map identifiers to
structures. Afoms are structures that map all selectors to L. Other structures are defined by the evaluation
of structure declarations. A structure declaration names a structure type ¢ and specifies the selectors that ¢
supports. For example, the declaration “struct conscell is < hd,tl >” defines a two-field structure named
conscell with selectors hd and tl.

Language # supports one kind of store-access expression: the identifier expression. An identifier
expression is a string of the form x.sel, .sel,. - - - . sel,, where x is an identifier and the sel” are selectors.
The identifier portion of an identifier expression is interpreted according to a C-language-like, two-level
scoping discipline. Let x.sel,. - -+ be an identifier expression that occurs in a procedure P. Then x is
interpreted relative to P’s local environment when x is either (1) one of P’s formal parameters, or (2)
declared to be local to procedure P. Otherwise, x is interpreted relative to P’s global environment. The
rest of an identifier expression is interpreted according to the standard rules for dereferencing structures. If
x, for example, references the cons cell <1,2>, then x.hd and x.¢l reference “1” and “2”, respectively.



struct conscell Is <hd, t>; procedure sum (list, result) recursive
struct intptr is <intp >; result.intp =0, procedure sumelts (list, sum)
listlen = 0; if list # nil then
procedure main () call sumelts (list, result), sum.intp = sum.intp +list.hd;
local rotal; end; listlen = listlen + 1;
JeE%% sum values in list, call sumelts (list.tl, sum)
/**#%  and determine list length fi
end

total = new (intptr);

call sum (list, total);

/¥***  final sum in total.intp,
[¥*** length in listlen

end;

endrec

Figure 2.2. An example program in language #. The program sums a list of atoms. Subroutine sumelts () uses the
global identifier listlen to record the length of the list. (Undeclared identifiers such as listlen are interpreted w.r.t. a
program’s global environment.)

Language # provides three kinds of operations on atoms: arithmetic operators such as '+"; predicates
such as <, &, and >; and logical negation (“—").

R

Language # provides four operations on non-atomic structures: “.”, Eq, typeOf, and new. The “.
(dereference) operator is described above. Eq is a binary predicate that tests whether two selector expres-
sions reference the same structure. TypeOf identifies the type of the structure referenced by its operand.
New(¢) returns a reference to a previously unreferenced structure of type ¢. Function new also initializes
the structure that it returns. The evaluation of the expression “new(s)”, where ¢ is the type
<field,, - -, field, >, creates n+1 new structures: one structure of S, of type ¢, and n nil-valued atoms.
Each of the field;’s in the s,,,, returned by “new(r)” references a distinct nil-valued atom.

A procedure consists of a two-part header and a body. A procedure’s header names its formal parame-
ters and local identifiers. A procedure’s body is made up of while loops, conditional statements, assign-
ment statements, procedure calls, and return statements. While loops and conditional statements have their
usual meaning. Assignment statements alter references; a statement like x. hd := 0 replaces a reference x. hd
with a new reference to the atom 0.

Semantics M, uses the following five-step, pass-by-reference discipline to implement a statement like
“call A(ay, *-*,a,)

1. Asetof n+1 special references are created at the caller’s local environment. One of these references
identifies (i.e., points to a special structure that contains) the return address for the call to A. The
remaining n references point to the structures denoted by a, through a,.

2. Control is transferred to procedure A.

Procedure A creates its local environment.

4.  Procedure A initializes its local environment. A reference named _prev is first created from A’s

b
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local environment to the caller’s local environment. (The return statement uses this reference to
restore the caller’s local environment.) The n + 1 special references created at step (1) are then used
to initialize A’s local references. One reference, reference _callctxt, is set to A’s return address. The
remaining n references are set to the initial values of A’s formal parameters.

5.  Control is transferred to the first executable statement in A.

The return statement resets the local environment to the caller’s local environment, then returns control to
the program point referenced by _callctxt. There is an implicit return statement after the last executable

list total
r}d 4 intp
5 I
hd 1l nil
/ \
1 nil
store after entering 1main() before call to sum ()
_curr
_prev
listlen list
/ result
0
t}d L intp
N l
hd ti 0
/ \
1 nil

--------------------------------------------------------------------------------------------------------------

—— other non-atomic
Key: @ —— global environment O structure
0 —— local environment 1 -— atom

Figure 2.3. The first of two figures illustrating an evaluation of the program in Figure 2.2. Environments are labeled
with names of their instantiating procedures; genv represents the global environment.
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statement in every procedure.

Language #’s meaning function executes a program P by creating and initializing P’s freelist, then
entering procedure main (). The following three constraints are imposed on every initial store G:

_cur -
main sum sumelts
prev _prev
listlen list list
/
0 total  result sum
hd il
/
2 , after first call to sumelts()
hd tl intp
/ \ |
1 nil 0
curr
main sum se se(se)
_prev - _Wﬁ V
listlen  list u list
/ sum
2
hd nil
/
2
tl i
P d \ intp after final call to sumelts()
1 il !
3
curr
% e % T in
listlen list total
/
2
hd tl in after return from sum(.
/ Q Ip results saved in total.intp, listlen.
2
hd ti
/ \ 3
1 nil

Figure 2.4. The second of two figures illustrating an example computation.
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o : N
|
nil nil nil
before "x := nil" after "x := nil" after "y = x"

Figure 2.5. Language # s implementation of atoms. Every structure points to its own copy of an atom.

* o must be finite: ¢ must contain finitely many accessible structures and references.
* & must be deterministic: every structure may have at most one reference labeled sel.
* o must have exactly one environment. This environment must not be the target of any references.

Figures 2.3 and 2.4 depict the interpretation of the program in Figure 2.2 w.r.t. an initial store that contains
a two-element list. These directed labeled graphs depict the store at successive stages of P’s evaluation.
Nodes represent structures; edges represent references. The special references labeled _curr identify the
currently active procedure’s local environment. The special references labeled _prev are used to stack and
unstack local environments on procedure entry and exit. Other special references to parameters and return
addresses have been omitted for simplicity; a detailed specification of M,’s calling protocol is given in
Appendix 1.

The example computation depicted in Figures 2.3 and 2.4 illustrates three simplifying assumptions that
M., makes about a program’s evaluation. The first such assumption is that new() always succeeds. The
new operation uses a list of inaccessible structures known as the freelist to obtain unused structures. A call
to new() removes the first structure from the freelist and returns a reference to that structure. This thesis
makes the assumption that the freelist is unbounded; i.e., that the new() operator never fails for want of
storage. This assumption makes it possible to sidestep the need for garbage collection. Eliminating gar-
bage collection, in turn, eliminates potential interactions between program points that arise from the reuse
of structures: i.e., an allocation operator never operates on a structure that was manipulated by a previous
statement.

The second simplifying assumption is that procedure activation records are allocated from the heap, and
not from a run-time stack of spare locations. Using the heap as the basis for allocation makes #'s
definition more uniform. It also eliminates potential interactions between program points that arise from
the reuse of the stack: i.e., a call statement never overwrites a location in the stack that was manipulated by
a previous statement.

The third simplifying assumption is that operations that return references to atoms return references 10
unshared atoms. Specifically, an expression like new(conscell) returns a cons cell whose fields reference
two unshared, nil-valued atoms. Also, the evaluation of a pair of statements such as “x := nil;y =x"
yields a store in which x and y reference distinct nil-valued atoms (¢f. Figure 2.5). This assumption
simplifies the task of comparing the contents of one store to the contents of a second: such maps play a key
role in the development of a non-standard, approximation semantics for language H(cf. Chapter 5).
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Section 7.4, which discusses these three simplifications in more detail, argues that none of these assump-
tions has a major effect on the analyses developed in this thesis.

Language # has also been simplified by the omission of several common programming constructs.
These include:

® Support for arbitrary scoping. The two-level scoping mechanism assumed in this chapter is a
compromise between simplicity and generality. Supporting no more than two levels of scoping
simplifies #’s definition. Supporting more than one level of scoping makes the presentation more
realistic, and suggests how these results can be extended to languages with more general scoping.

) Value-returning procedures. The effect of a value-returning procedure call such as
“value := call sumfn(list)” can be obtained by defining sumyfn as a two-parameter function, and set-
ting the second parameter to reference the result (¢f. Figure 2.2).

) Static typing. Language #{’s run-time type discipline is similar to Lisp’s. The effort required to
define a stronger typing system would have detracted from the focus of the presentation.

® Input and output, arrays, higher-order procedures, gotos, dynamic scoping, and reference arith-
metic. These features are beyond the scope of this thesis. How the addition of these features to the
example language would have complicated the presentation is considered in Chapter 8.

OTHER REMARKS ABOUT CHAPTER 2

Static, stack, and dynamic allocation are discussed in more detail in the opening chapter of Ruggieri’s
thesis [Rug87]. This well-written overview of storage management also discusses persistent allocation—a
fourth allocation strategy that preserves structures across computations (i.e., on backing store).

Formalisms that have been used to model heaps include location-based models of memory
[Ple81,Deud0]; collections of symbolic equations [Sch75]; path strings [Myc81,Ino88]; connection
matrices of path strings {Hen89, Hen90]; and alias sets [Har89, Gua90]. The formalism used in this thesis
borrows heavily from Jones’s and Muchnick’s original scheme for depicting stores [Jon79,Jon81]. A
graph-based formalism was chosen for two reasons:

° Graphs provide a reasonably compact formalism for describing heaps. Other techniques for reducing
the number of nodes and edges in a memory graph are described in Chapter 6.
® Graphs are good tools for visualizing memory.

Later sections extend this notation with ideas from the literature on graph grammars and ideas from other
papers on pointer-language analysis.




~13 -

3. DEFINING DEPENDENCE

It is almost a defining characteristic of a 'mechanism’ that, when it has produced a result, it is possible
to inquire by what series of more elementary operations it has produced that result .... Since the pri-
mary purpose of a program is to specify a mechanism, it should be possible to associate with each pro-
gram of a language a set of possible traces of the execution of that program; this association provides
a 'mechanistic’ formal definition of the language. —C.AR. Hoare  [Hoa78]

A dependence is a relation that characterizes a program’s behavior. The dependence p — g, roughly
speaking, asserts that an execution of a statement p could interact with a subsequent execution of a state-
ment q. Various algorithms that operate on programs use a program’s dependences to determine how its
statements might interact. These algorithms typically make valid (if conservative) judgments about a
program’s behavior when given a safe estimate (i.e., a proper superset) of its dependences. This use of safe
estimates is a concession to the limitations of static analysis: it is not possible to determine the set of depen-
dences that an arbitrary program must exhibit (cf. §3.4.11).

A data dependence is a dependence that characterizes how a program operates on objects in memory—

i.e., structures, references, and streams. A data dependence p —, g, roughly speaking, asserts that two
statements p and g operate on a common object in memory. Simple and efficient algorithms exist for deter-
mining whether a given pair of statements might operate on a common object, relative to example
languages in which every stored object has a unique name [Aho86]. The task of estimating a program’s
data dependences becomes more challenging in languages where objects do not have unique names—e.g.,
in languages that support aliasing and dynamic allocation.

Chapters 3 though 6 develop algorithms for estimating a program’s data dependences w.r.L. M. These
algorithms, roughly speaking, pair each of a program’s statements with a set of abstract stores. An abstract
store is a special type of approximate memory configuration that represents a potentially infinite subset of
Store—M,,’s domain of stores. The set of abstract stores that these algorithms pair with a statement g are a
(finite) estimate of the (possibly infinite) set of stores that reach ¢ during a computation. These algorithms
also annotate every structure and reference obj in an abstract store with a label: a value that characterizes
how a computation might have operated on obj. For example, the algorithm for computing a program’s
flow (i.e., write-before-read) dependences labels every obj with those program points that might have
defined ob;’s value. This allows the set of flow dependences incident on a statement ¢ to be estimated from
the labels on the structures and references read at q.

The current chapter, which lays the groundwork for Chapters 4 through 6, defines notions of dependence
w.r.t. M;. Section 3.1 presents an informal survey of the notion of dependence. Section 3.2 defines the
basic types of dependence w.r.t. M. Section 3.3 refines the notion of a data dependence. The refinements
discussed in this section give a more precise picture of program evaluation in the presence of loops and
procedures. Section 3.4 presents additional background on the notion of dependence.

Many of the concepts presented in Chapter 3 were originally developed by previous authors. Concepts
that are original to this thesis include an alternative definition of def-order dependence (§3.2) and a gen-
eralized notion of loop-carried dependence for programs with procedures (§ 3.3).
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3.1. An Informal Introduction to the Notion of Dependence

A dependence is a relation that characterizes how a program’s statements interact over the course of its
execution. Dependences are often used to determine whether the constraints on program execution that are
inherent in a language’s definition can be relaxed without altering a program’s meaning. Dependences, for
example, are frequently used to determine whether evaluating certain statements in parallel would change a
program’s meaning. Dependences are also used to identify and isolate a program’s slices; i.e., its logically
related collections of statements [Ott84]. Other uses of dependences are given in the introduction, and
mentioned throughout this chapter.

The paragraphs that follow present an informal taxonomy of dependence. The distinctions described
below are important, since different kinds of dependences are used to reason about different aspects of pro-
gram behavior. These distinctions are also fairly standard, up to subtle differences in assumptions about
how dependences arise (cf. §3.4).

A program exhibits a control dependence p —>, q when a point p determines whether a second point g
executes. A program’s control dependences are a reflection of a language’s control structures. A program

in an #£like language, for example, may exhibit p —>, ¢ for any of the following reasons:

® p is a predicate that controls whether ¢ evaluates. For example, ¢ is control-dependent on p in the
expression “[p] if pred then [q] a:=1 fi".

® p is the entry point of a procedure A, and q is a statement in A that is not enclosed by any loops or
conditionals.

® pisa call to a procedure A, and q is A’s entry point.

Dependences from call sites to procedure entry points are called interprocedural control dependences
[Hor90a]. Other dependences are intraprocedural control dependences.

A data dependence p —>, ¢ arises when points p and ¢ manipulate common values. The dependence

p —>4 q is typically classified according to how p and ¢ interact. Most authors recognize four types of
data dependences:

® A flow dependence p —>; q arises when p writes to a location that ¢ then reads.

® An anti-dependence p —>, q arises when p reads from a location that g then overwrites.

® An output dependence p —>, q arises when p writes to a location that ¢ then overwrites.

e An input dependence p —; q arises when p reads from a location that ¢ then reads.

A fifth type of data dependence, the def-order dependence is sometimes used instead of output dependence
[Hor89]. These five dependences are illustrated in Figure 3.1. The distinctions between data dependences
are important for analyzing program behavior: e.g., for determining if an optimization is safe [Pad79,
Kuh80, Kuc81, Wol82, Ali83, Al187, Cal87, Fer87,Lar89, Bai89]. The following paragraphs give some rea-
sons for these distinctions; more can be learned by consulting [Kuc81] or [Cal87].

Two statements p and q are said to exhibit a read-write conflict when one of these statements reads from,
and the other writes to, a common location /. In a sequentially executed program, a read-write conflict that
corresponds to a dependence can be classified as a flow or an anti-dependence. The distinction between
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Input Anti Flow Output
(Rd.-Before-Rd.) (Rd.-Before-Wr.) (Wr.-Before-Rd.) (Wr.-Before-Wr.)
[1] a:=x 1] a=x [1] x:=a [1] x:=a
[2) y:=x 2] x=y (2] y=x [2] x:=y
(1] = 12D 1] —, 2D (1] = 2D (11 —, 2D
Def-Order

1] A def-order dependence is a transitive output dependence
x:=a

[2] If pred then (i.e., a dependence of the form [p] —, *** =, [q)

31 x:=b

E 41 xi=y that is witnessed by a third program point.

(5] fi The fifth example program exhibits [1] ~>, 31 —, 41
z:=x

The definitions at {1] and [4] are witnessed by the read at [5].
([1] = soqisp [4D

Figure 3.1. The five types of data dependence. All example dependences are through the variable x.

Program A, Program A, Program A , after parallelization

11 x=2; 11 tmp:=2 parbegin

2] z:=x; 2 z=tmp begin [1] tmp :=2;[2] z:=tmp end;
31 =x:=1; 31 x:=1; begin {3] x:=1; [4] y:=x end

4] y=x; 4] y=x; parend

Figure 3.2. Using variable renaming to break an anti-dependence [2] —3, [3] in Program A,. This renaming allows
statements in the resulting program, A ,, to be safely executed in parallel.

flow and anti-dependence is important because anti-dependences need not appear in certain representations
of program behavior (cf. Chapter 7). This distinction is also important because anti-dependences can be
eliminated by renaming variables. This idea is illustrated in Figure 3.2. Program A, in Figure 3.2 is not
parallelizable, because [2] —>, (3] prevents the simultaneous execution of ([11,[2]) and ([3],[4]). Depen-
dence [2] —>, [3], however, arises from the reuse of the variable x. Renaming one use of x to tmp elim-
inates these dependences—and yields the equivalent, parallelizable program A ,.

If a program redefines its variables, then some notion of output dependence is needed to characterize its
execution. Output dependences per se, however, can sometimes represent needless constraints on a
program’s sequential evaluation. Def-order dependences were introduced by Horwitz, Prins, and Reps to

obtain an alternative characterization of program behavior [Hor89]. A def-order dependence p —>a () 4

. v . * . . “« .
is a transitive output dependence p —>, g that satisfies the following conditions:
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1. A flow dependence p —>; r is transmitted through a location /.

2. Asecond flow dependence ¢ —>; r is transmitted through L.
3. poccurs to the left of ¢ in a program’s abstract syntax tree (cf. [Aho86]).

Intuitively, def-order dependences are used instead of output dependences because they constrain the
sequence of values read from (rather than the sequence of values written to) a variable x (cf. Figure 3.3).

Input dependences are useful for program optimization when different sequences of memory accesses
incur different costs. Kuck et. al., for example, use input dependences to group statements that read the
same array [Kuc81). This optimization improves program performance by reducing how often large arrays
are loaded into virtual memory.

This taxonomy of data dependence has emphasized dependences that result from operations on stores.
Data dependences can also result from operations on streams. Consider, for example, the program
“[1] read(w); [2] read(x);”. This program exhibits a dependence [1] =4 [2], since the read at [1]
affects the value read at [2]. Some authors refer to such dependences as flow dependences [Hor89] or def-
order dependences [Sel89]. Here, a dependence like [1] —>4 [2] is called a stream-mediated data depen-
dence; other terms such as “flow dependence” and “def-order dependence” are reserved for dependences
that arise through stores.

11 a:=1; 5] a:=3; “,:'[1] a:=1; (5] a:=3
(2] if pred then <[6] c:=a; " [2] if pred then [6] c:=a:
8 a=2 2] a=1; gl a=2 g oas1:
fi; ([2] if pred then fi: ‘ (2] if pred then
(4] bi=a; Bl a=2 (4] bi=a; @ a=2
(5] a=3; fi; (5] a:=3; fi:
<[6] c:=a: 4] b:=a; (6] c:=a; 4] bi:=a;
71 a:=4; TH7] ai=4; (7] a:=4; 7] a=4;
gﬁ%%rg gt'ltput sP}x;c&g‘l;mangx c%tput 5{1:%12 cIi)éf—order spfqggv;na{g f:lge'f—order
dependences dependences dependences dependences

Figure 33. Programs that have inequivalent output dependences may have equivalent def-order dependences. Pro-
gram P has three output dependences that program Q lacks: [1] —, [5], [3] =, [5], and (5] =, {7]. Similarly, Q
has three output dependences that are missing from P. Programs P and Q, on the other hand, both have exactly one
def-order dependence: [1] — 4 qap [3]-
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3.2. Definitions of Dependence for Language

3.2.1. Control dependence

Control dependence can be defined in terms of how a program might execute w.r.L. a given set of inputs.
Such definitions of control dependence are useful, for example, in languages that support procedure-valued
variables [Shi88]. The definition of control dependence used in this thesis, which is somewhat simpler, is
based on the structure of a program’s abstract syntax tree.

DEFINITION. A program point is a name that uniquely identifies a site in a program’s abstract syntax tree.
A program P has one program point for every if predicate, while predicate, assignment statement, and call
statement that P contains. Program P also contains the following special program points:

e Points initial; and initial,, which correspond to P’s initial points of control. Point initial; initializes
every object in a program’s store. Point initial, invokes main ().

® Point final, which corresponds to P’s final point of control.

For every call site “[p] callA (ay, ‘- *,a,)",
one point [p.iy] that saves the return address for the call to A;
* n points [p.i,] - - - [p.i,] that compute the call’s actual parameters.

For every n-parameter procedure A,
* a point [A.enter] that represents A’s entry point;
* three points [A.i 3] - - - [A.i_;] that initialize A’s local environment;
* one point [A.io] that saves a caller’s return address;
* n points [A.i,] - - - [A.i,,] that initialize A’s formal parameters; and
* one point [A.f] that represents the implicit return at the end of A. O

DEFINITION. Let g be a point in a program P. A while statement s encloses q if ¢ is subordinate to s in P’s
abstract syntax tree. An if statement s encloses q if g is subordinate to s in P’s abstract syntax tree. A call
statement s encloses q if g is a special point that initializes one of s’s actual parameters. a

DEFINITION. Let p and ¢ be statements in a procedure P. Let level (p) and level (q) be the number of call,
while, and if statements that enclose p and g, respectively. Statement g is (directly) control-dependent on

p, written p —> g, iff either

p is the entry vertex, ¢ is not the entry vertex, and level (¢) = 0;

p is a call site, and p encloses g;

p is a while predicate, and g = p;

p is a while predicate, the while statement at p encloses g, and level (q) = level (p)+1;

p is an if predicate, the true branch of the if statement at p encloses ¢, and level (q) = level (p) +1; or
p is an if predicate, the false branch of the if statement at p encloses ¢, and level (q) = level (p)+ 1.

S o

Dependences that correspond to cases 1-5 are referred to as true-valued control dependences. Depen-
dences that correspond to case 6 are referred to as false-valued control dependences. O

DEFINITION. Let p be a statement that calls procedure A. Let ¢ be A’s entry point. Then g is interpro-
cedurally control-dependent on statement p. [
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3.2.2. Data dependence

Data dependences arise through operations on streams and stores. The algorithms given in this thesis for
computing a program’s data dependences, however, ignore dependences that arise through streams. This
decision follows from the observation that language #{ supports only one stream: the freelist. Chapter 7
argues that data dependences that arise from accesses of the freelist correspond to useless constraints on
program behavior. Intuitively, a freelist-mediated data dependence, if honored, would restrict the order in
which unreferenced structures were removed from a program’s freelist. Language #{, however, is a
referentially transparent language: none of its operators alter, or recognize specific, addresses in memory
(i.e., elements of domain Loc). Changes in how a program assigns addresses to newly allocated structures
are therefore unobservable to the user.?

The definitions of store-mediated dependence given below are similar to—but not quite the same as—the
ones presented in Section 3.1. The definitions given in Section 3.1 assume that statements perform only
two kinds of operations on memory: ie., read and write location. These definitions work well for
languages like FORTRAN, where a store’s size is fixed throughout the execution of a given scope. They
do not work as well for languages (like #) whose operators can also alter the size of the store. For histori-
cal reasons, the terms read and write are used throughout this thesis to characterize how statements operate
on memory. This circumlocution, however, requires a slight bending of the notion of a write.

DEFINITION (write of a memory object). A structure or reference is written when it is added to a store
o O

DEFINITION (write of a memory object at a state). Let p be a program point, ¢ a store, and fl a freelist.
A structure (reference) obj is written at state (p, , 1) iff the evaluation of p w.r.t. ¢ and Al writes 0bj.
|

DEFINITION (read of a memory object). A structure or reference is read when it is accessed by the
evaluation of an identifier expression. [

DEFINITION (read of a memory object at a state). Let p be a program point,  a store, and A a freelist.
A structure (reference) obj is read at state (p, o, fl) iff the evaluation of p wr.t. ¢ and fl reads obj. Tl

Structures are written by the evaluation of initialize and assignment statements. The initialize statement
“re-creates” every structure (and reference) in a program’s initial store. The evaluation of “- -+ =val’
adds the atom val to a store ¢. The evaluation of * - - - := new(env)” adds a new environment to G. The
evaluation of “ - - - := new(syp)”, where typ is a user-defined structure with n fields, adds n + 1 structures to
o: one structure of type fyp, and n nil-valued atoms. Finally, the evaluation of
“... .= saveContext(programPt)” adds a special structure to & that records a procedure call’s return
address.

2 Admitedly, this is an unusual use of the term referentially transparent. Solomon {private communication} has suggested that the no-
tion described here is akin to what the database community refers to as a “value-based” semantics-—as opposed to a semantics where
structures have distinct identities.
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References are written by the evaluation of the initialize and assignment statements. The evaluation of
“... .=new(typ)”, where typ (#env) is a structure with n fields, adds n references to a store ©. The
evaluation of “[p] idexp := ---”, where idexp =sel - sel,, adds a reference to a store ¢. More
specifically, let gEnv be 6’s global environment. Let idexpr (p, o, gEnv, sely - - - sel,_;) denote the loca-
tion ! (cf. Appendix 1), and s the structure at location I. Then the evaluation of idexp = + - - adds a refer-
ence r at s of type sel .

DEFINITION. Let s be a structure and sel a selector. The reference of type sel at s is the reference at s
that corresponds to sel. More precisely, let 6 be a store such that 6(loc) = s; then the reference of type
sel at 5 is the reference accessed by the evaluation of selexp (0, loc, sel). O

(N.B.: If there is already a reference r’ at s of type sel ,, then the new reference r replaces r'.)

The set of structures and references that the evaluation of the identifier expression idexp reads varies
according to idexp’s context. More specifically, let idexp = sel, -+ - sel, be an identifier expression at a
point p. Let & be a store and gEnv be ¢’s global environment. If idexp appears on the left-hand side of an
assignment statement, then the evaluation of idexp at p reads those structures and references that are
accessed by the evaluation of idexpr (p, 0, gEnv, sel, - - - sel,_;). Otherwise, the evaluation of idexp at p
reads those structures and references that are accessed by the evaluation of
idexpr (p, ©, gEnv, sel, - - - sel,).

Technically, a structure s is also read when it is passed as an argument to gettyp, which returns s’s type,
or getval, which returns s’s atomic value. The definition of My, however, ensures that any s passed to get-
typ or getval must first be accessed by the evaluation of an identifier expression.

The informal definition of data dependence states that a dependences arises through successive opera-
tions on a common object in memory. This notion is formalized with a state transition relation, |-:

'DEFINITION. The state transition relation --- |~ -+ —> --- is defined as follows:

prog | state; —>° state; & state; = state;

prog |- state; —>" state; <> 3 state’: prog |- state; — "L state’ A state; = evalPt(prog, state’)

prog |- state; —>" state j © An:prog |- state; —>" state;

prog - state; —>* state; <> In>0:prog |- state; —>" state,

prog  state, —> ++- —> state,, <> Vi:n<ism-1:prog |- state; —>1state;,, O

The expression evalPt (prog, state”) constitutes a minor abuse of notation. The function evalPt (cf.
Appendix 1) actually takes one formal parameter—a state—and three non-local parameters that
describe prog’s control-flow graph, structure declarations, and local identifiers.

DEFINITION (true for all states between ...). A predicate P:State — Bool is true for all states between
state, and state, iff prog |- state, — -+ —> state,, implies that P(state;) = true for all
irn<i<m 0O

The definition of |- may now be used to give formal definitions of flow, output, input, and anti-
dependence:

DEFINITION (flow dependence). Let prog be a program with program points p and g, and InSet a set of
stores. Point q is (directly) flow-dependent on p w.r.t. InSet, written p —>¢ q (W.I.L InSet), iff there
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exists a store o € InSet, a freelist fl, states (p, 6,, fl,) and (g, 0, fl,), and an object obj such that

o  prog - (inmitial;, o, fl) = (0.6,, ;) —* (4.5, fy);

° obj is written at (p, 0, fl,,);

® obj is not written at any states between (p, ,, fl,) and (g, 64, fl,); and
o objisreadat(q,0,,f,). O

DEFINITION (input dependence). Let prog be a program with program points p and g, and /nSer a set of

stores. Point q is (directly) input-dependent on p w.r.t. InSet, written p —>; g (w.r.t. InSet), iff there
exists a store o € InSet, a freelist fl, states (p, 0,, fl,) and (¢, G, f1,), and an object obj such that

° prog  (initial, , 0, i) =" (p,0,, ;) —* (4,6,.,);

e  objisread at (p,c,, fl,);

e  objis not written at any states between (p, 6,, fl,) and (¢, 6,, fl,); and

° objisread at(q,0,, fl;). (I

DEFINITION (output dependence). Let prog be a program with program points p and ¢, and InSet a set

of stores. Point q is (directly) output-dependent on p w.r.t. InSet, written p —>, ¢ (wr.t. InSet), iff
there exists a store G € InSet, a freelist fl, states (p, 6, fl,) and (g, G,, fl,), and a reference r such that

e  prog | (imitial;, o, fl) =° (p,0,,f,) —* (,6,.A,);

° r is written at (p, G,, fl,);

e r is not overwritten (i.e., replaced) at any states between (p, 6, fl,)) and (¢, G4, fl); and

® ris overwritten at (¢, 04, fig). O

DEFINITION (anti-dependence). Let prog be a program with program points p and g, and InSet a set of

stores. Point g is (directly) anti-dependent on p w.r.t. InSet, written p —>, q (W.r.t. InSet), iff there
exists a store G € InSet, a freelist fl, states (p, 6,,, fi,,) and (g, 6,, f,), and a reference r such that

e prog |- (inmitial, , 0, fl) 9 (p,0,, f,) —>* (4.0, )5
° risread at (p, ©,, flp):
° r is not overwritten at any states between (p, G, fl,) and (g, o4, fl,); and
° r is overwritten at (¢, 04, flg). O
Output and anti-dependences can only arise through operations on references. The definition of My
does not allow the attributes of a structure s (i.e., its type and atomic value) to be modified after s has been

allocated. This observation is true, in part, because M,, never returns structures that have been allocated to
the freelist.

Section 3.1.2 states that a computation exhibits p — 4y ¢ When it exhibits two flow dependences,

p —>; rand ¢ —; r, that arise through a common location /. This definition, when rephrased in terms of

structures and references, states that a computation exhibits p —> 4,y ¢ when it exhibits two flow depen-
dences, p —>; rand ¢ —; r, that arise through a common field in a common structure.

DEEINITION (def-order dependence). Let prog be a program with program points p and ¢, and InSet a

set of stores. Assume that p occurs to the left of g in prog’s abstract syntax tree. Point ¢ is (directly)

def-order-dependent on p w.r.t. InSet and r, written p —>4,(y ¢ (W.L.L. InSet), iff there exists a store
o€ InSet, an initial freelist fl, four states (p, G, fl,), (¢ 64, fl), (r: Oy, A1), and (, &', 7). 3 pair of
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structures s and §’, and a selector sel such that

* ¥ x @

*

p —>; r w.rt { o} through a reference ref of type sel at structure s; ie.,
prog |~ (inmitiak , 0, i) =" (0,0, fl,) —>* (1,0, A,);

ref is written at (p, ©,, fl,);

ref is not overwritten at any states between (p, 6,, f,) and (r, G,, fi,); and
refisread at(r, S, fl,);

q —>; r wr.t. { o) through a reference ref” of type sel at structure s'; i.e.,
prog - (initial, , G, ) =" (g, S, fly) = (¢, &y )3

ref’ is written at (g, G, flg);

ref’ is not overwritten at any states between (g, o, fl;) and (r, &', fI',); and
ref’ is read at (r, &’,, fI’,); and

s and s are the same structure. [

The definition given above, however, is not a good starting point for determining a pointer program’s

def-order dependences. According to this definition, a computation ¢’s def-order dependences can be
determined if one knows whether s and s’—an arbitrary pair of structures that exist at unrelated moments
(r,0,, fl,) and (r, &,, f’,) in c—are the same structure. To make such precise comparisons between arbi-
trary structures in G, and ¢, possible, every structure that is allocated during the course of ¢ must have a
tag that uniquely distinguishes it from all other structures allocated during computation c. These tags could
be implemented, for example, by pairing every structure s with an additional integer that identifies the
moment in ¢ at which s was allocated: e.g., by pairing the kth structure ailocated during the evaluation of ¢
with the integer k. This assumption that every object initially has a unique identity, however, creates two
problems for algorithms that analyze a pointer program’s behavior.

Tags are a potential source of imprecision. A language like 7/ does not limit the number of structures
that an arbitrary computation can allocate. There is therefore no a priori limit on the number of tags
that a computation that paired structures with tags could require—even if the number of accessible
structures in a computation’s store is bounded. (This is true, for example, of a program such as
“while pred do a :=new(conscell) od”.) To ensure that an analysis of an arbitrary computation
terminates (¢f. Chapter 5), the number of tags that a computation uses must somehow be limited: e.g.,
by pairing the mth structure allocated by a computation with the value m modulo k for some
predetermined constant k. This, however, can create spurious def-order dependences by (e.g.) caus-
ing the m+k modulo kth structure allocated by a computation to be mistaken for the m modulo kth.

Tags interfere with the elimination of redundant stores. Recall that language # is referentially tran-
sparent: two stores that are isomorphic up to how structures are paired with locations are indistin-
guishable from the standpoint of the language’s operators—and are therefore interchangeable from
the standpoint of dependence computation. Introducing tags into an analysis would make it more
difficult to find opportunities for eliminating redundant stores. Two stores s and s* whose structures
are allocated at different moments during a computation would never be indistinguishable for the
purpose of dependence computation—unless, that is, the tags of s and s” are equivalent, relative to
the chosen strategy for estimating tags.
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The following, equivalent definition of def-order dependence eliminates these difficulties by rephrasing
the notion of a def-order dependence in terms of a single sequence of states.

(RE)DEFINITION (def-order dependence). Let prog be a program with program points p and ¢, and /nSet
a set of stores. Assume that p occurs to the left of g in prog’s abstract syntax tree. Point g is (directly)
def-order-dependent on p w.r.t. InSet and r, written p —>4,(y q (w.r.t. InSer), iff there exists a store
o€ InSet, an initial freelist fl, states (x, o, fl,), (r, 0,1, fl;2), (9, Oy, fl,), and (7, O3, fl,2), @ structure
s, and a selector sel such that:

e {(xyl=(p.q}

prog + (initialy , o, ) —" (x,0%, A:) —>* (. 0,1, fly)) = 0.0y, fly) = (.01 flr2);
a reference ref of type sel at structure s is written at (x, G, fl,);

ref is not overwritten at any states between (x, 6y, fl,) and (r, 6,1, fl;1);

refis read at (7, G,1, fl,1);

areference ref” of type sel at structure s is written at (y, 6y, fl,);

ref’ is not overwritten at any states between (y, 0, fl,) and (r, 6,2, fl,2); and

ref’ istead at (r, Gy, fl,2). O

® © © © © © o

According to this second definition, a program’s def-order dependences can be computed by monitoring
how a computation ¢ performs sequences of operations on a store’s component structures. This second
definition is used in Chapter 4 to develop a strategy for determining def-order dependences that does not
use tags to determine whether two structures are, in fact, the same structure.

3.3. Refining the Notion of Data Dependence

The dependence p —>; q asserts that any execution of ¢ might depend on any execution of p. Such an
assertion is often an excessively weak estimate of program behavior. This is the case, for example, when p
and q are statements in loops that access different elements of a common structure: e.g., an array or list.
Improved estimates of program behavior are often obtained by refining the notion of dependence-—i.e., by

qualifying p —>, ¢ with assertions about which of p’s and ¢’s evaluations interact.
One such refinement, the distance of a data dependence, is discussed in Section 3.4.10. A second

refinement of the notion of data dependence is the notion of a loop-carried dependence. This concept was
introduced by Allen [AlI83], who uses it to determine when nested loops can safely be interchanged.

Roughly speaking, the assertion that a loop L carries p —>; q corresponds to the assertion that p —>,; ¢
arises from operations on L’s induction variables. Figure 3.4 explains this notion by relating it to the data
dependences exhibited by an unfolded loop. Assume that the example program in Figure 3.4 exhibits

p —>4 g, and that L runs for n iterations. Unfolding L n times yields an equivalent program that has one
less loop and n copies of p and ¢. Let [i, p] denote the copy of p produced by the ith unfolding of L.

Assertions about whether L carries p —>4 ¢ can be used to determine whether the unfolded program exhi-

bits dependences of the form [i, p] —>, [J, ql:

® If i # j and L does not carry p —>4 g, then the unfolded program exhibits no dependences of the
form [i, p] —>4 U, 4.

° Ifi < jand L camries p —>4 g, then [i, p] —>4 [/, 4] is presumed to hold in the absence of special
information about [i, p] and {j, ql.
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. The assertion that L carries p —>4 ¢ says nothing about whether [i, p] —>4 [i, q].
A dependence p —>, ¢ is also said to be loop-independent if an (i, q] depends on an (7, p] after every loop

in a set of loops has been completely unfolded.

P’s dependences after unfolding L
if L is a carrier of

ProgramP
if L is not a carrier of
[Lp]—™ [Ld] Lp—= [Lq]
for i) = 1to n, do for i) = lto ng do for )= lto n; do
for i2:=1to n, do fori_:=1to n, do for 12:=1to n, do
L] for 1 = lto ndo SolLpl alld = ',"' [Lpl al..]
Pl al = ‘D el = oald; S al Lo
lal = 2l ST2ploalld = S2p alld
endfor ;‘> [2’q] e Al {o [2’q] .:=
endfor
endfor Skpl oall] = S hkpl oal.l
‘gl .. = al.a; =kl =
Sl oall] o=l ',"'[n.p] al.l]
o [n.q] = al.]; ‘> [n.q] 1=
endfor endfor
endfor endfor

Figure 3.4. Loop-carried dependence. Solid arrows in unrolled programs denote dependences implied by assertion
that L carries p —>; . Broken lines denote possible dependences whose existence is independent of the assertion that

L carriesp —¢ q.
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procedure main () procedure getX (index) ,
(1] call getX(1); o] temp [index | := x [index ] tl‘;h;zze aren dep:;xdfances from occurrences of p
2] call pw¥(1); end; currences ot -
{3] call gezX(2); [initial, 1, p] —>; [initial, 2, 4]
4] call putY (2); (initial, 3, p] —>; [initial, 4, q]
procedure putY (index)
[2n-1] call getX(n); : . (initial , 221, p] —>, [initlal, 2

- . 't 22n, q]

2n]  call pu¥ (n); [q]end_y[mdax] temp [index |

end;

Figure 3.5. Using the Sharir-Pnueli call string notation to name a program's dependences.

Previous treatments of carriers have focused on languages with loops. This section develops a notion of
a carrier for languages like # that support loops and procedures. This new notion of a carrier is defined as
an approximation to the set of dependences that arise between specific occurrences (i.e., distinct execu-
tions) of two program points. Assume, in other words, that there is some way of assigning a unique name
[n, x] to every occurrence of a program point [x] in a computation ¢. Then this computation may be said to
exhibit [7, p] —>4 [j, g1 iff

e (i, p] and [j, q] both occur in c;
® (£, p] occurs before (j, gl in ¢; and
° that part of ¢ that runs from [i, p] to [j, q] exhibitsp —>; 4.

The notion of a carrier will be defined in terms of the specific instances of p and q that exhibitp —>4 q.

Various schemes can be used to name a statement’s occurrences. Because the notion of a carrier is
closely connected with the notion of unfolding, it is important to use names that identify the circumstances
under which these occurrences execute. Algorithms that analyze sets of nested loops, for example, typi-
cally use iteration counts to name the occurrences of a given statement. Under this naming scheme, each
occurrence of statement [2] in the program “[1] for i:=1 to 64 do (2] a[i +8] :=ali]l* ali] od” is
numbered with the value of i at the time of that occurrence’s evaluation. The program is then said to exhi-
bit 56 flow dependences between the occurrences of [2]—namely, [1.2] —> [9,2], [2,2] —>, [10.2], - -,
(57,21 —; [64.2]. (The observation that j—i =8 for all [, 2] — [, 2] also allows this loop to be split
into eight parallelizable loops.)

A more general naming scheme is needed to distinguish between different occurrences of statements in
languages with loops and procedure calls. A satisfactory naming scheme for such languages can be
developed from another naming device-—the call string [Sha81]. Intuitively, a call string is an abstraction
of a program’s stack that names a program’s active call sites.? Figure 3.5 shows how call strings can be

% A similar naming device appears in Harrison's thesis on parallelizing Scheme (cf. §2.6, [Har891). Harrison’s procedure strings are a
variant of call strings that name call sites and procedures. The need to include procedure names in procedure strings stems from the
presence of procedure-valued variables in Scheme.
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used to name the dependences that arise between individual occurrences of a program’s statements. The
program shown, program P, is a program in an extended version of # that, for the sake of example, also
supports arrays. The string “initial, 2/ -1 p” names that occurrence of p that sets temp(i] to i. (N.B.: ini-
tial, is the first element of every call siring because main() is first called at initial,.) The string
“initial, 2{ ¢” names that occurrence of g that sets x[i] to i.

Sharir and Pnueli use call strings to determine how specific procedure calls affect a program’s store.
The naming mechanism used in this thesis, the occurrence string, is a call string that also records the
evaluation of a program’s loops. Occurrence strings are illustrated in Figure 3.6. The program in Figure
3.6, which is similar to the one in Figure 3.5, uses a loop to transfer data between arrays x and y. This
program’s occurrence strings record snapshots of that program’s stack. These occurrence strings also
record how many times the loop at statement [2] has evaluated—if this loop has not yet finished running.
This information about loop evaluation is needed to distinguish among the different invocations of the
example program’s auxiliary procedures. In particular, “initial, 2¢3 p” names that occurrence of p that sets
temp(i] to i. Similarly, “initial, 2 4 g” names that occurrence of ¢ that sets y[i] to templi]. (N.B.: mk*

denotes a k-long sequence of m’s.)

Occurrence strings can be used to develop occurrence-specific definitions of dependence for language A
Lett=(p;,61,f11) '+ (Dr, Ok, fly) * - be the trace of an example computation:

DEFINITION (trace of a computation). Let prog be a program and ¢ a store. The trace of prog on & is
the sequence (p1,0,fl1) *** (P> Gn, fls) -+, where p; =initial;, 6, =, fl; is the freelist that My
pairs with o, and, for all , prog - (p;, 0i, fli) = @i, Giv1s i) O

The following algorithm, adapted from similar algorithms in Sharir and Pnueli (§ 7.3, ibid.) and Harrison
[Har89], computes occurrence (¢, n), the occurrence string for the program point at the nth state in &

® occurrence (t, 1) is €, the empty occurrence string.

e Ifn>1,leto=0, -0, beoccurrence(t, n—1). occurrence(t, n) may now be computed from o,
Pa-1,and p,, as follows:

procedure main () procedure getX (index) There are n dependences from occurrences of p
M i=1; [Pl templindex] = x[index] to occurrences of q:
[2]1 while i<n do end;

[initial , 23, p] —>; [initial, 24, q]

31 call geX (i); [initlal , 223, p] —, [initial ; 224, ]

[4] call putY (i);

[5) P=i+l; procedure putY (index) . .
end; end;

Figure 3.6. Using occurrence strings to name a program’s dependences.
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* If (p -1, ) 1S an entry arc into a procedure A, then occurrence (t) =0, *+ * 0, A.
* If (p -1, P») 1S an entry arc into the body of a loop L, then occurrence (£) =0, - - - 0, L.
* If (p a1, Pa) is an exit from a procedure, then occurrence (1) =0y ** * Op-1.

* If (-1, P,) is an exit from a loop L—-that is, an arc from the loop’s predicate to the first statement
following L—then o must have been of the form o, - -+ 0 ,L*7/, where 0 # L and j is the number of
consecutive iterations of L that have completed. occurrence(¢)isthenoy ---0;. 0O

Inmitively, this algorithm computes occurrence strings by reducing a prefix of a program’s trace to a string
of active procedure calls and loop invocations. The relationship between this algorithm and the Sharir-
Pnueli and Harrison algorithms becomes evident if one thinks of each invocation of a loop as a call on a
tail-recursive procedure.

The notion of a carrier of a dependence p —>,; ¢ may now be defined as an abstraction of the set of all
dependences between specific occurrences of p and g that a program exhibits.

DEFINITION (carriers of an occurrence-specific dependence). Let d = [i, p] —4 [J, q], where i and j
are occurrence strings, be a dependence between two specific occurrences of a pair of program points, p
and q. Letiand j be strings of the form p - - p, i’y ---iand py - " pyj1°** /m. Wherepy - - p,is
the longest common prefix of i and j. The carrier of d, written carrier (d), is (€, €), if | =m = 0; (€, j'1),
ifl=0andm > 0; (i";,£),ifl >0and m = 0; and ("1, j1),ifl >0and m >0. O

DEFINITION (carrier-independent dependence). An occurrence-specific data dependence is carrier-
independent if its carrier is (g, &), O

DEFINITION (loop-carried dependence). Let | be the entry point of a loop. An occurrence-specific data
dependence is carried by [ if its carrier is either (g, /) or (I, m), where m is transitively control-
dependent on /, and [ is not transitively control-dependent on m. An occurrence-specific data depen-
dence d is carried by a loop if there exists an [ that carries d. [

DEFINITION (call-site-carried dependence). An occurrence-specific data dependence is carried by a
call site if its carrier is (x, y), where eitherx or yisacall site. [

Figures 3.5 and 3.6 depict call-site carried dependences. In Figure 3.5, the dependence
linitial, 2i—1,p] —>, [initial, 2/, q] is carmied by ([2i~1],(2i]). In Figure 3.6, every dependence

[initial, 2' 3, p] — ¢ [initial, 2¢ 4, q] is carried by ([31,{4]). Examples of carrier-independent dependences
and loop-carried dependences are given in Figure 3.7.

DEFINITION (carriers of a dependence). The carriers of a dependence p —>, ¢ are the set of all
carrier ([i, pl, [, q]) such that [i, p] —>4 [j, q). O

Since programs are finite syntactic objects, carriers(p —>; q) is always a finite set.

A use of the notion of a call-site-carried dependence is illustrated in Figure 3.8. The first program in
Figure 3.8, program P, is the program depicted in Figure 3.5. The second program in Figure 3.8, program
Q, is a permutation of P. A theorem proved in Section 7.3 states that P and Q, roughly speaking, represent
equivalent programs if they have equivalent control, flow, and def-order dependences. A naive characteri-
zation of these program’s dependences—i.e., one that fails to use the notion of the carriers of a
dependence—suggests that the set of flow dependences in P and Q are not the same. For example, the
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struct intptr Is <intp >; . . . . .
P P procedure conditionalPrint(printswitch, ptri)

procedure main() if printswitch L1 then
value := new (intptr); {q] print (ptri.intp)
[p] read (value.intp); fi
[s,] call conditionalPrint(0, value); end;

[s2] call conditionalPrint(1, value);
| for i =1 to 2 do

[m] for j =1to 2 do ] =, [q)is carried by (s3] (.. by (. [s2]).
[m,] read(y[i+1,1]);
[m,] k =y i jls el =3, () is carred by [1] (i by (1)
[m3] x[‘!]]:=k;
e:::(::r {m,] —>; [m3] is carrier-independent.
end;

Figure 3.7. More examples that illustrate of the notion of a carrier. Here, the language has been extended, for the sake
of example, to include arrays, for statements, read statements, and print statements.

Program P Program Q

procedure /main () procedure getX (i) procedure main () procedure getX (i)
(1] call gerX (1); (pl templi] := x{i] [2n—1] call getX(n); [pl templi] := x[i]
2] call putY(1); end; [2n] call putY(n); end;
31 call getX(2);
4] call putY (2); 31 call getX (2);

. [4] call putY (2); .
procedure putY (i) 1] call getX(1); procedure putY (i)

[2n—1] call getX(n); o =
2n]  call put (n); [q]end;y[x] := templi] 2] call put? (1); [q]end;y[t]. templi]

end; end;

In both programs, the dependence p —>; q is carried by the call site pairs (11L12D, (31.[4D), - - - ([2n-1}, [2n]).

Figure 3.8. A use of the notion of carrier to show that two programs have equivalent (flow) dependences.

occurrence of ¢ evaluated during the final call to putY in both programs appears to depend on all preceding
evaluations of p. A more careful characterization of p —>; g¢—one which notes that the invocation of g at
point [2i] depends only on the invocation of p at [2i—1]—is needed to establish that P and Q have
equivalent flow dependences.

3.4. Additional Background on the Notion of Dependence

Section 3.4 presents additional material on the notion of dependence. This material was not presented in
Sections 3.1 through 3.3 because none of these topics are explored in later sections of the thesis.
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Section 3.4.1 gives an informal history of the notion of dependence. Sections 3.4.2 through 3.4.11 dis-
cuss related notions of program behavior. This includes other notions of dependence, other kinds of depen-
dences, and other dependence-like notions of statement interaction. Section 3.4.12 concludes with obser-
vations on the limitations of the notion of dependence.

3.4.1. Historical background

The concept of dependence grew out of work in the 1960’s on the parallelization of FORTRAN. The
apparent predecessor of the notion of a data dependence is the notion of a conflict (¢f. §3.4.3). This notion
appears in a seminal paper by Bernstein, who proved that two statements p and g could be executed in
parallel whegever p and ¢ do not conflict [Ber66].

Notions similar to control and data dependence are proposed in a 1970 paper by Tjaden and Flynn
[Tja70]. Tjaden and Flynn, who discuss algorithms for parallelizing assembly language programs, use
three notions to characterize interactions between a program’s statements. The first, a procedural depen-
dency, is analogous to a control dependence. The second, a data dependency, corresponds to a flow depen-
dence. The third, an operational dependency, corresponds to a busy-wait. Tjaden and Flynn sketch an
algorithm for determining when additional registers can be used to break read-write and write-write
conflicts between pairs of statements. This algorithm is analogous to later algorithms that use variable
renaming to break anti- and output dependences.

Most of the common terms for describing dependence were developed during the 1970’s at the Univer-
sity of llinois:

A 1972 paper by Kuck, Muraoka, and Chen draws an explicit distinction between flow dependences and
anti-dependences, there called forward and backward dependences, respectively [Kuc72]. This paper
also defines distance vectors—n-tuples that give the distance of a dependence (in n-space) w.r.t. a col-
lection of n nested loops. Kuhn [Kuh80] credits Muraoka {Mur71] with the development of the notion
of a distance vector.

"Towle appears to have introduced the notions of output dependence and transitive dependence (referred
to by Towle as indirect data dependence) [Tow76]. The word appears is used, since Towle was not

[1] for m:=1 to 2 do

2] forn:=1to 2 do

3] read (a[m+1, 1]);

[4] print (a[m, nj);
endfor”

This example program exhibits [3] —>, [4]. According to Allen’s definition, [3] —>, [4] is carried by the loop at [1].
According to Horwitz et. al's definition, {31 —>/ [4] is carried by the loops at [1] and [2].

Figure 3.9. Ilustrating the difference between Horwitz et. al.’s and Allen’s definitions of loop-carried dependence.
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careful to distinguish original concepts from concepts that were borrowed from earlier authors.

The notion of a direction vector was first proposed by Wolfe [Wol78]. A direction vector, a vector that
gives the signs of a distance vector’s entries, plays an important role in loop interchange.

Several authors, including Wolfe, credit Kuck’s text on compiler-writing for the notion of input depen-
dence [Kuc78].

Allen’s 1983 thesis [Al183] introduced the notions of loop-carried and loop-independent dependence.
Allen used these notions to determine the safety of loop interchange. More recently, a different definition
of loop-carried and loop-independent dependence was given by Horwitz, Prins, and Reps [Hor89].
Horwitz et. al. state that a dependence p —> q is carried by a loop L when a path in the control-flow graph
that gives rise to p —> g includes a backedge to L’s entry point. This definition provides an adequate, but
less precise, characterization of a program’s evaluation. Horwitz et. al.’s definition implies that a loop L
carries a dependence d whenever a loop L’ that encloses L carries d—even when L, by Allen’s definition,
does not (¢f. Figure 3.9).

The notion of a def-order dependence was introduced by Horwitz, Prins, and Reps in the context of pro-
gram integration [Hor87].

3.4.2. Def-use chains, support sets, and dominance

A dependence is one of several relations that have been used to characterize program behavior. Notions
that are equivalent to the notion of flow dependence include the standard dataflow notion of a def-use
chain (cf. [Aho86]) and Neirynck’s notion of an expression’s support [Nei88].

The notion of control dependence is closely related to the notions of dominance and post-dominance. A
node n in a program’s control-flow graph dominates a second node n” if all paths in the graph from the
entry point to n’ pass through n. Similarly, a node n is post-dominated by a second node »” if all paths from
n to'the program’s exit point pass through »’. Ferrante, Ottenstein, and Warren give a definition of control
dependence that also extends to languages with gotos [Fer87]. This definition states that statement ¢ is
control-dependent on predicate p iff
° there exists a path 7 in a program’s control-flow graph from p to ¢ such that every point along this

path, p and ¢ excepted, is post-dominated by ¢, and
. p is not post-dominated by g.

3.4.3. Conflicts

Another notion that is closely related to the notion of data dependence is the notion of a conflict. Two
statements p and g conflict, written p € ¢, if both access the same memory location / and either updates /.
The difference between a conflict and a dependence (which is also discussed in Section 3.1) is illustrated
by the following example program:
(1] x =10; [2] x:=20; [3] y:=x; [4] x :=40;

This program exhibits three read/write conflicts and three write/write conflicts: [1] €2, {33,
2] &, 31, 3] €, 4], [1] O, [2], [1] . [4], and [2] €>,, [4]. It also exhibits four data
dependences: [11 —, [2], [2] = [3], [3] —, [4],and [2] —, [4].
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Good results have been obtained from using conflicts to guide program parallelization (e.g., [Hen90]).
Even so, the notion of conflict equivalence has shortcomings that make it unsuitable for reasoning about
certain aspects of program behavior. Consider, for example, the information that conflicts give about the
following programs:

ProgramA,: [1]
(2]
3]
(4]
(51

i

; Program A,:  [3]
; (4]
; {1]
; {2]
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i
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Programs A, and A, compute the same final values for x, y, and z. Neverthless, A; and A, are not
conflict-equivalent; the two programs perform different sequences of updates to x. This example, like Fig-
ure 3.3, suggests why conflict analysis is not a good starting point for analyzing a program’s meaning.

Conflict analysis plays an important role in the detection of program anomalies that arise from con-
current program execution. One such anomaly, a race condition, is illustrated by the example program
“parbegin x:=f();x:=g() parend;y:=x;". If f() and g() return different values, then the final
values of x and y depends on which assignment to x completes first.

Taylor and Osterweil were among the first to use dataflow analysis to detect potential race conditions
(and other anomalies of concurrent programs) at compile-time [Tay80]. Balasundaram and Kennedy, who
also use conflict analysis to detect race conditions, observe that conflict analysis is the proper starting point
for detecting these anomalies [Bal89a]. More specifically, they note that the notion of dependence is not
well-defined when there is no a priori order on statement evaluation. Recent work by Netzer and Miller
uses a combination of static and run-time techniques to identify an execution’s race conditions
[Net91, Net91al.

3.4.4. Logic-based and denotational notions of dependence

This thesis defines an operational notion of dependence. The notion of data dependence also arises in logic
programming, where clauses that use a variable are said to be dependent on other clauses that define that
variable (cf. [Deb89]). A third, denotational approach to defining the notion of dependence is described in
a report by Hudak and Young [Hud91]. Hudak and Young state that an expression expr, is dependent on
an expression expr, w.r.t. an environment env if the evaluation of expr; relative to env is affected by
expry’s meaning. To be precise, they define expr, to be dependent on expr, w.r.t. env if a “booby-
trapping” of the language’s semantic function F that causes F to fail uniformly at expr; w.r.t. env changes
the meaning of expr,. This particular definition of dependence was chosen, in part, because computations
in functional languages have no internal state. To investigate whether a given expression contributes to a
program’s meaning, one must perturb that program’s meaning function.

3.4.5. Semantic dependence

A notion of dependence that is similar to Hudak and Young’s is defined by Podgurski and Clarke [Pod90].
This dependence, the semantic dependence, corresponds to the assertion that changing an operator in state-
ment p might affect the sequence of values produced at statement ¢. Podgurski and Clarke use this notion
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to discuss the problem of determining how a typographical error at a statement p might effect the evalua-
tion of a statement g. Other theorems are given that relate the notions of semantic dependences and control
and data dependence.

3.4.6. Imperative dependence

Pingali et. al. use the notion of an imperative dependence to model the evaluation of standard, imperative
languages [Pin91]. Intuitively, an imperative dependence asserts that a pair of statements like “load x ;
test x” must evaluate in a specific order. This notion allows Pingali et. al. to define a type of dependence
graph, the dependence flow graph, that can be used to execute FORTRAN programs (cf. Chapter 7).

3.4.7. Weak control dependence

Most authors ignore the effect of execution anomalies (i.e., errors, points of nontermination) on a
program’s flow of control. Podgurski and Clarke, on the other hand, argue that anomalies create a second
type of control dependence, which they call the weak control dependence [Pod90]. A weak control depen-
dence arises when one statement suppresses a second statement’s execution. For example, the program
“[1] while true do skip od; [2] print("done’)” exhibits the weak control dependence [1] —> .. (2],
since statement [1] fails to terminate. Podgurski and Clarke argue that weak control dependences are
important for proper debugging and testing. For example, an optimizer that ignored [1] — .. [2] might
generate an executable image that printed “done”—thereby surprising a person who was debugging this
program.

3.4.8. Approximate notions of data dependence

Dependence is sometimes defined w.r.t. simplified models of computation. One common definition of
dependence, which resembles the definition of a def-use chain, states that p —>4 ¢ through x in a program
P if p and g manipulate x, and there is an x-definition-free path in P’s (extended) control-flow graph (cf.
[Aho861). A slighly more precise formulation of this definition states that a program exhibits p —>y q if
(1) paths in its control-flow graph link p to ¢, and (2) p and ¢ might access a common location [AlI83].
Both definitions are static approximations to the notion of dependence defined in Section 3.2.2.

3.4.9. Dependences and intended behavior

Yet another area of concern is whether the notion of a dependence should be based on a more resilient
model of computation—one that captures a program’s intended behavior. This concern stems from the
observation that an incomplete or erroneous program can contain well defined threads of computation.
Consider, for example, the following program, P:

[1] y =1/0; (2] x:=1; [3] print(x)
Under the standard, control-driven model of program execution, P exhibits no data dependences: it simply
halts before completing statement [1]. This characterization of P’s dependences, however, is useless t0 the

programmer who wishes to view P as a program in the making. Such a programmer would probably deter-
mine P’s dependences by ignoring the error at [1]. Under this alternative model of evaluation, P exhibits

[2] = [3]. Similar observations could be used to infer that P is equivalent to
[1] z:=1/0; [2] x =1, [3] print(x);
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but not to
{11 z = 1/0; [2] print(x); [3] x=1;

Improvements to the control-driven model have been proposed that provide more aggressive characteri-
zations of a program’s threads of computation. Two alternative models of computation are discussed in a
paper by Felleisen and Cartwright [Car89]. The one, lackadaisical evaluation, allows one thread of com-
putation to continue evaluating if another, unrelated thread of computation fails. The other, lazy evalua-
tion, allows a program to continue to run even if all of its threads fail. For other recent discussions of alter-
native models of computation, see [Bal90] and [Pin91].

3.4.10. Distance of a dependence

Section 3.3 describes one refinement of the notion of data dependence. A second important refinement is
the notion of a dependence’s distances. A dependence p —>4 q exhibits a distance d w.r.t. a loop L iff the
memory operations that create p —>, ¢ could span d iterations of L. Distance plays a crucial role in dis-
covering which invocations of a loop may be run in parallel [Lam74,Wol82,Kuh80, All83, All87,
Cal87,Lar89,Bal89]. Consider, for example, the problem of parallelizing the program
“[1] for i:=1 to 64 do [2] ali +8] :=ali]*ali] od”. A compiler seeking to parallelize loop [1] needs
to know that [2] — ;) [2]—i.e., that values produced by earlier evaluations of [2] are used by later
evaluations of [2]. However, the assertion [2] — ;) [2] is an excessively cautious characterization of
how this program runs. Of more use is the observation that the element of a produced by the ith
occurrence of [2] is used only by the i +8th occurrence of [2]. This second observation yields an equivalent
program that runs in one-eighth of the time:
parbegin
for i =1 to 64 step 8 do afi+8]:=ali]*ali] od;

for i ;=8 to 64 step 8 do a[i+8]:=ali]l*ali] od
parend

Authors who have given techniques for computing a dependence’s distance w.r.t. a language with
dynamic allocation include Horwitz, Pfeiffer, and Reps [Hor89a); Bodin [Bod90]; Gohkale and Smith
[{Goh90]; and Larus [Lar89]. The first three of these reports are concerned with intraprocedural depen-
dence computation. They propose algorithms that a compute a dependence’s distance w.r.t. a set of nested
loops. Larus, who describes techniques for parallelizing a series of recursive calls to the same procedure,
was apparently the first to use the notion of distance to characterize interprocedural dependence.

3.4.11. Declaration dependence

Languages like # that provide type and variable declarations exhibit a third type of dependence. A
declaration dependence p —>,,; q arises when a point g uses information about a program’s types or
structures given in a declaration p (cf. Figure 3.10). Declaration dependences are regarded as distinct from
data dependences, since the information being transferred is not a computable value.

Declaration dependences are rarely mentioned in the literature on dependences: concerns about a
program’s declarations simply do not arise in most treatments of program behavior. One exception is a
paper by Hood, Kennedy, and Miiler that deals with efficient module recompilation {Ho086]. The notion
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[d1] struct conscell Is <hd, tl>;

[d2] struct intptr is <intp>;
[d1] =>4a [1], since new uses conscell’s definition to create a structure.

procedure main () [d1] =>4y [3], since statement [3] checks if hd can be applied to cell.
?11]3 ] k::; f:ﬁ;w (conscell); [d2] =>4 [2], since new uses intptr’s definition to create a structure.
(2] value = new (intptr); [d2] =>4a [4], since statement [4] checks if intp can be applied to value.
3] cellhd =1; [d3] =gy (1} and [d3] —>4q (3],
[4] value.intp =2 since [d 3] declares cell to be a local variable.

end

Figure 3.10. Declaration dependence.

of intermodular dependence developed in this paper is similar to the concept of declaration dependence
sketched above.

Declaration dependences are ignored in this thesis. To simplify the presentation, it is simply assumed
that each of a program’s statements is declaration-dependent on all of its declarations. This is clearly a
pessimistic characterization of a typical program’s declaration dependences. 1t should be equally clear that
better characterizations are easy to obtain when each of a program’s structures has a unique set of field
names. Consider, for example, the program in Figure 3.10. It is easy to see that statement 1], which mani-
pulates an object of type conscell, is not dependent on declaration [d2], which defines an object of type
intptr. The problem of computing an arbitrary program’s declaration dependences, however, becomes
harder when fields in different structures have the same names. Consider, for example, the following pro-
gram:

[dI] struct stoplight is <color, timer>; [d2] struct hat is <color, kind, size> ;

[p] thing.color :=red ;

Without more information about the referents of thing, it is impossible to tell whether p is dependent on dl,
or d2, or on both declarations.

3.4.12. Limitations of dependence

Section 3.1 gave reasons for using dependences to analyze programs. There are also important facts about
program behavior that dependences do not provide. One such fact is the specific values that a pair of pro-
gram points share. Dependences alone, for example, cannot be used to determine the equivalence of
“if pred them x:=1 else x:=0 fi; y :=x” and “x:=0; if pred then x:=1 fi; y:=x". Algorithms,
however, have been given that use dependences to make more complex judgments about a program’s
meaning. One such algorithm, given by Yang, can determine that these two programs are equivalent (cf.
Chapter 4, [Yan90]).

A second limitation of dependence is that an arbitrary program’s dynamic dependences are uncomput-
able. This assertion follows from the fact that it cannot be determined whether arbitrary statement must
evaluate [Man74]. It is, however, possible to design algorithms that compute safe estimates (i.e., proper



— 34—

supersets) of a program’s dependences. Various researchers have also explored the use of special tools and
language constructs that allow users to state that a possible dependence will not, in fact, be exhibited by
any possible execution of a given program (e.g., [AlI86, Die87, Lar891).
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4. USING AN INSTRUMENTED SEMANTICS TO CHARACTERIZE DATA DEPENDENCE

SETL is a set-theoretically oriented language of very high level whose repertoire of semantic objects includes
finite sets, ordered n-tuples, and sets of ordered n-tuples usable as mappings. This two-part paper studies some
of the optimization problems associated with such a language. The first issue studied is that of copy optimiza-
tion, i.e. the discovery of cases in which change to a compound object can be made ‘differentially’ without
recopying the whole of the object. This optimization is brought to rest on an analysis of value flow, i.e., on an
analysis which finds all the points p in a SETL program at which the object created or modified at another
point q can reappear. —J. Schwartz.  [Sch75]

In Chapter 3, the notion of a data dependence was defined in terms of the sequences of states that a compu-
tation might generate w.r.t. My. Chapter 4 develops altemnative definitions of data dependence that sim-
plify the task of dependence computation. These new definitions treat dependence as a function of the set
of states that a computation might generate, relative to a collection of non-standard, instrumented semantics
for 4 These semantics, roughly speaking, label every structure and reference obj with the names of those
statements that have read and written obj. These labels allow the data dependences that are incident on a
statement g to be determined from the labels on the objects that are read—and overwritten—at q.

Chapter 4 is divided into three sections. Section 4.1 sketches a set of labeling techniques for characteriz-
ing a program’s data dependences. Section 4.2 argues that the definitions of flow dependence given in Sec-
tion 4.1 are equivalent to the (sequence-based) definitions of dependence given in Chapter 3. The first part
of Section 4.2 uses an instrumented semantics for %, Ml,, to formalize the notion of flow dependence.
The second part of Section 4.2 uses a lemma that relates M, and M, to establish that the two semantics’
characterizations of flow dependence are equivalent. (Similar arguments show the equivalence of the
remaining notions of data dependence.) Section 4.3 then concludes with a discussion of related work.

Instrumented semantics have played an important role in program analysis since the early 1970’s. This
chapter’s specific contributions include the use of labels to characterize a pointer program’s data depen-
dences; the specific labeling strategies for characterizing def-order dependence and the carriers of a depen-
dence; and the emphasis on showing that M, and Ml ,, have equivalent definitions of dependence. Earlier
studies that use labels to analyze program behavior typically assume, without proof, that an instrumented
characterization of program behavior can be used to reason about a language’s implementation semantics.
This assumption is problematic, since the typical goal of program analysis is to characterize a program’s
actual behavior. To rephrase this statement in the context of the current chapter, the observation that Ml
and M,, are distinct—albeit related—semantics implies that a characterization of a program’s behavior
w.r.t. MI,,, does not necessarily hold for M. One would like to be sure (e.g.) that the use of labels does not
impose any hidden implementation commitments on My that limit the applicability of the analysis. This
concern is addressed by Lemma 4.2, which asserts that the definitions of flow dependence w.r.t. My and
M1, are equivalent.

4.1. Using Labels to Characterize Dependence

Various authors, including Cousot and Cousot [Cou80] and Nielson [Nie81, Nie87], distinguish between
two kinds of program analyses. The first, the history-insensitive or first-order analysis, characterizes the
set of states that a program generates. The second, the history-sensitive or second-order analysis, charac-
terizes the sequences of states that a program generates. This distinction is interesting because the two
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kinds of analyses characterize different aspects of program execution. First-order analyses typically gen-
erate assertions about the values that a program might compute. Examples of such assertions include “vari-
able x always has the value 3 at point p”, and “function f’s second parameter is never 1”. Second-order
analyses typically generate assertions about how a program computes its values. Examples of such asser-
tions include “point p evaluates ten times before the evaluation of point ¢”, and “program P exhibits the
dependence p —>, ¢”. This distinction is also interesting for pragmatic reasons. A semantics that simply
characterizes a computation’s current state is not a good starting point for analyzing second-order behavior.
A more useful starting point for such an analysis is a history-sensitive semantics-—i.e., a semantics that
gives a computation’s current state s, as well as other information about states that precede (or succeed) s.

The semantics given in Chapter 2 is not a history-sensitive semantics, in the sense of {Nie81]. The bal-
ance of this chapter develops such semantics for language #; and uses them to analyze a program’s depen-
dences.

One approach to developing a second-order semantics treats a program’s statement-evaluation function
as a map from a sequence of states to a sequence of states [Cou80,Nie81]. The resulting trace semantics
generates an output that gives (1) a computation ¢’s final state, and (2) a complete record of ¢’s intermedi-
ate states. Figure 4.1 shows a trace of an example program P’s evaluation w.r.t. an empty initial store. The
depicted trace, trace t, is the trace that reaches statement [4]. The dependences incident on [4] can be com-
puted by using ¢ to unravel P’s execution. Specifically, statement [4] manipulates four objects in the store:
the global environment, reference y, structure s/, and reference intp. An inspection of ¢ shows that these
objects were created by the initial program point and statements 3, 1, and 2, respectively. Program P there-

fore exhibits initial, —; [4], [1] = [4], [3] —; [4], and [2] —, [4].

program P The trace of P w.r.t. store s-initial is
struct intptr s <intp>; ([initial], s-intial ) : ( [m], s=(m]) :
[m] procedure main () (1], s-[11) : (2], s-[2]) : ( (3], s-(31])
(1] X 1= new (intptr)
%{ x.intp := [N.B.: freelist components of trace omitted.]
=X ;
{4] irr.intp =1
end /,curr
%_mev% %_prev% %-_prev%
main main X Y main
g : —prev : [:] s1 [:] s Ej s
maln |ntp intp inltp
t
s~initial s-[m] nil s- [1] 0 s-[2] 0 s-[3]

Figure 4.1. A trace of an example computation.
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program P [init ] —eurm [m-1]\§<>
struct intptr is <intp>; y _prev [m ]

2
[m] procedure main () X[l v m ]
(1] P = new (intptr) ; el -3
[2] x.intp 1= 0; 1
3] =% - s1 (1]
yi=Xx . Instrumented store that
(4] z.intp =1 intp (2] reaches statement {4} in P.
en

0 2]

Figure 4.2. A state in an instrumented computation. Bold, bracketed strings are defining-point labels. Init, is short for
initial;, a program’s initial program point. m_3, m_,, and m_; are the three program points that initialize procedure
main()'s local environment.

A second approach to defining a history-sensitive semantics treats a statement as map from a labeled
state 10 a labeled state. These labels give facts about a computation’s history. A semantics that labels
every object with its defining program point is illustrated in Figure 4.2. This semantics, referred to here as
an instrumented semantics, is a straightforward extension of the semantics given in Chapter 2. The pro-
gram depicted in Figure 4.2, program P, is the one depicted in Figure 4.1. The store depicted in Figure 4.2,
store s, is the instrumented store that reaches statement [4]. The dependences incident on [4] can be com-
puted by using s to discover facts about P’s execution. Specifically, statement [4] manipulates four objects
in s: the global environment, reference y, structure s/, and reference intp. An inspection of s’s labels
shows that these objects were created by the initial program point and statements 3, 1, and 2, respectively.

Program P therefore exhibits initial, —>¢ [4], [1] —¢ [41, 3] — [4], and [2] —, [4].

The program depicted in Figure 4.1 and 4.2 exhibits the same flow and output dependences w.r.t the two
semantics. The principal reason for preferring the instrumented semantics is that it yields a more efficient
characterization of a program’s evaluation. As Figures 4.1 and 4.2 illustrate, labels condense a
computation’s execution history, and make facts about computations easier to retrieve.

What follows now is an informal description of a set of instrumented semantics that yield exact, albeit
possibly uncomputable, characterizations of a computation’s data dependences. It is important to keep in
mind that the following definitions are not the same as those given in Chapter 3.

Flow dependences. Flow dependences are defined as write-before-read dependences (cf. §3.2.2). The
instrumented semantics for characterizing flow dependence therefore pairs every non-atomic object obj
with the name of the statement that writes obj. The instrumented characterization of flow dependence

states that a computation exhibits p —>, g when point ¢ reads an object obj whose label equals p.

Atoms are not labeled because they are never shared; there is never more than one pointer to a given
atom throughout a computation. Furthermore, the definition of #{guarantees that:

° An atom a and a reference r to a are defined at the same point in a computation; and
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e Atom a is never accessed without a corresponding access of 7.

The dependences that arise from the read of an atom a are therefore the same as the dependences that
arise from the read of its corresponding reference r.

Input dependences. Input dependences are defined as read-before-read dependences (cf. §3.2.2). The
instrumented semantics for characterizing input dependence therefore pairs every non-atomic object
obj with the names of all statements that read obj. (N.B.: this label is initially empty.) The instru-
mented characterization of input dependence states that a computation exhibits p —>; g when point ¢
reads an object obj whose label contains p.

Output dependences. Output dependences are defined as write-before-write dependences (cf. §3.2.2).
The instrumented semantics for characterizing output dependence therefore pairs every reference ref
with the name of the statement that writes ref. The instrumented characterization of output dependence

states that a computation exhibits p —>, g when point g overwrites a reference whose label equals p.

Structures are not labeled because output and anti-dependences do not arise through structures. Ml
like M,,, does not overwrite structures.

Anti-dependences. Anti-dependences are defined as read-before-write dependences (cf. §3.2.2). The
instrumented semantics for characterizing anti-dependence therefore pairs every reference ref with the
names of all statements that read ref. (N.B.: this label is initially empty.) The instrumented characteri-
zation of anti-dependence states that a computation exhibits p —>, ¢ when point ¢ overwrites a refer-
ence whose label contains p.

Def-order dependences. A def-order dependence is defined as a pair of flow dependences that arise at a

specific field of a specific structure (¢f. §3.2.2). The instrumented semantics for characterizing def-

order dependence therefore pairs every reference ref of type ¢ at structure s with rwo labels. The first

label, which names ref's defining point, is used to determine flow dependences. The second label on

ref, the prior-dependences label, names those dependences p —>; r that arise through reads of refer-

ences of type 1 at 5. (When a reference ref of type ¢ at structure s is replaced with a reference ref o,

reference ref ..., inherits ref’s prior-dependences label.) The instrumented characterization of def-order

dependence states that a computation exhibits p —> 4,y ¢ When:

1.  pprecedes q in a program’s abstract syntax tree; and either

2a.  rreads areference ref whose writing-point label is g, and whose prior-dependences label contains
p —prnor

2b. rreads a reference ref whose writing-point label is p, and whose prior-dependences label contains
q =T

Carriers of a dependence. The instrumented semantics for characterizing a dependence’s carriers

maintains a computation’s current occurrence string (¢f. §3.3) as a part of that computation’s state.
Objects that are read and written at a point p are labeled with the current occurrence of p. When a data

dependence p —>, q is created by an operation on memory, the occurrence of ¢ is checked against the
occurrence of p to determine the carriers of p —>4 q.
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4.2. An Instrumented Semantics for Characterizing Flow Dependence

The current section uses an example instrumented semantics, Ml to illustrate the labeling techniques
given.in the previous section. Semantics M, whose definition is given in Appendix 2, labels every refer-
ence and non-atomic structure obj with the occurrence of the program point that creates obj. The evalua-
tion of a program’s initial program point, initial,, labels every non-atomic object in the initial store with
the value initial, ; a subsequent statement p that creates a non-atomic object obj labels obj with the current
occurrence of p. MI,, also maintains a computation ¢’s current occurrence string as a part of ¢’s state. A
transition into the body of a loop [ adds an “I” to the end of the current occurrence string. An exit from !
strips all ’s from the end of the string. A procedure call at point s saves the current occurrence string in the
current procedure’s local environment, then appends an “s” to the occurrence string. A return from a pro-
cedure restores the caller’s occurrence string.

To show that M1, can be used to identify a program’s dependences w.r.t. My, it must be shown that the
new definitions of dependence w.r.t. MI,, are equivalent to the definitions given in Chapter 3. This is
demonstrated by first formalizing the definition of flow dependence w.r.L MI,,, and then showing that an
arbitrary computation exhibits the same set of flow dependences w.r.L. M, and MI,. Similar arguments
justify the use of the other labeling techniques described in Section 4.1.

DEFINITION (write of @ memory object w.r.t. MI,). A structure or reference is written (w.r.t. M)
when itisadded toastore. O

DEFINITION (write of a memary object at a state w.r.t. Ml,). Let p be a program point, ¢ a store, fl a
freelist, label a label function, and occ an occurrence string. A structure (reference) obj is written at
state (p, ©, fl, label, occ) (w.r.t. MI) iff the evaluation of p w.r.t. o, fl, label, and occ writes obj. 0O

DEFINITION (read of a memory object w.r.t. Ml ;). A structure or reference is read (w.r.t. MI,) when it
is accessed by the evaluation of an identifier expression. [

DEFINITION (read of @ memory object at a state w.r.t. MILy). Let p be a program point, o a store, fl
freelist, label a label function, and occ an occurrence string. A structure (reference) obj is read at state
(p, 6, fl) (w.r.t. M, iff the evaluation of p w.r.t. G, fi, label, and occ reads obj. O

The remarks in Chapter 3 about the circumstances under which objects are read and written also apply o
the instrumented semantics. The definitions of My and MI, are identical, up to that part of MI,/'s
definition that maintains labels and occurrence strings.

DEFINITION (state transition relation for MI,). The instrumented semantics’ state transition relation
* by o0 —> - is defined as follows:
prog |- state; —>° state; & siate; = state;
prog |-; state; —>" state; > I state’: prog |- state; —>* state’ A state; = evalPt; (prog, state’)
prog }-; state; —>" state; & A n:prog |-, state; —>" siate;
prog |- state; —>* state; & In>0:prog -, state; —>" state

prog i state, —> -+ —> state,, <> Vi:n<i<m-—1:prog |-, state; —state;,, O

The expression evalPt; (prog, state’) constitutes a minor abuse of notation. The function evalPt; (cf.
Appendix 2) actually takes one formal parameter—a state—and three non-local parameters that
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describe prog’s control-flow graph, structure declarations, and local identifiers.

(RE)DEFINITION (true for all states between ...). A predicate P:State — Bool is true for all states
between state, and state,, iff prog |- state, —> +-+ —> state,, implies that P (state;) = true for all
irn<i<m. O

DEFINITION (trace of a computation w.r.t. MI,). Let prog be a program and ¢ a store. The trace of
prog on o is the sequence (py, oy, fly, labely,0cct) *** (Pn,On,fla,label,, 0ccn), -, where
p, = initial;; o, = o; fl, is the freelist that MI,, pairs with o; label; is the label function that pairs
every object with the special value undefined; occ, = €, the empty occurrence string; and, for all i,
prog t1 (i, Si, fli, label;, 0cc;) = (Bis1s Oisrs Aivys labeliyy, 0cciny). O

DEFINITION (occurrence-specific flow dependence w.r.t. MI,). Let prog be a program with points p
and ¢, and InSet a set of stores. Let op and og, where oq =0q, * * - 04,414, be occurrences of pand g,
respectively. Program prog exhibits a flow dependence op —>; oq w.r.t. InSet iff q # initial; and there
exists a store g € InSet, a freelist fl, an instrumented state (g, 6, fl,, label,, 0q, - - 0qn,-1), and an
object 0bj such that

° prog - (initial, , o, fl, label, &) —* (q,0,,f1,, label;, 0qy """ 0q4-1), Where € denotes the
empty occurrence string, and label the label function that pairs every object with the label
undefined,

) objis read at (¢, 6,, iy, labely, 0qy - - - 04 4-1), and
objislabeledop. [

DEFINITION. (flow dependence w.r.t. MI,). Let prog be a program with points p and ¢, and InSet a set
of stores. Program prog exhibits a flow dependence p —> q w.r.t. InSet iff there exist occurrences of
p and g, op and og, such that prog exhibits op —>; oq w.r.t. InSet. O

DEFINITION (carriers of a dependence w.r.t. Ml,;). The carriers of a dependence p —>; g are the set
of all carrier ([i, pl,lj, q1) (¢f. §3.3) such that [i, p] —>4 [j, g w.r.t M, O

This completes the formal definition of flow dependence w.r.t. MI,. The following two lemmas show
the equivalence of the definitions of flow dependence w.r.t. My and Ml,,.

DEFINITION (congruent stores). Let 6 € Store be a store, and a; € Store; an instrumented store. Stores
o and o, are congruent iff ¢ can be obtained from o; by replacing all values in o; of the form
(return—pt, return—occstr) (i.e., all instrumented calling contexts) with values of the form return—pt.
O

LEMMA 4.1. Let P be a program, and ¢ a store. Lett=(p;, 01, fl1) *** Pn>Cn.fla) = -- bE the trace
of My (P, 0). Let t; = (p'1, "y, 1, label’y, 0cc’y) =+ (P'ny O n» fi'n, label’y, 0cc’y) « - -, Where =
fl1, be the trace of ML, (P, ¢). Then, forall i:

L pi=ps

2.  o’;iscongruent to o;;

3.  evalPt(p;,o;, f;) and evalPt; (p’;, &;, ff;, label’;, occ’;) read the same objects;

4 occ; is the occurrence string for (py, 6y, fl1) -+ @i, Gi, fli); and
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5. ifi>1 and obj is a non-atomic object in o;, then label’; (0bj) identifies the occurrence of that
point that created obj in t.

PROOF (sketch). Assertions 1 and 2 are proved by induction on the length of ¢ and ¢;. Inuitively, these
assertions are true because M, and MI,, have identical definitions, up to those parts of Ml ,, that are
concerned with maintaining labels and the current occurrence string.

Assertion 3 follows immediately from the definitions of evalPt and evaiPt;, which are identical up to
that part of evalPt; that maintains labels.

The proof of assertion 4 is tantamount to showing that Ml incrementally computes a computation’s
occurrence string. This assertion is also proved by induction on the length of t and ¢t;. The induction
hypothesis states that occ’;, the occurrence string at the jth state in the trace of Ml (P, ©), is the
occurrence string for (py, 01, f1) -+ (p;,0;, fl;). The induction hypothesis also characterizes how
environments and (return—pt, return—occurrence —string) pairs are configured in ¢’;. Roughly speak-
ing, the induction hypothesis asserts that executing k return instructions after the jth step in an instru-
mented computation would maintain the proper occurrence string, so long as there are no more than k
active procedure calls at step j.

Assertion 5 is also proved by an induction on the number of states in ¢.

If i =2, then the all objects in o, are created at initial;. By the definition of MI,,, ail accessible
non-atomic objects in ¢”, are labeled initial, .

Assume that the assertion holds for i—1. Then the induction hypothesis follows from the definitions
of M,, and MI,,. Specifically, the two semantics’ versions of evalPt create the same sets of struc-
tures and references. Furthermore, M1, leaves all labels on all other objects in ¢’;_; unchanged.

|

LEMMA 4.2. Let P be a program, o a store, and d =p —; ¢ a dependence. Program P exhibits d
w.r.t ¢ according to the standard semantics (i.e., M) iff P exhibits d w.r.t. ¢ according to the instru-
mented semantics (i.e., MI,). Furthermore, d is carried by (x, y) wrt. ¢ according to the standard
semantics iff d is carried by (x, y) w.r.t. ¢ according to M.

PROOF (sketch). Let o, and o, be occurrence strings, and d" =[0,,pl = [0y, g} an occurrence-
specific dependence. Lemma 4.2 follows from the claim that P exhibits &’ w.r.t. ¢ according to the
standard semantics iff P exhibits 4’ w.r.t. & according to the instrumented semantics. The proof of this
claim breaks down into two cases.

Standard implies instrumented. Let t = (py, 01, fl}) - -+, where 6, =0, be the trace of My (prog, o).
By the definition of flow dependence w.r.t. My, ¢ contains two states (p,, 0;, fl;) and (9, O Ax) such
that:

° pj=p;

° o,,ismeoccurrencestringfor(pl,cl,ﬂl) o A

. an object obj is written at (p;, 6;, fl;);

. obj is not overwritten at any states between (p, G, fl;) and (P, Ok fli);

. k> J
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® Pr=q
® 0,4 is the occurrence string for (p1, 61, fl1) *** (P, Ok, fli); and
o  objisread at (py, G, fly).

By Lemma 4.1, the kth state in the trace of MI,(P, o), state’y, is a state of the form
(9, f's. label’y, 0 ), where o’ is congruent to o, Lemma 4.1 also implies that obj is read at state’,.
The proof now breaks into two cases, according to whether obj is an atom:

If obj is not an atom, then by Lemma 4.1 obj is labeled [0,,p]. Since k > j, ¢ #initial,. The
definition of an occurrence-specific flow dependence w.r.t. M1, implies that P exhibits 4’ w.r.t. ©.

If obj is an atom, then, by the definition of MI,, the reference ref o 0bj in ¢’, must also be read at
state’y. By the definition of My, ref must also have been created at the jth state in «. By Lemma
4.1, ref must now be labeled [0,,p]. Since k> j, ¢ # initial;. The definition of an occurrence-
specific flow dependence w.r.t. MI, implies that P exhibits &’ w.r.t. 0.

Instrumented implies standard. Let ¢ = (p’y, &'y, i1, label’;, occ’y) - - -, where o1 =G, be the trace of
M, (prog, ). By the definition of dependence w.rt. Ml,, ¢ contains a state state’y =
©'v» k> Uy, label’y, occ’y) such that:

e pi=¢;

o occr=04

® a non-atomic object obj is read at statey; and
° obj is labeled [0, pl.

Let j be the unique state in ¢ such that p’; = p and occ’; = 0,. (To assume there is no such state con-
tradicts the hypothesis that there exists an obj labeled [0, p]; to assume there is more than one such
state contradicts the assertion that occurrence strings uniquely name every occurrence of every program
point in the course of a computation.) Since state’, read an object labeled [0, pl, j < k.

Lett=(p;,01, fl;) -+, where 6, =g and fl; = fI';, be the trace of M, (prog, ©). By Lemma 4.1,
e object obj is written at (pj, Gj, f1;);
e obj is not overwritten at any states between (p;, 6, fl;) and (py, Ok, fl1);
° objis read at (p;, O, fli).

The definition of an occurrence-specific flow dependence w.r.t. M, now implies that P exhibits " w.r.t.
g 0O

4.3. Relation to Previous Work

The material presented in Chapter 4 stresses two ideas:

° Program-point labels can be used to characterize a pointer program’s dependences.
e The proposed labeling strategies are consistent with the implementation semantics for language H
given in Chapter 2.

The current section discusses the relationship between these ideas and earlier work on program analysis.

Program-point labels are an old and oft-used tool in program analysis. The Courant Institute’s SETL
group was perhaps the first to use a labeled representation of the store to analyze a language with
dynamically-created structures. Their work is described in Schwartz’s report on the optimization of SETL




—-43 -

programs [Sch75]. This report describes labeling techniques for determining whether an object 0bj might
be written at p and read at g; written at p and overwritten at g; or read at p and overwritten at q. Schwartz
uses these techniques to determine when it is safe to replace occurrences of the SETL assignment state-
ment, which typically makes a new copy of its left-hand argument, with more efficient operations that
update the affected structures in place. An appendix of this paper sketches a second algorithm that esti-
mates a program’s conflicts (cf. §3.4.3); this algorithm assumes a pointer-arithmetic-free subset of PL/I.

Other analyses that use program-point labels to analyze pointer-program behavior (w.r.t. various tech-
niques for representing stores) have been given by various authors. Roughly speaking, these reports can be
classified according to whether labels are used to estimate object lifetimes [Rug87,Cha87, Rug8s,
Hed88, Har89, Deu90]; estimate a program’s dependences [Har89, Lar89]; estimate the carriers or dis-
tances of a program’s dependences [Lar89, Goh90, Bod90}; or limit the size of an approximate representa-
tion of the heap [Jon82, Hud87,Cha87,Nei88, Str88, Larg89, Deud0, Goh90, Str90, Cha90]. Only three of
these reports [Str88, Har89,Deu90] observe that the correctness of a labeling technique needs to be
demonstrated w.r.t. a language’s implementation semantics. Only two of these three reports gives such a
proof; the third [Str88] sketches, but does not develop, a semantics for program analysis.

The labeling technique presented here for determining def-order dependences is new. The technique’s
principal advantage lies in its referentially transparent characterization of def-order dependence. Previous
techniques for computing def-order dependences compared the dependences that arise through objects of
the same name in pairs of stores that reached different occurrences of a single witness point, 7. The tech-
nique given here examines the labels on the individual objects in the individual stores that reach individual
occurrences of . This allows store approximation to proceed independently of how structures are named
(¢f. Chapter 6). A second advantage of the technique is that it allows states that have been checked for
def-order dependences to be discarded—thereby saving space.

The use of labels to compute carriers was first proposed by Horwitz, Pfeiffer, and Reps in [Hor8%9a]. The
labeling technique given here is a new version of this earlier technique that also supports procedures.

The question of whether an analysis characterizes a program’s behavior also arises in the study of deno-
tational semantics. The principal problem with using denotational definitions to assess program behavior is
that these semantics do not characterize a computation’s intermediate sequences of states: they merely
define a correspondence between a program’s inputs and its outputs. The following three approaches have
been used to bridge the gap between a language’s denotational and implementation semantics.

® Some authors accept the assertion that a denotational semantics characterizes a program’s second-
order behavior “on faith.” Reports that use this approach often show that a labeling strategy is con-
sistent with the original semantics [Mil76, Ple81].

. A second approach, discussed by Mulmuley [Mul87], uses the notion of full abstraction to associate
a denotational definition with a canonical operational semantics for a language.

° A third approach augments a denotational semantics with assumptions about a program’s evalution.
Deutsch, for example, uses this approach in his work on functional programs {Deu90].
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5. AN APPROXIMATION SEMANTICS FOR ANALYZING FLOW DEPENDENCE

The semantic analysis of a program is the determination of the conditions under which the executions of this
program terminate, fail to terminate, or lead to an error ... The semantic analysis of a program should also
allow the properties of objects manipulated by a program to be determined at every point in that program.

—P. Cousot; trans. from introduction to  {Cou78]

This chapter describes MA ,, an approximation semantics for #{ that yields safe, computable characteriza-
tions of a program’s flow dependences. The semantics given in the previous chapter, Ml cannot be used
to compute a program’s dependences w.r.t. infinite sets of stores and nonterminating computations.
Semantics MA,, overcomes these limitations through the use of abstract objects—special objects that
represent infinite sets of values, stores, and occurrence strings. Similar extensions of the other labeling
techniques described in Chapter 4 yield effective algorithms for determining other kinds of data depen-
dences.

Chapter 5 is divided into four sections.

Section 5.1 defines MA ,, an approximate interpretation for language { that gives a terminating charac-
terization of a program’s execution. Semantics MA, is constructed from MI, by introducing abstract
objects into MI,’s domain. The rules for interpreting MI,, are then extended to obtain a conservative
interpretation of a pointer program’s meaning.

Section 5.2 shows that MA ,, yields a safe approximation to a program’s flow dependences. Abstract
Interpretation, a framework for comparing fixpoints, is first used to show that MA correctly estimates the
set of states that a computation generates w.r.t. MI,. This result is then used to argue that MA,, correctly
estimates the set of dependences that a computation generates w.r.t. MI,. The proof is then completed by
using the equivalence of MI, and My (cf. Chapter 4) to show that MA yields safe estimates of a
program’s flow dependences.

Section 5.3 uses an observation about the definition of My to sharpen MA,'s characterization of pro-
gram execution. A given store-access expression cannot have more than one meaning at a specific moment
in a program’s interpretation, w.r.t. My. It is not possible, for example, for an expression such as
“y.intp +y.intp”, where y.intp is an integer, to evaluate to the value 3. This anomaly, which does arise in
the approximate interpretation of pointer programs, can be avoided (in certain cases) by sharpening the
interpretation of selector expressions.

Section 5.4 concludes by reviewing related work.

The principal contribution of Chapter 5 is a set of safe and flexible algorithms for estimating a program’s
data dependences. This flexibility is achieved by splitting the definition of MA, into two components: a
set of semantic functions that interpret the meaning of #{'s operators, and a stateset estimation function, v.
The operator V ensures that analyses terminate by restricting the number of distinct states that the analysis
can output. The exact definition of V, however, is left unspecified. The principal reason for this decision is
that there does not appear to be a best heuristic for estimating pointer program behavior (cf. Chapter 6). A
second contribution of this chapter is the adjustment to MA,’s definition described in Section 5.3.
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5.1. An Approximation Semantics for Dependence Computation

Appendix 3 defines a semantics, MA, that yields effective algorithms for estimating flow dependences.
This new semantics avoids nontermination through the use of abstract objects—objects that represent
infinite sets of concrete (i.e., “ordinary”) objects in MI,’s domain of definition. One such abstract object,
TAT, represents the set of all atomic values. Another, the summary structure, represents an arbitrarily
large set of structures. MA , uses abstract objects to create finite stores and states that represent infinite
sets of stores and states. These special objects are then used to estimate how programs operate on infinite
sets of states and stores.

The next two sections describe MA,. Section 5.1.1 describes MA,/'s domain of states. Section 5.1.2
describes MA ,'s meaning function.

5.1.1. The domain of abstract states

Appendix 3 defines a semantics that gives conservative estimates of a program’s flow dependences. The
definition of flow dependence given in Chapter 4 suggests that this semantics, MA,, must not
underestimate—and may safely overestimate—the set of instrumented states that a program might com-
pute. It is safe, in other words, for MA 4 to overestimate

° the set of program-point occurrences that a state might reach;
° the set of paths than a store might contain; and
° the set of program points that might have defined an object.

Semantics MA,, uses regular expressions to abstract a computation’s current occurrence string. An
abstract occurrence string is a regular expression that denotes a set of occurrence strings. The abstract
occurrence string x (yz)*, for example, denotes the set of all occurrence strings of the form xW, where W is
a string of one or more pairs of yz's.

Semantics MA,, uses embeddings to abstract stores. An embedding, roughly speaking, is a value-
preserving, path-preserving map from one store to a second. Figure 5.1 motivates the notion of an embed-
ding, using stores from a program’s standard interpretation. Store s, which has strictly fewer paths than
store 55, is trivially embeddable in s,. Note that the example computation P :s, exhibits strictly more

1] x:m=x-1 store s1 store s2 output of P:s1 output of P:s2
oy Q@ R
- X X X z
8] zi=x+y ' / y\ _J_ store Y, )l( N
Program P 3 3 4 2 2 4

Figure 5.1. Store s2 can be used in place of store sl to estimate a program’s dependence, since 52 contains strictly
more paths than s/.
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dependences than P :sy, since the latter fails to terminate.

Figure 5.2 depicts embeddings of stores into abstract stores. The abstract stores depicted in Figure 5.2
differ from M, s stores in the following four ways:

® Structures in abstract stores may have several edges with a given selector. This allows arbitrarily
sets of structures to be condensed into a single, representative structure.

e  Abstract atoms may have the value TAT.

e Structures in abstract stores may have more than one type.

® Abstract stores have two kinds of structures. White boxes in Figure 5.2 represent ordinary struc-
tures: structures that are the image of no more than one structure in an embedding. Black boxes
represent summary structures: structures that may be the image of arbitrarily many structures in an

X y X
s1 s2 s3
intp intp | intp
nil nil nil
Store A Store B Store C

A and B embed in C. One embedding maps s1 to s5; the other maps s2 and s3 to s4 and s6.
A is not embeddable in B. sl cannot be mapped onto both s2 and s3.
B is not embeddable in A. sl, an ordinary vertex, cannot be the image of s2 and s3.

-----------------------------------------

@ —— environment

H :

X y § ,
s7 - y D

5 —— ordi T

hd t tl s9 X y : ordinary cons ce 5
2 s8 1/1d ﬂ\ o summary cons cell
}1 t{ TAT il hd d 1 -- atom

1 nil ® __ summary object
Store D Store E Store F R R b

Dembeds in E. The embedding sends s7 and s8 to s9, and both integers to TAT

D also embeds in F. The embedding sends every atom and cons cell in D onto F’s
special summary object. This object has type {atom,conscell} and value T AT .

Figure 5.2. Embeddings of stores in abstract stores.
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embedding. Intuitively, a summary structure (and its incident edges) depicts the graph that results
when an arbitrarily large subgraph of a store is condensed into a single, representative node.

Semantics MA , uses label-preserving embeddings to abstract instrumented stores. Intuitively, let o be a
reference (or non-atomic structure) that is mapped to 0, in an abstract store. Assume that an occurrence op
of a point p defined 0. Then o4’s label must also assert that op might have defined 0,.

The assertion that one object is abstracted by a second is formalized as a relation, > . The following is
an informal definition of > ; a precise definition of this relation is given in Appendix 4.

DEFINITION (occurrence-string abstraction). An approximate occurrence string occs abstracts the
occurrence string occ, written occ > occ 4, iff occ is in the set of occurrence strings denoted by (the
regular expression) occ,. [

DEFINITION (store abstraction). Let g€ Store and 64 € Store, be stores. Store ¢, abstracts o, written
o B 0,, iff there exists a map f such that

* f maps every accessible structure and reference in ¢ into Gj.

fmaps o’s global environment to 6, ’s global environment.

f preserves kinds: every ordinary structure in o, is the image of at most one structure in G.

f preserves types: fmaps every structure in ¢ of type ¢ to a structure whose type includes ¢.

f preserves atoms: f maps every atom in ¢ of value v to an atom whose value is either v or TAT.
f preserves contexts: f maps every saved calling context in ¢ of the form (pt, retocc) to a com-
parable context; i.e., a context (p:, occ), where retocc B> occ.

* ¥ ¥ ¥

¥*

f preserves references: if r is a reference to a structure s in o, and r4 and 54 are the images of r
and s under f, then r, must reference s, ing,. 0O

DEFINITION (labeled store abstraction). Let ls = (o, label) € Store; x Label and Is4 = (4, label,)
e Store, X Label, be labeled stores. Labeled store Is4 abstracts ls, written Is > Isy, iff there exists a

map f such that 6 O o, by f, and f preserves labels: that is, f maps every object in ¢ to a comparably
labeled objectino,. O

DEFINITION  (state abstraction). Let state = (pt, o, fl, occ, label) € State; and states =
(pta, Oa, fla, 0CCa, label,) € Statey. State statey abstracts state, written state > state,, iff pt =pty,
occ D occy, and (6, label) B (04, labely). O

DEFINITION (pwr). Let D be a set. The expression pwr(D) denotes the powerset of D—the set of all
subsetsof D. [

DEFINITION (stateset abstraction). let state, € pwr(State;) and state., € pwr(State). Stateset
state,, abstracts state,, written state, O state.,, iff for all state € state. there exists a

state 4 € state,, such that state O statey. O

A similar set of subsumption relations can be defined between abstract objects. The store subsumption
relation C is based on a kind-, type-, atom-, context-, and reference-preserving embedding of one abstract
store into a second. A pair of example abstract stores that satisfies this relation is depicted in Figure 5.2. E
C F in Figure 5.2 by a map that sends every atom and cons cell in E onto the special summary object in F.
A precise definition of C is given in Appendix 4.
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The C relation is a reflexive and transitive relation. The domain of abstract statesets can therefore be
ordered by using T to partition pwr(State,) into equivalence classes. Define statesets state, and state’, (o
be equivalent w.r.t. C , written state, ~ state’, , iff state, T state’, and state’, T state,. Then the set of
equivalence classes of pwr(State 4) under ~, pwr(State,) / ~, is a partial order. This subsumption-induced
ordering is important for formalizing the notion of a safe approximation. Section 5.2 argues that depen-
dence is monotonic w.r.t. orderings on pwr(State ) induced by C . Section 5.2 also argues that MA is

monotonic w.r.t. this ordering. These two results justify this use of embeddings to estimate dependence.

5,1.2. An approximate interpretation for

Semantics MA , is a nondeterministic extension of Ml, whose domain includes abstract and concrete
objects. To ensure that MA , gives a conservative picture of a program’s dependences w.r.t. an abstract
store s, the semantics must estimate all possible interpretations of the stores that s abstracts.

The interpretation of assignment statements w.r.t. MA, is illustrated in Figures 5.3 and 5.4. Figure 5.3
shows the interpretation of assignment statements in the presence of nondeterminisim. The expression x
w.r.L 5o denotes three objects: the atomic structure TAT; structure s;; and structure s,. The expression
“[p] x.intp = 0" could therefore have any of three meanings: the one shown in store s,; the one shown in
55, and L, the error element, if x is taken to be TAT. In semantics MA,, the meaning of p w.r.t. 5¢ is
{ 51,52 ). Both stores are included in the set because the definition of dependence w.r.t. MLy (¢f. §5.1.1)
implies that it is safe to overestimate the set of states that a computation might generate. The error state is
omitted from the result because computations that err terminate, yielding no further dependences.

Figure 5.4 shows the interpretation of assignment statements in the. presence of summary structures. In
the previous example, two references of type intp (at s, and s,) were replaced with new references of type
intp (to the integer 0). Both references were situated at ordinary structures. References that are situated at
summary structures, on the other hand, are left untouched by assignment. Figure 5.4 illustrates why. The
second store in Figure 5.4, s, abstracts the first, so. If the evaluation of “x.tl.tl :=y” w.r.L store s,
removed the edge in 5, labeled ¢, then the updated s, would no longer abstract the updated s,.

x%x x%x X X X
TA/T [::]51D52 T;I‘ ¢s1t;]sz T:T E::lmmsz

in in in int int intp
Store s 0 'tp 'tp Store s 1 Itp Ip Store s 2 i p i

1 2 0 2 1 0

Figure 5.3. The effect of nondeterminism on store evaluation. Stores s, and s, represent two possible interpretations
of “x.intp := 0" w.r.t. store 5.
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X y\ 1 X Y\ X Y\ 1 X Y\
R\ 0 o 0 0
hd hd d hd
hd 4 d | / 7N
2 T AT 2 TAT O
hd hd t
| / \
1 1 0
Store s Store s 1 Updated stores after "x.tLtl:= y"

Figure 5.4. Why edge removal at summary vertices is unsafe. Store s, abstracts store so. Not replacing the # edge at
the summary structure ensures that s, continues to abstract the updated 5.

The ambiguous nature of abstract objects also affects the interpretation of predicates. Let store So, for
example, be a store in which x references TAT, The meaning of “[p] if x L0” wrt o is both true and
false, since TAT denotes zero and non-zero integers. An s, that reached p during an analysis would pro-
pagate to both of p’s control-flow successors.

Figure 5.5 illustrates the effect of nondeterminism on the return statement. Objects pointed to by edges
labeled _callctxt are calling contexts: (return—point, return— occurrence —string) pairs that record the state
of the computation before a procedure call. When a return statement is evaluated w.r.t. the approximate
store in Figure 5.5, the interpretation identifies two valid avenues of return: point [c2+1] in procedure P
with environment P" and occurrence string initial, cI 02*, and point [c1+1] in procedure main with
environment main and occurrence string initial,.*

The framework used to prove MA,/’'s safety leads to a second important difference between the two
semantics. MA,, maps an initial store to a set of states. This set characterizes the calls to evalPt, that
MA ,, makes over the course of a computation. Let final,, for example, be the output of MA, when
applied to an initial store o, Assume, further, that MA,,, when run on G, invokes evalPt, with an argument
of the form state = (pt, 6, fl, label, occ). Then final, either contains state, or a state that subsumes state.

A third difference between MI, and MA . is MA,/'s use of a stateset estimation operator, V, to ensure
that analyses terminate. MA ,, assumes that V is extensive: i.e., that V maps every stateset s to a stateset

“Technically, there are four avenues of retum: (1) {c1+1] with main, (2) [c1+1] with P”, (3) [c2+1] with main, and (4) [c2+1] with P".
Avenues (2) and (3), however, are not valid: (2), for example, pairs point {c1+1], which lies in main(), with a local environment
defined by the procedure P. These invalid avenues of retumn could be eliminated by treating references as objects of type
Loc +Loc xContext. References labeled _prev, which would have type Loc xContext, would be paired with the retumn point and the
occurrence string of the calling procedure. Other references would have type Loc.
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{m] procedure main( ) recursive
[p] procedure P()
{c1] call P () . T
[cl+1] ... el y =IFU
return return
Instrumented end end
store after nth call to P: ~ endrec
_eurr
main P p"
_prev -Q<—— _prev —<? . - _prev —94- _prev —
{
_callctxt _callctxt _callctxt _callctxt
I ! ) I n-3 ' n-2
(final .€ ) (c1+1,1) (c2+1,iclc2 ) (c2+1,iclc2 )
_eurr
main
An abstraction @“"_P’BV ‘Q@‘M _prev
of this store:
callctxt callctxt
((ﬁnal ,€)} {(c1+1,1 ). (c2+1,icl 2 )}

Return from nth call to P in approximation semantics (w.r.t. abstraction) ytelds two stores:

—eur main _eur *
: P
— main
&= X OF o < oy RO o

_ca/lcltxt _callctxt _calletxt
1 1

((final .£)) (141, 1), (c2+1,icl 2*))

{(final .£))

Store propagated to [ct+1] Store propagated to [c2+1]

Figure 5.5. The evaluation of the return statement w.r.t. MA,. The letter i in occurrence strings is a shorthand for ini-
tial,, the program point that first invokes main ().

that subsumes s. MA,, also assumes that V limits the length of every ascending chain in pwr(State ).
Intuitively, this implies that V limits the number of different states that an analysis can generate. Such a
limit can be imposed by restricting the size and content of approximate stores. One such V, depicted in
Figures 5.6 and 5.7, maps updated atoms to TAT; uses one summary structure to represent all cons cells
allocated at point [4]; and pairs every occurrence of a point p in the while loop at (3] with the approximate
occurrence string [3]"p. Other definitions of V are explored in Chapter 6.

A final assumption about MA is that its versions of MI,’s primitive operators are monotonic w.r.t. the
embedding-induced ordering on atoms. For example, MA 4's version of + returns TAT when either of its
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arguments is TAT.

5.2, Proving the Correctness of the Approximate Interpretation

The following definitions characterize a program’s flow dependences w.r.t. MA ;.
DEFINITION. (occurrence-specific flow dependence w.r.t. MA,). Let prog € Program, and InSet a
set of stores. Let p and ¢ be points in prog. Let op and og, where og =04, * ** 0919, be occurrences

of p and g, respectively. Program prog exhibits a flow dependence op —>¢ 0q w.rt. MA, and InSet iff
q #initial;, and there exists a o€ InSet and a (g, o', fl, label, occ) € MAy(prog,o) such that

procedure main( )

1 k:=0 Stores reac successive
5 lis't. .= nil occurrences of [3]:
3 while pred(k) do
4 tmp := new (conscell)
5 tmp.hd =
6 tmp.tl := list
7 list := tmp .
8 ki=k+1 k list ) tmp
od e
9] end 2
k list / tmp hd tl
Ve
? 1 1
k list hd tl hd tl
0 nil 0 nil 0 ni
1st occurrence 2nd occurrence 3rd occurrence 4th occurrence
In instrumented semantics
? k list Jtmp k list Jtm k~ list Jtmp
Pl s s P ~
h tl hd tl hd tl
0 ni TAT il T AT nil
1st occurrence 2nd occurrence 3rd occurrence 4th occurrence

In approximation semantics

Figure 5.6. The progress of an example computation, relative to MI,, and MA,, and an empty initial store. The stra-
tegy used to limit the sizes of the approximate stores is described in the text. Labels and local environments are not
shown.
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0qy ** " 0qn-1 D> occ and evalPt, ((q, &', fl, label, occ)) accesses an object whose label abstracts op.
a

DEFINITION (flow dependence w.r.t. MA ). Let prog € Program, and InSet a set of stores. Let p and
q be points in prog. Program prog exhibits a flow dependence p —>; q w.r.t. MA, and InSet iff there
exist occurrences of p and g, op and og, such that prog exhibits op —>; oq w.r.t. MA , and InSet. [
DEFINITION (carriers of a flow dependence w.r.t. MA ). Let carrier (x, pl.ly, q]) denote the carrier of
the occurrence-specific dependence [x, p] —>; [y, q1 (¢f. §3.3). The carriers of a dependence
p —>4 qare the set of all carrier ([i, pl,lj, qI) such that [i, p] —>4 [, gl w.r.t. MS,. O

The balance of Section 5.2 demonstrates that these four definitions represent a safe estimate of a
program’s dependences w.r.t. My. Intuitively, it will be demonstrated that a program P that exhibits

procedure main()

{1] k:=0; [2] list:=nil;
[3] while pred(k) do

[4] tmp := new (conscell); [5] tmp.hd:=k: [6] tmp.tl:=lst; [7] list:=tmp:
(8] k :=g( +1
end Store that reaches the fourth occurrence of [3]:
[init l]
k [i333,8] . ot
X! 3.8 i
tmp [i3334] k/[l ] hit mp [3%4]
[i3,,7]
AT
3 [i333,4] T
 [i333,6] 13741 d 3%

hd G3%5) d 3,61
hd (33,51 \tl [i33,6] /

/ T .

[ ] 13,41 TA nil

hd 03,51 \ d [i3,6]
/
0 nil
Instrumented semantics Approximation semantics

Figure 5.7. A “closeup” of two of the stores shown in Figure 5.7 that depicts the creation-point labels assigned to
structures and references. Labels are shown in boldface. The symbol “i” is a shorthand for initial,, the program point
that invokes main ().
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op —> oq w.r.t. My and a set of states /nSet must also exhibit op —> oq w.r.t. MA, and any abstraction
of InSet.

5.2.1. Abstract Interpretation

Abstract Interpretation is a well-known framework for program analysis developed by Cousot and Cousot
[Cou77,Cou78, Abr87]. Abstract Interpretation simplifies the task of showing that the least fixpoint of a
function f. is approximated by the fixpoint of a related function f. This framework is typically used to
show that an estimate of a program P’s behavior obtained from some f, is a safe estimate of an f¢ that
characterizes P’s standard execution.

Abstract Interpretation is used below to demonstrate the safety of the definitions of flow dependence
w.r.t. MA . The framework is first used to show that MA,'s final output abstracts the set of all states gen-
erated by MI,,. It is then argued that the flow dependences created by the evaluation of a state w.r.t. Ml
are a subset of those created by the evaluation of a comparable state w.r.t. MA,. These two resuits estab-
lish that the flow dependences exhibited by a computation w.r.t. MA, are a superset of those exhibited
w.r.t. a comparable instrumented computation. The safety of MA,/'s characterization of flow dependences
" then follows from the equivalence of MI, and M.

5.2.2. A static semantics for characterizing flow dependence |

In the Cousots’ formulation of abstract interpretation, the correctness of a semantics like Ml is demon-
strated by using an intermediate semantics to pass from MI, to MA,,. This intermediate semantics, which
the Cousots called a stafic semantics, has a fixpoint that characterizes the set of states that are generated
during the evaluation of Ml,,.

Figure 5.8 gives a static semantics for MI,;, named MS,. The definitions of MI,, and MS,, are identi-
cal, up to the definitions of evalPgm, and evalPgms. The static semantics’ version of evalPgm simply
“collects” into a set the states that are generated by the evaluation of evalPgm,. This allows the definitions
of dependence w.r.t. MI, to be rephrased in terms of a program’s meaning, as follows:

DEFINITION (occurrence-specific flow dependence w.r.t. MS,). Let prog € Program, and InSet a set
of stores. Let p and ¢ be points in Program,. Let op and og, where 0g =091 " 04,19, be
occurrences of p and g, respectively. Program prog exhibits a flow dependence op —> 0q w.r.t. InSet
iff ¢ = initial;, and there exists a g€ InSet and a (¢, &, fl, label, oq, - - 0q n-1) € MSy(prog, G) such
that evalPt; (g, &, fl, label, oq; - * - 09 ,-,)) accesses an object labeled op. O

DEFINITION (flow dependence w.r.t. MS,,). Let prog € Program s, and InSet a set of stores. Let p and
q be points in prog. Program prog exhibits a flow dependence p —>; q w.r.t. MS; and InSet iff there
exist occurrences of p and g, op and oq, such that prog exhibits op —>; og w.r.t. MSy and InSet. O]

DEFINITION (carriers of a flow dependence w.r.t. MS,). The carriers of a dependence p —>4 g are
the set of all carrier ([i, pl.Uj» q1) (cf. §3.3) such that [, p] —>4 [j, q] w.r.t. MSy. m|

5.2.3. Relating MS g tOMA,,

The claim that MA /s output abstracts MS,,'s output will be demonstrated by using Abstract Interpretation
to compare the outputs of the semantics’ state-transition loops, evalPgmg and evalPgm,. In Cousot-style
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MS,,: Prog — Store; — pwr(State;)
MS, (prog, 0) =
let (structdecls, body) = prog in
let body’ = expand (initialize (body))
and locallds = determineLocals (body’)
and structDecls = evalStructDecls(structdecls) in
and fI = an arbitrarily large collection of locations not in ¢
and label = A loc . (undefined, A sel . undefined)
and occ = &, the empty occurrence string

in
let evalPgmg = fix A f. A (state,).

let next, = union_from state € state, :
if new’s program-point component is final then { state }
elsif evalPt, fails when evaluated on state then &
else evalPt, (state)
fi
in next, < state, —» state, ] f(next.)
end

In evalPgmg ({ (initial, , o, fl, label, occ) })
end’

Figure 5.8. A static semantics for language # evalPt; denotes MI,'s version of evalPt.

Abstract Interpretation, the claim that evalPgm,4’s output abstracts evalPgmg’s output is demonstrated by
proving the following assertions about MA 5 and MS .

1.

4,
4a.

4b.

The body of evalPgmg is continuous w.r.t. the subset ordering on D = pwr(State;), evalPgmg’s
domain of states. This ensures that MS, has a least fixpoint.

Function evalPt, is monotonic w.r.t. the subsumption ordering on D 4 = pwr(State,), evalPgmy’s
domain of states. This ensures that MA ,, has fixpoints. (If evalPgm, is continuous, then iteration
from 1 computes MA /s least fixpoint; ¢f. [Cou77], Section 8.1.)

Dg and D, are adjoined; that is, there exist monotonic abstraction and concretization maps
abs:Dgs — D, and con:D, — Dy such that state,  con(abs(state,)) and abs(con (state.,)) ~
state, 4 for all state, € Dg and state,., € D,y.

Functions evalPt; and evalPt, are congruent; that is,

For all state, € D, abs (evalPt;(state,)) C evalPt, (abs (state.)); and

For all state,, € D 4, evalPt; (con (state.)) < con(evalPt, (state. ).

If MA,, MS,, etc. satisfy these requirements, then abs(evalPgmg (state,)) T evalPgm4 (abs (state.)),

and evalPgmg (con (state )} < con(evalPgm , (state., 1))

The Cousots show that abs and con determine one another: a suitable abs can be constructed from a
monotonic con, and vice versa. The requisite relationship between MA, and MS,, can therefore be esta-
blished by defining a monotone concretization map from D 4 to D and showing 1, 2, and 4b.
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LEMMA 5.1 (continuity of evalPgmg). evalPgmg is continuous w.r.t. the subset ordering on Dy.
PROOF. Immediate from the definitions of continuity and evalPgmg. [
LEMMA 5.2 (monotonicity of evalPt,). evalPt, is monotonic w.r.t. the subsumption ordering on D 4.

PROOF. Lemma 5.2 is proved with a series of lemmas that characterize its semantic functions. This
proof, which is straightforward but rather long, is given in Appendix 5. 0

DEFINITION. con : D4 — D g maps a state,, € D to ( state € State; : ( state } D state.4 3. O
LEMMA 5.3 (monotonicity of con). con is monotonic w.r.t. the subsumption ordering on D 4.

PROOF. By the definitions of > and T, state, B state’,, whenever state, D> state,, and
state,4 C state’,,. Thus, if state,4 C state’.4, then every (state )€ State; that is abstracted by
state,, is also abstracted by state’,,. [

LEMMA 54 (congruence of evalPt;, evalPt,). For all state.n €Dy, evalPt; (con (state.4)) ©
con(evalPt, (state, ,)).

PROOF. This assertion is equivalent to the assertion that (*) state & state, = evalPt; (state) D
evalPt , (state,). The proof of (¥), which resembles that of Lemma 5.2,is given in Appendix6. O
LEMMA 5.5 (congruence of evalPgmg, evalPgm,). For all state., € Dy, evalPgmg (con (state.,)) <
con(evalPgm, (state, 4)).

PROOE. This claim follows from Lemmas 5.1, 5.2, 5.3, 5.4, and from the Cousot’s extended framework
for Abstract Interpretation, which supports V-like estimation operators—there called widening opera-
tors (operateurs d’ €largissement). [

LEMMA 5.6 (Abstract Interpretation Lemma). 1f 6 > oy, then MSy (prog, o) & MA,(prog, Ga).

PROOF. Let store, = con(c,). Let

state, = union_from ¢’ & store, :
union_from fI € Freelist such that fl is infinite and fl names no reachable structures in ¢ :
{ (initial, o', fl, label, €) }
state., = union_from o', € store,, :
union_from fl € Freelist such that i is infinite and f names no reachable structures in ¢’ :
{ (initlal, &’, fls, labely, €) }
By the definition of con, state, = con(state.,). It then follows, from Lemma 5.5, that (*)
evalPgmg (state,) < con(evalPgm , (state, 4)).

Observation (*) can now be used to show that MS,(prog, 6) > MA,(prog, o). Let stateset =
( (initial, o, fl, label, €) }. Clearly, stateset < state,. By the continuity of MS,, w.rt. ¢ (Lemma 5.1),
(**) evalPgmg (stateset) < evalPgmg(state,). Since the subset relation is transitive, (*) and (**)
imply that evalPgmg (stateset) < con(evalPgmg (state.,)). Hence, by the definition of B,
MS, (prog, ©) D> MAy(prog,c4). 0O
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5.2.4. Relating dependences w.r.t. MA 4 and M o

THEOREM 5.1 (safety of MA,, w.r.t. MS,). Let prog be a program, and o > G,4. Let op and oq be two
occurrences of points in prog. Let d =op —>;0q. If prog exhibits d w.r.t. ¢ and MS,, then prog exhi-
bits d w.r.t. 64 and MA,.

PROOF. If program prog exhibits d wrt MS,, then MS,(prog, o) contains a state,
(g, ©, fl, label, occ), such that oq = append (occ, q) and the evaluation of an identifier expression exp at
this state accesses an object labeled op. Lemma 5.6, however, implies that MA , (prog, G4) contains a
state that abstracts (g, o, fl, label, occ). The second corollary to Lemma A.3 in Appendix 6, which
characterizes the approximation semantics’ evaluation of identifier expressions, asserts that the evalua-
tion of exp at this state accesses an object whose label abstracts op. The definition of dependence w.r.L

MA ;; now implies that program P exhibits op —>r og w.rt.o. [

COROLLARY 1. Let prog be a program, and ¢ &> ©,. Let p and ¢ be two points in prog. If prog exhi-
bits p —>; q w.r.t. o and MS,, then prog exhibits p —>, g wr.t. 54 and MA 4.

PROOF. Immediate from the definitions of flow dependence w.r.t. MS,cand MA,. O

COROLLARY 2. Let prog be a program, and ¢ &> o,. Let p and g be two points in prog. Let prog exhi-
bitd=p —>; q w.rt. ¢ and MS,,. If d is carried by (x, y) wr.t. ¢ and MS,, then d is carried by (x, y)
war.t. 64 and MA,,.

PROOF. Immediate from the definitions of a dependence’s carriers wr.t. MS, and MA,. O

THEOREM 5.2 (safety of MA ;; w.r.t. M,). Let prog be a program, and ¢ &> 4. Let op and oq be two
occurrences of points in prog. If prog exhibits op —>; 0g w.rt. ¢ and My, then prog exhibits
op —>r og wr.t. 04 and MA,.
PROOF. (1)  op—>poq w.r.t. My iff op —>roq w.r.t. My (L.emma 4.2)

(2) op—>roqwr.t. Ml iff op —>roq w.r.t. MSy (by defn. of MS,)

(3) op—>roqwrt MSy = op—>roq wrt. MA,  (Theorem 5.1)

4) op—roqwrt My = op—>roq wrt. MA, (1,23 above) O

COROLLARY 1. Let p and ¢ be two points in prog. If prog exhibits p —>; g w.r.t. ¢ and My, then prog
eXhlbltSp "‘)f q WI.L.Cy and MA ,. Od

COROLLARY 2. Let prog exhibit d =p —>; q w.r.t. ¢ and My, If d is carried by (x, y) w.r.t. © and
M,,, then d is carried by (x, y) wrt. 6, and MA,. O

The notion of embedding also allows dependence to be estimated w.r.t. arbitrarily large sets of stores.
Suppose, for example, that a program P supports three types of structures: environments, cons cells, and
atoms. Suppose, moreover, that P supports two identifiers, x and y. Then a safe estimate of P’s depen-
dences w.r.t. to the set of all initial stores can be obtained by evaluating P w.r.t. a store with

® one ordinary global environment, genv;
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e  onesummary structure, 5, of type { cons, atom } with value TAT;
® two references from genv to s of type x and y; and
° two self-references from s to s of type hd and 1.

This store is shown as Store F in Figure 5.2.

5.3. Using the Determinate Selector Property to Sharpen the Interpretation

In their survey on non-determinacy, Sondergaard and Sestoft distinguish between interpretations that exhi-
bit, and interpretations that fail to exhibit, the determinate variable property [Son87]. This property is
illustrated in the following example program.

11 x:=172; [2] y=x+x

The operator ? is the binary nondeterministic choice operator. In statement [1], for example, “172”
denotes either 1 or 2, depending on the whims of the implementation. If an interpretation I exhibits the
determinate variable property, then this program’s interpretation (according to /) assigns either 2 or 4 to y.
If I does not exhibit this property, then statement [2] could also assign 3 to y; [2], in effect, is interpreted as
“Rly=Q172)+(1?2)"

Similar concerns arise in the nondeterministic interpretation of pointer languages. Let Gy, for example,
be a store in which x denotes an ordinary location with two selectors of type x.intp: one to an atom 1, anda
second to an atom 2 (¢f. Figure 5.3, store s¢). The interpretation of 'y :=x.intp + x.intp” would then return
three stores. The value of y in these three stores would be 2, 3, and 4, respectively.

This loss of precision can sometimes be avoided by altering the interpretation of selector expressions.
Function selexp 4, when run on a store ¢ and an expression idexp, currently returns the set of locations that
idexp denotes in 6. The altered selexp, changes o to reflect choices made during the interpretation of
idexp. Assume, for example, that idexp denotes a single structure s w.r.L. a store o. Assume that s is an
ordinary structure that contains two references of type sel: one reference r, to a structure at location /,, and
a second reference r, to a structure at location /,. The revised selexp,, when run on idexp.sel and o,
returns two objects: I, paired with a store that lacks r,, and [, paired with a store that lacks r,. This prun-
ing of unselected references at ordinary structures is safe, since M,, is deterministic.

Consider how the revised MA,; would evaluate “y := x.intp + x.intp” w.r.t. 6. The evaluation of the
first x.intp would produce two stores, ¢’ and 6", in which x.intp denoted 1 and 2, respectively. The
evaluation of x.hd relative to oy and ¢’ would determine that x.hd must denote 1 w.r.t. 5g, and 2 w.r.t.
. The interpretation of “y := x.intp + x.intp” now yields two stores: one where y is set to 2 and x.intp t0
1, and one where y is set to 4 and x.intp to 2.

A second situation where the revised selexp, sharpens the interpretation is depicted in Figure 5.3. The
version of MA , given in Appendix 3 maps store sq to stores s; and s. The adjusted interpretation of
MA ,, would return one store in which x.intp was 0.

5.4. Related Work

Most of the techniques for analyzing pointer programs described in Chapter 5 are sketched in earlier
reports on pointer-program analysis. This dissertation, however, is the first that considers various interpre-
tation and approximation techniques from a unified perspective. A related attempt to unify various tech-
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niques for analyzing higher-order functional languages is discussed in [Deu90]. The material presented in
Section 5.3 also appears to be new, although a related idea was proposed by Stransky (see below).

The rest of this section discusses related techniques for pointer-program analysis. A discussion of store
abstraction strategies is deferred until Chapter 6.

5.4.1. Related abstraction techniques

Each of the abstraction techniques described in Section 5.1.1 has been described in previous papers on pro-
gram analysis. The particular combination of these techniques described here is new.

The approximate occurrence string is related to the approximate call string of Sharir and Pnueli (Sha81]
and to Harrison’s (approximate) stack configurations [Har89). Harrison uses stack configurations to esti-
mate the lifetimes of dynamically allocated objects in Scheme.

The abstract store graph is a direct descendant of the graphs described in (Jon79,Jon81]. Jones and
Muchnick, who were concerned with storage-sharing, label summary structures with values that character-
ize the topology of the replaced region. Other authors that use similar graphs include Pleban [Ple81],
Stransky [Str88], Larus [Lar87], and Chase, Wegman and Zadeck [Cha90]. Store graphs are also similar to
Chase’s storage containment graph (SCG) [Cha87] (a descendant of Schwartz’s subpart graph [Sch75]).
The principal differences between store graphs and SCGs are superficial. SCGs, for example, contain two
types of edges: one type of edge that denotes a reference, and a second that pairs a structure s with a spe-
cial node—i.e., a label—that names s’s defining point.

Embeddings play a crucial role in other analyses that use graphs to abstract memory. Authors who
develop explicit embedding relations include Jones and Muchnick [Jon79,Jon81], Chase [Cha87], Stransky
[Str88, Str90], and Chase, Wegman, and Zadeck [Cha90]. The notion of abstraction by embedding is
implicit in other work that uses monotone dataflow frameworks to build store graphs: e.g., Ruggieri’s work
on garbage collection [Rug87, Rug88] and Larus’s work on parallelizing Lisp [Lar87].

The distinction between ordinary and summary objects has been drawn by previous authors, notably
Jones and Muchnick [Jon79,Jon81], Chase [Cha87], Stransky [Str88], and Chase, Wegman, and Zadeck
[Cha%0].

Most papers describe analyses that pair every program point with a single abstract store. One exception
to this observation is a paper by Deutsch on the analysis of higher-order functional languages {Deu90]. A
second is the set-valued interpretation developed in the Jones and Muchnick work on analyzing Lisp-like
languages [Jon79,Jon81].

5.4.2. Related interpretations

The immediate precursor of MA, is the flow-sensitive semantics for pointer-program analysis developed
by Jones and Muchnick [Jon79,Jon81]. This analysis supports a procedure-free subset of Lisp that has a
destructive update operator and one type of allocatable object—the cons cell.

One extension of the Jones and Muchnick framework was developed by Pleban [Ple81]. Pleban’s
analysis supports a subset of Scheme that provides continuations and closures, but does not allow closures
to be stored or returned from procedures—thereby avoiding the upward funarg problem.
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A second, non-set-valued extension of the Jones and Muchnick framework was developed by Stransky
[Str88]. Stransky’s analysis supports a subset of Lisp that lacks closures. Stransky obtains a flow-sensitive
analysis by using predicates as filters of data: i.e., as assertions that remove paths from stores. Let P, for
example, denote the predicate “x > 0”. Predicate P, when applied to a store so, trims paths from s, that
fail to satisfy the assertion “x may be numeric.” Predicate P also trims paths from the stores passed to its
true and false control-flow successors, according to whether x is positive or nonpositive along these paths.
A path 7 that paired x with the value -1, for example, would be trimmed from the store passed to P’s true
consequent. An appreciation of Stransky’s technique for interpreting predicates led to the observations
about the determinate selector property given in Section 5.3.2.

The technique for interpreting the return statement is similar to the one proposed by Myers [Mye81] and
later rediscovered by Jones and Muchnick [Jon82]. This technique, which uses an approximation to the
stack to identify a procedure’s potential return points, can be contrasted with stack-less techniques that sim-
ply assume all possible return paths to be valid (e.g., [Cou78]).

The extended control-flow-graph model of program evaluation is easiest to work with when the example
language does not support local variables. In such languages, the return statement does not affect the
configuration of a program’s memory. Examples of pointer analyses for local-variable-free languages
include those by Chase [Cha87], Chase, Wegman, and Zadeck [Cha90], and Larus [Lar87).

Propagating approximate stores through extended control-flow graphs becomes a little more difficult
when a language supports nested scopes. The interpretation described in this thesis uses a special set of
references to track the local environment. Stransky, who treats the stack and heap as separate objects,
maintains a safe estimate of a program’s stack by performing comparable folding and unfolding (pliage et
depliage) operations on the abstract stack [Str88]. Pleban’s evaluator, on the other hand, appears to lack
abstract procedure activation records [Ple81]. Pleban suggests that an analysis be run until it duplicates
some memory configuration that sits atop the stack.

Cousot and Cousot introduced estimation operators (there called widening operators) to ensure the ter-
mination of analyses over infinite abstract domains [Cou77]. Another use of widening operators appears in
Stransky’s thesis [Str88].

5.4.3. Related proofs of correctness

Related proofs of correctness for pointer-program analyses have been given by Jones, Muchnick, Stransky,
Deutsch, and Hendren. Jones and Muchnick use Abstract Interpretation to show the safety of two tech-
niques for alias analysis, relative to procedure-free and procedure-supporting dialects of Lisp
[Jon79,Jon81,Jon82]. Stransky’s thesis sketches, but does not actually give, a proof of correctness for a
label-based analysis of a Lisp-like language with dynamic scoping [St88, Str90]. Deutsch describes an
abstract-interpretation-based proof of correctness for a framework for analyzing higher-order functional
languages [Deu90]. Hendren’s thesis uses a denotational definition of a language as a starting point for
demonstrating the correctness of an alias-analysis technique [Hen90].

A second well-established framework for developing program analyses is the monotone dataflow frame-
work of Kildall and Kam-Ullman [Kil73, Kam76). This second framework predates Abstract Interpreta-
tion. The principal reason for using Abstract Interpretation to demonstrate the safety of MA, is that show-
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ing that MA, is a monotone dataflow framework would not establish the desired relationship between
MAgj and MS,,; it would merely guarantee that MA , has a least fixpoint.

5.4.4. Other graph-based store abstraction techniques

The value TAT gives a coarse estimate of an atom’s value. More refined estimates can be developed from
domains of atomic values, intervals, and types. The four-element lattice (Lar ,nil , non—nil , TAT)
appears in work by Cousot and Hendren [Cou78,Hen90]. More elaborate lattices of approximate values
are given by Stransky [Str88, Str90].

A program’s evaluation can also be sharpened by extending the distinction between ordinary and sum-
mary objects to references. In this extension of the interpretation, it is safe for assignment to replace ordi-
nary references at summary structures, and summary structures at ordinary references. The distinction
between ordinary and summary references is drawn by Jones and Muchnick [Jon79,Jon81] and Schwartz
(reported in [Cha87]), who replace sets of concrete references with special references labeled any. Stran-
sky uses what is tantamount to a typed summary reference to determine when not to remove references
from stores [Str88, St90]. Even sharper characterizations of program evaluation may be obtained by using
counts to estimate the number of references that a summary reference represents—or, altematively, by
pairing structures with abstract reference counts [Myc81, Hud87, Str88, Hed88,Cha%0].

Summary structures give a coarse estimate of a collapsed section of a store. Sharper estimates can be
obtained with annotations that characterize the topology of an abstracted subgraph. Structures have been
annotated with values that identify them as abstractions of trees [Myc81], lists (¢f. Chapter 5 in [Myc81],
p. 261 in [Ple81], and Section 4.3 in [Cha%0}]), and directed acyclic graphs [Jon79,Jon81]. Jones and
Muchnick have also used regular tree grammars to capture recurrences generated by programs in func-
tional languages [Jon79, Jon82]. A related idea for using graph grammars to capture regularities in impera-
tive stores is sketched in Chapter 6.

The previous three paragraphs describe more precise abstractions of stores. Most papers on store
analysis use simpler abstractions of stores. One simplification of the store graph, the alias graph, is used
by Ruggieri to analyze object lifetimes [Rug87,Rug88] and by Larus to compute a program’s dependences
[Lar87]. Intuitively, a store graph so can be converted into an alias graph by pruning all unshared struc-
tures from the frontier of the store (cf. Figure 5.9).

Alias graphs can be further compressed by replacing chains of unshared structures with single refer-
ences. Each replacement reference is labeled with a path expression that characterizes the path that it
replaces (cf. Figure 5.10). The interpretation must then be adjusted to account for edges that are labeled
with regular expressions. The adjusted interpretation, in effect, “re-materializes” the elided structures when
a program creates new references to what had been unshared structures. This technique is used by
Mycroft, and again by Inoue, Seki, and Yagi, to estimate how objects are shared in stores created by appli-
cative programs [Myc81,no88]. Hendren uses an equivalent path-compression technique to reduce the
size of a comparable representation, the path matrix [(Hen89, Hen90]. The rows and columns of Hendren’s
path matrix correspond to a program’s identifier expressions; its entries name paths through the heap.
Assume, for example, that the ith row in a path matrix M corresponds to the identifier a, and the jth column
to the identifier expression b.next. Then the [i, j]th column in M characterizes the set of paths that link the
object referenced by a to the object referenced by b.next. Hendren’s interpretation is also limited to pro-
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Figure 5.9. A store graph, and its corresponding alias graph.
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Figure 5.10. Using path expressions to compress alias graphs. The store on the left is an example alias graph. The
two stores on the right are compressed alias graphs. The top store is exact; the lower store, approximate.

grams that generate cycle-free stores.

5.4.5. Other graph-based state abstraction techniques

Most authors describe analyses that pair every program point with one or more representations of memory.
Chase describes an interpretation that pairs one labeled graph with an entire program [Cha87]. This graph
represents the set of all storage containment graphs (SCG’s) that could arise at any point over the course of
a program’s execution. Chase’s analysis forms a program’s SCG by merging store graphs produced at
separate program points over the course of an analysis. Chase shows that merging SCGs does not lose
information about a program’s evaluation when the language under consideration supports a copy seman-
tics for assignment statements. An improved version of this idea is developed in [Cha%0].
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Sagiv, Francez, Rodeh, and Wilhelm describe a logic-based framework for program analysis that aug-
ments store graphs with assertions about pointer equalities [Sag90]. These assertions can reduce the
amount of space required to record facts about program evaluation. Suppose, for example, that a program
manipulates three identifiers named x, y, and z. Suppose, further, that any two, but not all three, of these
variables can be aliased. This assertion could be captured in Sagiv’s framework by annotating a store
graph that showed x, y, and z as aliases with the appropriate assertion about x, y, and z. A related idea is
described in a paper by Seo and Simmons, who pair a finite automaton that recognizes a language with a
matrix that rules out certain states recognized by the automaton as invalid [Seo88].

5.4.6. Other state abstraction techniques

A 1982 paper by Jones and Muchnick describes a framework for analyzing programs that generate tree-like
recursive data structures [Jon82]. This framework uses a representation function and an abstraction of the
stack to characterize a program’s state. This report also stresses the use of defining-point labels (there
called tokens) to capture information about a program’s behavior.

Various authors partition a program’s identifier expressions into sets of equivalence classes
[Cou78, Wei80, Gua90, Gua90a]. These algorithms place two identifier expressions in the same
equivalence class if they might reference the same structure at a given point in an interpretation.

Coutant describes a technique for tracking a program’s aliases in a C-like language [Cou86]. Coutant’s
analysis monitors the set of memory objects that each of a program’s names—arrays, pointers, arrays of
pointers, and aggregates—might denote.

Harrison uses sets of closures to model stores [Har89]. Harrison treats a reference x to a record as a
binding of a variable x to a new, dynamically allocated function. This function accepts a switch-like argu-
ment that either directs it to return the contents of one of its fields, or to update a field and return an
updated closure. Selector are then redefined as functions that (1) accept a closure [ that represents a struc-
ture, and (2) invoke f with the appropriate switch. This treatment of structures makes Harrison’s technique,
which supports closures, more uniform. Harrison also argues that this approach should allow functions to
be returned that characterize the potential dependences of separately compiled procedures.

5.4.7. Other interpretations

Hendren gives an elegant algorithm for estimating a recursive procedure’s behavior, w.r.t. a first-order

language that lacks mutual recursion [Hen90]. Hendren’s algorithm, roughly speaking, pairs a procedure P

with a pair of abstract stores (G, , G,,). This pair represents the assertion that P maps every store that

embeds in o;, to a store that embeds in 6,,,. The following is a sketch of her algorithm:

1. A first estimate of P’s behavior, (0;, G,), is generated by propagating a o; passed to P along all
recursive-call-free paths through P.

2. An estimate of P’s maximal input is computed from o;. The initial estimate (o;, G,) is iterated to
obtain a o’; that subsumes o;.

3. Store ¢, is then held fixed, and o, iterated. If this second iteration produces an estimate of P’s max-
imal output that does not invalidate o’;, then the algorithm terminates. Otherwise, the second
sequence of iterations caused a store o, that did not embed in ¢’; to propagate to a call to P. The
algorithm then restarts at step 1 with a new estimate of P’s behavior generated from o, and ¢;.




- 63—

It is clear that Hendren’s algorithm can be implemented as a specific iteration strategy over a program’s
extended control-flow graph. What makes Hendren’s formulation of interprocedural analysis appealing is
that the strategy is an explicit part of her analysis.

Weihl uses information about a reference’s type (w.r.L. a strongly-typed example language) to constrain
a program’s potential aliases [Wei80]. Weihl’s algorithm supports programs with procedure-valued vari-
ables. An important limitation of Weihl’s algorithm is its failure to use information about a program’s con-
trol flow. Landi and Ryder argue that this produces estimates of a program’s aliases that are too coarse to
be readily useful {Lan90].

A second algorithm that uses strong typing to constrain a program’s potential aliases was given by Rug-
gieri and Murtagh [Rug87,Rug88]. This algorithm is designed for a strongly-typed, procedure-variable-
free language that resembles CLU. The first, intraprocedural pass of the Ruggieri-Murtagh algorithm com-
putes a symbolic estimate of how a program’s procedures map inputs to outputs. Rules about a variable’s
type determine (e.g.) whether pairs of inputs could be aliased on procedure entry. The second, interpro-
cedural pass of the algorithm estimates how objects propagate between procedures. Ruggieri and Murtagh
argue that their two-pass algorithm represents a reasonable compromise between iterating over a program’s
extended control-flow graph and analyzing procedures in isolation, using worst-case estimates of inputs.

Other symbolic techniques for pointer-program analysis have been given by Reynolds, Jones and
Muchnick, Chase, Larus, and Guarna. Reynolds showed how to develop and solve systems of equations
that characterize recursive structures generated by functional programs [Rey68]. Jones and Muchnick later
described a similar use of regular tree grammars to estimate the sets of stores generated by a functional
program [Jon79, Jon81].

Chase discusses the use of extended store graphs to discover opportunities for speeding fixpoint compu-
tations [Cha87]. These graphs, which Chase calls update graphs, contain additional nodes that correspond
to program points, and additional edges that represent assertions about how pairs of program points share
data. Chase uses these graphs to replace a cyclic sequence of assignment statements like

while pred do b:==a; c:=b; -+ z:=y; a:=z od

with a single operation that performs a pessimistic update on the store graph. A related idea appears in
Larus’s thesis, which discusses the use of summary graphs—graphs that summarize the effect of a set of
statements—to speed program analysis [Lar87].

Guarna’s technique for program analysis, which uses a semigroup-like algebra of selector expressions to
analyze a pointer program’s aliases, is discussed in Section 6.6. Other work on pointer program analysis is
beyond the scope of this thesis. This includes Harrison’s use of object lifetime analysis to estimate a
program’s dependences, relative to a call/cc-free dialect of Scheme [Har89]. This also includes Jouvelot
and Gifford’s use of type and effect information to reason about program behavior (Jou91], and the use of
invariants and meaning-preserving transformations to reason about Lisp-like programs [Jor86, Mas86,
Mas90].

OTHER REMARKS ABOUT CHAPTER 5

Various authors (e.g., Jones and Mycroft [Jon86]) credit Sintzoff with the original idea for Abstract
Interpretation [Sin72]. Sintzoff argued that a dataflow analysis could be viewed as non-standard interpreta-
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tion of a program on an approximate domain. Cousot and Cousot developed the first framework for show-
ing that non-standard interpretations of a programming language were consistent with a language’s stan-
dard interpretation. Subsequent authors have developed variants of the Cousots’ framework, including
Mycroft and Nielson [Myc81, Myc83], Nielson [Nie84], Mycroft and Jones [Myc85], and Jones and
Mycroft [Jon86]. These papers, which are principally concerned with functional languages, assume deno-
tational definitions of a program’s meaning.

Different authors have given different names to the progression of semantics that are used in Abstract
Interpretation. The term instrumented semantics is due to Neil Jones [private communication, through
Reps]. Nielson uses the terms collecting semantics and sticky semantics to refer to a related style of pro-
gram definition {Nie90]. What the Cousots refer to as a static semantics is referred to by Jones and
Miycroft as a collecting semantics (Jon86] and by Nielson as a sticky lifted store semantics [Nie90]. The
term abstract interpretation was used by the Cousots to refer to what Nielson calls an approximation
semantics [Nie84].
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6. STRATEGIES FOR ESTIMATING A PROGRAM’S STATES

There are, alas, many signs that our field (and most current work in the whole programming languages area as
well) is far from scientifically mature. One important problem.: there is all too little research in the classical
meaning of the term, meaning to search systematically through the existing literature for ideas and results
[relevant] to one’s current goals, even though perhaps expressed in a quite different language or framework.
The inevitable result is that many works “reinvent the wheel” and omit highly relevant references to others'
work. —N. Jones {Jon88]

If we could first know where we are, and whither we are tending, we could better judge what to do, and how to
do it. —A. Lincoln, cited in [OQat77]

The semantics given in Chapter 5, MA , uses an estimation function V to ensure that analyses terminate.
Chapter 5 assumes that V is an extensive operator that restricts the length of every infinite ascending chain
in pwr(State,). The precise definition of V, however, was left unspecified. The primary reason for leaving
V unspecified is that the problem of finding a best estimate for arbitrary program’s store configurations
appears incapable of exact solution. Larus showed that an important subproblem of dependence computa-
' tion, that of determining a pointer program’s aliases, was NP-complete [Lar89]. This result was later
amplified by Landi and Ryder, who show that alias computation is NP-complete in languages that support
two or more levels of reference indirection [Lan91].

Various heuristics have been proposed for estimating the objects that a pointer program’s computation
might generate. Sections 6.1, 6.2, 6.3, and 6.4 discuss strategies for estimating labeled stores, sets of
labeled stores, occurrence strings and sets of states, respectively. Section 6.5 discusses comments that
other authors have made about the potential cost of store approximation. Section 6.6 concludes with a dis-
cussion of related work.

Most of the concepts presented in Chapter 6 were originally developed by previous authors. This
chapter’s primary contributions are this survey of store approximation techniques presented in Section 6.1
and the variant of the k-limiting technique for store approximation described in Section 6.1.1.

6.1. Abstracting Labeled Stores

The number of structures that a (labeled) store may contain must be bounded if a program is to have a ter-
minating interpretation w.r.t. MA ;> More precisely, the stateset estimation operator V must restrict the
number of structures that a program’s while loops and recursive procedures add to a store. To ensure a safe
result, V must also map every store ¢ that grows too large to a bounded store that subsumes G.

Various techniques have been proposed for limiting the size of a store graph . In this thesis, such tech-
niques will be treated as special instances of the following three-step algorithm for store reduction:

1.  Every inaccessible structure is removed from o.
2. A partitioning strategy is used to divide the updated G into n + 1 sets of structures. One set of struc-
tures is left unchanged by the algorithm. The other n sets of structures are replaced by representative

5 The number of references in a store & must also be bounded, but this can be accomplished by first limiting the number of structures
in 6, and then stipulating that there can be no more than one reference of a given type between any two structures ino.
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structures. Refer to these sets as protected and unprotected, - - unprotected ,, respectively.

3. A reduction strategy is then used to limit the size of each unprorected;. Each subgraph of ¢ induced
by an unprotected;, G,, is replaced with a bounded graph that subsumes G;. The use of a replace-
ment graph that subsumes G; ensures that the updated ¢ subsumes the original store.

This algorithm, which will be referred to as the divide-and-shrink algorithm for limiting store size, is dep-
icted in Figure 6.1. This algorithm returns a bounded approximation to a store ¢ when its partitioning stra-
tegy limits the value of n and the size of protected, and its reduction strategy limits the size of each replace-
ment graph. Specific implementations of divide-and-shrink differ according to the strategies used to parti-
tion and reduce stores. Accordingly, the rest of this section discusses the merits and weaknesses of various
store partitioning and reduction techniques.

6.1.1. Partitioning strategies
The scheme for classifying partitioning strategies used here divides these schemes into four categories:

° Strategies that use labels.
® Strategies that use labels, and also exploit information about a store’s paths.
e Strategies that use paths.
e Strategies that use paths, and also exploit information about a store’s labels.

Since stores are essentially collections of paths and labels, this classification scheme may appear to do little
more than state the obvious. The author, nevertheless, has found this taxonomy useful for thinking about
the various approaches to store abstraction.

Label-driven partitioning strategies place two structures s, and s, in a common partition if 5, and s,
have related labels. The basic label-driven partitioning strategy, which was first described by Hudak
[Hud86, Hud87] and Chase [Cha87], uses a store ¢’s allocation-point labels to partition 6. Let a program
P, for example, contain n statements *  allocate structures. Assume, furthermore, that the abstract
interpretation of P labels every structure 1 the name of that point that allocates s. Let ¢ be a store gen-
erated during a computation that involves : . The basic label-driven partitioning scheme partitions ¢ into at
most n sets of structures, and places all structures allocated at a common program point a common set. In
the basic version of label-driven partitioning, there is no special, “protected” set of structures; every parti-
tion is a potential candidate for abstraction.

The basic label-driven partitioning strategy has two pleasant properties. This strategy places objects
allocated at different statements into different partitions. This allows the second phase of divide-and-
shrink to create approximate stores whose summary structures are each labeled with exactly one creation
point. This is potentially advantageous, since merging structures with different allocation points loses
information about an abstract structure’s allocation site. This partitioning strategy is also monotonic.
Assume, for example, that 6 and o are arbitrary stores such that ¢ C ¢’ by an embedding f. If the label-
driven technique puts s; and s, in a common (unprotected) partition, then it must also put f (s,) and f(s2)
in a common partition. This property of label-based partitioning allows the development of a monotone
store abstraction operator. This observation about the monotonicity of label-driven partitioning also holds
for the other label-driven strategies described below.
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Figure 6.1. The three-step divide-and-shrink algorithm for limiting store size. The first step in the divide-and-shrink
algorithm removes structures that are unreachable from the global environment. The second step identifies one protect-
ed and n unprotected sets of structures in & (here, the protected region contains the global environment). The third
step replaces the subgraph G induced by every unprotected set of structures with a bounded, representative graph that
subsumes G.

The basic label-driven partitioning technique has two limitations. An “ideal” partitioning strategy splits
every store into sets of “algorithmically equivalent” structures: structures that are treated in roughly the
same way over the course of a computation. The basic label-driven strategy assumes, in effect, that all
structures allocated at a given program point are treated in a uniform manner. Real programs, however, do
not necessarily abide by this assumption. Consider, for example, the effect of using the basic label-driven
strategy to analyze a program that has exactly one allocation site:

procedure allocate( ptr —to—struct, type); ptr—to-struct :=new (type) end

It would almost certainly be better, in such an extreme, to use any other partitioning strategy. A second
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limitation of this strategy is the technique’s tendency to lose information about a store’s topology. There is
no reason, in other words, to suppose this strategy will place adjacent or proximate structures—even struc-
tures in the same list—in a common partition.

Various extensions of the basic label-driven partitioning technique have been defined. Most give finer
characterizations of a program’s behavior. One, described by Hudak, uses fragments of occurrence strings
to partition the store [Hud86, Hud87]. Assume, for example, that an interpretation labels every structure s
allocated in a procedure P with two program points: the statement at which s was allocated, and the state-
ment that invoked the particular call to P that allocated s. Hudak’s (second-order) partitioning strategy
would then group two structures iff they had the same two-component label. Hudak’s technique would
probably prove useful for programs (like the one described in the previous paragraph) that use a few
server-like procedures to allocate structures.

Other authors obtain finer characterizations of list-like structures by labeling the kth structure allocated
at a program point p with the value [p, k]. A store’s structures are first partitioned by allocation site. The
set of points allocated at a given site p is then partitioned by counter. Stransky, for example, protects the
first k structures allocated at each program point [Str88]. This allows the divide-and-shrink algorithm to
construct abstract stores that give an exact characterization of portions of certain lists (e.g., the heads of
lists that are built top-down from structures allocated at a single statement.) Another counter-based parti-
tioning technique, developed independently by Bodin [Bod90] and Gohkale and Smith [Goh90], places
structures that have the same program point and counter mod & into a common (unprotected) partition.
This scheme has been used to estimate the distance of a loop-carried data dependence.

A third extension of label-driven partitioning supports set-valued labels. (N.B.: set-valued labels arise
during the computation of input, anti-, and def-order dependences.) This technique, which is related to par-
titioning techniques described by Larus and Hilfinger (see below), places two structures s, and s, in the
same partition iff either

° the labels of 5, and s, have a non-empty intersection, or
® there exists a third structure s such that s; and s, are placed in the same partition, and the labels of
53 and s, have a non-empty intersection.

Consider, for example, a set of structures sy, 54, 53, 54, and 55 whose reading-point labels are { [11,[2] },
{ [21,3]1 }, { (31,041 }, { (5] }, and { [51,[6] }, respectively. The partitioning strategy just described
places s, 5,, and 55 into one partition, and 54 and 55 into a second.

Still other variants of the basic label-driven partitioning strategy can be defined that use some combina-
tion of label, type, and value information to partition the store.%

A second type of label-driven partitioning strategy was developed by Larus and Hillfinger
[Lar88,Lar89]). This technique assigns every newly allocated structure s a label that characterizes the path
along which s was added to the store. Assume, for example, that a program is about to build a list of cons

§ Strictly speaking, it might be more proper to talk about attribute-driven (rather than label-driven) partitioning. The word “label” has
been chosen for historical reasons.
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cells that is to be referenced by a variable x. Assume, furthermore, that this list is being built in a top-down
fashion. Then the first cons cell added to this list would be labeled x.hd. Successive cells would be labeled
x.hd.hd, x.hd.hd.hd, etc. A list at x of indeterminate length would be terminated with a summary structure
labeled x.hd* ! .hd", where k is an arbitrary limit on the number of selectors in a label.

The first step in the Larus-Hilfinger abstraction technique replaces every label that contains k or more
selectors with a related k-selector-long regular expression. This new regular expression is an abstract label
that subsumes the original label. Assume, for example, that k is 3. Then Larus’s label-replacement algo-
rithm would replace x.hdhdhdhdtl with xhdhd".tl, and tmpab.c. - xyz with
tmp.a.(b | ¢ - -+ x| y).z. The partitioning step then places two structures s; and 5, in a common partition
if their labels subsume a common selector expression, or if there exists a third structure 53 such that s, and
§4 are placed in the same partition, and the labels of 55 and s, subsume a common selector expression.

The Larus-Hilfinger partitioning strategy is monotone. A second pleasant property this strategy is its
tendency to preserve a store’s topology: i.e., to place structures that are adjacent or proximate in a common
partition.

Two important limitations of the Larus-Hilfinger partitioning technique are shared by the basic path-
driven partitioning technique described below. The first is the technique’s failure to group structures that
are operated on (e.g., allocated) by a common program point. The second is the k-limiting assumption,
which poses two serious problems for implementations of this technique:

° How can the need for a more precise analysis be balanced against the potentially exponential
increase in the size of the store that results from an increase in £?
® How can an appropriate value be chosen for &?

Possible solutions for both problems are proposed below, in the discussion of path-driven partitioning.

A third limitation of this technique is its strategy for labeling structures that are prepended to existing
structures. The original version the Larus-Hilfinger algorithm labeled such structures with values that
characterize the new structure’s referents [I.ar88]. For example, the two structures created by the evalua-
tion of cons(x, cons(x, y)) are labeled <x, y> and <x, <x, y >>, respectively. This approach apparently
proved unsatisfactory in practice, since it was later replaced with a second labeling strategy. This second
strategy, given in Larus’s thesis, assigns to each prepended s a hybrid label that names the program point at
which s is created [Lar89]. The formula for creating this label, which is somewhat complicated, is also
given in Larus’s thesis. This second labeling technique results in a compromise partitioning strategy that
groups some structures by proximity, and others by program point.

Path-driven partitioning strategies use a store’s topology to restrict its growth. The basic path-driven
partitioning strategy, k-limiting, is discussed in Tenenbaum’s thesis on type determination {Ten74] and in
the Jones-Muchnick reports on analyzing Lisp-like languages [Jon79,Jon81]. The Jones and Muchnick
version of k-limiting, roughly speaking, first partitions a store & into two sets of structures:

1.  The set of all ordinary structures in o that can be reached from o’s global environment along a
summary-structure-free path that contains k or fewer references.
2. The set of all other structures in ©.
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Structures in set 1 are placed in the set of protected structures, protected. Structures in set 2 are first placed
in a single set of unprotected structures, unprotected. Set unprotected is then partitioned into maximal con-
nected components. In particular, let s, and s, be two structures in unprotected. Then s, and s, are
placed in the same partition iff either

® Structures 5, and s, are connected: that is, if 5, references s,, or vice-versa; or
° there exists a structure s4 such that 55 is in unprotected, s, and s4 are placed in the same partition,
and 55 and s, are connected.

The number of sets generated by this partitioning of unprotected into maximal, connected subgraphs can be
bounded by restricting the fanout of a store’s ordinary structures—the number of references of a given type
that may be situated at a given structure. Jones and Muchnick, for example, generate abstract stores that
have no more than one reference of a given type at any ordinary structure—and no more than one reference
from any summary structure to any other structure in the store.

Path-driven partitioning strategies have one important advantage over label-driven partitioning stra-
tegies: they allow the creation of abstract stores that preserve an arbitrarily large, contiguous region o§ a
_ store unchanged. The basic path-driven partitioning strategy also has three important problems:

1.  The size of a k-limited abstract store is potentially exponential in .

2. No good rationale has yet been given for choosing a specific cutoff—i.e., an appropriate value of
k—for a given analysis.

3.  Structures that are operated on (e.g., allocated) by comparable program points might not be grouped
together.

h gy 000 T d
/ d 7 o t]
nil sz il s4 nil g il s4
hd d hd 't hd d .
nil il nil i nil i nil i
Store A Store B Effect of 1-lUmiting A Effect of 1-limiting B

Figure 6.2, The path-based partitioning operator is not monotonic w.r.t. C . A £ B by an embedding that maps s, to
s4. The two figures on the right depict the effect of 1-limiting A and B, respectively. Structures above the dotted lines
are placed in the protected partition; structures below the dotted line are placed in unprotected partitions. Note that 5,
is placed in an unprotected partition, and 54 in the protected partition.
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A fourth limitation of path-driven partitioning operators is that they are not monotone w.r.t. C (cf. Figure
6.2). This last limitation, however, does not interfere with the use of a path-based partitioning strategy in
any essential way.’

The concern about the exponential blowup in k can be addressed by imposing asymmetric limits on a
store’s extent. It seems reasonable to use any finite, prefix-closed set of identifier expressions to partition a
store into sets of protected and unprotected structures:

DEFINITION. A set of non-empty identifier expressions expset is prefix-closed iff expset contains €, the
empty identifier expression, and expset contains idexp whenever it contains idexp.sel. [

Assume, for example, that an analysis seeks to determine how a program operates on structures referenced
by y, and the first k structures in lists referenced by z. The set of identifier expressions pathset = {e, ¥ 2
z.hd, ztl, -+, z.hd* hd, z.hd*.tl } could be used to obtain careful estimates of operations on these
structures—and weaker estimates of operations on other structures. More precisely, the partitioning step of
divide-and-shrink would protect every structure named by pathset—and leave all remaining structures
unprotected.

The concern about how to generate appropriate cutoffs—e.g., useful sets of prefix-closed expressions—
can be addressed by using stores generated during an analysis to guide the partitioning. More specifically,
the stores that first propagate to a recursive construct r could be used, in conjunction with the form of 7, to
bound the states generated by r. Suppose, for example, that a store o reaches a while loop L during the
course of an analysis. Suppose, for simplicity, that L contains no other loops, no call statements, and
exactly one allocation site. To determine a suitable cutoff for ¢, one might start with a prefixed-closed
pathset that names every structure in 6. A set of prefix-closed identifier expressions for evaluating L w.r..
o could then be determined by evaluating L once; determining the shortest identifier expression that names
the newly allocated structure in the updated o; adding this identifier expression to pathset; prefix-closing
the updated pathset; and then using the updated pathset to analyze L w.r.t. G.

The concern about the failure of path-driven partitioning to group program points with related labels
can be addressed by partitioning the store yet another time. This third partitioning of the store would group
together all structures in a given maximal component that have related labels.

These proposed adjustments to the basic k-limiting strategy are an original contribution of this disserta-
tion. It is important to point out that this adjusted k-limiting technique has neither been implemented, nor
tested. The principal reason for discussing it here is that a recent paper on store reduction by Chase, Weg-
man, and Zadeck argues that the basic k-limiting technique is not practical, for the three reasons given
above [Cha90]. It is hoped that these arguments on behalf of a modified k-limiting technique show that
path-driven partitioning strategies may prove viable for store reduction.

? Path-driven partitioning can be shown to be monotone w.r.t. 2 more restrictive subsumption relation that is one-to-one over part of its
range. The use of such a relation, however, restricts an analysis’s ability to collapse sets of stores into single, representative stores.



73—

6.1.2. Reduction strategies

Let ¢ be a store, unprot= {5y, ***,8n, " } 'a set of structures in ©, and G .y, the subgraph of o
induced by unprot. A reduction strategy is a rule that transforms & into a related graph in which the s;’s
are replaced with a bounded number of structures. Intuitively, o is reduced by first replacing Gy, With a
representative G ,,,,, and then replacing references to structures in G .,y With comparable references to
structures in G ,,,,.

Reduction strategies are classified in this thesis according to the form of the G ,.,, that replaces G ,nppor-
Two types of strategies are discussed below: those that generate pointwise representations of pruned sub-
graphs, and those that generate structured representations of pruned subgraphs.

The basic pointwise reduction strategy, which will be referred to as labeled store condensation, replaces
G unpror With a G ,,, that contains one structure. Intutively, G .., is created by condensing all structures in
G unproc INtO a single, representative Sructure s .., and then replacing all paths in o through unprot with
comparable paths through s ,,,,. More formally, let

* kind (s;) denote the kind of a structure s; (i.e., ordinary, summary);

type (s;) denote the type of 5;;

label (s;) denote the label of 5;;

value (s;) denote the atomic value of 5; (or L A7, if atom € type (s;); and

(5, sel, s, 1) denote a reference from structure s; to structure s; of type sel with label 1.

*  #*  0*

¥

Then kind(s,.,)= ordinary, iff n = 1 and s; is an ordinary structure, and summary otherwise;
type (S ,.,) = union_from s; € unprot: type(s,);
label (5 ,,,) = union_from s; € unprot : label (s;); and
value (8 ,,,,) = join_from s; € unprot : value(s;)

where a join_fromb=aiff a=b or b= L1, and TAT otherwise. The references in the updated ¢ are
computed as follows:

1. Every reference (s;, sel, 5;, 1), where s; € unprot, is replaced with the reference (s new, sel, 5, 1).
Every reference (s, sel, 5;,1), where 5; € unprot, is replaced with the reference (s;, sel, $ o, ).

3.  The updated o created by steps 1 and 2 may have references that have the same type and the same
endpoints. (This happens, for example, when o contains two references (s,,sel,s;, ;) and
(sy, sel, sj,1;), where s; and s; are in unprot.) Step 3 replaces every set of references of the form
((sirsel,55,14), <+« (5;,5€l,5;,1,) ) with the reference (s, sel,s;, [y v ==+ V).

Strategies for estimating occurrence strings (¢f. §6.3) can then be used to limit the size of the resulting
labeled store’s labels.

Let Is denote a labeled store, and unprot an arbitrary set of structures in [s. Let condense (Is, unprot)
denote the labeled store obtained by condensing Is wur.t. unprot. The assertion that Is T
condense(ls, unprot) follows directly from the definitions of condense and T . The assertion that condense
is confluent—roughly speaking, that condense (condense(ls, {s;}),{s2}) ~ condense(condense (Is,
{52 1).(s1 })—can also be demonstrated when the label-estimation strategy is confluent. (Confluence
proofs for similar condensation operators are given by Chase [Cha87] and Stransky [Str88].)
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Variants of condense appear in work by Schwartz [Sch75], Jones and Muchnick [Jon79], Pleban
[Ple81], and Stransky [Str88]. Schwartz and Jones and Muchnick use a condense operator that replaces all
references from s,,, t0 a given structure s with a single reference of type any. Jones and Muchnick,
Pleban, and Stransky use a condense operator that removes all references from s,,,, t0 S, from the con-
densed graph. (Later work by Stransky [Str90] uses a condense that resembles the one described here.)

The condense operator has an important limitation: a naive pointwise condensation operator discards
useful information about a store’s structure. This point is illustrated in Figure 6.3, which depicts an n-
element list (left-hand store) and the store produced by condensing all cons cells in this list (right-hand
store). The condensed store, which subsumes the list, can be used in place of the list to obtain a safe esti-
mate a program’s behavior. This condensed store, however, does not produce sharp estimates of a
program’s behavior; it cannot, for example, be used to infer that the pair of selector expressions such as
x.hd* .1l and x.hd’ 1l access different elements of the original list when j = k.

One technique for avoiding this loss of information, discussed in Chapter 5, annotates every S,., that
replaces an acyclic G ,npro With a label that identifies the topology of G apros: €.8.» identifies s ,.,, as a con-
densed tree, dag, or list. A related idea, developed by Hendren, restricts the topologies of the subgraphs
that a summary node can represent [Hen89, Hen90]. Hendren first assumes that every store that a given
program can generate is a directed acyclic graph (dag) that contains a bounded number of shared struc-

hd/ \ U

Figure 6.3. Pointwise reduction strategies lose information about a program’s structure. The store on the right is ob-
tained by condensing the set of all cons cells in the left-hand store into a single structure. The abstract store cannot be
used to infer (e.g.) that x.hd and x.tl.hd represent distinct structures in the left-hand store.
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struct listelt is <prev,value next>;

first := new(listelt) ;
first.prev := nil; first.value := struct; first.next :=nil;
last := first ;
fL] while pred do
last.next := new(listelt);
last.next.prev := last; last.next.val := struct; last.next.next :=nil ;
last := last.next

od
struct first last
val prev = nil
any next == nil any B prev > nil

Store reaching first iteration of L
'ﬁr f next prev

last
next }rev

X

next

rev

= next ~® nil

Store reaching second iteration of L Store reaching nth iteration of L

Figure 6.4. An example program, together with the set of doubly-linked lists that it generates. (The example is treated
as a procedure-free program, for simplicity.) struct is a region of unknown structure in the initial store.

tures.® This assumption allows Hendren to partition a store into a contiguous dag that contains the global
environment, and a bounded number of arbitrarily large trees that are rooted at the perimeter of this dag.
Hendren’s version of divide-and-shrink leaves the dag intact, and prunes every tree on the perimeter of the
dag. This allows Hendren to assume that every reference that points to a structure that lies outside this dag
references a tree-like summary structure—and to give an interpretation that “materializes” and “unfolds”
these structures at need.

The qualified-summary-structure approach to store reduction has the following important limitation: it
forces an analysis to anticipate the types of regular structures that a computation might generate. This is

® Hendren treats the stack and the heap as distinct objects. A comparable assumption for the representation used here is that stores are
dags, up to the reference that identifies a store’s current local environment. Her analysis returns failure when it detects that a program
might not satisfy this restriction. It must be also emphasized that this account of Hendren's algorithm represents this author’s transla-
tion of her path-matrix-based analysis into the store-graph framework. Even so, it is believed that this discussion accurately captures
the spirit of her work.
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unfortunate, since programs can generate many sorts of regular structures. The program given in Figure
6.4, for example, builds a doubly-linked list of references to an unknown set of structures, and maintains an
auxiliary reference to this list’s final element. A more general technique for abstracting regular data struc-
tures that can capture such recurrences is illustrated in Figure 6.5. This technique augments abstract store
graphs with graph rewriting rules: rules that characterize families of graphs [Nag79]. Each of the rules
shown in Figure 6.5 has the form “X rewrites to Y, where X is a fragment of a graph that contains one
structure, s, and a set of edges that are incident on s.

It is not hard to extend MA to support this style of graph-rewriting rule; the family of graphs that such
rules generate can be enumerated in a straightforward manner (cf. [Hab86]). A much more challenging
problem is the development of structured reduction strategies—patterm-recognizing condense operators
that can (e.g.) automatically generate the productions depicted in Figure 6.5. This observation is supported
by the (unpublished) experience of Larus and Wegman, who have investigated the use of graph grammars
in program analysis [private communication). The author is currently investigating the task of developing
structured reduction strategies. One promising approach involves the use of incremental characterizations
of program evaluation to develop the requisite productions.

3
struct  first last ne(t\?;\)rev
prev = nil -
. 2
val next ~ nil /3\ val
any next prev u= next prev

/
last -1 2<% var!\%@* last = 1

3
A
next prev
ast ~ 17

next ¥ nil

2~ val~

Figure 6.5. A concise, sharp representation of the stores that reach loop L in the example program in Figure 6.4. The
two productions are graph rewriting rules—rules for generating new stores through the replacement of nonterminals
(shaded structures) with subgraphs. Boldface numerals relate the structures that anchor the references on the left-hand
sides of productions to the structures that anchor the references on the right. (In this figure, 1 denotes the global en-
vironment; 2, the summary structure; and 3, structures in the doubly-linked list.)
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6.2. Abstracting Sets of Labeled Stores

If V bounds the number of labeled stores and occurrence strings that an analysis can generate, then the
number of states that reach a given program point must also be bounded-—and MA 4 will terminate. There
are, however, practical reasons for further limiting the number of labeled stores that reach a given program
point. Considerable space may be needed to store the set of all store graphs that an analysis generates;
limiting the number of store graphs that can reach a given program point may considerably reduce an
analysis’s use of storage. Restricting the number of stores that reach certain program points should also
speed the average analysis-—if one assumes that an analysis’s running time is typically proportional to the
number of stores that it manipulates.

One technique for reducing the size of set of labeled stores removes redundant labeled stores from this
set. Assume, for example, that set Isset contains a labeled store, Is,, that subsumes a second Is; € Isset.
Then Isset can be replaced by Isset— { Is; } with no loss of information. The principal limitation of this
technique is that it cannot be used to reduce an Isset that does not contain redundant labeled stores.

A second technique for reducing the size of an Isset uses a graph merging operator to replace a pair of
labeled stores with a third labeled store that subsumes both. The basic graph-merging operator, merge, is
related to that variant of divide-and-shrink algorithm that uses the pointwise condense operator to reduce
store size. The four-step merge operation is defined as follows:

1.  Let/sand Is’ be a pair of labeled stores, and struct and struct’ the structures in Is and Is’, respectively.
The merging of Is and Is’ first partitions struct u struct’ into sets of comparable structures. (Criteria
for partitioning struct v struct’ are discussed below.) Let related, - - - related) be the set of struc-
tures obtained from this partitioning.

2. The second step of merge computes the structures in Is”, the merged version of /s and Is’. Each
structure 5; placed in Is” represents all structures in one of the related;. More formally, the s; that
represents a given related; satisfies the following equations:

kind (s ,.,) = summary, ifeither related; contains summary structures, or more than one ordinary
structure from [s, or more than one ordinary structure from Is; otherwise, ordinary

type (S ) = umion_from s; € related; : type(s;)

label (S ppw) = union_from s; € related; : label(s;)

value (S ,.,,) = join_from s; € related; : value(s;)

3.  The third step of merge places references in Is”. Each reference added to Is” represents a reference
in one of the original graphs. A reference (s”;,sel, s”;,1) is added to Is” for every reference
(4, s€l, 55, 1) in Is (and Is") such that s, is replaced by s”; and s, by s”;.

4.  The final step of merge replaces every set of references in Is” of the form { (s”;, sel,s”;,1;), -~

ri4

(s"";, sel, s”;, 1) } with the reference (s”;, sel, s”;, [y v ~++ W ).
The claim that Is”” subsumes both Is and Is” follows from the definitions of merge and subsumption.

Various strategies can be used to partition structures in two merged stores. These strategies can once
again be classified according to whether they use labels, paths, or some combination of the two to group
structures.
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The basic label-driven strategy places two structures s; and s, in the same partition iff they have the
same allocation labels. Stransky discusses the allocation-label-driven graph merging in considerable detail
[Str88,Str90]. The extension of this partitioning strategy for set-valued labels groups s, with s, iff
label(s,) n label (s,) is non-empty, or there exists an s; such that s; is grouped with s; and
label(sy) m label (s,) is non-empty.

Larus’s labels-plus-paths technique groups s; with s, if s;’s and s5;’s labels subsume a common
identifier expression, or if there exists an s3 such that s, is grouped with 55 and 53’s and s,’s labels sub-
sume a common identifier expression {Lar89].

Let pathset be a set of prefix-closed identifier expressions. The basic path-driven partitioning strategy
groups s, with s, iff

® neither s, nor s, is named by an identifier expression in pathset; or

° both s, and 5, are named by identifier expressions in pathset, and either

* $1 and s, are named by the same idexp € pathset, or

* there exists an 53 such that s, is grouped with 53, and 55 and s, are named by the same idexp.

Straightforward refinements of this technique repartition (some or all of) the related; into sets of structures
with related labels, values, or types. Figure 6.6 illustrates the use of a path-plus-labels partitioning strategy
to create a store that subsumes two related stores. Structures in s, and s, have been partitioned w.r.t. (g,
W, X, ¥, 2, 2.hd, z.tl, z.tl.hd, z.1l.¢fl '}, and then repartitioned into sets of objects that have the same type.

The earlier discussion about the merits and limitations of store-partitioning strategies (cf. §6.1.1) applies
to the four strategies just described.

R

st
o
:E}/é

o 'S

3 5 3
hd hd d
/ \ 7 7
. 8 AT _ nil 8
62 oM 1 61 7 AW
Store s Store s 7\ Merged store /7 A\
1 2 . .
9 1 n110 9 1 n110

Figure 6.6. Using a path-plus-labels store-merging operator to compute a store that subsumes two stores, 5, and 5,.
§; U 5, was partitioned w.r.t. { €, w, X, y, 2, z.hd, z.tl, z.tLhd, z.t1.tl }. Small, boldface numbers show how the strategy
groups structures in 5, W $,, and replaces them with new structures in the merged store.
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6.3. Abstracting Occurrence Strings

Language # lacks procedure-valued variables. A straightforward technique for estimating occurrence
strings (i.e., augmented stack configurations) can therefore be derived from a program’s intraprocedural
and interprocedural control dependences. The technique developed here reduces every occurrence string to
a canonical regular expression. These regular expressions, very roughly speaking, are strings of the form
(@ lagl - lag) by 1ba| -+ 1 bp)" ~+- (z1 22| | 24)" where each set of parenthesized pro-
gram points represents a maximal set of mutually recursive procedure calls, and (e.g.) at least one of the
b’s is control-dependent on one of the a’s—but not vice-versa. A more precise characterization of this
canonical form uses the notion of an approximate-occurrence-string tree:

DEFINITION (unfolding sites). Let P be a program. Program P’s unfolding sites are the set of program
points in P that represent either call statements, or predicates of loops. [l

DEFINITION (unfolding-site graph). Let P be a program and usp be P’s unfolding sites. An unfolding-
site graph for P is a graph Gp that depicts control dependences among P’s unfolding sites.
Specifically, Gp contains one node labeled p for every p in usp. Graph Gp also contains one edge

p —> q for every pair of program points p and g in usp such thatry —>, -++ —>; 1y, where k22,
ry=p,ry=q, eachr; —>, r;,; corresponds to either an intraprocedural or an interprocedural control
dependence (¢f. §3.2.1), and r; € usp for all i between 2 and k~1, inclusive. O

DEFINITION (approximate-occurrence-siring tree). Let P be a program, and G p be P’s unfolding-site
graph. An approximate-occurrence-string tree for P is obtained from G p by replacing every maximal
strongly connected component of Gp with a single, representative, self-edge-free node. Let ¢, for
example, be a maximal strongly connected component of G p. If ¢ contains one node labeled p, then the
node that replaces ¢ is labeled p*. If ¢ contains n nodes labeled p; -+ - p,, then the node that replaces
cislabeled(p, | --- |p)". O

Figure 6.7 depicts an example program, together with its unfolding-site graph and approximate-
occurrence-string tree. A program P’s unfolding sites are exactly those program points that can appear in
P’s occurrence strings. A program P’s unfolding-site graph is a variant of its procedure call graph (¢f. §
10.8, [Aho86]) that depicts unfolding sites rather than procedures. Every path through P’s unfolding-site
graph that begins at initial,, the site of the initial call to procedure main (), corresponds to an occurrence
string that might arise during an execution of P.

Every path through P’s approximate-occurrence-string tree that begins at initial, estimates a set of
occurrence strings that might arise during an execution of P. More importantly, every occurrence string
0, ** * 0, that might arise during an execution of P can be reduced to a path through this tree. Specifically,
let f (o)) denote that node in P’s approximate occurrence string graph whose label contains oy, and
label (f (01)) denote the label on node f (o). Then the string obtained by eliminating duplicate terms from
label (f (0,)) * - - label(f (0,)) is a bounded estimate of 04 - - - 0.

A limitation of the technique just described is its tendency to give pessimistic estimates of occurrence
strings. A term (a; | - | ao)* corresponds to the rather pessimistic assertion that any a; in a set of mutu-
ally control-dependent points can be invoked after any other a;. Straightforward adjustments to this algo-
rithm give sharper estimates of occurrence strings when mutually dependent program points are executed
in a fixed order. Assume, for example, that {p,, ps, p3 } is a maximal set of mutually control-dependent
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procedure main (; Example program’s Example program’s approximate
cee update-site graph occurrence-string tree
(ml]  call P() .

m2] call Q():

end ;

procedure P ();

end ;
recursive procedure Q ()
[ql]  call Q(};:
[q2]  while
[q3] call @ ();
[q4] while
SRR
od
end ;
endrec ;

Figure 6.7. An example program, together with its unfolding-site graph and approximate-occurrence-string tree.

statements. Assume, furthermore, that “[p;] call Q ()", “[p2] call R()”, and “[p3] call P ()" are points
in procedures P, Q, and R, respectively, and that P, is always invoked before Q and R. Under these cir-
cumstances, it would be reasonable to use a term like (P1p2p3)’ (P1pP2p3 | p1p2| p1) in an abstract
occurrence string, instead of the less precise (p1 | pa | p3)*.

6.4. Abstracting Sets of States

The techniques described in Sections 6.1 through 6.3 for abstracting occurrence strings, labeled stores, and
sets of labeled stores can be used to generate bounded estimates of a program’s set of states. In particular,
V must limit the number of distinct occurrence strings and labeled stores that the analysis pairs with every
program point.

6.5. The Cost of Program Analysis

A careful analysis of the asymptotic complexity of using store graphs has been developed by Chase, Weg-
man, and Zadeck [Cha90]. These authors, in effect, argue that algorithms that use store graphs to estimate
program behavior can have poor worst-case performance. Let V’, for example, denote a stateset estimation
operator that

* limits the number of structures in a store with a given allocation-point label, and

* merges every store that reaches each program point into one, representative store.

Roughly speaking, Chase, Wegman, and Zadeck argue that the worst-case running time of an analysis that
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uses V’ is O (§%), where S is the number of statements in a program P.? Chase er. al. use this argument to
motivate what they refer to as an efficient algorithm for program analysis. This second algorithm computes
one abstract store graph that represents every store might propagate to every point in a program. Chase et.
al. argue, roughly speaking, that this algorithm either runs in time O (S log §), in time 0 (%), or in time
0 (§7)—-depending on whether the number of references at a typical abstract structure is o), 0(S), or
O (§?), respectively. This paper also observes that the efficient algorithm would probably not work well
for programs that contain procedures that allocate structures.

Other analyses of asymptotic complexity appear in theses by Chase, Ruggieri, and Hendren. Each of
these authors use stateset estimation operators that merge all stores that reach every program point into a
single store. Chase estimates a worst-case running time of 0 (8*) for his intraprocedural, label-driven
analysis [Cha87]. Ruggieri, who k-limits stores, estimates a worst-case running time!® of
0 (S§2xV x0(S?xV)), where V is the number of identifier expressions of length <k and o is the inverse
Ackermann function [Rug87]. Hendren estimates a worst-case running time of 0 (§* xK?) for interpro-
cedural analysis, where K is the length of a program’s longest identifier expression [Hen90].

~ Stransky’s thesis presents empirical observations about the performance of his store-graph-based Lisp
analyzer. The following two sentences, which are translated verbatim from Chapter 4 of [Str88], capture
the overall tone of this discourse:
The [heap-]graph is a disagreeable data structure to manipulate, and costly in space and in time of manipula-

tion .... The algorithms for [heap-graph] manipulation present no strictly theoretical difficulties, but are all
the same rather costly ....

The rest of the chapter contains an informal discussion of the costs of various operations on store graphs.
Stransky singles out the divide-and-shrink operation and the handling of recursive function calls as particu-
larly expensive operations.

Perhaps the most cogent observation that can be made about the expected cost of pointer program
analysis is that there is still much work to be done in this area. The asymptotic estimates and anecdotal
observations given here, while useful, do not adequately address the following, fundamental concerns
about program analysis:

® Can a program P’s form be used to determine the heuristics that should be used to analyze P?

® What is the cost of analyzing a “typical” program, according to a given heuristic?
What improvement in quality of information (and increase in running time) might be expected from
an increase in precision?

° Would some combination of heuristics work better than any one approach attempted to date?

This last remark is prompted by the observation that the various strategies for partitioning and reducing

stores described in Section 6.1 work well for some program constructs, and poorly for others. This last
remark is also prompted by Havlak’s conjecture that it may be necessary to use easily discovered facts

9 Complexity estimates in Section 6.5 are given, when possible, as a function of the number of statements that a program contains.
These estimates, which are simplified versions of the ones given in the papers cited, were obtained by assuming that the number of al-
location sites and variables that a program manipulates are both proportional to the number of statements that it contains.

10 The estimate of asymptotic complexity given for Ruggieri's algorithm by Chase, Wegman, and Zadeck [Cha90] is the estimate that
appears in equation (5.77) of Ruggieri's thesis; this (improved) estimate appeared in the thesis’s concluding chapter.
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about program evaluation to guide the discovery of harder ones [private communication]. It would be
interesting to determine, for example, whether a multi-pass analysis that generated progressively refined its
characterization of a program’s aliases would prove more efficient than a comparable, one-pass analysis.
These concerns, however, are matters for further study.

6.6. Other Related Work

A recent paper by Guamna describes a technique for alias analysis that discovers possible recurrences
among a program’s identifier expressions ([Gua%0a]; see also [Gua90]). Guarna’s technique for program
analysis attempts to discover (e.g.) whether a program’s identifier expressions satisfy identities such as
“x.hd = x.(tl.t])* hd” and “x.ti*=y."”. This algorithm uses statically gathered data about program
evaluation, together with an algebra of selector expressions, to discover such identities. Guarna’s algo-
rithm for analyzing loops, for example, first determines what identifier expressions might be aliased after
the first few iterations of a given loop L. The algorithm then uses the aforesaid algebra to derive new iden-
tities, and make conjectures about L’s subsequent evaluation. The third step of the algorithm then attempts
to verify the conjectured identities by rerunning the loop. There are pronounced similarities between
Guarna’s work and the conjectured use of graph grammars discussed in Section 6.1.2. The prinicipal limi-
tation of Guarna’s work (as presented in [Gua90a]) is the lack of a clear strategy for using rules to develop
the desired recurrences.

The strategy presented in Section 6.3 for abstracting occurrence strings is related to strategies for
abstracting stack configurations and states given by Harrison [Har89] and Deutsch [Deu90], respectively.
Sharper estimates of a program’s occurrence strings can be obtained by using (e.g.) superscripts of the
form ai + b, where a and b are integers and i an integer variable. This technique for estimating occurrence
strings is related to techniques that have been proposed for determining whether a iterations of a loop can
be run in parallel [Goh90, Bod90].
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7. DO DEPENDENCES CAPTURE A POINTER PROGRAM’S BEHAVIOR?

Although there exists an extensive body of work that makes use of program dependence graphs, we were unable
to find any published proof that program dependence graphs were “adequate” as a program representation....
In this paper, we prove that for a language with assignment statements, conditional statements, and while-
loops, a program dependence graph does capture a program's behavior.

3. Horwitz, J. Prins, T. Reps  [Hor87a}

Dependence analysis became popular in the 1970’s, when Kuck, Muraoka, and Chen used a program’s
dependences to parallelize the execution of statements that manipulated arrays. Kuck er. al., however,
never gave a formal proof that their program-transformation techniques were sound. The use of informal
arguments to justify dependence-based program transformations persisted until 1987, when Horwitz, Prins,
and Reps showed the equivalence of programs with isomorphic control, flow, and def-order dependences,
relative to a simple, structured language (Hor88]. Intuitively, this theorem justifies program transforma-
tions that permute a program’s statements, but leave its dependences intact.

Since 1987, other theorems have been proved that justify the use of dependences to reason about pro-
grams (c¢f §7.5.2). None of these results, however, apply to languages that support reference variables,
dynamic allocation, and procedures. The current chapter takes a first step towards justifying the use of
dependences to represent programs in #like languages. Specifically, it shows that an analogue of Horwitz
et. al.’s result also holds for programs in language #.

Chapter 7 is divided into six sections.

Section 7.1 introduces the notion of a dependence-based representation (dbr). A dbr is a directed,
labeled graph that depicts a subset of a program’s dependences. Section 7.1 shows how operations on one
type of dbr, the (Horwitz-Prins-Reps) program dependence graph (pdg), can be used to reason about a
program’s behavior.

Section 7.2 defines an example dbr for programs in language #. This dbr, the heap-language system
dependence graph (hsdg), is a variant of the pdg that supports procedures and reference variables.

Section 7.3 proves a theorem about the representational soundness of hsdgs. This theorem, the Pointer-
Language Equivalence Theorem, states that programs with isomorphic hsdgs map equivalent inputs to
equivalent outputs. Since Section 7.3 is fairly dense and rather specialized, the casual reader would do
well to read the sketch of the proof in the preface to Section 7.3, and skip the subsections.

Section 7.4 discusses the practical significance of the Pointer-Language Equivalence Theorem. Recall
that the definition of language # (cf. Chapter 2) makes simplifying assumptions about freelists, procedure
activation records, and atoms. The three subsections of Section 7.4 discuss how these assumptions affect
the applicability of this result to real implementations of pointer languages. The most interesting subsec-
tion is probably 7.4.1, which shows that programs with isomorphic hsdgs may behave differently in the
presence of a finite freelist.

Section 7.5 discusses related work. Section 7.5.1 surveys earlier dbrs. Section 7.5.2 reviews earlier
soundness theorems for dbrs.

Section 7.6 critiques the hsdg. The hsdg fails to incorporate three recent ideas for improving dbrs. The
first idea is that dbrs should be designed without def-order (and output) dependences (cf. §7.5.1.3). The
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second is that different vertices should be used to represent distinct values in the initial and final stores {(cf.
§7.5.1.5). The third is that every interprocedural dependence should have one endpoint at a program point
that implements a call statement, and the other endpoint at a program point that implements a callee’s entry
(or exit) code (¢f §7.5.1.2). Section 7.6 explains why the presence of reference variables and dynamic allo-
cation in language # makes these goals hard to satisfy. Section 7.6 also discusses improvements to the
hsdg that might address these concerns—improvements, however, that require further research.

7.1. The Use of Dependence-Based Representations in Program Analysis

Algorithms that use dependences to model program behavior often organize a program’s dependences as a
graph. A graph that models a program P’s behavior generally contains one vertex for each of P’s points of
control, and one edge for each of P’s “interesting” dependences. For example, if V, is a vertex that
corresponds to point p, and V, a vertex that denotes a point g, then the edge (V,, V,) corresponds to a
dependence p —> ¢. Edges may be labeled with values that characterize a program’s dependences. An
edge, for example, that corresponds to a dependence d may be labeled with a value that gives d’s type, or
its distance, or the carriers of d—or all of the above. This organization is convenient because it atlows cer-
tain key assertions about program behavior to be phrased in terms of operations on graphs.

Dependence-depicting graphs differ according to the types of languages they support, the types of
dependences they depict, and the types of labels they contain. In this thesis, an arbitrary dependence-
depicting graph will be referred to as a dependence-based representation (dbr). This term has been chosen
for historic reasons; more natural terms like “program graph”, “program dependence graph”, and “program
representation graph” have already appropriated for specific types of dbrs (cf. §7.5.1).

The types of applications that a dbr can support vary according to the information it contains. The dbr
depicted in Figure 7.1, for example, has been used to characterize program behavior w.r.t. a simple, struc-
tured language that lacks procedures, reference variables, arrays, and structures. This dbr, the Horwitz-
Prins-Reps program dependence graph (pdg), contains one edge for every flow, control, and def-order
dependence that the program exhibits. Every edge e in this dbr can have up to three sets of labels: one label
that identifies the type of d; a second set of labels that identifies the loops that carry d (if d is a flow depen-
dence); and a third label that identifies the points that witness d (if d is a def-order dependence).

Horwitz, Prins, Reps, and Yang proved that the HPR pdg characterizes several important aspects of a
program’s behavior (¢f. §7.5.2). Horwitz, Prins, and Reps, for example, showed that a program transfor-
mation that leaves P’s pdg intact preserves P’s meaning [Hor88]. This result implies that the following
program is equivalent to the one shown in Figure 7.1:

(51 x:=g0; [6]1f x=0 then [7] x:=1 fi; [8] z:=1/x;

(11 x:=f0; [21if x=0 then (3] x:=1 fi; [4] y:=1/x}

9] print(y +2z)
Reps and Yang also proved that the HPR pdg can be used to determine the set of statements that might
affect—or be affected by—the sequence of values computed at a point p. The algorithm for determining a
program P’s logically related statements, which was first proposed by Ottenstein and Ottenstein [Ou84], is
illustrated in Figures 7.2 and 7.3. To find the statements that might affect the evaluation of a statement s,
one computes the backward slice of a pdg G wr.t. s: i.e., the set of paths 7, that start at G’s start vertex and
end at s (¢f. Figure 7.2). Any point that does not lie on a path in m, cannot affect the sequence of values
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Figure 7.1. A Horwitz-Prins-Reps pdg.
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computed at s. To find the statements that s might affect, one computes the forward slice of a pdg G w.r.l
5 i.e., the set of paths 7, that start at 5 and end in G (cf. Figure 7.3). Statement s cannot affect the sequence
of values computed at any point that does not lie on a path in ©;. (N.B.: there is one trivial exception to
these observations; any statement can affect the evaluation of any other statement by causing P to fail.)

Soundness proofs like the ones given by Horwitz et. al. are important, since not all dbrs are suitable for
reasoning about the same types of program behavior. The HPR pdg, for example, cannot be used to iden-
tify which of a program’s statements can be evaluated in parallel. Soundness proofs are important for a
second reason: experience has shown that dbrs must sometimes capture subtle information about program
behavior. Horwitz, Prins, and Reps, for example, discovered that information about a dependence’s status
was needed to ensure that the following (inequivalent) programs were represented by different pags:

[1] =0 1] x:=0

(2] while pred, do [2] while pred, do

B y=x {4] if pred, then [5] x:=1 fi
[4] if pred, then [5] x:=1 fi [3] y=x

od od
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The dependence [5] —>; [3] is both carried by, and independent of, the loop at (2] in the right-hand pro-

gram. The observation that [5] —>; [3] is not independent of the loop at [2] in the left-hand program is
important, since it suggests that the two programs may have different meanings.

A detailed discussion of other important dbr-based program transformations is beyond the scope of this
thesis. This includes program integration [Rep89], vectorization [Bax89], loop interchange [AlI87], and
other optimizations discussed in Chapter 3.

7.2. A Dbr for Language %

The heap-language system dependence graph, whose definition is given below, is a new type of dbr for
language #.

DEFINITION. A heap-language system dependence graph (hsdg) is a labeled, directed graph that depicts
a pointer program’s control, flow, and def-order dependences w.r.t. a set of inputs. Specifically, let P
be a pointer program, and InSet a set of inputs. Let Sp be an hsdg that represents P w.r.t. InSet. Then
S p must contain:

(1] x:=f()
[2]  if x=0 then
(3] x:=1
fi
[4] yi=1/x

51 x:=g()

[6] if x20 then
7] x:=1

fl
[8] z:=1/x

te)] print(y + z)

Figure 7.2. The backward slice of the example program w.r.t. statement [8]. The statements in the slice, highlighted in
boldface, are those statements s such that there is a path from ENTRY to s to 81.
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(1] x:=f()
21 if x20 then
[3] X:=1
fi
[4] y:=1/x
(51 x:=g()
(6l if x=0 then
7} x:=1
fi
[8] z:=1/x

[9] print(y + 2)

Figure 7.3. The forward slice of the example program w.r.t. statement [2]. The statements in the slice, highlighted in
boldface, are those statements s such that there is a path from [2] to s.

° One vertex for each of P’s program points (¢f.’§ 3.2.1), initial, and final excepted. Vertices that
represent predicates and assignment statements are labeled with the name of the point that they
represent. The following labels are assigned to vertices that represent special program points:

* The vertex that represents the program point that initializes the store is labeled initial, .

* A vertex that represents a point that passes a return address to a callee is labeled 8¢ = <retadr >.

* A vertex that defines a call site’s ith actual parameter, a;, is labeled §; := a;.

* The vertex that represents procedure A’s entry point is labeled enter A.

* The vertices that represent the three points that initialize A’s local environment are labeled
_temp._prev := _local, _local := _temp, and _local._callctxt := _local. _prev._d.

* The vertex that represents the point that initializes A’s ith formal parameter, f;, is labeled f; := ;.

® One edge for each of P’s control, flow, and def-order dependences. Specifically:

* One edge for each of P’s interprocedural control dependences, initial, —>, main () excepted.

* One edge for each of P’s intraprocedural control dependences (cf. §3.2.2). Edges that represent
true- and false-valued control dependences are labeled true and false, respectively.

* One edge for each of P’s flow and def-order dependences w.r.t. InSet (cf. § 3.2.2). Every flow
and def-order dependence d is labeled with the call and loop sites that carry d (cf. § 3.3).
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Graph Sp may also contain edges that correspond to spurious dependences: syntactically possible, but
non-existent, flow and def-order dependences in P. Sp may contain an edge p —; ¢ if there is a path
from p to q in P’s control-flow graph. S, may also contain an edge p —>a(ry q if Sp contains
p —> rand ¢ —>; r. These edges are a concession to the limitations of program analysis; it is impos-
sible, in general, to determine a program’s exact data dependences (¢f. § 3.4). U

The hsdg is similar to another dbr for programs with procedures, the system dependence graph (sdg)
[Hor88a, Hor90a). The sdg, which is described in Section 7.5.1.5, is an extension of the pdg that supports
languages with procedures. Roughly speaking, the hsdg differs from the sdg in the following three ways:

° Each program in the model language supported by sdgs has exactly one sdg. This sdg depicts an
approximation to a program P’s flow and def-order dependences that is computed from P’s control-
flow graph. Pointer programs, on the other hand, can have more than one hsdg. A program P’s hsdg
varies according to how P’s dependences are computed:

* An hsdg that depicts P’s dependences w.r.t. a set of input stores InSet may differ from one that dep-
icts P’s dependences w.r.t. an InSet’ that differs from InSet.

* Hsdgs also vary according to how many spurious dependences they depict. For example, let H; and
H, be hsdg for a program P w.r.t. the set of input stores /nSet. H; may depict a spurious depen-
dence p —>, q that H, omits. (H, provides a more precise characterization of P’s behavior; H,, on
the other hand, might be easier to compute).

e The languages that hsdgs and sdgs represent make different assumptions about procedure evaluation.
Hsdgs and sdgs therefore have different procedure initialization and finalization vertices. Sdgs, in
effect, give a cleaner characterization of the interface between caller and callee than Asdgs.

° Hsdgs contains exactly one vertex, initial;, that models the initial state of a program’s store. Sdgs
may contain multiple vertices that depict the initial definitions, and final uses, of specific variables in
the store. Sdgs, in effect, give a cleaner characterization of a program’s initial and final states.

Reasons why an sdg-like characterization of procedure calls, initial variable definitions, and final variable
uses are harder to obtain for language %/ are given in Section 7.6.

An important feature of the hsdg is the lack of edges that depict data dependences that arise through the
freelist. Such dependences are omitted from hsdgs because they represent needless constraints on program
execution. Consider, for example, the following example program P:

{p) a:==new(---) /[***aandb arenot aliased before the evaluation of [p]

{q] b:=new(---)
Program P exhibits a freelist-mediated dependence p —>gyeam ¢- Let Q be the program obtained by rev-
ersing p and q:

{q] b =new(:--) /*** g and b are not aliased before the evaluation of [p]

[Pl a :=new(- ")
Clearly, programs P and Q generate indistinguishable final stores, up to how locations are paired with the
structures allocated at p and g. The dependence p —yeam ¢, in effect, is a constraint on the order in
which locations are removed from P’s freelist. Such constraints, however, have no significant affect on
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programs in referentially transparent languages.

This claim that freelist-mediated dependences may be removed from hsdgs without compromising the
resulting characterization of program behavior is argued in Section 7.3.

7.3. A Basis for Reasoning about Pointer-Language Programs

A recent report by Pfeiffer and Selke takes a first step towards showing that dbrs can characterize the
semantics of pointer programs [Pfe91, Pfe91a]. Pfeiffer and Selke first define a dbr for a procedureless,
type-declaration-free subset of #£ They then show that this dbr, the hpdg, captures certain facets of pro-
gram behavior. Specifically, they show that two programs with isomorphic hpdgs have equivalent
behavior. They also show that the Apdg gives a sound characterization of a program’s slices.

Section 7.3 continues the work started in [Pfe91,Pfe91a)]. This section’s principal theorem, the
Pointer-Language Equivalence Theorem, demonstrates that two programs P, and Qs with isomorphic
hsdgs exhibit equivalent behavior when applied to a store Gy. Intuitively, computations Py Gy and
0 5: Oy are said to exhibit equivalent behavior iff either

e P 4. 04 and O 5: Gy fail to terminate successfully, or

e P 4165 and Q 5 Gy compute equivalent final stores, and there is an isomorphism between the points
of P, and O such that P, and Q , generate corresponding sequences of values at isomorphic pro-
gram points.

The notion of sfore equivalence captured in the Pointer-Language Equivalence Theorem is the standard

notion of store equivalence w.r.t. a referentially transparent language. Intuitively, stores Gy and Ty are

equivalent if the accessible portions of G, and T, are isomorphic, up to how structures are paired with

locations.

DEFINITION. Let G, be a member of Store ,, and gEnv be ¢’s global environment. Let /dexp be the set
of all path expressions in language 7 including path expressions (such as _local._prev.a) that are
accessible only to the implementation. An idexp € [dexp denotes a structure s in Gy if
selexp (5, gEnv, idexp) = s. (N.B.: selexp is defined in Appendix 1.) O

DEFINITION. Let 6,.€ Store,; be a store, and gEnv be ¢’s global environment. Let /dexp be the set of
all path expressions in language # Two identifier expressions idexp € Idexp and idexp’ € Idexp are
aliased w.r.t. Gy if selexp (o, gEnv, idexp) = selexp (G, gEnv, idexp”). [

DEFINITION (equivalent stores in language 3 ). Let 05 and T, be members of Store,. Let Idexp be
the set of all path expressions, including path expressions (such as _local. prev.a) that are accessible
only to the implementation. Stores o, and T, are equivalent, Written Gy =y Ty, iff

® for all idexp € Idexp, idexp denotes a structure of type ¢ w.r.t. Oy iff idexp denotes a structure of
type t W.r.t. Ty

e for all idexp € Idexp, idexp denotes an atom w.r.t. G, whose value is v iff idexp denotes an atom
w.r.L. T, whose value is v; and

® for all idexp e Idexp and idexp’ € Idexp, idexp and idexp’ are aliased w.r.t. Gy iff idexp and idexp’
are aliased w.rt. T, O
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The following is a pictorial representation of the Pointer-Language Equivalence Theorem.

isomorphic hsdgs
hSdg(PH) hsdg(Q }[)

P 5 (behavioral) equivalence Q 3

Intuitively, this figure asserts that the behavioral equivalence of two programs P4 and @ 4 can be esta-
blished by establishing that P, and Q , have isomorphic hsdgs.

The Pointer-Language Equivalence Theorem is proved by reducing it to a second equivalence theorem.
This second theorem, the Spdg Equivalence Theorem, characterizes the representational soundness of a
dbr for a second, simpler language. Roughly speaking, this second language S is a subset of # that lacks
dynamic allocation, procedures, loops, dereferencing, and aggregate variables. This second dbr, the spdg,
is similar to the Horwitz-Prins-Reps (HPR) pdg described in Section 7.1. The principal difference between
the HPR pdg and the spdg is that the spdg, like the hsdg, portrays a more dynamic notion of data depen-
dence: i.e., one that reflects a program’s possible executions. An HPR pdg for program P must contain the
edge p —, g when P’s control-flow graph contains paths from p to ¢ that satisfy certain criteria—even if
statements along these paths never evaluate. An spdg for P, on the other hand, may omit p —>, ¢ if none
of P's evaluations exhibit p —>; q. The Spdg Equivalence Theorem, roughly speaking, states that two
language S programs with isomorphic spdgs are behaviorally equivalent programs.

isomorphic spdgs
o)
SPdg(PS' 0‘5 ) spdg (Q.S 05

P.:C

S S . equivalence > QS : 6.5

The proof of the Pointer-Language Equivalence Theorem takes the form of a seven-step reduction. The
first five steps in the proof reduce the statement of the Pointer-Language Equivalence Theorem to an
equivalent assertion about loop-free, procedure-free programs in #{ The final two steps of the proof reduce
this latter assertion to the Spdg Equivalence Theorem. This proof is presented in detail in the six subsec-
tions of Section 7.3. A sketch of the argument now follows.

Step 1. The Pointer-Language Equivalence Theorem asserts that programs P, and Q, exhibit
equivalent behavior when (1) P 5 and Q , have isomorphic hsdgs w.r.t. a set of stores InSet, and (2) P 5 and
Q4 are run on an arbitrary o€ InSet. Step 1 specializes the statement of the theorem to an equivalent
assertion about a specific pair of computations. An equivalence relation is first defined on computations in
language 7L It is then argued that the Pointer-Language Equivalence Theorem holds if (e1) PGy and
Q 4 Oy are equivalent for all 6, € InSet such that P, : 0, terminates.
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hSdg(Pﬂ) ; isomorphic_hsdgs =, hsdg(gj{,)
] d ®s,

F‘~ isomorphic hsdg( .G )
hsdg(P, .G, ) Q4O
o b
. Co,, » e)
P}[.cj{ HOH

Step 2, 3, and 4 reduce assertion (e1) to a comparable assertion about flattened approximations to Py
and Q 3

DEFINITION (flattened program (language # )). Let P, be a program in language H. Program P, is
flattened iff P, consists of one procedure, main (); P 5 contains no call and no while statements; and
every conditional statement in P 4 is of one of two forms:

* “if pred then fail else ---fi"

* “if pred then ---else fail f7 [

Intuitively, Steps 2 through 4 create simple, finite approximations to P, and Q s—approximations that,
nevertheless, are behaviorally equivalent to P, and Qs w.r.t. 65 This simplification of P and Qyis
made possible by the hypothesis that P ,: G, terminates. The principal reason for flattening P, and Q 5 is
that this transformation makes it easier to argue that freelist-mediated dependences represent needless con-
straints on program evaluation (cf. Step 7).

Step 2 reduces assertion (e1) to a comparable assertion about programs that lack procedure calls. This
reduction is performed in two stages. The trace of P ,: Gy is first used to in-line expand certain procedure
calls in Py, and to replace others by fail statements. This reduction yields a second computation,
flat (P 5) : Oy, that is (¥) closely related to P 2 Gy In particular, an auxiliary procedure A () is evaluated at
a specific point in P : Oy iff an in-line-expanded version of A () is evaluated at a corresponding point in
flat (P ) : 6. Throughout Section 7.3, pairs of closely related computations like P ,: 6, and flat (P y) 1 Gy
are said to be congruent. Specifically, computations ¢ and reduced (c) are deemed congruent whenever ¢))
reduced (c) is produced by transforming ¢, and (2) a close correspondence between reduced(c) and ¢
makes it possible to use one computation to reason about the other.

The second stage of the reduction uses the trace of P, Gy to in-line expand certain procedure calls in
Q.. and to replace others by fail statements. Let flat(Q ) denote the reduced Q4. The definitions of
equivalence and congruence now imply that (e1) PGy and Qs Gy are equivalent if (*) P, 0, and
flat (P 5) : 65 are congruent; (**) flat(Qy): 0 and flat(P ») 1 Oy are equivalent; and (***) Q4 : 0, and
flat (Q ) : O are congruent. Claim (*) follows immediately from the reduction (see above). Claim (*¥)
follows from Step 3 (below) and a second argument that flat (P ) and flat(Q ) have isomorphic hsdgs.
Claim (***) is demonstrated by showing that the second stage of the reduction preserves the semantics of
Q1 Gy i.e., that the reduction does not (e.g.) replace an evaluating call statement in Q with a fail state-
ment. In particular, assertions (*¥), (**), and the close correspondence between Q0 and flat(Qy): Oy
are used to show the correctness of the reduction.
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To summarize this somewhat complicated argument, the reduction performed at Step 2 yields two pro-
grams, flat (P ) and flat (Q ), that satisfy the following three assertions:

® P 5.0, and flat (P ;) : Oy are congruent computations.

° Q 4. 65 and flat(Q ») : G5 are congruent computations whenever flat (P ) : 64 and flat (Q ) : 0y are
equivalent computations.

® flat (P ) and flat(Q 5) have isomorphic hsdgs W.r.L. Oy

Step 2, in effect, reduces assertion (el) to the claim that (e2) the equivalence of flat(P,):0y and
flat (Q ) : G is implied by the isomorphism of flat (P 5)’s and flat (Q »)’s hsdgs.

0 Peo
i “*episomorphic hsdgs i 'h

: ,hsdg(Q_ .0, )
hsdg(p .G, ) ™, e 9 Qg Oy

isomorphic

hsdg(fiat (P, ). ;) hsdg(flat (Q ,,): o)

";.-': - I ---------------------- C
PH c}[ e, ﬂ f{(g )
. a e}
flat (Pg{) 1O gy H H

Step 3 reduces assertion (e2) to a comparable assertion about programs that lack loops. The trace of
flat (P ) : Oy is used to replace loops in flat (P,) and flat (Q ) with nested if-then-else statements. This
reduction yields two programs, flatter (P ;) and flatter (Q ,), that satisfy the following three assertions:

° flat (P 5) : 65 and flatter (P ) : G4 are congruent computations.

® flat(Q ;) : 0, and flatter (Q,):0, are congruent computations whenever flatter (P )10y and
flatter (Q 5) : G are equivalent computations.

® flatter (P ,) and flatter (Q ,)) have isomorphic hsdgs w.r.t. Gy.

Step 3, in effect, reduces assertion (e2) to the claim that (e3) the equivalence of flatter (P ) : Oy and
flatter (Q 5) : G4 is implied by the isomorphism of flatter (P ,)’s and flatter (Q 5)’s hsdgs.

. 4
hsdg(flat ( P}{). o] }{) |’~., 9{)
hsdg (ﬂatter(. P:%[). G}{)
"‘i ........................

flat (P}[) . 69{
flatter( P }[) o]

H

Step 4 reduces assertion (e3) to a comparable assertion about programs that have exactly one valid exe-
cution path. The trace of flatter (Py): Gy is used to replace conditionals in flatter (P) and flatter (Q5)
with conditionals that have at most one valid consequent. This reduction yields two programs, flattest (P 5)
and flattest (Q 5), that satisfy the following three assertions:

o flatter (P 5 : &5 and flattest (P ) : G5 are congruent computations.
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® flatter (Q ) : 05 and flattest (Q ) : Gy are congruent computations whenever flattest(P ) : G5 and
flattest (Q ) : Oy are equivalent computations.
® flattest (P 5) and flattest (Q ) have isomorphic hsdgs w.I.t. Oy

Step 4, in effect, reduces assertion (e3) to the claim that (e4) the equivalence of flattest(P ) : 0y and
flattest (Q ) : Oy is implied by the isomorphism of flatter (P ,0's and flatter (Q 4)’s hsdgs.

isomorphic hsdgs T hsdg (flatter( Q ). © )
hsdg (flatter(P ).G ) “evq._isomorphic hsdg X A" st

hsdg (flattest(P ) . .. : hsdg (flattest(Q ). G, )
°o : "0. E
V ----------- ;...........: (N flafter(Q ): o
flatter( P, ) qu valence ., 3 Oy
flattest(P, ) S, oY _cquivalence flattest(@ _ ): G,

Step 5 specializes assertion 4 to a pair of freelists, freep and freeq s Let the expression flattest (P ) :
(G freep ) denote the result of evaluating flattest (P ) : Gy W.r.L the freelist freep,. Step 5 shows that
assertion (e4) is equivalent to the claim that (e5) the equivalence of flattest (P 5): (O freeps) and
flattest (Q ) : (G, freeq ) is implied by the isomorphism of flattest (P ,)’s and flattest (Q )’s hsdgs.

P lsomorphic hsdgd *w  hsdg (fattest(Q_ ). O, )
hsdg (flattest(P_), G ) [ oy i ic hsdgs ™ 9{
5{ H 301.'n0rph < gS hsdg (ﬂattest( Qﬂ-[ 'Gﬂ )

hsdg (flattest( P ?{). 0‘}[)

*,Y _eghivalence %Y  flattest .
flattest(P_ ): © L est(Q 9{)'0 o

HH o ! equivalence
° : , free )
flattest(P, ): ©, freep 5{) flattest(Q ) (6, freed

Here, freep , is an arbitrary freelist, and freeq,, is a specific permutation of freep , whose form depends on
the form of flattest (P 4).

The reason for fixing freep , and freeq 5 before performing the translation to language S (Step 6) is that
the specified choice of freelists simplifies Step 7. Specifically, let computation p and computationg denote
the reduced versions of flattest (P ) : (G, freep 5) and flattest (Q 5) : (O freeq ) generated by Step 6. The
assumptions imposed on freep, and freeq , in Step 5 ensure that corresponding evaluations of the simu-
lated new() operator in computationp and computationg return the same simulated address. This close
correspondence between computationp’s and computationg’s simulated allocation operations simplifies
the proof that computationp and computationg are equivalent. In particular, this correspondence ensures
that the reduction described in Step 7 yields programs with isomorphic spdgs. This, in turn, allows the
Spdg Equivalence Theorem—the theorem upon which the whole argument rests—o be applied in a
straightforward manner.
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Step 6 translates the computations in Step 5 into language S. Let P and Q denote the translated ver-
sions of flatten(P,) and flatten(Q4); O, the translated version of Oy; and freeps and freeq, the
translated freep,, and freeq,. The translated objects created in Step 6 satisfy the following three asser-
tions: )

° flattest (P 3): (G, freep o) and P 5 : (G, freep ;) are congruent computations.

° fattest(Q s : (Cyy, freeqs) and  Q;:(0s, freeqs) are congruent computations whenever
P;: (o, freep) and O (65, freeq ;) are equivalent computations.

° P and Q have similar spdgs w.r.t. ;.

DEFINITION (similar spdgs). Two spdgs are similar if they are isomorphic up to edges that represent
freelist-mediated data dependences. [

Step 6, in effect, shows that assertion (e5) is equivalent to the claim that (e6) the equivalence of
P;: (o, freeps) and Q;: (0, freeq;) is implied by the similarity of P’s and Q’s spdgs and the form of
freep s and freeq ;.

H ’0..- 1som0rphic hsd&s.'O. hsdg (ﬂattest( Q ), o) )
hsdg (ﬂattest( P}[ )bcj{ ) *:. Eimllar spdgs ﬁ..’t ( H ) H
spdetp o) | .. | 978 5%

S .V.

“..y cqhivalence " (c &
flattest(P_): (¢ . freep ) L.eq ence fla est(Q . ): (c}[ reeq})
H H H *+oY o equivalence W Q :(c . .freeq )
PSZ(GS.freeps) s O 5

Step 7 completes the reduction. A dependence-breaking program transformation that substitutes con-
stants for accesses of the simulated freelist reduces P and Q s to two related programs, P and Q. Pro-
grams P ; and Q ; are then shown to satisfy the following three assertions:

® P;:05and P;: o are congruent computations.

° Qs:0; and Q ;: 0 are congruent computations whenever P: 05 and Q: 0 are equivalent compu-
tations.

® P s and Q ¢ have isomorphic spdgs w.r.t. .

Step 7, in effect, reduces assertion (e6) to the claim that (e7) the equivalence of P;: 0, and Qs:05 is
implied by the isomorphism of P’s and Q ¢’s spdgs.
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spdg(P_ .G ) spdg(Q -0 )
spdg(p .o spdg(Q; -9 )
P :(c free )~° :(c . freeq )
s s o freeq )
'I').S:(GS'freeps QS.(GS. q

The observation that assertion (e7) is true by the Spdg Equivalence Theorem now completes the proof of
the Pointer-Language Equivalence Theorem.

This completes the sketch of the Pointer-Language Equivalence Theorem. The detailed presentation
given below differs from this sketch in the following two ways. The two sections that follow the current
section, Sections 7.3.1 and 7.3.2, first explain the technique used to simulate language H computations in
language S. The remaining sections then present the seven stages of the proof in a bottom-up (rather than
top-down) fashion: this simplifies the presentation by allowing successive sections to build on theorems
proved in previous sections.

7.3.1. Language S

Language S, whose concrete syntax is shown in Figure 74, is a procedure-less, loop-less, goto-less
language that supports scalar variables and conditionals. It lacks reference variables, structures, and

Program — Stmt_list Cond — VAR Is TYPE
. . . —» SimpleExp > SimpleExp
Stm fist — Sim (; Stm) —» SimpleExp & SimpleExp
Stmt —1if Cond then Stmt_list else Stmt_list fi —» SimpleExp < SimpleExp
— case Switch in (REF : Stme_List}” esac — not Cond
- assert Cond
i R
— VAR := Exp Switch -> VAR | freelist() | REF
- fall Exp — PRIMEN (SimpleExp, - - - ,SimpleExp)
— skip —» SimpleExp
SimpleExp -> VAR | ATOM | REF
TYPE is a set of type designators. REF — &0| &1| - -+ | undefined

VAR is a set of alphanumeric variable names.
ATOM is a set of atomic values. Elements of REF simulate references to structures. ATOM and REF are disjoint.
PRIMFN is a set of primitive functions.

Figure 7.4. The concrete syntax for language S.
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dynamic allocation. Appendix 7 gives an operational semantics for language S. A sketch of this semantics
now follows.

Language S’s meaning function, My, defines a program as a map from a (store,input-stream) pair to a
store. A store is a collection of variables. The input stream, hereafter called the freelist, is a list of simu-
lated references (i.e., elements of REF).

Elements of PRIMFN are self-contained, referentially transparent functions. Every fe PRIMFN must
satisfy the following requirements:

® freturns L when invoked with a reference argument, or a variable that contains a member of REF.
f neither reads nor updates unbound variables—the freelist stream included.

f calls no other functions, except possibly itself.

freturns a member of ATOM.

Successive calls to freelist () return successive elements from the freelist. Calling freelist () when there
are no more elements in the stream of values causes a program to fail.

Most language constructs have their usual meaning. The statement “assert cond” is shorthand for
“if not cond then fail fi”. The case statement is equivalent to a nested if-then-else statement. A case
statement causes a program to fail when none of its guards are matched.

7.3.2. Reducing pointer-language programs to pointer-free programs

A computation in language # is reduced to a computation in language S by using sets of special variables
and values to simulate the heap; operations on variables to simulate expression evaluation; and combina-
tions of operations to simulate statement evaluation.

Stores. A pointer store Gy, is reduced to a language S-store by mapping every accessible structure in
Oy to a set of specially-named variables.!! Let o, for example, be a store that contains n accessible

structures. Then oy is reduced to a set of variables {STRg.suffixg, -, STRo.suffixe-1,
STR,.suffixg, "+, STRo.suffixy_y, -+ STR,_j.suffixg, -, STR,_.suffix,., }, where each set of
variables { STR;.suffixo, *** , STR;.suffix,_, } simulates an accessible structure in Gy, and each vari-

able STR,.suffix; characterizes some aspect of the structure that it simulates. The suffix ; are strings that
vary according to the computation being simulated. Assume, for example, that a program P manipu-
lates one identifier, x; a procedure with two formal parameters, x and y; and a set of declared structures
with one selector, INTP. Assume, furthermore, that 6, only contains references of type x, y, and INTP.
Then the reduction maps every structure s in G to the following ten variables:

STR;._TYPE, which gives the type of s.

STRi.__CURR, which references the current local environment when s is the global environment.
S'I'Ri.__PREV, which references the previous local environment when s is an environment.
STRi._Sl , which references a call site’s first actual parameter when s is a local environment.

1A structure 5 in a store Gy is accessible if there a path in Gy from Oy,'s global environment to s.
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® STRi._Sz, which references a call site’s second actual parameter when s is a local environment.
STRi.__ATOM, which contains the atomic value of s if s is an atom.

S'I'Ri._’IMP, which represents the value of field _TMP in s if s is the global environment.
STRi.X, which represents the value of field x in 5 if s is an environment.

STR,Y, which represents the value of field y in s if 5 is a local environment.

STRi.[NTP, which represents the value of field intp in s if s is of type “integer pointer”.

In general, the number of suffix;’s is five _TYPE, _CURR, _PREV, _ATOM, _TMP), plus the max-
imum number of parameters for any one procedure, plus the number of distinct identifiers and selectors
that are (1) mentioned in a program’s text and (2) present in the initial store.

Structures. An atomic structure s in a pointer store & is simulated as follows. Let s be the ith struc-
wre in o, under some indexing scheme. Assume that s’s value is a. Then s is simulated by a set of
variables of the form STRi.suﬁix, where STRi.__TYPE contains atom, and STRi._ATOM contains a.

Structures that contain references are simulated using values from REF. A value &i is treated as a
simulated reference to the structure STR;. Assume, for example, that the local environment lenv is the
jth structure in store . Assume, furthermore, that field x in lenv references the ith structure in Oy
Then s is simulated by a set of variables of the form S'I'Rj.suﬁﬁx, where STRj._TYPE contains env, and

STRj.X contains &i.

Variables that simulate unused fields in structures and variables in S'I'Ri that simulate structures in a
program’s freelist are initialized to 1. Variable set S'I'R0 is reserved for the global environment; the
precise strategy for assigning indices to other simulated structures is left specified.

Expression evaluation. Language #{ supports four kinds of expressions: expressions that involve the
relational operators Eq, <, =, and >; expressions that involve logical operators typeOf and not; store
access expressions; and expressions that allocate storage. Expressions in # that involve relational and
logical operators can be simulated directly in S. Slightly more elaborate techniques are needed to simu-
late dereferencing and allocation.

Dereferencing. The evaluation of a store-access expression is simulated with case and assert state-
ments. Figure 7.5 illustrates the simulated evaluation of an example identifier expression, x.hd.tl, in the
context of the example assignment statement “[p] x.hd.tl := 10”. The outer case statement simulates
the application of the x selector to STRO, the simulated global environment. The inner case statements
simulate the application of Ad to the structure denoted by x. The assert statements shown in this figure
perform simulated run-time type checks; the meaning of STRb.hd, for example, is undefined when
STRb fails to simulate an object of type cons.

The value &maxref (cf. Figure 7.5) is the largest simulated reference that a given reduction supports.
This prespecified limit ensures that reduced programs are finite. The existence of &maxref also limits
the accuracy of the reduction. Simulated computations, for example, that allocate more than &maxref
locations must fail, due to storage overflow.

The technique for simulating “[p] x.hd.fl := 10" illustrated in Figure 7.5 assumes that x is not a local
identifier at statement [p]. If x had been a local identifier, then the evaluation of x.hd.t{ would have
been simulated by making the implicit dereferencing of the pointer to the local environment explicit;
i.e., by first converting [p] to the equivalent statement “[p’] _currx.hd.tl := 10", and then using three
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case STRyp.X in
&0: -

&b: assert STR,. TYPE is cons;
case STRy._HD In
&0: -

&c: assert STR..TYPE is cons;

STR..TL =10
&maxref:
esac;
&maxref:

esac;

Figure 7.5. The simulation of “[p] x.hd.tl := 10", subject to the assumption that x is a global identifier at p. &maxref
is a prespecified limit on the range of simulated references.

levels of case statements to simulate the evaluation of _curr, x, and hd.

Allocation. The evaluation of the expression “new(conscell)” is simulated in the manner depicted in
Figure 7.6. The call to freelist obtains a reference to an unused STRi from the simulated freelist.
Three allocations are performed because fields of newly allocated structures are initialized to reference
nil-valued atoms. The freelist operator also simulates the evaluation of atoms and primitive functions,
which add new atoms to the store.

Throughout this chapter, it is assumed that every freelist passed to M is properly initalized. All
values in the freelist must be between &0 and &maxref. Furthermore, the value &x must not be
present in the initial freelist if STRx simulates an accessible structure in the initial store.

Executable statements. The subset of language #/that is to be reduces to language S supports three
kinds of statements: assignments; conditionals; and initialization statements. Figure 7.5 illustrates the
simulation of an assignment statement. The simulation of conditionals and initialization statements is
straightforward.

This completes the description of the reduction. It can easily be seen that the expressive power of the
reduction is limited. The a priori bound on the domain of references precludes the simulation of stores that
contain arbitrarily many structures. The use of &maxref also precludes the use of an arbitrarily long simu-
lated freelist. Finally, the lack of calls and loops in S precludes the simulation of non-terminating pro-
grams.

The proof developed below copes with these limitations by reducing loop-free programs in language H
w.rL.L finite stores. If a language #{ program P is known to terminate w.r.t. a finite store G, then the number
of structures that P allocates w.r.t. ¢ can be counted, and P : ¢’s pattern of evaluation recorded. The char-
acterization of P : & thereby obtained allows the creation of a reduced P that correctly evaluates a reduced
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case freelist() in
&0: -

&a: STR,.TYPE :=cons;
case freelist() in [rw w44 initialize HD field of new structure to reference nil atom
&0: ---

&b: STR,.TYPE :=atom; STR,.ATOM :=nll; STR,.HD = &b;
&maxref:
esac;
case freelist() In e w% initialize TL field of new structure to reference nil atom
&0 -
&c: STR,.TYPE :=atom; STR..ATOM :=nil; STR,.TL := &c;

&maxref:
esac;

&maxref:
esac;

Figure 7.6. Simulating an occurrence of the expression “new (conscell)”.

o. This approach to reasoning about pointer programs yields assertions about the relationship between a
program’s hsdg and its terminating executions. (Theorems that specify how hsdgs characterize non-
terminating programs are beyond the scope of this thesis.)

7.3.3. An equivalence lemma for language S

The starting point for the proof of the Pointer-Language Equivalence Theorem is an equivalence theorem
for a type of dbr referred to here as the spdg—i.e., the language S pdg. A formal definition of the spdg is
given in Appendix 8. Informally, the spdg is similar to the Horwitz-Prins-Reps (HPR) pdg described in
Section 7.1: both dbrs portray a program’s control, flow, and def-order dependences. There are also two
important differences between the two dbrs. The first is that the language supported by the spdg (as
defined here) does not support loops. There is therefore no need to distinguish between loop-carried and
loop-independent dependences in spdgs. The spdg also portrays a more dynamic notion of data depen-
dence: i.e., one that accounts for a program’s possible executions. For example, an HPR pdg for the pro-
gram
“[1] If pred then [2] x:=1 fi; [3] y =x"

must contain the edge [2] —; [3]—even if pred is uniformly false. An spdg for P, on the other hand, may

omit the edge [2] —; [3] when (e.g.) statement {2] never evaluates. A language S program may therefore
have more than one valid spdg; this observation is similar to the observation that a language H program
may have more than one hsdg.
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The Spdg Equivalence Theorem, whose statement is given below, asserts that two programs that have
isomorphic spdgs w.r.t. a set of inputs /nSer also have equivalent behaviors w.r.t. InSet.

DEFINITION (value computed at a program point (language 5)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the left-hand-side of the assignment state-
ment. The value computed at a predicate is the (boolean) value of the predicate. [

DEFINITION (equivalent computations (language S)). Let P and Q s be programs in language § such
that there exists an isomorphism f between the points of P and Q. Let inputp and inputy be inputs.
Let cp denote the computation P:inputp, and cy the computation Qg:inputy. cp and cgp are
equivalent w.r.L. f, written cp =; cp (W.r.t. f), iff

(1) neither cp nor ¢ terminates successfully, or

(2a) cp and cg both terminate successfully;

(2b) cp and ¢ generate identical sequences of values at corresponding program points (w.r.t. f); and
(2c) the final stores computed by ¢ p and c o agree on the final values of all variables. [l

LEMMA (Spdg Equivalence Theorem). Let P € Program and Q € Program be programs. Let fbe an
isomorphism between these programs’ points. Let InSet be a set of inputs. Let Gp be an spdg for P
w.r.t InSet. Let G be an spdg for Q w.r.t. InSet. Assume that G p and G are isomorphic w.r.t. f. Let
input, = (G, freep) € InSet and input, = (0, freeq) € InSet be inputs such that freep = freeq. Then
P :input, and Q : input, are equivalent computations.  V

COROLLARY. The theorem also holds when free # free’ and neither P nor Q invokes freelist(). V

The pictorial characterization of the Spdg Equivalence Theorem, which was given in the preface to Sec-
tion 7.3, is repeated here for convenience.

isomorphic spdgs

SPdQ(PS-G ) S g(gs'ﬁs)

. : , fi
PS' (o x freeps) QS' (o s l‘eeqs)

equivalence

The Spdg Equivalence Theorem is proved by using a graph-rewriting semantics for pdgs to compare the
evaluation of P and Q. A sketch of a proof for a related theorem is given in [Pfe91a). The theorem proved
there, which is due to Selke, concerns an extended spdg for an enhanced S that supports loops.

The lemma developed in this section, the Simulation Equivalence Lemma, uses the Spdg Equivalence
Theorem to show that programs with related spdgs exhibit equivalent behavior when run on related inputs.
The statement and proof of this theorem now follow.

DEFINITION (flattened program (language S)). Let P be a program in language S. Program P is
flattened if every conditional statement in P is of one of two forms:

*  “if pred then fail else ---fi"
% uif pred then PR else fail ﬁﬂ D

LEMMA (Simulation E’quivalence Lemma). Let P and Q be flattened programs in language .S such
that there exists an isomorphism f between the points in P and Q. Assume that P and Q s contain n
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occurrences of the freelist() operator. Let inputp = (G, freeps), where freep is an n-element freelist
that names none of the accessible S'I'Ri in 0. Let inputy = (O, freeqs), where freeq s is that permuta-
tion of freep s whose jth element is determined as follows:

° Let ¢ be the jth program point in Q that contains the freelist() operator (N.B.: this ordering is
well-defined for flattened programs);

® Let p be the point that corresponds to ¢ under f;

° Then the jth element of freeq is the kth element of freep s, where p is the kth program point in
P ; that contains the freelist() operator.

Let G p be an spdg for P; w.r.t. inputp, and G 4 an spdg for Q5 w.r.t inputg. Assume that Gp and G
are similar spdgs w.r.t. f (i.e., isomorphic up to freelist-mediated dependences), and that P s : inputp ter-
minates successfully w.r.t. inputp. Then P :inputp and Q s : inputy are equivalent computations.

PROOF. The Simulation Equivalence Lemma is proved by reducing it to the Spdg Equivalence
Theorem.

similar spdgs spdg(Q

isomorphic spdgs —T

spdg(P .o ) r‘
SPdg(l_DS Nej

5)

P : , free
P :(c., freep

The first step in the proof reduces P and Q 5 to comparable programs in a subset of S that lacks freel-
ist() operators. Let P be the program obtained from P by replacing freelist operators in P with
reference constants. In particular, the freelist() operator at the jth point in P is replaced with the
expression &c, where &c is the jth reference in freeps. Similarly, let O be the program obtained by
using freeq to replace freelist() operators in Q;. The assumptions made about the relative order of
freep s and freeq s ensure that P s and Q ; have isomorphic sets of points.

The second step of the proof establishes the relationship between the untransformed and transformed
programs. Clearly, (el) P:inputp and P :inputp are identical computations, up to the state of their
freelists. The hypothesis that P is a flattened program fixes the order in which values may be read
from Pg’s simulated freelist. Furthermore, the assumption that P:inputp terminates successfully
implies that P:inputp must not exhaust its simulated freelist. Computations Q:inputy and
Qs : inputg are also identical computations, up to the state of their freelists. This assertion, however, is
established indirectly, by first comparing P ; : inputp t0 Q:inputy.

The next step of the proof shows that (e2) P ;: inputp and Q ;: inputg are equivalent computations. This
assertion is demonstrated by constructing isomorphic spdgs for Ps and 0 ;. Assertion (s2) then follows
from the corollary to the Spdg Equivalence Theorem, since neither P nor @ s access their freelists.

Let Gp be the dbr obtained from G p by (1) relabeling every vertex in G p that corresponds to an opera-
tion on the freelist with the corresponding operation (on reference constants) in Gp, and (2) removing
all edges from the resulting graph that represent freelist-mediated dependences. Let Gg be obtained
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from G in a similar manner. Clearly, G p and G are isomorphic dbrs. It must now be shown that G p
and G are valid spdgs for P s and Q s, relative to their respective inputs. Assume, on the contrary, that
(e.g.) Gp fails to represent a (dynamic) data dependence p —>4 q exhibited by P ;:inputp. Then, by
the definition of data dependence, P :inputp must contain a sequence of states that gives rise o
p —>4 q. The close relationship between Py and P, however, now ensures that a comparable
sequence of states gives rise to a comparable, missing dependence in G p—a contradiction. A similar
argument shows that G 5 is an spdg for Q s w.r.t. inputp.

This completes the demonstration of assertion (e2). Assertions (e1) and (e2) are now used to demon-
strate that (e3) O :inputg and Q ;: inputy are identical computations, up to the state of their freelists.
Note, first of all, that assertion (1) and the successful termination of P:inputp imply that (*)
P:inputp terminates successfully. Furthermore, assertion (*) and assertion (e2) now imply that
Qs :inputy terminates successfully—i.e., that the evaluation of Q:inputp followed the lone non-
failing path through Q. An induction on the number of statements in Qs and Qs now completes the
proof of assertion (e3).

Summarizing the argument so far, there exist two programs P ; and 0 that satisfy the following three
assertions:

el. Computations P s:inputp and P s:inputp are identical, up to the state of their freelists.

2. Computations P sinputp and Q sinputy compute identical sequences of values at corresponding
program points, and compute the same final stores.

3. Computations Q s:inputg and Q s:inputy are identical, up to the state of their freelists.

Taken together, these assertions imply that P s:inputp and Q s:inputg are equivalent computations. [

A final observation is in order about freep and freeq. The decision to assume that freeqs was a specific
permutation of freep, in effect, represented a decision to handle all reasoning about referential tran-
sparency at the level of language { (cf. proof step 5 in the preface to §7.3). An earlier draft of this thesis
attempted to develop a version of the Simulation Equivalence Lemma that characterized the effect of
evaluating P and Q w.r.t. unrelated freelists. This approach, although reasonable in principle, proved
quite unattractive in practice: the fact that a language S computation is sensitive to the specific values of
reference constants greatly complicates the statement—and proof—of this alternative theorem.

7.3.4. Using the reduction to map from #to S

The current section presents the fifth and sixth steps in the proof of the Pointer-Language Equivalence
Theorem: i.e., the steps that reduce a pair of flattened language # programs to a comparable pair of

language S programs.
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hsdg (flattest( P, ). G _ ) s isomorphic hsdgs .hsdg (flattest(Q ). ©_ )
hsdg (fattest( P, ). )'ﬁ.g isomorphic hsdgs .s[ hsdg (flattest(Q_ )0 )

9
spdg(p o ) e Smiar spde spdg(Q ;-0
. l equivalence flattest
] ﬂattest(Pﬂ ): cfjr{ t;... equivalence "o, f ?test(Qﬂ)' (¢, freeq )
. , Iree (3 ° - '
attest(pP 9{)' (o Y .p o -.,L equivalence - - ﬁ.ﬂ ) "
B0, e Q:(0 o freeq o

The principal assertion proved in this section, the Flattened Programs Equivalence Theorem, states that
flattened programs with isomorphic hsdgs have equivalent behavior. The Flattened Programs Equivalence
Theorem is proved in two stages. The first stage demonstrates the correctness of the reduction described in
the sixth step of the proof sketch (i.e., the diagram’s “foreground brick”). This first result is termed the
Flattened Programs Lemma. The Flattened Programs Lemma is then used to demonstrate the correctness
of the reduction described in the fifth step of the sketch (i.e., the diagram’s “background brick™).

The Flattened Programs Lemma is proved by using the translation described in Section 7.3.2 to reduce
computations in language #{to comparable computations in language 5. The statement of this lemma is for-
malized with the aid of the definitions given below. The first four definitions establish terminology for
comparing computations in language # and S. The next two definitions formalize the reduction. The final
three definitions formalize the notion of equivalent computations in language #{

DEFINITION (congruent program points). Let pt, be a point in a language # program P4, and pt; a
point in a reduced version of this program, program P . Points pty and pt; are congruent (W.I.t. Py
and P ) iff pt  is the first of the points in P ; that simulates pt,. O

DEFINITION (congruent stores). Let G, be a member of Store,. Let o5 be a member of Stores. Let
Idexp be the set of all path expressions in language 7 Stores 0, and g are congruent iff

° for all idexp € Idexp, idexp denotes a structure of type ¢ W.I.L. Oy iff idexp denotes a STR; w.r.t.
o, with STR;. TYPE =1

e for all idexp € Idexp, idexp denotes the atom v in Gy iff idexp denotes a STR; w.r.t. o with
STR;.ATOM = v and STR;.TYPE = atom; and

® for all idexp € Idexp and idexp’ € Idexp, idexp and idexp’ are aliases W.I.L. Gy iff idexp and idexp’
are aliases wr.t.os. 0O

This definition of congruence is an isomorphism between the accessible structures in o4 and the
accessible STR; in g.

DEFINITION (congruent states). Two states are congruent states if their program-point and store com-
ponents are congrucit. (O

DEFINITION (congrient computations). Let ¢ = (hy, hy, -+ ) be a computation in language #, and
¢s=(s1,52, - ) a computation in language . Computations ¢ and ¢ are congruent computations,
WHItten ¢ 4 =4 C, if there is a map f from ¢, to ¢ s such that
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) f maps every state h; to a congruent state s ;; and
° if £ (h;)=s; and f (h;y1) =5,, then j <k, and states 5; - -~ Sg-y simulate the evaluation of the
pointath;. 0O

DEFINITION (reduceStore). The function reduceStore: Int X ProgramsxStore, — Store; reduces
stores in language #{to congruent stores in language S, according to the rules described in Section 7.3.2.
In particular, let maxref be reduceStore’s first parameter, and used denote the number of accessible
structures in reduceStore’s third parameter; then S’I‘R0 through STRus ed-1 simulate accessible struc-
tures in the store, and STRus ed through S'I'ermef simulate structures in the initial freelist. The second
and third parameters determine the variables that make up the STRi’s. )

DEFINITION (reducePgm). The function reducePgm: Int X Program, — Program  reduces a program
P, in language # to a program in language 5. This reduction is accomplished by using the rules given
in Section 7.3.2 to reduce the statement list obtained by in-line expanding the call to procedure main ()
at point initial,, (N.B.. An in-line-expansion of a procedure call is illustrated in Figure 7.7)
reducePgm’s first parameter is (the integer value of) &maxref. (]

Intuitively, the reducePgm () function performs exactly one in-line expansion because a flattened
program performs exactly one procedure call. This procedure call, an implicit call to procedure
main (), immediately follows the initialization of a program’s store (¢f. Chapter 2). This call to main ()
at point initial, must be eliminated before a program can be translated into language S.

DEFINITION (value computed at a program point (language #{)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the left-hand-side of the assignment state-
ment. The value computed at a predicate is the (boolean) value of the predicate. (1

DEFINITION (equivalent values, sequences of values (language 7{)). Two values v, and v, are
equivalent iff either v, and v, are atoms and v, = v,, or v and v, are both references.

_curr._d =ay [*** initialize actual parameters

_curr._ O =ay

_imp = _curr; [*** initialize new environment
_curr = new (env);

_curr._prev = _tmp;

_curr._f) = _curr._prev._8; /#** initialize formal parameters

_curr._fi = _curr._prev._8
body, ; [¥** evaluate procedure
_curr .= _cwrr. prev; P¥** restore old environment

Figure 7.7. An in-line-expanded procedure call. Procedure A has k formals f; - * - f; and body body,. The expanded
call statement is “call A (a,, -, a).
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Letv=v, " v, and w=w, - -w, be sequences of values. Sequences v and w are equivalent iff
m = n and v; and w; are equivalent for all { between 1 and m inclusive. d

DEFINITION (equivalent computations (language #)). Let P, and Q4 be programs in language A such
that there exists an isomorphism f between the points of P, and Q. Let o5 be a store. Let cp denote
the computation P ,: Gy, and cg the computation Q4: Gy cp and cg are equivalent w.r.t. f, written
cp =y cp (wrt f),iff either

(1) neither cp nor ¢, terminates successfully, or

(2a) cp and cg both terminate successfully;

(2b) cp and ¢ compute equivalent sequences of values at corresponding points (w.r.t. f); and
(2c) the final stores computed by cp and c g are equivalent. [

The statement and proof of the Flattened Programs Lemma now follow.

DEFINITION The expression P:(Os, fly) denotes the computation of PGy WIL 2 specific
Ay Free. [

LEMMA (Flattened Programs Lemma). Let G, be a store, and Py and Q, be flattened programs in
language # that have k allocation sites.!2 Assume that P, and Q , have isomorphic hsdgs w.r.t. G5 and
the two freelists freep , and freeq ,, defined below. Let f be this isomorphism between the points in P 5

and Q:;[.

Let freep , be a freelist that names  locations, none of which correspond to accessible locations in Gy
Let freeq o be that permutation of freep s, T(freep ), whose jth element is determined as follows:

e Let ¢ be the jth program point in Q5 that contains a new() operator (N .B.: this ordering is well-
defined for flattened programs);

® Let p be the point that corresponds to g under f;

® Then the jth element of freeq is the kth element of freep,, where p is the kth program point in
P 4 that contains a new() operator.

Let inputps = (O, freep ) and inputqy = (Cyp, freeqqr). 1E Py inputpy terminates successfully, then
P o inputqse =5 Q 12 inputqse; i.e., the two computations are equivalent.

PROOF (sketch). This lemma is proved by reducing it to the Simulation Equivalence Lemma. Let:

n denote the number of accessible structures in Gy,

O = reduceStore(n+k—1,P 5, Gy);

P =reducePgm(n+k—1,P ), Qs =reducePgm(n+k—1,0Q 4);

freeps=&n - - - &n+k-1; freeqs=1(freeps)

inputp; = (s, freeps); and inputqs = (G, freeq).
A straightforward case analysis of the type of a reduced statement can be used to show computations in
#H are mapped to congruent computations in S: ie., that Pyinputps =g P :inputps and

12Technically, the implicit call to main () at the start of a program, which initializes main ()'s local environment, must also be counted
ag an allocation site.
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Q 5t inputqy =5 Qs inputqs. The definitions of =y, =5, and =5 now imply that the equivalence of
P, inputps; and Q 5 inputqy can be proved by demonstrating (*) the equivalence of P :inputps and
Q¢ inputqs.

Assertion (*) will be shown by demonstrating that P, Q, inputps, and inputqs satisfy the
hypotheses of the Simulation Equivalence Lemma (cf. §7.3.3). Specifically, it must be shown that (1)
P:inputps terminates; that (2) freep s and freeq ; name k locations that are not accessible in o;; that
(3) freeq s is a specified permutation of freep s ; and that (4) P and Qs have similar'® spdgs. Assertions
(1) through (3), however, are almost immediate—(2) and (3) follow from the construction of freep s and
freeq;, and (1) from the congruence of P : inputp, and P g : inputp;. Assertion (4)—the assertion that
P and Q ; have similar spdgs—is demonstrated below.

A hypothesis of the Flattened Programs Lemma states that P, and Q ; have isomorphic hsdgs. Let
GP ,; and GQ 5, be this pair of isomorphic hsdgs. GP 5 and GQ 4 can now used to construct isomorphic
dbrs for P and Q , as follows. Let sim be a function that pairs every point p in P with the point in P
that p simulates. Let
@ static be the set of statically feasible (i.e., control-flow-graph-derivable) data dependences exhi-

bited by P;
® freedep be the set of freclist-mediated dependences in static;
e notinH be the set of p —>4 q € static such that sim(p) —>4 sim(q) is not represented in GP y;
e spurious = notinH — freedep; and
° datadep = static — spurious.
Let GP be that spdg for P that depicts all of P’s control dependences and every data dependence in
datadep. Let GQ s be constructed in a similar fashion. It can be verified that dbrs GP; and GQ are
similar dbrs. Assertion (4) can therefore be established by showing that (i) GP ; is a valid spdg for P
w.r.t. inputps, and (ii) GQ is a valid spdg for Q5 w.r.t. inputqs. Since the proofs of (i) and (ii) are
similar, only the first is given.

Since GP ; represents P’s control dependences, assertion (i) can be proven by showing that GP
represents all of P ;’s dynamic data dependences w.r.t. inputp;. Assume, on the contrary, that GP ; fails
to depict a dg=p —>4 q exhibited by Pj:inputp;. Then the definition of GP; implies that
ds e spurious; i.e., that sim(p) —>4 sim(q) is a non-freelist-mediated dependence that is absent from
GP . The definition of dependence w.r.t. 5, however, also implies that P s : inputps contains a sequence
of states that exhibits d;. Furthermore, the congruence of P : inputps and P 5 inputpy implies that the
corresponding sequence of states in P 5: inputpy gives rise to sim (p) —4 sim(q). This observation
that P 5;: inputp, exhibits sim(p) —>4 sim(q) contradicts the hypothesis that GP 4 is a valid hsdg for
P, w.rt inputp,. GP 5 must therefore be a valid spdg for program P, (1

The statement and proof of the Flattened Programs Equivalence Theorem now follows.

13 Recall that two spdgs are similar iff they are isomorphic, up to edges that represent freelist-mediated dependences.
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LEMMA (Flattened Programs Equivalence Theorem). Let G, be a store. Let P4 and Q 4 be flattened
programs in language { such that P, and Q , have isomorphic hsdgs w.r.L. Oy. Assume, furthermore,
that P ,: G5 terminates successfully. Then P, 05 and Q 5 G are equivalent computations.

PROOF. Recall that the definition of 7 leaves the freelist component of a computation largely
unspecified. The expression P, : Gy, in effect, denotes the evaluation of Py w.r.t. Gy and any infinite
freelist fl,, where every location in fl, is inaccessible in o5 The freelist component is not specified
because fixing the contents of the list does not affect a pointer program’s behavior in any material way.
More precisely, assume that P : G, allocates no more than k locations. Let Free, denote the set of all
freelists that (1) contain at least k locations such that (2) none of these locations correspond to accessi-
ble structures in G,. Let freeps and freeq o be arbitrary elements of Free,. A straightforward induc-
tion shows that P ;: (Gys, freep 5;) and P2 (G4 freeq ) generate sequences of states that have identical
program-point components and isomorphic store components. This observation also implies that
P 5: G5, exhibits the same data dependences w.r.t. any initial freelist in Free . 14

Let k be the number of allocation sites in P, and Q4. Since P, and Q 4 are straight-line programs,
any computation involving P, and Q , allocates no more than & structures. Let Free; be defined as in
the previous paragraph. The observations in the previous paragraph, together with the assumption that
P, and Q , are loop-free programs, implies that any freep,  and freeq, in Free, can be used to reason
about P,: Gy and Q 5 Oy, respectively. Furthermore, the observations about a computation’s depen-
dences w.r.t. a specific freelist imply that Gp is an hsdg for P, w.r.t. Oy iff Gp is also an hsdg w.r.t
Gy and freep .

To summarize the argument to this point, P 5 : G4 and Q 5 : Oy are equivalent computations iff there
exist two freelists in Freey, freep , and freeq s, such that Py (O, freeps) and Q o (O, freeq ) are
equivalent computations. Let freep s be an arbitrary member of Freey, and freeq s be that permutation
of freep  that satisfies the hypotheses of the Flattened Programs Lemma. The observation that P 5, Q 5,
Gp, Gg, Oy, freep s, and freeq, satisfy the hypotheses of the Flattened Programs Lemma now estab-
lishes the Flattened Programs Equivalence Lemma. [

7.3.5. Flattening programs in language #

The current section discusses the second, third, and fourth steps in the proof of the Pointer-Language
Equivalence Theorem: i.e., the steps that reduce a pair of language 7 programs to a comparable pair of
flattened language A programs.

4 A gimilar result is demonstrated in Chapter 5; the proof that evalPt, is monotone uses the referential transparency of #*s primitive
operations to argue that replacing a store with an isomorphic store has no appreciable effect on a computation’s outcome.
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The three reductions described in this section use the assumption that P, : Gy terminates to simplify Py
and Q,. These reductions, which flatten conditionals, remove loops, and in-line expand procedure calls,
will be presented in somewhat less detail than the transformations given in the preceding sections. This
less formal style of presentation streamlines the proofs without detracting from the argument: formalizing
the definitions of the various congruences would have complicated the proofs without really clarifying the
intuition. A second reason for using this more relaxed style of presentation is that these types of reductions
are not new. Previous authors have used flattening transformations to theorems about the dbrs of richer
languages to theorems about simpler languages (cf. [Bin89, Sel90]). The only significant difference
between the arguments developed here and these earlier proofs is that observations about a program’s exe-
cution (rather than its control-flow graph) must be used to argue that reduced programs have isomorphic
hsdgs. Furthermore, arguments about program behavior have already been used to establish comparable
assertions about dbrs in Sections 7.3.3 and 7.3.4: this concern arises (e.g.) in the proof of the Flattened Pro-
grams Lemma, where it must be shown that the map from #to § reduces programs with isomorphic hsdgs
to programs with similar spdgs.

Step 4. The fourth step in the proof of the Pointer-Language Equivalence Theorem assumes that

° P, and Q , are auxiliary-procedure-free, procedure-call-free, loop-free programs;
) P ;;and Q 5 have isomorphic hsdgs w.r.t. a store O, ; and
® P 5;: G4 terminates successfully.

Step 4 then argues that (e4) P 5: Gy and Q 5 Gy are equivalent computations. This is done by reducing P 4
and Q, to comparable, flattened programs, and then applying the Flattened Programs Equivalence
Theorem to complete the proof.

Define a conditional to be unflattened iff neither its true nor its false consequent is of the form fail. Let
d be the maximum depth to which unflattened conditionals are nested in P 5 and Q 4. Let n be the number
of unflattened conditionals that enclose at least one unflattened conditional at depth d. Assertion (ed) is
now shown with a double induction on d and n.

If d =0, then n =0, and P, and Q, are flattened programs. Assertion (ed) is then immediate from the
Flattened Programs Equivalence Theorem (cf. previous section).

If d>0 and n >0, let ptp be the program point of an unflattened conditional in Py that (1) is not
enclosed by any other unflattened conditionals, and (2) encloses an unflattened conditional at depth d. Let
pto be the corresponding point in Q4. Assume (e.g.) that ptp evaluates to true during the execution of
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P 4 G4 The false consequents of the conditionals at ptp and pt g are then replaced with a single fail state-
ment. This reduction decreases n and possibly d; it decreases n by 1, and decreases d by at least 1 when
n=1. This reduction also produces a pair of programs—call them Py and Q,—that have isomorphic
hsdgs. Furthermore, computations P : Gy and P 42 Gy are clearly congruent (i.e., closely related) compu-
tations. The equivalence of P 4: Gy and Q 5: G5 Can now be established by establishing (i) the equivalence
of Py : Gy and Q42 G5 and (ii) the congruence of 0 5: Gy and QG

Assertion (i)—the equivalence of P 5: Gy and Q o ,—follows from the induction hypothesis and the
isomorphism of P,/’s and Qs hsdgs. Assertion (ii) is established using (i). In particular, (i) and the
equivalence of P, : G4 and Q 41 Gy imply that (*) pt evaluates to true in Q. Furthermore, (**) the same
stores much reach ptg in Q 10y and @y Gy Observations (*) and (**) now imply that prg must evalu-
ate to true in Q ,: 6 ,—thereby establishing (ii) the congruence of Q: Gy and Qs 0y

Step 3. The third step in the proof of the Pointer-Language Equivalence Theorem assumes that

® P ,;and Q , are auxiliary-procedure-free, procedure-call-free programs;
° P ,;and Q 5 have isomorphic hsdgs w.r.t. a Store Oy; and
° P 4: 5 terminates successfully.

Step 3 then argues that (¢3) Py : 0y and Q 5: G5 are equivalent computations. This is done by reducing P 4
and Q 4 to related, loop-free programs, and then using step 4, assertion (e4) to complete the proof.

Let d be the maximum depth to which loops are nested in P and Q4. Letn be the number of loops that
enclose at least one loop at depth d. Assertion (e3) is now shown with a double induction on d and n.

If d=0, then n =0, and P, and Q, are loop-free programs. Assertion (#3) is then immediate from
assertion (e4).

Ifd>0and n>0, let Lp be the program point of a loop in P that (1) is not enclosed by any other
loops, and (2) encloses a loop at depth d. Let Lg be the corresponding loop in Q. The assumption that
P 4 G4 terminates now fixes the number of times that the body of Lp evaluates w.r.t. Py Gy to some
value, k. Let P, and Q5 be the programs obtained by replacing Lp and L with the k-ary approximation to
these loops depicted in Figure 7.8. This reduction decreases n and possibly d; it decreases n by 1, and
decreases d by at least 1 when n = 1. This reduction also produces a pair of programs—call them Py and
Q s—that have isomorphic hsdgs. (N.B.: the assertion that a data dependence is either carried by or
independent of L p (L) must be used to guide the placement of edges in P '8 (@s'S) hsdg.) Furthermore,
computations P ,: Gy and P 4: Gy are clearly congruent computations. The equivalence of P 50y and
Q.64 can now be established by establishing (i) the equivalence of P, : 0y and @, Oy and (ii) the
congruence of Q 51 G5 and Q 5 Oy

Assertion (i)—the equivalence of P ,: 0y and o 5 Os—follows from the induction hypothesis and the
isomorphism of P 4’s and Qs hsdgs. Assertion (ii) is established using (i). In particular, letq; *** Qs
be the k + 1 predicates in Q 4 that correspond, under the reduction, to Lg’s controlling predicate. Assertion
(i) and the congruence of P y: Gy and Py : Gy imply that (*) q; - - qi evaluate to true, and gg. 10 false.
An induction on k that uses the correspondence between Q 5 : Gy and Q 52 Gy then establishes that (**) Lg
also evaluates k times in Q 5 Gy Assertion (**) implies (ii) the congruence of Qs 0 and Q 4 O
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Example loop k—ary approximation to loop
[p] while pred do [p.-11 if pred then
body, body,;
od p.2] if pred then
bOdYI;
[p.3] if pred then
[pkl] if pred then
body,;
{p.k+1] if pred then fail fi
ﬁ.

Figure 7.8. A k-ary approximation to a while loop.

Step 2. The second step in the proof of the Pointer-Language Equivalence Theorem assumes that

® P, and Q ,, have isomorphic hsdgs w.r.t. a store Gy ; and
® P 4;: G4 terminates successfully.

Step 2 then argues that (#2) P ,.: 6, and Q 5: G, are equivalent computations. This is done by reducing P,
and Q 4 to related, auxiliary-procedure-free, call-statement-free programs, and then using step 3, assertion
(e3) to complete the proof.

Let ¢ be the number of calls to auxiliary procedures performed during the evaluation of P 5 : 5. Asser-
tion (e2) is now shown with an induction on c.

When ¢ =0, the proof proceeds by an induction on the s, the number of call statements in the body of
P ,’'s main() procedure.

If s =0, then P, and Qs main () procedures contain no calls on auxiliary procedures. Let Py and
Qs be the programs obtained from P, and Q 5 by removing their auxiliary procedures. Clearly, Py
and @, have isomorphic hsdgs. Assertion (e3) now implies that P ,: Gy and Q. Gy are equivalent
computations. The observation that the unreduced and reduced computations are (trivially) congruent
now establishes (#2).

If s > 0, let ptp be a call site in P, and pt g the corresponding call site in Q4. Since P 4. G, makes
no calls on auxiliary procedures, ptp could not have evaluated during the execution of P 5;: . Replac-
ing ptp with a fail statement therefore reduces P : 0y to a congruent computation. The argument is
now completed by (1) replacing the corresponding call site in @, with a fail statement; (2) using the
induction hypothesis to show the equivalence of the reduced computations, and (3) using the assump-
tion that P ,: 6, succeeds to show that the replaced call site in @, could not have evaluated.

If ¢ >0, let pt p be the program point of a call statement in P ,’s main () procedure that was invoked dur-
ing P:0, Let ptg be the corresponding call site in Qy. The calls at ptp and pty are now in-line-
expanded, according to Figure 7.7. This reduction produces a pair of programs—call them Pyand Qs—
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that have isomorphic Asdgs. (N.B.: the assertion that a data dependence is either carried by or independent
of ptp '(pty) must be used to guide the placement of edges in Py 's (Qss) hsdg.) Furthermore, computa-
tions P 5 : Gy and P 51 Oy are clearly congruent computations. The equivalence of Py : Gy and Q4: Gy can
now be established by establishing (i) the equivalence of P4 : 0y and Q 5: Oy and (ii) the congruence of
_Q_,(:G,{and Q40

Assertion (i)—the equivalence of P 0y and Qy: o,—follows from the induction hypothesis and the
isomorphism of P,'s and QOy4's hsdgs. Assertion (ii) is established using (i). In particular, (i) and the
congruence of P : Gy and P 4: Gy imply that (*) @  evaluates the expanded procedure call at pty. The
similarity of @, and Q, also implies that (**) the same stores much reach any predicates that control the
evaluation of pty in Qs:0y and Q 4: Oy Observations (*) and (**) now imply that call site pty must
evaluate in Q ,: 0, —thereby establishing (ii) the congruence of Q ,: G, and Q40

7.3.6. The Pointer-Language Equivalence Theorem

The statement and proof of the section’s main theorem, the Pointer-Language Equivalence Theorem, are
given below. This theorem, roughly speaking, states that programs with isomorphic hsdgs map equivalent
" inputs to equivalent final stores. The definition of the term equivalent computations, which was given in
Section 7.3.4, is repeated here for convenience.

DEFINITION (value computed at a program point (language 5{)). The value computed at an assign-
ment statement p is the value that p assigns to the variable on the left-hand-side of the assignment state-
ment. The value computed at a predicate is the (boolean) value of the predicate. [

DEFINITION (equivalent values, sequences of values (language #H)). Two values v, and v, are
equivalent if either v, and v, are atoms and v, = v, or vy and v, are both references.

Letv=v; " -v,and w=w; - w, be sequences of values. Sequences v and w are equivalent iff
m = n and v; and w; are equivalent for all i between 1 and m inclusive. Od

DEFINITION (equivalent computations (language 9)). Let P, and Q 5 be programs in language H'such
that there exists an isomorphism f between the points of P, and Q. Let oy be a store. Let cp denote
the computation P : Gy, and ¢y the computation Q:Gy. cp and cg are equivalent w.I.t. f, written
cp=ygcCp (Wrt f),iff

(1) neither cp nor ¢y terminates successfully, or

(2a) cp and cg both terminate successfully;

(2b) cp and ¢y compute equivalent sequences of values at corresponding points (w.r.t. f ); and
(2c) the final stores computed by cp and c g are equivalent. [

THEOREM (Pointer-Language Equivalence Theorem). Let P4 and Q 5 be language # programs. Let
InSet be a set of stores. Assume that P and Q have isomorphic Asdgs w.r.t. InSet. Let G, be a store in
InSet. Then P ,: G5 and Q 4 Gy are equivalent computations.

PROOF. If neither P4 Gy nor Q4 : Oy terminates successfully, the theorem is immediate. Otherwise,
assume that one of these programs—say, P ;—terminates on Gy

Let Gp and G be the isomorphic hsdgs for P, and Q, w.r.L. InSet. Since P, and Q 4 exhibit strictly
fewer traces w.I.t. Gy than they do w.r.t. InSet, G p and G o must also be hsdgs for P, and Q 5 W.Il Gy
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The Pointer-Language Equivalence Theorem is therefore equivalent to the assertion that (e2) the iso-
morphism of G and G and the termination of P 4 : G, imply the equivalence of P 5: 65 and Q5 Oy
The Pointer-Language Theorem therefore follows from the proof sketch for assertion (e2) given in Sec-
tion 7.3.5, Step 2.

hsdg(PH) . isomorphic hsdgs "r.,hSdg(Q_r;()
* isomorphic h Y

L/

hsdg(P, .G, ) hsdg(Q, .G, )
Por L 9y
. ..'0 o Q g
Pﬂ. oﬂ HOH

This concludes the proof of the Pointer-Language Equivalence Theorem. O

7.4. Practical Implications of the Pointer-Language Equivalence Theorem

The definition of language # given in Chapter 2 makes simplifying assumptions about freelists, procedure
activation records, and atoms. This section considers how these assumptions affect the applicability of the
result proved in the previous section.

7.4.1. Freelists

The assumption that pointer-language programs have unboundedly long freelists is comparable to the
assumption, often made in optimizing compilers, that arithmetic can be reordered without causing arith-
metic overflow. Ignoring the possibility of overflow allows useful optimizations to be performed that

Program MAX81: Program MAX161: parbegin

11 a:=PQ1) {1] a="P(Q1)
[2]1 display(a) [4] b=P(2)
[31 a:=nil parend

(2] display(a)
4 b:=P(2) {51 display(b)
[S] display(b) (3] a:=nil
{61 b:i=nil [6] &:=nil

Function P () allocates 80 structures, but has no other side effects.
Function display () displays that part of the store that is referenced by its argument, but has no other side effects.

Programs MAX81 and MAX161 exhibit isomorphic sets of dependences. Programs MAX81 and MAX161, however,
have different peak memory requirements. Program MAX81’s store contains a maximum of 81 accessible structures.
Program MAX161’s store contains a maximum of 160 accessible structures. MAX81 will therefore succeed, and
MAX161 fail, if an implementation has (e.g.) only 120 locations in its freelist.

Figure 7.9. Two programs with isomorphic ksdgs that return different results in the presence of a short freelist.
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might not otherwise be possible. Consider, for example, the two programs depicted in Figure 7.9. If Pisa
time-consuming function call, then program MAX161 will run in considerably less time than program
MAX81. Program MAX161, however, also has a higher peak demand for memory than program MAX81.
Program MAX81 will therefore run to completion in some environments where program MAX161 fails.

Possible overflows that could arise from a reordering of a computation’s statements are not accounted
for the proof of the Pointer-Language Equivalence Theorem. The freelist problem has been sidestepped by
assuming that a program’s successful completion is never dependent on the reuse of previously allocated
storage. Although anomalies of the kind described in the previous paragraph are unfortunate, it is hard to
see how they can be prevented without inhibiting many important—and normally valid—optimizations.
One possible solution to this problem is to let programmers specify that certain sections of a program
should not be optimized. A different approach to guaranteeing the safety of program optimizations in the
presence of heap allocation is discussed in [Cha88].

7.4.2. Procedure Activation Records

Treating a procedure activation record (PAR) as a heap-allocated structure simplifies the reduction by
allowing a uniform treatment of allocatable structures. A more realistic, stack-based model of procedure
evaluation would give a slightly less optimistic picture of a program’s interprocedural dependences, at the
cost of a considerably messier reduction.

The principle difference between the heap-based and stack-based models of procedure activation is that
the stack contains reusable locations. The decision to place a PAR P in the heap, in effect, is a commit-
ment that P’s use of space will not conflict with any of the PARs that are created before or after it. Con-
sider, for example, the following two-statement program:

{1] call A(---); [2] call B(--);

Assume that A and B are independent procedures. If A’s and B’s PARs are allocated in the heap, then A
and B can be run in parallel. If A’s and B’s PARs are allocated in the stack, then statements that access A’s
PAR may be anti-dependent on the statement that invokes B.

7.4.3. Atoms

Figure 7.10 depicts three implementation techniques for atoms. The first technique, which is depicted in
Figure 7.10(a), treats atoms as unshared, tagged structures that lack reference fields. The technique dep-
icted in Figure 7.10(a) is the one modeled in this chapter.

A second representation of atoms is depicted in Figure 7.10(b). Here, the equations for structures have
been rewritten so that fields have type Loc + ATOM, rather than type Loc. The representations depicted in
Figures 7.10(a) and 7.10(b) are equivalent under the assumption that programs have unbounded freelists.
Representation 7.10(a) was adopted in this thesis because it simplifies the presentation: it makes figures
more compact, and semantic equations more uniform. Representation 7.10(b) would be preferred in an
actual implementation, since it uses less space.

An alternative implementation of atoms, which treats atoms as shared objects, is depicted in Figure
7.10(c). Chase observes that realistic implementations of Lisp-like languages mix shared and unshared
atoms [Cha88]. Indicator bits are typically set aside that specify whether a location contains a reference or
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< X %
I
nil nil nil
before "x := nil" after "x := nul’ after "y := x'

(a). Atoms as unshared structures

a: - undef. a: —- undef. a: —e= undef.

® ® L]

Y [ ] L]
x: 8- undef. x: nil x: nil
y: = undef. y: —1* undef. y: nil
before "x := nil’ after "x := nil” after "y := x"

(). Atoms as unshared values
& DTG £ il |x )y
\ nil \ nil

before "x := nil" after "x := nl" after "y 1= x"’

(c). Atoms as shared structures

Figure 7.10. Three possible implementations of atoms.

a constant. Commonly used atoms like nil and small integers are typically stored as in Figure 7.10(b).
Atoms that are too large to be stored in individual locations, such as strings and large numbers, are shared
to conserve space.

Representation 7.10(a) was chosen over representation 7.10(c) to simplify the presentation. The deci-
sion to adopt the one representation over the other is significant, since the use of shared atoms complicates
the proof of correctness. To see why, consider the following program, program P:

[Pl x:=10000; [q] y :=10000

If atoms are represented as depicted in Figure 7.10(a), then statements p and g are independent. If atoms
are represented as depicted in Figure 7.10(c), then g is flow-dependent on p. Statement p allocates a struc-
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ture s that represents the value 10000, and statement g creates a reference to s.

Dependence p —; g, however, is a needless constraint on the example program’s evaluation. P is
obviously equivalent to the program P’ obtained by reversing p and ¢:
fq] y:=10000; [p] x:=10000

To prove the equivalence theorem for an implementation of %/ with shared atoms, one could argue that P is
equivalent to the following program:

[p] struct g = 10000; [p] x :=struct oo ; [q] ¥ = struct oo

(and similarly for P*). The effort required to formalize this argument, however, does not seem commen-
surate with the benefits that would accrue from it.

7.5. Related Work

7.5.1. A brief history of dbrs

This section surveys earlier dbrs, and describes those dbrs that influenced the design of the Asdg in more
detail.

7.5.1.1. The early history of dbrs

Dbrs have been in existence since 1972. The first dbr, the Kuck-Muraoka-Chen data dependence graph
(ddg) [Kuc72), is a direct descendant of the Ramamoorthy-Gonzalez program graph [Gon69]. The pro-
gram graph, which was developed in the late 1960’s, is a directed acyclic graph, whose nodes represent
either statements, or sets of statements, and whose edges represent evaluation constraints (cf. Figure 7.11).
These evaluation constraints, roughly speaking, correspond to control, flow, anti-, and output dependences.
The ddg differs from the program graph in the following two ways:

* Ddgs provide no information about a program’s control structure. Kuck et. al. simplified the
definition of their graph by stipulating that ddgs be used to represent structured programs.

* 'The program graph does not depict precedence constraints between individual statements in loops:
the set of all statements in a given loop [ are represented as a single node in a program graph. The
ddg, on the other hand, supported loops and nested loops. Kuck et. al. also developed strategies for
using ddgs to parallelize loops that access multi-dimensional arrays.

The version of the ddg described in [Kuc72] represents what Kuck, Muraoka, and Chen then referred to
as a program’s forward data dependences—and what would now be referred to as a program’s flow and
output dependences. Anti-dependences (there called reverse dependences) were eliminated by variable
renaming. Subsequent work by the University of Illinois group formalized the notions of flow, output,
input, and anti-dependence; these distinctions are made, for example, in Kuck’s 1978 text on compiler con-
struction [Kuc78]

Subsequent reports by the University of Illinois group used ddgs as a basis for program transformation.
The efforts of the Illinois group focused primarily on parallelizing array-manipulating statements in nested
loops. Figure 7.12, which gives an example ddg, is adapted from Wolfe’s thesis [Wol82]. This ddg is
annotated with information that characterizes loop-dependence interactions.
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(1]
(2]
(3]
4]
51
6l
(7]

8l
&)

Key:

x := read()

if x:-?o then
x:=1

fi

y:=1/x

X := read()

?
if x=0 then
x:=1
fi
z=1/x
print(y + z)

—> precedence constraint

(i.e., flow, output, anti-,

or control dependence)

1
X = [relad( )

Figure 7.11. A Ramamoorthy-Gonzalez program graph.

doi=1lton

(1]
(2]

ali] := (bli] + bli+1]) / 2
bli+1] := elil

enddo

------- anti-depend
@ (min. distance = 0) @
eee. flow depend @ -ee-e-

(min. distance > 0)

Figure 7.12. An example data dependence graph, together with information about a program’s dependences.

The University of Illinois group used ddgs to optimize structured program fragments. A later paper by
Allen, Kennedy, Porterfield, and Warren describes a simple program transformation that extends the set of
programs that ddgs can support [All83a]. This transformation converts a fragment that contains "IF ---
GOTO" statements into an equivalent fragment whose "IF" statements guard structured blocks of code.
Ddg-based optimizations can then be applied to the transformed fragment. A different approach to incor-
porating control-flow information into dbrs was developed by Ottenstein ([Ou78], cited in [Fer83]).
Ottenstein’s dbr, the data flow graph, represented a program as a pair of graphs: a data dependency graph,
together with its control flow graph.



~116 -

References to other dbrs from the 1970s, including Dennis’ work on dataflow machines and the

Parafrase compiler, are given in the Ferrante, Ottenstein, and Warren report on program dependence
graphs [Fer87].

7.5.1.2. Program dependence graphs

In 1982, Ferrante and Ottenstein (re)discovered that control and dependence information could be com-
bined in a single dbr. The resulting dbr, the extended data flow graph (edfg), gives a self-contained picture
of the dependences that constrain a program’s evaluation [Fer83]. The edfg’s principle limitation is that
programs must be structured. This limitation was subsequently removed by Ferrante, Ottenstein, and War-
ren, who named the resulting structure the program dependence graph (pdg) [Fer83a]. Figure 7.13 depicts
a Ferrante-Ottenstein-Warren pdg; the depicted pdg shows a program’s flow, output, and anti-dependences.
Various advantages of pdgs (resp. ddgs) were cited by Ferrante, Ottenstein, and Warren, and in a compan-
ion paper by Ottenstein and Ottenstein [Ott84]; most of these advantages are corollaries of the observation
that pdgs give a self-contained characterization of a program’s behavior.

11 x:=f) ::::.o ..

[2] if x-?O then

B x:=1 [ &
fi g LS

4 y:=1/x g2
5] x:=g0) ) @ A
(6] if x=0 then a ‘.:‘:\,o"' i
(7] x:=1 Y £ :

il
8] z:=1/x
fe) print(y + 2)

0
PR

~~~~~

true control dep. -

flow dep. o
anti-dep.

..... 9
0 "™ output dep. ﬁng(y] +2)

Figure 7.13. A Ferrante-Ottenstein-Warren pdg.
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A subsequent paper by Ferrante, Ottenstein, and Warren describes two additional kinds of pdgs [Fer87].
The first uses explicit load and store operators to model how programs alter internal state. This idea was
later rediscovered by Pingali et. al., who use loads and stores in a dataflow-graph-like dbr (cf. § 7.2.4). The
second, the hierarchical pdg, gives a structured picture of a program’s dependences. A hierarchical pdg
for a program P is a collection of pdgs P, - - - P, that represent different fragments of P. Each P; contains
a head vertex that represents that fragment’s overall behavior. Edges that are local to the P; represent
intra-fragment dependences. Edges between the heads of the different P;’s represent inter-region depen-
dences. Ferrante et. al observe that hierarchical pdgs can be used for vectorization and loop fusion.

Horwitz, Prins, and Reps adjusted the edge set of Ferrante et. al.’s pdg, replacing anti- and output depen-
dences with what was then a new kind of dependence—the def-order dependence (cf. Figure 7.1)
[Hor87, Hor89]. The resulting pdg gives a better characterization of a program’s slices—i.e., its logically
related sets of statements (cf. Chapter 3, §7.2.5). Horwitz et. al. also added two new types of vertices to a
pdg's vertex set. The one, the initial definition vertex, was added to account for variables that were refer-
enced before being used. The other, the final use vertex, allows programs (o be analyzed w.r.t. the final
values of specially selected variables (cf. Figure 7.14).

7.5.1.3. Def-order-dependence-free dbrs

Sections 7.5.1.3, 7.5.1.4, and 7.5.1.5 discuss successors of the pdg. One reason for the continuing interest
in new dbrs is the search for simpler, more elegant characterizations of program behavior. The use of def-
order dependences to characterize program behavior, for example, has the following drawbacks:

e Def-order dependences, like output dependences, arise from the reuse of locations. They do not
reflect a true sharing of information between statements.

] Def-order dependences are created by the interaction of three program points. This makes it harder
to tell whether one program point is def-order-dependent on a second. More specifically, if P is a
program, and A is a fragment of P that contains two program points p and g, then an analysis of A
alone might not reveal whether q is def-order-dependent on p w.r.t. P.

° Def-order dependences can proliferate in programs with multiply-defined variables. Figure 7.15
depicts a program that has O (n) assignment statements and O (n?) def-order dependences.

(1] x := read() InitialDefn(y)
21 z=x+y 000 N A,

end(z)

Key: —T—> control dep.
""" =  flow dep.

Figure 7.14. Initial definition and final use vertices.
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Three techniques have been proposed for creating def-order-dependence-free dbrs. The first technique,
developed by Alpern, Wegman, and Zadeck, uses assignment statements and variable renaming to elim-
inate a program’s output and anti-dependences [Alp88]. Alpem et. al.’s algorithm for eliminating output
and anti-dependences assumes that different definitions of a variable x that reach the same program point
lie along different paths in a program’s control-flow graph. The technique first places the statement
“x := d(x, x)" at each of x's join birthpoints—i.e., at those program points where different definitions of x
first converge [Rei81]. The placement of ¢ nodes ensures that only one definition of a variable x is live
along any segment of a control-flow graph. Every occurrence of x is then subscripted with an index that
pairs the occurrence with the assignment statement that defines its value. The application of Alpern et.
al.’s construction to an example program is illustrated in Figure 7.16

The remaining two techniques are essentially variants of the Alpern-Wegman-Zadeck ¢ node. Felleisen
and Cartwright [Car89] use valve nodes to eliminate a program’s def-order dependences. Valve nodes are
assignment statements that block definition-free paths in control-flow graphs. Specifically, a valve node
“¢ = x” is added to a path 7 in a program’s control-flow graph when (1) & does not contain an assignment
to x, and (2) a parallel path does. Figure 7.17 illustrates the placement of a vaive node in an example pro-
gram,

The remaining technique, which was developed by Yang, Horwitz, and Reps, uses a different kind of ¢
node to render def-order dependences redundant [Yan89, Yan90]. The Yang-Horwitz-Reps ¢ node is an
assignment statement 0, : X :=x" that is placed at a variable x’s join birthpoint. The label subscript
identifies the syntactic construct that created the birthpoint. Figure 7.18 illustrates the placement of a ¢y

1] x=1

if pred, then [2] x:=2 fi

if preds; then [3] x:=3 fi This program exhibits one def-order dependence
T J = sy k

if pred, then [n] x:=n fi for every jand ksuch that 1<j <k<n.

ntl] y =x

Figure 7.15. A program that has O (n) assignment statements and O (n?) def-order dependences.

Before ¢-node placement After ¢—node placement
[pl x:=0 x, =0
if pred then [g] x =1 fi If pred then x;:=1 fi
X35 3= 0(xy, X3);
y=x Y4 =X35

Figure 7.16. Alpern-Wegman-Zadeck ¢-node placement in an example program.
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Before valve~node placement After valve—-node placement
[1] =x:=0 1] x:=0
[2] If pred then [3] x:=1 fi {21 if pred then [3] x:=1 else [3.5] x :=x fi
4] y=x 4] y=x

Figure 7.17. Valve-node placement in an example program. Statement [3.5] is the valve node.

node in an example program.

The Yang-Horwitz-Reps ¢ node renders a dependence p —>4¢) 4 redundant by fixing the relative exe-
cution order of p and g. Each ¢ node has two incoming flow dependences. These dependences are paired
by the ¢ node with different paths in a program’s control flow graph. This pairing of dependences with
graphs, when combined with information about a program’s syntactic structure, fixes the relative execution
order of p and q.

Yang et. al. refer to their def-order-edge-free dbr as a program representation graph (prg). Figure 7.19
shows that the number of components in a program’s prg may be asymptotically of lower order than the
number of components in its pdg (i.e., O(n) vs. O(n2 .

7.5.1.4. Interpretable dbrs

A second reason for the continued interest in new dbrs is the search for dbrs that can be executed
efficiently. This quest is motivated, in part, by the observation that dbrs expose a program’s potential
parallelism. This quest is also motivated by the observation that pdgs do not appear to be a good starting
point for dataflow-style program execution. Selke [Sel90] has given a graph-rewriting rewriting semantics
for pdgs. Although this semantics is useful for reasoning about how dependences constrain program exe-
cution, it has the following important limitation: useless, intermediate values of a variable x may be pro-
pagated to a statement r before r gets the proper value of x. Consider, for example, the following program
fragment:

Before ¢—node placement After ¢—node placement
11 =x:=0 1] x:=0
(2] if pred then [3] x:=1 fi [2] if pred then [3] x:=1 fi
[35] ¢ :ixi=x
@] y=x 4] y=x

Figure 7.18. ¢-node placement in an example program.
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Effect of inserting ¢ nodes into program in Figure 7.16

Before ¢—node insertion After ¢—node insertion

Ml x:=1 [1] x:=1

if pred, then [2] x:=2 fi if pred, then [2] x =2 fi; [2.5] ¢, x:=x;
if pred, then [3] x:=3 fi it pred; then [3] x =3 fi; [3.5] ¢;p: x:=x;
If pred, then [n] x:=n fi If pred, then [n] x :=n fi; [n5] 0;: x:=x;
[n+1] y=x [n+l] y=x

The program on the left can be represented by a pdg that has O (n?) elements: O (n) vertices and flow-dependence
edges, and O (n?) def-order dependences.

The updated program can be represented by a prg that has O (n) vertices and flow dependences.

Figure 7.19. Using ¢ nodes to reduce the size of a dbr.

[Pl x:=10; If pred then [q] x:=20 fi; [r] print(x);
If pred is true, then two values of x propagate to r: 10, which should not be printed, and 20, which should.

Ramalingam and Reps were among the first to argue that the program representation graph (prg) (cf.
§7.2.3) constitutes a good basis for dataflow-style program execution [Ram89]. This report, which gives a
dataflow-like semantics for prgs, also discusses the limitations of using pdgs to execute programs.

A second dataflow-like dbr was developed by Ballance, Maccabe, and Ottenstein [Bal90]. This dbr,
which Ballance et. al. call the program dependence web (pdw), uses Alpern-style ¢ nodes to eliminate out-
put dependences. An interesting feature of the program dependence web is that it can be interpreted in a
control-driven, data-driven, or demand-driven fashion.

Pingali, Beck, Johnson, Moudgill, and Stodghill describe a third type of interpretable dbr, the depen-
dence flow graph [Pin91]. Dependence flow graphs are pdw-like dbrs that support explicit load and store
instructions. Dependence flow graphs also incorporate a notion of dependence that the authors refer to as
imperative dependence. Intuitively, an imperative dependence is exhibited by a pair of statements like
“load x : test x"; the test cannot proceed until the load of x is complete.

7.5.1.5. System dependence graphs

A third reason for the continued interest in new dbrs is the search for dbrs that support more complex
languages. Pdgs, for example, only model intraprocedural aspects of program evaluation. The first dbr for
languages with procedures, the system dependence graph (sdg), was developed by Horwitz, Reps, and
Binkley in 1988 [Hor88a, Hor90a). The sdg is an enhanced pdg that uses new kinds of edges and vertices
to represent call statements and procedures. The model language that Horwitz et. al. use is a simple, struc-
tured language. It supports scalar-valued variables, if and while statements, and the following, four-step,
value-result protocol for parameter passing:




-121 -

1.  When a procedure B is called from procedure A, all non-local variables referenced or modified by B
are first copied into a special input buffer, t.

2. When control is first transferred from A to B, the initial values of B’s formal parameters and non-
local variables are obtained from 1.

3. When B finishes evaluating, the final values of all non-locals modified during the evaluation of B are
written into a special output buffer, .

4.  Control is then returned to A, which uses o to update its copy of every variable altered by B.

The example language that Horwitz et. al. assume simplifies the task of characterizing a program’s inter-
procedural evaluation. In languages that lack dynamic allocation, it is possible to identify a finite set of
variables that may be read or written during a call to a procedure A—that is, by the body of A proper, or by
procedures that might be invoked during A’s evaluation. Horwitz et. al. use this observation to control how
a program’s interprocedural dependences are represented. Let A and B, for example, be two procedures in
a program P. If A does not contain a statement that calls B, then P’s sdg lacks edges of the form (ap, bp),
where ap and bp are points in A and B, respectively. If A, on the other hand, calls B, then every interpro-
cedural data dependence that arises from a call on B is of the form (ap, bp), where ap is a special program
point that implements a call to B, and bp is a special program point that (intuitively) initializes or finalizes
B’s procedure activation record. Furthermore, every interprocedural control dependence that arises from a
call on B runs from the point that represents the call to B’s entry point. This technique for representing
interprocedural dependences, which will be referred to here as dependence encapsulation (or simply
encapsulation), yields a dbr that gives a good characterization of how procedures interact. Encapsulation
also allowed Horwitz et. al. to develop an efficient interprocedural slicing algorithm—one that uses special
edges to bypass parts of the sdg during slice computation (see below).

An sdg for a program P, Sp, is a collection of smaller dbrs that represent P’s procedures, linked by
edges that represent P’s interprocedural dependences. Graph Sp contains one dbr for each of P’s pro-
cedures. One of these dbrs, the distinguished procedure dependence graph (distinguished ndj) depicts P’s
main procedure. The remaining dbrs, called procedure dependence graphs (mdgs), depict P’s auxiliary
procedures—procedures that are called by main. (N.B.: the name ndg is used to distinguish the procedure
dependence graph from the similarly-named program dependence graph.)

A procedure dependence graph (rdg), roughly speaking, is an extended pdg that models procedure entry
and exit and supports call statements. mtdgs and pdgs both contain

an entry vertex that corresponds to the initial locus of control;
vertices that correspond to predicates and assignment statements;
initial definition vertices;

final use vertices; and

® edges that represent control, flow, and def-order dependences.

A mdy also contains five new kinds of vertices. Three of these vertices represent call statements. A call
vertex depicts a procedure call per se. An actual-in vertex, which depicts the initial write of a value into
buffer 1, models Step 1 in the value-result protocol. An actual-out vertex, which depicts a final acquisition
of a value from ®, models Step 4 in the protocol. The other two kinds of vertices model parameter passing
from the callee’s point of view.
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° Formal-in vertices, which are analogous to initial definition vertices, model Step 2 in the calling pro-
tocol. More specifically, let P be a procedure, and ITp its wdg. Then ITp has one formal-out vertex
for every formal parameter and non-local variable that could be modified during a call to P.

e Formal-out vertices, which are analogous to final use vertices, model Step 3 in the calling protocol.
More specifically, let P be a procedure, and I, its ndg. Then ITp has one formal-in vertex for every
formal parameter and non-local variable that could be read during a call to P; that is, every variable
that could be read by a statement in P proper, or by a statement in a procedure that 2 calls.

Two example mdgs are depicted in Figure 7.20; variables of the form “in” and “on” represent slots in the
transfer buffers.

A distinguished mdg is an extended pdg that models a program’s main procedure. Figure 7.21 depicts an
example distinguished ndyg.

Tdgs are linked by two kinds of edges that represent a program’s interprocedural dependences. The first,
the interprocedural control dependence edge, links a call statement with the entry vertex of the called pro-
cedure. The second, the interprocedural flow dependence edge, links actual-in vertices to formal-in ver-

(enter sum3

procedure sum3 (wW,X,y,Z)

call sum (w,x,z) ;
call sum(z,y,2);

return Procedure dependence graphs for sum3, sum.

procedure sum (m,n,r)
r=M+n,;
return

@ Solid arrows denote control dependences
@ Dotted arrows denote flow dependences
® [otas and omegas are interprocedural linkage variables

Figure 7.20. Example procedure dependence graphs.
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procedure main () Distinguished procedure dependence graph for procedure main
% : }r,‘ ° Solid arrows represent true-valued control dependences
call sum3 ( a, b, ¢, d) ® Dotted arrows represent flow dependences

end (d) o

Iotas and omegas are interprocedural linkage variables

Figure 7.21. A distinguished procedure dependence graph.

tices, and formal-out vertices to actual-out vertices. A third kind of edge, the summary edge, is a conveni-
ence edge that simplifies the computation of a program’s slices. Let a;, and a,,,, for example, be actual-in
and actual-out vertices associated with a call to a procedure B. If B uses the value of a;, to compute the
value of a,,, then the dbr that contains a;, and a,,, has an interprocedural summary edge e from a;, tO
a,,. This edge represents a transitive flow dependence from a site that defines an input parameter to a site
that uses it. Edge e allows the contribution to a slice made by a call on a procedure B to be determined

without examining B. Horwitz et. al. use summary edges to obtain a polynomial-time algorithm for inter-

procedural slicing that is (1) more precise than the original algorithm given by Weiser [Wei84], and (2) as

precise as, but more efficient than, a subsequent algorithm given by Hwang, Du and Chou [Hwa88]

Figure 7.22 gives a complete picture of an example sdg
7.5.2. Previous soundness theorems for dbrs

Horwitz, Prins, and Reps were the first to investigate whether dependence graphs provide an adequate
representation of a program’s semantics [Hor88]. Horwitz et. al. proved that programs with isomorphic
pdgs computed identical final stores, relative to a structured language with scalar variables. Reps and Yang
strengthened this result by showing that terminating programs with isomorphic pdgs computed identical
sequences of values at corresponding program points [Rep89]. A second proof of the Equivalence
Theorem that develops a graph-rewriting semantics for pdgs was given by Selke [Sel89] This work was
later extended by Selke to obtain a comparable theorem for dynamic pdgs [Pfe91a]

Reps and Yang were the first to investigate the semantics of program slicing. In [Rep89], Reps and
Yang showed that pdgs provide an adequate characterization of a program’s slices relative to a structured
language with scalar variables. A second proof of the Slicing Theorem has been given by Selke [Sel90]
This work was later extended by Selke to obtain a comparable theorem for dynamic pdgs [Pfe91a]
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proceduremain()

procedure sum3 (w.x.y.z)
a ; 1 sum Ew’x’z)) proc;dtgi sxllm {(m.n,r)
call sum3 (a, b, ¢, d) call sum (z,y.z return
end (d) return

Figure 7.22. Example system dependence graph. Dashed lines with solid arrowheads are interprocedural flow depen-
dence summary edges.
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The first proof of an equivalence theorem for a language with heap allocation and pointer variables was
given By Pfeiffer and Selke [Pfe91a]. That paper proves an equivalence theorem for a procedureless subset
of 3 The dbr that was used to represent programs in this report, the Apdg, is essentially an hsdg that lacks
support for procedures and call statements. This report also showed that an hpdg gave an adequate charac-
terization of a program’s slices (cf. §7.1). The proof strategy used in [Pfe91a] is similar, but not identical,
to the one adopted in this thesis. The reduction defined in the earlier report eliminates most—but not all—
of a program P’s freelist-mediated dependences by maintaining a separate freelist at each of P’s program
points. More precisely, it eliminates all freelist-mediated dependences of the form p —>; g, where p and ¢
are different program points. This partitioning, however, does not eliminate freelist-mediated dependences
of the form p —>; p, where p (e.g.) is a point inside a loop that allocates a structure. Intuitively, such
dependences persist because every point p is associated with its own fragment of the freelist; the location
allocated by the kth evaluation of a point p is therefore dependent on the location allocated by the k—1st.
The reduction given here removes this restriction by first unrolling a program—thereby ensuring that every
allocation site in the reduced program evaluates no more than once.

Other work on the semantics of dependence-graph representations include
® Yang’s thesis, which demonstrates the soundness of a dbr-splicing operation known as program
integration [Yan90];
Selke’s program-transformation calculus for pdgs [Sel90a];
a semantics for prgs, developed by Ramalingam and Reps [Ram89];
Pingali et. al.’s soundness of representational soundness for the dependence-flow graph [Pin91]; and
a report by Binkley, Horwitz, and Reps, which proves an equivalence theorem for sdgs [Bin89].

Binkley et. al.’s proof of the sdg Equivalence Theorem, which reduces two programs with iso-
morphic sdgs to two programs with isomorphic scalar pdgs, inspired the approach to proving facts
about hsdgs used here.

7.6. The Limitations of the Hsdg
The hsdg fails to incorporate three recent ideas that have been used to improve the successors of the pdg:

1.  The hsdg uses a program’s def-order dependences to depict its behavior.

2. The hsdg provides a non-encapsulated characterization of a program’s dependences: not all interpro-
cedural dependences are captured by nodes that represent the interface between caller and callee.

3. Hsdgs do not use distinct vertices to model distinct values in a program’s initial and final stores.

This section explains how dynamic allocation and reference variables complicate the task of defining a dbr
that meets these three goals. The final two sections also propose ideas for future research-—speculative
suggestions for developing a dbr that does not suffer (to the same extent) from limitations 1 and 2.

7.6.1. ¢ nodes vs. def-order dependences

The opening of Section 7.5.1.3 argued that it was advantageous to develop dbrs that do not use def-order
and output dependences to model a program’s behavior. Section 7.5.1.3 also sketched three alternatives to
using def-order dependences to model program behavior. All three techniques, unfortunately, assume that

if p —>4, q is a def-order dependence, then p and ¢ must lie in distinct basic blocks: i.e., that either p
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procedure main () procedure A (ref i, ref j)
[1] call A(a, b); [pl i=1;
[2] call A(q, a); f[al j=2;
return [r]  print@)
return

This program exhibits the def-order dependence p =>4y q. The first evaluation of r prints the value defined by
statement p; the second evaluation of r prints the value defined by statement q.

Figure 7.23. A program where pass-by-reference parameters give rise to def-order dependences in straight-line code.

must fail to dominate ¢, or ¢ must fail to post-dominate p (cf. §3.4.2). This assumption, however, is not
true of a language in which the locations that two statements name can change, relative to one another. Ifa
procedure P, for example, has reference parameters, then two calls to P that create different aliases can
create def-order dependences in straight-line code. An example of a straight-line def-order dependence is
illustrated in Figure 7.23. In the first evaluation of A, in which x and y are not aliased, statement r reads the
value that p assigns to x. In the second evaluation of A, in which x and y are aliased, statement r reads the
value that g assigns to x.

One technique for eliminating straight-line def-order dependences is suggested by Ballance, Maccabe,
and Ottenstein [Bal90]. Ballance et. al. propose that procedure calls that exhibit different aliasing patterns
be treated as calls to different procedures Assume, for example, that procedure A has n reference parame-
ters. Ballance et. al. create a distinct copy of P for every possible aliasing pattern that a call to A could
exhibit. Each of the different copies of A is then analyzed separately, under a different assumption about
A’s aliases. Figure 7.24 illustrates their proposed workaround for the program in Figure 7.23.

A major disadvantage of this technique is the potential for code explosion. Code replication might be
practical when there are only a few variations in a program’s aliasing patterns. Code replication, however,

procedure main() procedure A, (ref i, ref j) procedure A, (ref i, ref j)
assert i+j; assert i~j;
(11  call Ay(a, b); bl i=1; Pl i=1;
[2] call A,(a, a); [@ Jj=2; [q Jj=2;
return [r] print(i) [r]  print()
return return

The expression i ~ j means that variable i is aliased to variable j; i.e., that i and j denote the same location.

Figure 7.24. The Ballance-Maccabe-Ottenstein technique for eliminating def-order dependences in straight-line code.
The program depicted above is a revised version of the one depicted in Figure 7.17.




- 127 -

appears impractical for pointer programs, since pointer programs can exhibit a myriad of aliasing patterns.
This observation implies that any attempt to develop a def-order-dependence-free dbr for pointer languages
will have to handle dependences that arise in straight-line code.

7.6.2. Why hsdgs aren’t encapsulated dbrs

Dynamic allocation also complicates the development of an encapsulated dbr for language #. To under-
stand why this is so, consider how dynamic allocation complicates the task of describing the following
procedure’s behavior:

procedure copy(p, q)
local Ip, Iq;
11 p=p;
2] lg=q;
[3]1 while pred do [4] lp.hd :=1Iq.hd; [S] Ip :=lpl; [6] lg :=Iq.tl od
return
Since statements [5] and [6] are embedded in a loop, no a priori bound can be imposed on the number of
structures that copy might access. This observation implies that a wdy that names every structure that copy
might access could contain infinitely many formal-in and formal-out vertices.

It should be possible to define a dy that gives an approximate characterization of the set of structures
that copy manipulates. More specifically, it should be possible to extend the definitions of actual-in,
actual-out, formal-in, and formal-out vertices to obtain new vertices that transfer sets of values across pro-
cedure boundaries. These vertices—call them approximate transfer vertices—would use regular expres-
sions to name the potentially infinite sets of values transferred between caller and callee. Procedure copy,
for example, might be depicted as a 7dy that has two formal-in vertices, four approximate formal-in ver-
tices, and one approximate formal-out vertex:

One formal-in vertex that initializes p.

One formal-in vertex that initializes q.

One formal-in vertex that initializes p. (1!)° .hd.
One formal-in vertex that initializes p. ()" .¢L.
One formal-in vertex that initializes q. (¢/)° .hd.
One formal-in vertex that initializes q. (1)".tl.
One formal-out vertex that finalizes p. (/)" .hd.

N AW

The practical realization of this idea, however, requires more thought than it can be given at this time. A
second feature of language %, the alias-updating assignment statement, complicates the choice of a good
set of approximate parameter-transfer vertices for a procedure like copy. A poor choice of approximate
transfer vertices can yield an excessively pessimistic characterization of a procedure’s semantics. This
would be true, for example, of vertex 7 (above) when the loop at statement [3] never evaluates more than
twice. A poor choice of approximate transfer vertices can also yield an excessively optimistic (i.e.,
incorrect) characterization of a procedure’s semantics. This would be true, for example, of vertex 7 when
q is initially aliased to a location in the list headed by p.
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7.6.3. Why hsdgs have one initial definition and no final use vertices

The presence of one initial definition in hsdgs is another concession to the presence of aliases in pointer
languages. Since language # places no restrictions on the aliases in the initial store, it cannot be deter-
mined whether two identifier expressions initially denote the same object.

Final-use vertices were omitted from Asdgs to simplify the presentation. If an end( - - - ) statement were
added to language #’s definition, then a program’s n final-use vertices would be immediately subordinate
to that program’s enter vertex. The effect of final-use vertices could be also obtained in a slightly
enhanced version of language #{that supports print statements (cf. Chapter 8).

OTHER REMARKS ABOUT CHAPTER 7

It seems reasonable to ask whether it is possible to produce a more elegant proof of the Pointer-Language
Equivalence Theorem. Binkley and Selke, for example, prove theorems about semantic properties of dbrs
by first unfolding a program irrespective of a computation’s initial store, and then reasoning about how the
resulting infinite program evaluates w.r.t. a given initial store [Bin91, Sel90a]. The unfolding transforma-
tions used by Binkley and Selke, however, exhibit the following, important property: a single unfolding of
a given syntactic construct (e.g., a while loop) yields a new program that has a bounded number of program
points. This is true in part because the languages considered by Binkley and Selke limit the number of dis-
tinct locations that any occurrence of a given program point can access. There is, however, no such a
priori bound on language #’s name space; a single unfolding of a statement that contains a selector access
expression w.r.t. an infinite name space, for example, would yield a new program with an infinite number
of program points.

The main reason for using language .S to reason about pointer-program dbrs was that this allowed earlier
results about pdgs to be applied to the study of pointer-language dbrs. This ability to appeal to earlier
theorems about pdgs—in particular, Selke’s version of the Equivalence Theorem—greatly simplified the
task of proving theorems about hsdgs. There are, on the other hand, two aesthetic objections that can be
raised against this use of language S. The first is that the map from language 7 to language S makes the
proof rather complicated. The second objection is that the very idea of a reduction is somewhat distasteful:
it should be possible to reason about %/ directly, without recourse to an auxiliary language.

The author has not thought very much about altemative strategies for proving theorems about hsdgs. It
may be possible, however, to dispense with the reduction by developing a graph-rewriting semantics for
language 7L The postulated rewriting semantics would be an extension of the pdg-rewriting semantics
developed by Selke [Sel89]. Selke’s semantics evaluates a vertex like “x :=y” by propagating an updated
value of x to the vertices that are dependent on this vertex. The hsdg-rewriting semantics, on the other
hand, would evaluate assignment statements by propagating an updated fragment of a store graph to a
node’s successor nodes. The tricky thing about developing such a semantics is that it would be harder to
characterize exactly how one node affects another: to show, for example, that the resulting semantics is
confluent.




- 129

8. A FEW CONCLUDING REMARKS

[Designing software is] like a Russian doll. Every time we finaily crack open one problem, we find there's
another one inside. —M. Kapor [Wall Street Journal, May 11, 1990}

If a writer has chosen to be silent on one aspect of the world, we have the right to ask him: Why have you spo-
ken of this rather than that? And since you speak in order to make a change, since there is no other way you
can speak, why do you want to change this rather than that?

—J.-P. Sartre, cited in [Kau63]

During the nine months that led up to the completion of this thesis, the author discovered how much of a
gap there can be between a collection of related results and a well-rounded theory. The principal contribu-
tions of this thesis, which are given below, are arguably a solid contribution to the literature on dependence
analysis:

Chapter 3 develops an alternative definition of def-order dependence: one that is more suitable for
pointer-program analysis than the existing definition of def-order dependence.

Chapters 3 though 6 develop a broad-based approach for analyzing a pointer program’s data
dependences—one that separates the mechanism for manipulating abstract states from the policy
used to ensure that analyses terminate.

Chapters 4 through 6 demonstrate that this approach is safe w.r.t. the example language’s implemen-
tation semantics.

Chapter 6 sets forth a new scheme for categorizing the various approaches to store approximation,
together with proposed extensions for making k-limiting practical.

Chapters 7 defines a new dbr for the example pointer language considered in this thesis, and demon-
strates that this dbr gives a sound characterization of a program’s meaning.

Chapter 7 also demonstrates the importance of a new approach for arguing about dbrs—one that uses
observations about a program’s actual executions (rather than control-flow-graph-based estimates of
its executions) to understand its behavior.

Chapters 2 through 7, however, also point out many important limitations of the theory developed in this

thesis. The first of these limitations, which is mentioned in Chapter 2, is the omission of various common
operators and constructs from the example language.

Input and output were omitted from the example language to simplify the discussion of data depen-
dence. Recall that Chapter 3 uses run-time behavior as a basis for determining a program’s heap-
mediated data dependence. This notion of dependence is used because the semantics of pointer assign-
ment makes naive, control-flow-graph-based estimates of heap-mediated dependence unattractive
(§3.4.8). Control-flow-graph-based estimates of a program’s dependences, on the other hand, seem a
more natural starting point for estimating how programs manipulate input and output. The introduction
of a second style of definition into the thesis, unfortunately, would have complicated the presentation.

Arrays are not considered in this thesis because the computation of array-mediated data dependence
is a challenging subject in its own right; this area has already been, and continues to be, an object of
extensive study (see, e.g., [Wol91]). Also, Selke has shown that pdgs provide a sound model of pro-
grams that use arrays; this proof will be presented in her forthcoming thesis [private communication}.
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Goto statements are not considered in this thesis for two reasons. The first is that Selke also intends
to argue that pdgs can be used to model programs in languages that contain these constructs. A second
reason for not considering gotos is that use of nonreducible (i.e., multiple-entry point) loops (cf.
[Aho86]) complicates the notion of a carrier.

The analysis of higher-order procedures is another challenging topic of research. Reports by
Harrison and Deutsch cited in Chapter 5 propose techniques for analyzing programs in languages that
support higher-order procedures. Another interesting report on the analysis of higher-level languages is
Shivers’s approximation semantics for discovering the possible types of variables in Scheme programs
[Shi90]. More study is needed to determine whether these techniques, which emphasize the control-
flow-tracing aspect of program analysis, can be integrated with techniques for obtaining accurate esti-
mates of store configurations discussed in Chapter 6.

One of the most difficult unsolved problems in program analysis is the development of efficient and
effective techniques that support reference arithmetic. One approach to handling pointer arithmetic in
C, discussed by Allen and Johnson, uses heuristics to identify reference expressions that are used to
step through arrays—and to replace these with operations on array indices [Ali88]. (N.B.: Allen and
Johnson also mention earlier algorithms for induction variable elimination by Morel and Renvoise, and
Chow; they state that these algorithms were not efficient enough for their purposes.) A second idea for
handling pointer arithmetic, suggested by Ebcioglu, uses a combination of static analysis and dynamic
reference checking to improve a program’s behavior [private communication]. The static analysis
would make the optimistic assumption that arithmetic operations on pointers can be replaced by
equivalent, arithmetic-free operations that step through regular structures. The analysis would then
detect those points in a program’s execution at which this assumption might fail. Run-time checks
inserted at points of possible failure would then be used to verify that assumptions about reference
arithmetic are preserved at run-time. This proposal has much in common with recent work on combin-
ing static and dynamic type checking—discussed (e.g.) in a recent paper by Cartwright and Fagan
[Car91].

A second important limitation of this thesis is the lack of attention given to alternative characterizations
of program dependence. The algorithms developed in this thesis characterize the dependences that a pro-
gram might exhibit, w.r.t. a standard interpretation of # As Section 3.4 points out, there are other impor-
tant notions of dependence that these algorithms do not support. These algorithms, for example, do not
identify the set of dependences that a pointer program must exhibit. They also fail to capture a program’s
intended behavior (cf. $3.4.9). Both of these goals can probably be accomplished by replacing the abstract
domain used in Chapters 5 and 6 with other, standard domains. More specifically, the interpretation
developed in Chapters 5 and 6, which ignores states that characterize possible errors in a program evalua-
tion, is modeled on a type of abstract domain known as a lower (or Hoare) powerdomain [Son87]. Stan-
dard techniques for modeling intended and must behavior use the convex (or Smyth-Plotkin) and upper (or
Egli-Milner) powerdomains, respectively.

The pragmatic aspects of dependence computation have also been given short shrift. Chapter 6 observes
that more research should be done on the relative performance of the various techniques for estimating
stores. Chapter 6 also observes that the use of hybrid store estimation techniques—including techniques
that generate regular estimates of a program’s stores—warrants further investigation.
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Section 7.6 observes that the hsdg’s characterization of program behavior may be too complicated in
practice. Section 7.6 also suggested possible fixes for the Asdg’s two principal problems: ie., its failure to
encapsulate interprocedural dependences, and its reliance on def-order dependence. These fixes, however,
are merely ideas for future research.

A final limitation of the thesis is its failure to demonstrate the soundness of other common transforma-
tions on dependence graphs: e.g., ransformations that slice and splice dbrs, and transformations that use
dbrs to parallelize a program’s execution. The two principal reasons for not proving additional theorems
about Asdgs are pragmatic.

e Since Chapter 7 is already long and involved, it seemed reasonable to devote a separate report to
these concerns. The author firmly believes that the reduction developed in Chapter 7 can be used to
show that other kinds of transformations on pointer-program dbrs are sound. This belief is based, in
part, on the simplicity of the insight that underlies the proof of the Pointer-Language Equivalence
Theorem: i.e., the observation that assertions about terminating pointer programs can be reduced to
comparable assertions about pointer-free languages.

° Making the effort to demonstrate additional theorems about Asdgs also seems inappropriate at this
time. As Section 7.6 observes, the hsdg has important limitations that make it unattractive for certain
types of program analysis. It seems reasonable to address this problem before attempting (e.g.) to
extend Selke’s calculus of pdgs to pointer-program dbrs.

This discussion of open problems raises a final question about the content of the thesis: why have foun-
dational concemns been stressed at the expense of pragmatic ones? There are two answers to this question.
The first is that the pointer-program analysis is a broad and complicated subject; the author had hoped to do
more, but simply ran out of time. The second, more defensible answer is that the author believed that such
concerns had not been given the attention they deserved. It is certainly important to develop new, more
effective algorithms for estimating pointer-program behavior. It is also important, however, to make sure
that these algorithms are correct—to ensure, in effect, that analyses are not simply generating “abstract
nonsense”. This thesis takes an important step in this direction: it shows that a family of algorithms yield
provably safe estimates of a program’s behavior, and that these estimates can—with certain caveats about
freelists—be used to reason about program behavior. It is hoped that these results will provide a solid
foundation for the work that must surely follow.
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Appendix 1. A Semantics for Language #

The following is a formal semantics for the language #. Additional remarks follow the semantics.

State = Point x Store x Freelist Freelist =Loc®

Store = Loc —Struct StructDeclEnv = Type — pwr(Sel),
Struct = Type x Atom x Context X Selmap Context = Point

Selmap = Sel — Loc

The expression pwr(D), where D is a set, denotes the powerset of D.

My : Prog —> Store — Store |
M, (prog, ©) =
let (structdecls, body) = prog in
let body’ = expand (initialize (body))
and structDecls = evalStructDecls(structdecls)
and fl = an infinite, nonrepeating list of locations not in ¢
in
let evalPgm = fix Af. A ((pt, &, f1)). pt =final — & [] flevalPt((pt, &, fI)))
in evalPgm((initial, , o, f))
end”

Function fix is the least fixpoint functional.
The function initialize (text) appends the following three-line statement list to texz:
[initial; | initialize ; [initial, ] call main(); [final] skip;

The function expand (text) replaces fext with a related program text that “materializes” text's points of control:

° Every statement in text of the form [p] call A(a,. - -, a,) is replaced by the following statements:

[pip]l  _curr. 8, :=saveContext {nextp]; [¥** pass return point to callee ***/
[*** [nextp] is point p’s control-flow successor ***/

[piy]  _curr. 8 :=ay; [#** pass actual parameters to callee ***/

{pi,] _curr. 8, :=a,;

[pc] callA; [¥** perform the call ***/
® The following sequence of statements is placed at the head of a procedure A with formals f - - - f,:
[Ai.3] _temp = new(env); %% initialize new local environment ***/

[Ai,] _temp._prev = curr;

[Ai,] _curr:=_temp ;

[Aio]l _curr._calletxt == _curr. prev. 8y ; f*** get return point from caller ***/
[Ai,] _curr.f) = _curr._prev. §,; [¥** get values of formals from caller ***/

[Ai,] _curr.f,:=_curr._prev. 3,;

® The statement “[A.f] return” is placed immediately after the final executable statement in the body of A.
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/* Rk dokok Jeclarations ¥¥¥ kk*k */

evalStructDecls : DeclList — StructDeclEnv
evalStructDecls(decllist) =
let evallist =
Jix A f. X (declList, declEnv).
declList =€ — declEnv
{] let (decl, decllist") = declList in

let (type, (sely, - -+, sel,)) = decl
in f(decllList’, declEnv({ sel,, - -+, sel, ) | typel)
end’

in
let progDecls = evalList (declList, A type . @) in progDecls [ &/ atom ] [/ context]
end’

/* Aok e program pomls ¥ ok */

evalPt: State — State |
evalPt ((pt, ¢, i) =
case formOf (pt, body”) in

If (cexp), While(cexp): let nextpty and nexipty be pt’s true and false control-flow successors
in (cond (pt, G, cexp) — nextpty {] nextptg, ¢, fl)
end

Assign (lexp, rexp): let nextpt be pt 's control-flow successor in
let (¢, fI', src) = simplexp (pt, o, fl, rexp) in
let tgt = idexpr (pt, &, lexp) in
let (¢, fi”, tgt) =
((gettype (o, tgt) =atom — addatom(c’, I/, gerval (&, tgt)) [ (o', /', tgt))
in (nextpt, updref (¢”, sre, sel, tgt), fi”)

.

end
Call(proc): let nextpt be proc’s entry point in (nextpt, ©, fl) end
Return(): let retpt = getext(o, idexpr(pt, 6, _curr._callctxt))

and prevenv = idexpr (pt, G, _curr._prev)

and globalEnv be ¢'s global environment in
let ¢ = updref (6", globalEnv, _curr, prevenv)
in (rept, o, f)

end’

Initialize (): let nextpt be pt 's control-flow successor
and ¢ be acopyof ¢
in
let globalEnv be ¢”’s global environment in

let ¢ = newref (O, globalEnv, _curr, globalEnv)
in (nextpt, ¢”, fl)

end’

esac

Function formOf pairs every program point with its associated syntactic construct.
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/* Aekeok kojok expressions Aok dedeok */

cond : Point x Store xCond — Bool |
cond (pt, G, cexp) =

case cexp in
TypeOf (exp,type): gettype(G, idexpr (pt, ©, exp)) = type
Eq(exp,, expy): idexpr (pt, ©, exp,) & idexpr (pt, G, exp,)

Compare (exp,, op, exp;):  let loc, = idexpr (pt, G, expy) and loc, = idexpr (pt, O, expy) in
{ gettype (o, loc,), gettype (0, loc,) } # (atom } —> L
[ getval(o, loc,) op getval(o, loc,)
end
Not (cexp): ~+ cond (pt, G, cexp)
end

simplexp : Point x Store x Freelist x Exp — (Store x Freelist x Loc),

simplexp (pt, o, fi, exp) =
case exp in
Selexp (sexp): (0, fl, idexpr (pt, G, sexp))
Atom(a): addatom (o, fl, a)
SaveContext (p): addcontext (G, fl, p)
New (type): let (04, A1, loc) = addstruct (o, fi, type) In
if type =env then (6, fI;, loc)
else
let initfields =fix L f. A (0, f', selset).
selset =@ — (¢, f, loc)
[ tet (0, fI*, at) = addatom (¢, f¥, nil) in
let sel be an element of selset in
let 6" = newref (¢”, loc, sel, at)
in f(o’, fI”, selset — { sel })
end”
in initfields(o,, fl,, structDecls (type))
end
fi
end

Primop (op, expy, -+, exp,):
let (ol.ﬂl,locl)=simplaxp (pt, cvﬂ' 3-"[’1) i]l

let (G, fin, loc,) = simplexp (pt, Op_y, fla-1, €XPs)
in addatom (G,, fl,, op(locy, - - -, loc,))
end’
esac

J* ®xk kw% primitive operations on stores ¥¥¥ ¥k ¥/
updref : Store x Loc x Sel xLoc -» Store

updref (G, src, sel, tgt) =
(gettype (o, src) = env v sel € structDecls (gettype (G, src))) —> newref(0, sre, sel, tgt) [ L
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newref : Store x Loc x Sel x Loc —» Store |
newref (o, src, sel, tgt) = let (typ, val, cxt, map) = G(src) in of (typ, val, cxt, map [tgt / sell) / src] end

addatom : Store x Freelist x Atom — Store x Freelist x Loc
addatom (G, fl, val)= let (', loc) = alloc (1) In (c{(atom, val, 1, 1)/ loc], ', loc) end

addcontext : Store x Freelist x Point — Store x Freelist x Loc
addcontext (o, fl, pt) = let (f, loc) = alloc (f) In (c{(context, 1,pt, 1)/ locl, fI', loc) end

addstruct : Store x Freelist x Type - Store x Freelist x Loc
addstruct (o, fl, typ) = let (', loc) = alloc (1) In (o[(typ, L, L, L)/ loc], fI', loc) end

idexpr : Point x Store x Idexp — Loc |

idexpr (pt, ©, id.sexp) =
let globalEny be ¢’s global environment
in selexp (o, globalEnv, (id € locallds (pt, body’) — _curr.id.sexp [| id.sexp ))
end

locallds retumns the set of variables that are local at point pt.

selexp : Store x Loc x (Ident + Sel)" — Loc ,
selexp (0, loc, sexp) =
sexp Lg s loc [] let (sel, sexp’) = sexp and map = getmap(G, loc) in selexp (&, map (sel), sexp”) end

gettype : Store xLoc —Type = A (G, loc). let (typ, , , _)=0(loc) in typ end
getval : Store xLoc — Atom = A (0, loc). let (_, val, , _)=c(loc) in val end
getext : Store x Loc —» Context = A (0, loc) . let (_, _, cxt, _)=0(loc) in cxt end
getmap : Store x Loc — Selmap = A (0, loc) . let (_, _, _, map)=o0(loc) in map end

alloc : Freelist — Loc x Freelist =\ fl . let (loc, ffY=fi in (loc, fI) end

To simplify the semantics, the following variables are treated as global objects:

* body’ (defined by M,, and manipulated in evalPt and idexpr);
* structDecls (defined by M, and manipulated by updref);

A program point is a unique name associated with each of a program’s assignment statements, if and
while predicates, call, and skip statements. Program points, which are members of domain Point, are used
to monitor a program’s evaluation. Points initial;, initial,, and final are special points that correspond to
steps in a program’s initialization termination routines, respectively. Other special points are associated
with procedure call and return.

Domain Loc is a domain of objects that “contain” structures. To simplify the semantics, it is assumed
that any loc € Loc can contain any type of structure.

Function M, is the program meaning function. Every initial store ¢ passed to M, must meet the four
requirements for initial stores given in Chapter 2.

Function evalStructDecls processes a program’s structure declarations. It generates a function,
structDecls, that names, for every user-defined type struct, those selectors that struct accepts. Function
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evalStructDecl also initializes two built-in types. These types, context and atom, accept no selectors.

Specially named references in the caller’s environment are used to pass parameters to callees. Reference
8 is reserved for the return context. References 8, --- _&, are reserved for the first through kth
parameters of subroutine calls, respectively. The assumption that a program point is stored and accessed
like any other atom is another simplifying assumption.

The Initialize case of evalPt handles program initialization. The evaluation of the initial program point
(i.e., the clause “let ¢ = copy(0)”) creates every object in the program’s store as that program begins its
evaluation.

Function cond evaluates conditional expressions. To simplify the definition of cond, no distinction is
made between the symbol for a comparison operation and the operation per se. Also, the domain of atoms
is assumed to be totally ordered by the relational operators “<” and *“>".

Function simplexp evaluates expressions. The following comments apply to simplexp:

* No distinction is made, in Primop case of simplexp, between the symbol for an operator and the
operator per se.

* The New case of simplexp initializes a non-environment structure s by linking each of s’s fields to
new, nil-valued atoms.

Functions addatom and addstruct add new atoms and structures to the store. Function newref adds new
references to the store. Function updref updates existing references in the store. Note that updref checks
that the structure named by its loc argument accepts the structure named by its sel argument.

Functions idexpr and selexp interpret the meaning of selector expressions.

The alloc () function removes the first location from the freelist, and returns this location to the caller.
The definition of alloc () assumes that the freelist is inexhaustible.
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Appendix 2. An Instrumented Semantics for Language #/

This appendix describes an instrumented semantics for the language #, function MI,. MI,, differs from
M., in the following two regards. MI,, maintains a label function that pairs every non-atomic object o with
the occurrence of the point that created 0. M, also maintains a computation’s occurrence string.

Semantics M1, has four altered and four new domains:

State; = Point x Store; x Freelist x Occ x Label

Store; = Loc — Struct,

Struct; =Type xAtom x Context;xSelmap  Context, = Pointx0Occ  Occ = Point"
Label = Loc - StructlLabel x RefLabel StructLabel = Occ RefLabel = Sel — Occ

Comments on specific differences between M, and M1, follow the semantics.

MI,,: Prog — Store; — (Store;),
M, (prog, ©) =
let (structdecls, body) =prog In
let body’ = expand (initialize (body))
and structDecls = evalStructDecls(structdecls)
in
let fl = an infinite, nonrepeating list of locations not in ¢
and label = A loc . (undefined, A sel . undefined)
and occ = g, the empty occurrence string
in
let evalPgm; = fix A f.\((pt, &, fI', label’, occ’)). pt &final — o [] flevaiPt; ((pt, &, fI', label’, occ')))
in evalPgm,; ((Initial, , 6, fl, label, occ))

end’

The definitions of initialize, expand, and evalStructDecls are unchanged from Chapter 2.
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/* Ak ke program pOmtS ek kb */

evalPt, : State; > State;
evalPt; (state) =
let (pt, o, fl, label, occ) = state and ptocc = append(occ, pt) in
case formOf (pt, body’) in

If (cexp): let nextpty and nextpt ; be pt's true and false control-flow successors
in ((cond (pt, ©, cexp) — nextpty [} nextpte), o, fl, label, occ)
end
While (cexp): let nextpty and nextptp be pt’s true and false control-flow successors in

let nextoccr =ptoce and nextocc i = removeSuffix (oce, pt)

and bool = cond (pt, G, cexp)

in ((bool — nextpty [| nexiptr), G, fl, label, (bool — nextoccy [} nextoccg))
end’

Assign(lexp, rexp): let nexipt be pt's control-flow successor in
let (¢, fl', label , loc) = simplexp (state, rexp) in
let 1gt = idexpr (pt, &', lexp) In

let (o”, ", tgt) =
((gettype (o, tgt) Eatom — addatom(c’, ft', getval (o, tgt)) I (&', fI', 1g1))

in
let (6", label”) = updref (6", label , ptocc, src, sel, tgt)
in (nextpt, ", I, label”, occ)

end’
Call(proc): let nextpt be proc ’s entry point in (nextpt, o, fi, label, ptocc) end
Return(): let (retpt, retocc) = getcxt (G, idexpr(pt, 6, _curr._callctxt))

and prevenv = idexpr (pt, ©, _curr._prev)

and globalEnv be ¢'s global environment in
let (o, label’ ) = updref (o, label, ptocc, globalEnv, _curr, prevenv)
in (retpt, &, fl, label, retocc)

end’

Initialize (): let nextpt be pt’s control-flow successor
and ¢’ beacopyof &
and label’ be the function that pairs every accessible non-atomic object in ¢ with ptocc
in
let globalEnv be ¢”'s global environment in
let (0", label”) = newref (&, label’, ptocc, globalEnv, _curr, globalEnv)
in (nextpt, o”, fl, label”, occ”)
end’
esac

end

Function formOf pairs every program point with its associated syntactic construct.

The expression removeSuffix (occ, pt) denotes the empty occurrence string iff occ is of the form pt ¥ for some nonnega-
tive k. Otherwise, let occ be of the form p; <~ p; pt*, where pt#p; for some nonnegative k; then
removeSuffix(occ, pt)=p, " p;.
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/* ek ok N expressions ek dokok */

The definition of cond is the same as in Chapter 2.

simplexp : State; x Exp — (Store; x Freelist x Label x Loc),

simplexp (state, exp) =
let (pt, G, fl, label, occ) = state and ptocc = append(occ, pt) in
case exp in

Selexp (sexp): (0, fl, label, idexpr (pt, G, sexp))

Atom(a): let (¢’, ', loc) = addatom (o, fi, a) in (¢, f, label, loc) end

SaveContext (p): addcontext (G, fi, label, ptocc, p, occ)

New (type): let (o,, fl,, label,, loc) = addstruct (0, fi, label, ptocc, type) in
if type Zenv then (o, fl,, label,, loc)
else

let initfields =fix A f. A (0", ', label’, selset) .
selset 2@ — (o7, fl', label’, loc)
Nl let (¢”, I, at) = addatom (&', fi', nil) in
let sel be an element of selset in
let (6", label’") = newref (o”, label”, ptoce, loc, sel, at)
In f(o”, fI”, label’, selset— { sel })
end’
in initfields(o, fl, label, structDecls (type))
end
fi
end

Primop (op, expy, "+, exp,):
let ((oy, fl;, labely), loc,) = simplexp (state, exp,) In

let ((G,, fla, label,), loc,) = simplexp ((pt, Op_1, In-1, label,_,, occ), exp,) in
let (¢, fI', loc) = addatom (G,, fl,, op(locy, - - -, loc,))
in (¢, f, label,, loc)
end"
esac

end
[ **% *¥*¥ primitive operations on stores ¥¥* k% ¥/

updref : Store; x Label x Oce x Loc x Sel x Loc — (Store; x Label),

updref (o, label, ptocc, src, sel, tgt) =
if (gettype (0, src) Lenv v sel € structDecls (gettype (G, src))) then newref(¢”, label’, ptoce, src, sel, tgt)
else |
fi

newref : Store; x Label x Occ X Loc x Sel x Loc — (Store; x Label),
newref (0, label, ptocc, src, sel, 1gt) =
let (type, val, cxt, map) = o(src) and (srcdef, refdefs) = label(src) in
let newstruct = (type, val, cxt, map [tgt / sel]) and newlbl = (srcdef, refdefs{ptocc / sel])
in (o[ newstruct / src}, label [ newlbl | src )
end’



- 142 -

addstruct : Store; x Freelist x Label x Occ x Type — Store; x Freelist x Label x Loc
addstruct (G, fl, label, ptocc, type)
let (ff, loc) = alloc (1) in
let newstruct = (type, L, bottom, 1) and newlbl = (ptocc, A sel . )
in (ol newstruct / loc |, ff', label { newlbl | loc }, loc)
end’

addcontext : Store; x Freelist x Label x Occ, X Point X Occ —» Store; x Freelist x Loc
addcontext (G, fl, label, ptoce, pt, occ)
let (f7, loc)=alloc(fl) in
let newstruct = (context, L, (pt, occ), L) and newibl = (ptocc, A sel . D)
in (o[ newstruct / loc 1, ff, label | newlbl / loc ], loc)
end’

The definitions of addatom, idexpr, selexp, gettype, getval, getcxt, and getmap are similar to the ones given in Chapter
2. The instrumented semantics’ versions of these functions accepts a member of Store; as a parameter.

The definition of alloc is unchanged from Chapter 2.

MI,, proper differs from M, proper in two ways. M, passes an initial label and occurrence string to
evalPgm,. evalPgm; then passes the current label and occurrence string to evalPt.

evalPt, differs from M,'s version of evalPt, in the following ways:

evalPt; accepts, and returns, instrumented states.

The interpretation of the while statement updates a computation’s occurrence string.

The interpretation of the return statement restores the previous occurrence string.

The interpretation of the initialization statement affixes creation labels to newly created objects.

Labeling information is passed to simplexp and updref.

simplexp differs from M,/ s version of simplexp in the following ways:

simplexp accepts an instrumented state, and returns an updated label parameter.
The interpretation of the saveContext operator saves the current occurrence string.
Labeling information is passed to addstruct and newref.

The instrumented semantics’ versions of updref, newref, and addstruct update program point labels on
newly defined objects.
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Appendix 3. An Approximation Semantics for Language #

The following is an instrumented approximation semantics for language #. This semantics is discussed in
Section 5.1.

State = Point x Store , x Freelist x Label y x Occy

Store, = Loc —» Struct,

Struct, = Kind x pwr(Type) X pwr(Atom) x Context , X Selmap ,
Selmap 4 = Sel x Int — Loc

Label 4 = Loc - RefLabel, x SelLabel,

RefLabel, = pwr{Occ,)

SellLabel , = Sel xInt — pwr(Occy)

Occ 4 is the domain of program-point regular expressions

MA,,: Store, — pwr(Storey)
MA, (prog, o) =
let (structdecls, body) = prog in
let body’ = expand (initialize (body))
and structDecls = evalStructDecls (structdecls)
in
let fl = an infinite, ncnrepeating list of locations not in 6
and label = A loc . ({ undefined }, A sel . { undefined })
in
let evalPgm, = fix Af.A (curr,, iterct).
let next, = union_from state € curr, : evalPt, (state) in
let next’, = V(iterct, next,) in
next'y © curr, - curr, [} f(next',, iterct+1)
end’
in evalPgm, ({ (initial,, o, fi, label, €) }, 0)
end’

The definitions of evalStructDecls, initialize, and expand are the same as in Chapter 2.

The C relation identifies pairs of states that are redundant from the standpoint of dependence computation. A
definition of C is given in Appendix 4.

The operator V has the signature Nat x pwr (State,) — pwr(State). It is assumed that V is extensive wr.t. € : i.e., that
next, © V (i, next.) for all i € Nat and all next, € pwr(State,). It is also assumed that V ensures that P terminates on

o: e.g., by limiting the number of structures in stores, or by limiting the number of steps in an analysis. Possible
definitions for V are given in Chapter 6.
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evalPt, : State, — pwr(State,)
evalPt, (state) =
let (pt, 6, fl, label, occ) = stmt and ptocc = append(occ, pt) in
case formOf (pt, body’) in
If (cexp):
let nextpt; and nextptp be pt 's true and false control-flow successors in
let states,y = condy(pt, G, cexp) > {(nextpty, &, fl, label, occ)} [| @
and states.p = condp (pt, G, cexp) — {(nextpty, o', fl, label, occ)} [| D
In states.t v states.p
end’

While (cexp):
let nextpty and nextptp be pt 's true and false control-flow successors
and nextoccy = ptocc and nextocc z = removeSuffix(occ, pt)
in
let states.t= condy(pt, G, cexp) —> {(nextptr, &, fi, label, nextoccr)) | 9
and states.p = condy (pt, ©, cexp) — ( (nextptg, &, fl, label, nextoccy)) | @
in states,p v states.p

end

Assign (lexp.sel, rexp):
let nextpt be pt’s control-flow successor in
union_from (', fi’, label’, rvioc) € simplexp , (pt, state, rexp) :
union_from lioc € idexpr, (pt, &, lexp) :
union_from (c”, 1", label”) € updref(c’, f’, label’, ptocc, vloc, sel, rvioc) :
{ (nextpt, o”, fi”, label”, occ) }
end

Call(proc): let nextpt be proc’s entry point in { (rextpt, o, fl, label, ptocc) } end

Return():
union_from cxtloc € idexpr, (pt, G, _curr._callctxt) :
union_from (retpt, apxocc) € getext, (0, extloc) :
union_from prevenv € idexpr, (pt, G, _prev) such that consistent (retpt, label, prevenv) :
let globalEnv be ¢”'s global environment in
let (0’, label ) = updref (0, label, ptocc, globalEnv, _curr, prevenv)
in { (retpt, o, fi, label’, apxocc) }
end’
Initialize ():
let nextpt be pt's control-flow successor
and ¢’ beacopyofc
and label’ be the function that pairs every accessible non-atomic object in ¢ with { ptocc }
in
let globalEnv be 6”’s global environment in
let (¢”, label’”) = newref (&, label , ptoce, globalEnv, curr, globalEnv)
in {(nextpt, &, fl, label, occ’) }

end’

esac
end

Function formOf pairs every program point with its associated syntactic construct.

The predicate consistent (retpt, label, prevenv) is true iff retpt is a point in procedure P and prevenv’s creation-point
label implies that prevenv might have been created by P.
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/* dedede kR expressions Fkek kdek */

condy : Point x Store, x Cond — Bool
condy (pt, O, cexp) =
case cexp in
TypeOf (exp.type): 3 loc € idexpr, (pt, G, exp) : maybe_oftype(o, loc, type)
Eq(exp,, exp2):
let may_coincide = \ (loc’, loc”). loc’ & loc”

in 3 loc, € idexpr, (pt, 6, exp,) : 3 locy € idexpr, (pt, ©, exp,): may_coincide(loc,, loc,)
end

Compare (exp,, op, exp,):
let may_satisfy = A (loc’, op', loc™) . truee (getvai, (o, loc’y op’ getval, (0, loc™”))
in
3 locy € idexpr, (pt, G, exp,): 3 loc, € idexpr, (pt, G, exp,):
maybe_atom (0, loc) A maybe_atom (0, loc,) A may_satisfy(loc,, op, locs)
end

Not (cexp): cond (pt, G, cexp)
esac

condp : Point X Store, xCond ~ Bool
condy (pt, G, cexp) =
case cexp in
TypeOf (exp,type): 3 loc € idexpr, (pt, G, exp) : maybe_not_oftype(0, loc, type)
Eq(exp,, expy):
let may_differ = L (&', loc’, loc”). loc’ #loc” v (loc’ Lioc” A is_suwmmary(c’, loc"))
in 3 loc, € idexpr, (pt, 6, exp,): 3 loc, € idexpr, (pt, ©, exp,) : may_differ(c, loc,, loc,)
end
Compare (expy, op, exp;):
let may_not_satisfy = A (loc’, op’, loc”) . falsee (getval, (0, loc”) op” getval, (o, loc™))
in
3 loc, € idexpr, (pt, 0, expy) : I loc, € idexpr, (pt, O, expy):
maybe_atom (0, loc,) A maybe_atom (0, loc,) A may_not_satisfy(loc,, op, locs)
end

Not (cexp): condy (pt, G, cexp)
esac
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simplexp , : State, X Exp - pwr(Store , x Freelist x Label, X Loc)
simplexp , (state, exp) =
let (pt, o, fl, label, occ) = state and ptocc = append(occ, pt) in

case exp in
Selexp (sexp): union_from loc € idexpr, (pt, ©, sexp) : { (G, fl, label, loc)}
Atom(a): let (¢, f, loc) = addatom, (o, fl, a) in { (¢, fT, label, loc) }
SaveContext(p): { addcontext, (o, fl, label, ptoce, p, occ) )
New (type): let (01, fl1, label,, loc) = addstruct 4 (G, fl, label, ptocc, type) in
if type =env then ((oy, fl;, label,, loc)}
else

let initfields =fix M f. A (¢, fI', label’, selset) .
selset =@ — { (¢, f, label, loc) }
{i let (o”, fi”, at) = addatom, (¢’, f’, nil) and sel be an element of selset in
let (", label”) = newref (6", label’, ptoce, loc, sel, at)
in f(c”, fi”, label”, selset - { sel })
end
in initfields(o,, fl,, label,, structDecls (type))
fi
end

Primop (op, expy, ***, exp,):
union_from (o, fl;, label,, loc,) € simplexp, ((pt, O, fi, label, occ), expy):

union_from (G,, fl,, label,, loc,) € simplexp, ((pt, Op1, fla-1s label, ., occ), exp,) :
let (¢, ', loc") = addatom , (O, fl,,, op(locy, -, loc,))
in { (o', fI', label, loc") }
end’
esac
end

[* *** nrimitive operations on stores **¥ */
primi per

addatom, : Store , X Freelist x Atom — Store 4 x Freelist x Loc
addatom, (0, fl, val) = let (f’, loc) = alloc(fl) in (c[(ordinary, type, val, L, 1)/ loc], ff, loc) end

addstruct , : Store, x Freelist x Label, x Occ 4 x Type —» Store, x Freelist x Label, x Loc
addstruct , (0, fi, label, ptocc, type) =
let (ff, loc)=alloc(fl) in
let struct = (ordinary, type, 1, 1, L) and structlbl = ({ ptocc }, h (sel, int) . D))
in (o[ struct / loc 1, fi', label] structlbl’ | loc ], loc)
end*

addcontext, : Store, x Freelist x Label, X Occ 4 x Point X Occ, —> Store, x Freelist X Label , x Loc
addcontext , (G, fl, label, ptocc, retpt, retocc) =
let (ff', loc)=alloc(fl) In
let struct’ = (ordinary, context, L, (retpt, retocc), 1) and structlbl’ = ({ ptocc }, A (sel, idx) . @)
in (ol struct / loc 1, fl', label[ structlbl | loc }, loc)
end’
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updref : Store, x Labet , x Occ 4 xLoc x Sel x Loc — pwr(Store, X Label )
updref (0, label, occ, src, sel, tgt) =

if (3 type € gettype, 70, src): sel € structDecls (type)) v maybe_oftype (0, src, env) then

if is_summary (o, src) then { updswnmary (o, label, occ, src, sel, tgt) }
else { updordinary ‘G, label, occ, src, sel, tgt)}
fi

else &

fi

updsummary : Store , x Label, x Occ, X Loc xSel x Loc —» Store, x Label,
updsummary (0, label, occ, src, sel, tgt) =
let (kind, types, val, cxt, map) = o(src) and (structdefs, refdefs) = label(src)
in
let idx = if 3 j: map (sel, j)=1tgt then j else any jsuch that map (sel, j)= 1 fi
in
let map’ = map(tgt/(sel, idx)] and refdefs’ = refdefs[refdefs(sel, idx) v { occ } / (sel, idx)]
in
let struct’ = (kind. types, val, cxt, map’) and structlbl = (structdefs, refdefs’)
in { (o[struct’ ! srcl, label[structlbl’ | src])}

end

updordinary : Store, < Label, x Occ, x Loc xSel x Loc — Store, x Label,
updordinary (G, label, occ, src, sel, tgt) =
let (kind, types, val, cxt, map) = o(src) and (structdefs, refdefs) = label(src)
in
let map’ =\ (sel’, idx’) . sel' # sel — map (sel,idx)[] L
and refdefs =\ (sel, idxX') . sel # sel — refdefs(sel, idX)[| O

in
let struct’ = (kind. types, val, cxt, map’y and structlbl = (structdefs, refdefs’)
in
newref ((G[struct’ / src), label[structlbl’ | src)), occ, src, sel, tgt)
end’

newref : Store, x Labei, X Occ 4, x Loc x Sel x Loc — Store, x Label 4

newref (G, label, currocc, src, sel, tgt) =
let (kind, type, val, xt, map) = o(src) and (structdefs, refdefs) = label (src)
iI:et map’ = map {tgt / (sel, 0)] and refdefs’ = refdefs[( currocc } / (sel, 0)]
h;et struct = (kind, types, val, cxt, map’) and structlbl’ = (structdefs, refdefs’)
" (olstruct | srcl, labellstructlbl | src})

end’
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idexpr , : Point xStore, xIdexp — pwr(Loc)
idexpr 4 (pt, ©, id.sexp) =
let globalEnv be 6’s global environment
in selexp, (G, globalEnv, (id € locallds(pt, body’) -> _curr.id.sexp [| id.sexp )

end

selexp 4 : Store, x Loc x (Ident +Sel)” — pwr(Loc)
selexp 4 (0, loc, sexp) =
sexp =g — {loc }
{l let (sel, sexp’)= sexp and map = getmap 4 (0, loc) in
union_from i such that map (sel, i) # L : selexp, (G, map (sel, i), sexp”)
end

is_summary : Store, xLoc — Bool = A (G, loc) . getkind, (state, loc) L summary

maybe_atom : Store, xLoc — Bool = A (o, loc) . maybe_oftype (0, loc, atom)

maybe_not_oftype : Store, xLoc xType — Bool = A(0, loc, type) . I type’ € gettype, (G, loc) : type’ # type
maybe_oftype : Store, x Loc xType — Bool = (0, loc, type) . type € gettype , (O, loc)

getkind, : Store, xLoc — Kind = X(0, loc). let (knd, _, , , )= o(loc) in knd end

gettype, : Storey xLoc —» Type = (G, loc) . let (_, byp, _, _, _)=o(oc) in typ end
getvaly : Storey xLoc — Atom = \(c, loc). let (_, _,val, , )= o(loc) in val end
getext, : Store, xLoc — Contexty = (0, loc) . let (_, _, , cxt, )= o(loc) in cxt end

getmap 4 : Store, x Loc — Selmap = A (o, loc) . let (_, _, , _, map)= o(loc) in map end
alloc : Freelist — Loc X Freelist =\ fl . let (loc, i)=fl in (loc, fI') end
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Appendix 4. Abstraction and Subsumption Relations

This appendix formally the abstraction and subsumption relations introduced in Chapter 5. The first rela-
tion, B>, relates objects in the instrumented semantics to objects in the approximation semantics.

DEFINITION (type abstraction). L.et a be a type, and bset a set of types. Then bset abstracts a, written
a D> bset,iffa € bset. O

DEFINITION (value abstraction). Let a and b be atoms. Then b abstracts a, writtena & b, iffa=bor
b=TAT. O

DEFINITION. Let apxocc € ApproxOcc be an approximate occurrence string. Then L (apxocc) denotes
the family of program-point strings denoted by the regular expression apxocc. U

DEFINITION. Let apxoccset € pwr(ApproxQOcc) be a set of approximate occurrence string. Then
L (apxoccset) denotes the union, over all apxocc in apxoccset, of L (apxocc). [

DEFINITION (occurrence string abstraction). Let occ € Occ, and occ, € ApproxOcc. Then occy
abstracts occ, written occ D> occy, iff occ € L{oce,). O

DEFINITION (occurrence string abstraction). Let occ € Occ, and occ., € pwr(ApproxOcc). Then

occ. 4 abstracts occ, written occ > occ.4, iff occ € L{occ.y). O

DEFINITION (context abstraction). Let cxt = (pt, occ) € Contexty, and cxty = (pt4, 0cc,) € Contexty.
Then cxt 4 abstracts cxt, written cxt O cxty, iff pt =pt4 and occ > occy. O

DEFINITION (context abstraction). Let cxt = (pt, occ) € Context;, and cxt,4 € pwr(Context,). Then

cxt,4 abstracts cxt, written cxt $> cxt.,, iff there exists a cxt4 € cxt.4 such thatcxt > cxty. O

DEFINITION (admissible map). Let f: Loc — Sel — (Loc x Sel xInt) be a map. Map f is admissible iff
for all loc € Domain (f), and all sel, and sel, € Domain (f (loc)),

* f Uoc, sely) is of the form (_, sely, ).

* f (oc, sely) is of the form (loc”, , ) = f (loc, sely) is of the form (loc’, _, ). O

Intuitively, an admissible map is a map from structures and references to structures and references
that preserves the type and the source node of every reference. Every f of the form
Loc — Sel — (Loc x Sel x Int) defined below is assumed to be admissible.

DEFINITION (fipuces frep)- Let f: Loc — Sel — (Loc X Sel xInt) be a map, and loc € Domain (f). Let
sel € Sel be any selector in Domain (f (loc)) and f (loc, sel) = (loc’, sel’,i"). Then fp. (loc) denotes
loc’, and £, (loc, sel) denotes (sel’,i’). [1

DEFINITION (fype, atom, ctxt, ref). Let o Store;. Let loc € Domain (o) be a location in o. Let
(typ, atm, cxt, map) = o(loc). Then type (loc) denotes typ; atom (loc) denotes atm; ctxt (loc) denotes
cxt; and ref (loc, sel) denotes map (sel). O

DEFINITION (kind, type, atom, ctxt, ref). Let 6 € Store, and loc € Domain (o). (N.B.: the definitions
of Store,, Label,, and the other domains of abstract objects are given in Appendix 3.) Let
(knd, typ, atm, cxt, map) = o(loc). Then kind (loc) denotes knd; type (loc) denotes typ; atom (loc)
denotes atm; ctxt (loc) denotes cext; and ref (loc, sel, i) denotes map (sel, i). O
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DEFINITION (kind-preserving). Let o€ Store; and G, € Store,. Let f: Loc — Sel — (Loc X Sel XInt)
map o to 64. Then fis kind-preserving iff, for all loc and loc’ € Domain(f),
* kind (f siruc: (loc)) = ordinary = fipue (10€) # fspruee loc”). O

DEFINITION (type-preserving). Let o€ Store; and o, € Store,. Let f: Loc — Sel — (Loc x Sel xInt)
map & to 0. Then fis type-preserving iff, for all loc € Domain (f),

*  type(loc) D type (fomue (loc)). O

DEFINITION (atom-preserving). Let 6 € Store; and o, € Storey. Let f: Loc —> Sel — (Loc x Sel XInt)
map o to 6. Then fis atom-preserving iff, for all loc € Domain (f),

* type (loc) = atom = atom € type (f et (l0¢)) A atom(loc) B atom (fsne, (loc)). 01

DEFINITION  (context-preserving). Let oe Store; and o4 € Storey.  Let f:Loc— Sel —
(Loc x Sel xInt) map & to 6. Then f is context-preserving iff, for all loc € Domain (f),
* type (loc) = context => context & type (fupu (0¢)) A ctxt(loc) B ctxt (fopue (oc)). O

DEFINITION  (reference-preserving). Let oe Store; and o©j€ Storey. Let f:Loc— Sel —
(Loc x Sel xInt) map o to o,. Then f is reference-preserving iff, for all loc € Domain(f) and all
sel € Domain (f (loc)),

Forues (ref (oc, sel)) = ref (fomee (loC), sel’, i), where (sel’, i') = f,s (loc, sel). O

DEFINITION (store abstraction). let e Store; and O, € Store,. Store G, abstracts G, written
G D ©,, iff there exists a map f: Loc — Sel — (Loc X Sel xInt) such that

* f maps every accessible structure and reference in ¢ into G,;

* f maps ¢’s global environment to 6, ’s global environment; and

* fis kind-, type-, atom-, context-, and reference-preserving. (1

DEFINITION (labeled store abstraction). Let Is = (G, label) € Store; x Label and s, = (Ga, label,)

€ Store, xLabel,. Labeled store Is, abstracts Is, written Is D> Is,, iff there exists a map

f:Loc — Sel > (Loc x Sel xInt) such that

* ol oybyf

* for all locations loc € Domain (), type(loc) # atom = label (loc) & label s (fseruer(loc)); and

* for all locations loc € Domain (f) and all sel € Domain (f (loc)),
label (loc, sel) D labely (fsgue(loc), sel’, i), where (sel’, ") = f, 4 (loc, sel). O

DEFINITION  (state  abstraction).  Let  state = (pt, 0, fl, label, occ) € State; and  state, =
(pta, Oa, fla, labely, occy) € States. State state, abstracts state, written state > statey, iff pt =pt,,
(0, label) > (04, label,), and occ & occy. O

DEFINITION (stateset abstraction). Let state, € pwr(State;) and state,, € pwr(State,). Stateset
state,, abstracts state,, written state, > state.,, iff for all state € state, there exists a

state 5 € state,, such that state; > state,. [

The second relation, C , relates objects in the approximation semantics to objects in the approximation

semantics.

DEFINITION (type subsumption). Let aset and bset be sets of types. Then bset subsumes aset, written
aset T bset, iff aset < bset. [
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DEFINITION (value subsumption). Let a and b be atoms. Then b subsumes a, written a C b, iff either
a=borb=TAT, 0O

DEFINITION (occurrence string subsumption). Let apxocc and apxocc’ € ApproxQOcc. Then apxocc’
subsumes apxocc, written apxocc T apxocc’, iff L (apxocc) < L(apxocc). O

DEFINITION (eccurrence string subsumption). Let apxocc, and apxocc’. € pwr(ApproxOcc). Then

apxocc’, subsumes apxocc, , written apxocc, C apxocc’, , iff L (apxocc,) < L(apxocc’.). O

DEFINITION (context subsumption). Let cxt = (pt, occ) and cxt’ = (pr,occ’) € Context,. Then cxt’ sub-
sumes cxt, written cxt © cxt’,iff pt =pt’and occ T occ’. O

DEFINITION (context subsumption). Let cxt, and cxt’, € pwr(Context,). Then cxt’, subsumes cxt,,
written cxt. T cxt’,, iff for all cxt € cxt, there existsa cxt’e cxt’, such thatext’ © cxt’. O

DEFINITION (admissible map). Let f: Loc — Sel — Int - (Loc X Sel xInt) be a map. Map f is admissi-
ble iff for all loc € Domain (), all sel, and sel, € Domain (f (loc)), all i, € Domain (f (loc, sel,)), and
all i, € Domain (f (loc, sel,)),

* f (oc, sely, i,)is of the form (_, sely, _).

* f (loc, sely, iy)is of the form (loc’, , ) = f (loc, sel,,i5) is of the form (loc”, _, ). O

Every f of the form Loc — Sel — Int — (Loc X Sel xInt) defined below is assumed to be admissible.

DEFINITION (Fitruer» frep)- L€t f: Loc —> Sel — (Loc X Sel xInt) be a map, and loc € Domain (f). Let
sel € Sel be any selector in Domain (f (loc)), i be any integer in Domain (f (loc, sel)), and f (loc, sel) =
(loc’, sel’, i"). Then f e (loc) denotes loc’, and fs (loc, sel, i) denotes (sel’,i). O

DEFINITION (kind-preserving). Let ¢ and o’ € Store,. Let f: Loc — Sel — Int — (Loc X Sel X Int) map
o to &’. Then fis kind-preserving iff, for all loc and loc’ € Domain (f),
* kind (f sirues (loc)) = ordinary = kind (loc) = ordinary A fome: (10€) # fstruce (loc). 0O

DEFINITION (type-preserving). Let o and o’ € Store,. Let f: Loc — Sel —Int — (Loc X Sel x Int) map
o to &’. Then fis type-preserving iff, for all loc € Domain (f),
* nypeloc) T type (e (loc)). U

DEFINITION (atom-preserving). Let ¢ and o € Store,. Let f:Loc —Sel —Int — (Loc x Sel xInt)
map o to ¢’. Then fis atom-preserving iff, for all loc € Domain (f),
* atom € type (loc) => atom € rype (f s (loc)) A atom(loc) T atom (fumue (loc)). 0O

DEFINITION (context-preserving). Let ¢ and o’ € Store,. Let f: Loc — Sel —Int — (Loc x Sel xInt)
map o to o’. Then fis context-preserving iff, for all loc € Domain (f),
* context € type (loc) => context € type (Fomue (loc)) A ctxt(loc) T ctxt (f e (loC)). 0

DEFINITION (reference-preserving). Let ¢ and 6’ € Store,. Let f: Loc — Sel —Int — (Loc % Sel xInt)
map G to &’. Then f is reference-preserving iff, for all loc € Domain(f), all sel € Domain (f (loc)), and
all i € Domain (f (loc, sel)),

* Fotruce (ref (loc, sel, ©)) = ref (Fomue: (loc), sel’, i), where (sel’, i') = fror (loc, sel, i). |

DEFINITION (store subsumption). Let ¢ and ¢ € Store,. Store ¢’ subsumes ©, writien G C o, iff
there exists a map f: Loc — Sel — Int — (Loc X Sel X Int) such that
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* f maps every accessible structure and reference in ¢ into ¢”;
* f maps ¢’s global environment to ¢”’s global environment; and
* fis kind-, type-, atom-, context-, and reference-preserving. (]

DEFINITION (labeled store subsumption). Let Is = (G, label) and Is’ = (07, label’) € Store, % Label 4 be

labeled stores. Labeled store Is’ subsumes Is, written Is C Is’, iff there exists a map

f: Loc — Sel —Int — (Loc X Sel xInt) such that

* oC dbyf

* for all locations loc € Domain (f), type (loc) # { atom } = label(loc) T label(fop: (loc)); and

* for all locations loc € Domain (f), all sel € Domain (f (loc)), and all i € Domain(f (loc, sel)),
label (loc, sel, i) T label s (f st (loC), sel’, i), where (sel’, i") = f, (loc, sel, i). [

DEFINITION (state subsumption). Let state = (pt, o, fl, label, occ) and state’ = (pt, &, f’, label’, occ”)

€ State,. State state’ subsumes state, written state C state’, iff pt = pt’, (G, label) © (0, label”), and
occ C occ’. 0O

DEFINITION (stateset subsumption). Let state, and state’, € pwr(State,). Stateset state’, subsumes
state,, written state, T state’,, iff for all state € state, there exists a state’ € state’, such that
state T swate’. O
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Appendix 5. The Monotonicity of evalPt4

This appendix demonstrates that MA s state transition function is monotonic w.r... C . The proof is by a
series of lemmas that characterize the various components of evalPt,’s definition.

LEMMA A.1 (monotonicity of getkind,, etc.). If 6 C o’ by fand loc € Domain(f), then

* getkind(c, loc) T getkind(S’, fsmue (I0C));

*  gettype(o, loc) T gettype(S, fomi: (loC));

* atom € gettype(o, loc) = getval(c, loc) T getval (&, fsmue (lo€));

* contexte gettype (o, loc) = getcxt(o, loc) T getext(, fopue (l0C));

* For all (sel, i) € Domain (f (10¢)), f s (map (sel, i)) = map’(sel’, i"), where map = getmap (S, loc),
map’ = getmap (O, f e (l0C)), and (sel’, i) = f,¢ (loc, sel, i).

PROOF. Immediate from the definition of T . (NB.: fymer and fr, which identify the structure-specific
and reference-specific parts of an embedding, are defined in Appendix 4.) [

LEMMA A.2 (monotonicity of maybe_atom, etc.). If 6 C o’ by fand loc € Domain(f), then
* maybe_atom (G, loc) = maybe_atom (&, fsnuics (I0C));

*  maybe_oftype (0, loc, type) = maybe_oftype (&, fsrucs (loC), type);

* maybe_not_oftype (G, loc, type) = maybe_not_oftype (&, foru: (loC), type);

* is_summary (0, loc) = is_summary (6, f sz (lOC)).

PROOF. Immediate from Lemma A.1 and the definitions of these four functions. [

LEMMA A.3. (monotonicity of selexp,). If 6 C o by f and loc € Domain(f), then, for all sexp,
loc 1, € selexp s (0, loc, sexp) = forue (I0C 1) € selexpy (O, fstruer (lOC), sEXD).

PROOF. By induction on the length of sexp.

If sexp=g¢, the empty selector string, then  selexp, (0, loc, sexp) = loc and
selexp 4 (G, fstruct (l0C), 5€Xp) = forues (JOC).

If sexp is nonempty, let sexp be of the form sel.selexpr, where selexpr is possibly empty, and assume
that Lemma A.3 holds for selector expressions of length selexpr. If loc lacks a selector sel, then the
lemma is immediate. Otherwise, assume that the integers i, - - - {; denote valid selectors of type sel at
loc. let these selectors denote the locations locy - -locy, respectively.  Then
selexp 4 (0, loc, sel.selexpr) is defined to be selexp 4 (0, loc y, selexpr) v

U selexp 4 (G, locy, selexpr). However, by the definition of T , fome (loc) has references of type sel to
Sstrues (oC1) <=+ Fstruer {OC 1). Then  selexp, (o, loc, sel.selexpr) is a  subset  of
selexp 4 (O, famuce (loC1), s€lexpr) U -+ U selexp (O, foruct (loC 1), selexpr). Lemma A3 now fol-
lows from the induction hypothesis. [l

LEMMA A.4 (monotonicity of idexpr,). If 6 C o by f and loc € Domain(f), then, for all sexp,
loc ,, € idexpr, (pt, O, sexp) = fuet (l0C ) € idexpr, (pt, o, sexp).

PROOF. Immediate from Lemma A.3 and the fact that the subsumption relation maps the global environ-
ment of ¢ to the global environmentof o’. O

LEMMA A.5 (monotonicity of newref). Let (G, label) C (¢, label) by f. Letocc T occ’. Let src and gt
be in Domain(f). Assume that sr¢ has no selectors of type sel. Then
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newref (0, label, occ, src, sel, igt) T newref (0, label, 0cc’, fsuuct (57C), Sel, fstruct (tgt)).

PROOF. Immediate from the definition of C . The new f maps (src, sel, 0) 0 (fomuee (57¢), sel, 0) and is
otherwise unchanged. O

LEMMA A.6 (monotonicity of updordinary). Let (o, label) C (0, label”) by f. Let occ T occ’. Let src
and gt be in Domain(f). Assume that [, (src) is an ordinary node. Then
updordinary (o, label, occ, src, sel, tgt) © updordinary (&', label’, occ’, frues (STC), Sel, fspuce (181)).

PROOF. Let struct = (kind, types, val, cxt, map) =o(src) and (structdefs, refdefs) = label(src). Let
StrUct o, be the updated struct obtained by setting all sel components of map to 1. Let label,,, be the
updated label obtained by setting all sel components of label to the empty set. Let
struct’ = (kind', types’, val', cxt’, map”) = 6(f serucs (s7C)), and (structdefs’, refdefs’) = label(f st (sTC)). Let
struct’,,,, be the updated struct’ obtained by setting all sel components of map’ to 1. Let label’ ., be the
updated label’ obtained by setting all sel components of label’ to the empty set. Since fim.: (s7¢) is an
ordinary node, src, by definition of subsumption, is the only node that is mapped t0 fome (src). Hence, by
the definition of SUbSUMPUON, (G e, label ne) E (O new» label ns,). Lemma A.6 now follows from Lemma
A5, since updordinary calls newref to add the new reference. [

LEMMA A.7 (monotonicity of updsummary). Let (o, label) T (¢, label) by f. Letocc T occ’. Let src
and tgt be in Domain (f). Then updsummary (0, label, occ, src, sel, tgt) T updsummary (o, label’, occ’,
Fstruct (S7C), S€l, foruce (£81)).

PROOF. The new f maps the edge from sel to tgt added to ¢ to the edge from Fstruce (57€) 1O Fsoruce (81)
added to o’. The updated label’ subsumes the updated label because the new edge from fime (src) to
fseruce (2g0) is labeled { occ” }, and the new edge from src to tgt islabeled {occ}. O

LEMMA A.8 (monotonicity of updref). Let (o, label) T (o, label”) by f. Letocc T occ’. Let src and gt
be in Domain(f). Then updref (s, label, occ, src, sel, tgt) T  updref (o', label’, occ’, fsrue (57C),
sel, fstruce (181))-

PROOF. If src can support a selector of type sel, then fyp. (s7¢), by the definition of T , must also support
selectors of type sel. The proof now proceeds by an analysis of the kind of src.

If src is a summary structure, then fy,., (src) must also be a summary structure. Lemma A.8 now fol-
lows from the monotonicity of updsummary (Lemma A.7).

If s7c and fge (s7¢) are ordinary structures, Lemma A.8 follows from the isontonicity of updordinary

(Lemma A.6).

If src is an ordinary structure and f,,, (src) a summary structure, then updref(c, - - - ) uses updordi-
nary to add an edge r to o of type sel labeled currocc. Also, updref(a’, + -+ ) uses updsummary to add
an edge r’ to & of type sel labeled currocc’. The embedding from the updated (o, label) to the updated
(¢, label) is an extension of fthatmapsrto7’. O

LEMMA A.9 (monotonicity of addcontext,). Let (o,label) T (o’,label’) by f. Let occ C occ’,
retpt =retpt, and retocc T retocc’. Let (Gnews flnews labelnny, [0C no) = addcontext 4 (0, fl, label,
occ, retpt, retocc). Let (6 nows 1 news 1GbEL npy, 10C ney) = addcontext 4 (&, f', label’, occ’,retpt’, retocc’).
Then (Opews [3€l ppy) T (O new, label ) by an f that sends 10€ pey 10 10C” 1o
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PROOF. Immediate from the definition of addcontext,. [

LEMMA A.10 (monotonicity of addstruct,). Let (o, label) T (o', label’) by f. Let occ © occ’ and
type T type’. Let (Orops Ml news [abel ppy, 10C o) = addstruct, (o, fl, label, occ, type). Let (6 sows [ news
label’ npy, 10C" new) = addstruct 4 (&, ', label’, occ’, type”). Then (Gpnew, label ) T (0 pe, label’,,,,) by an
£ that sends loC ., t0 lOC pny-

PROOF. Immediate from the definition of addstruct,. O

LEMMA A.11 (monotonicity of addatom,). Let (o,label) C (¢, label’) by f. Let occ T occ’ and
value T value’. Let (Cpnys flnews 13Dl npry, 10C ner) = addatom (G, fl, label, occ, value). Let (6 peus U news
[abel’ npy, 10C npe) = addatom (&7, fl', label’, occ’, value”). Then (Gpew, label o) T (0 e, label’,,,) by an
£ that sends [0¢ ,py 10 l0C .

PROOF. Immediate from the definition of addatom,. 1

LEMMA Al12 (monotonicity  of  simplexp,). Let  state = (pt, 0, fl, label, occ) and
state’ = (pt', &, fI', label’, occ”) be states such that state T state’ w.r.t. an f that maps ¢ onto ¢’. Let
result, = simplexp , (state, exp) and result’, = simplexp 4 (state’, exp). Let (Cpnews flnew, label p,, lOC o1,,) e
a member of result,. Then there exists a (O pows M news 1aDEL gy, 10C ney) N result, such that
(Onew» 18Dl pe) T (O pew» label’,,,,) by a (possibly extended) f that sends [0C pew 10 10 pry..

PROOF. The proof is by an analysis of the type of exp.

If exp is an identifier expression, then let loc, = idexpr, (pt, ©, exp) and loc’, = idexpr  (pt, &, exp).
By the monotonicity of idexpr, (L.emma A4), loc € loc, = fon (loc) € loc’.. Lemma A.12 now
follows from the fact that selexp, produces result, by pairing every loc € loc, with (o, fl, label), and
result’, by pairing every loc’ € loc’, with (¢, fI', label’).

If exp is an atom, then Lemma A.12 follows immediately from the monotonicity of addatom, (Lemma
A.11). The extended f maps the new atom in o to the new atom in ¢’.

If exp is a context, then Lemma A.12 follows immediately from the monotonicity of addcontext,
(Lemma A.9). The extended f maps the new context in ¢ to the new context in ¢’.

If exp is 4 new(type) instruction, then let (oy, I}, labely, loc,) = addstruct, (o, fi, label, ptocc, type),
and (o', fI'1, label’y, loc’y) = addstruct, (&', fi', label’, ptocc’, type”). By the monotonicity of
addstruct, (Lemma A.10), (04, label,) T (63, label;) by an extended f that sends locy to loc’;. If
type = env, then Lemma A.12 is immediate. Otherwise, the proof of the new case is completed by
using the monotonicity of addatom, (Lemma A.11) and newref (Lemma A.5) to argue that adding a set
of new references at loc, and loc’; to new nil atoms preserves the embedding from the updated
(o4, label ) to the updated (o’y, label’).

Finally, if exp is the primitive operator op(exp;, * - * , exp,), then the definition of #ensures that each of
the exp;’s are either atoms or identifier expressions that denote atoms. An induction on n can be used to
show that if simplexp, (state, exp) invokes op on a set of atoms loc, - loc, then
simplexp 4 (state’, exp) invokes op on a set of atoms loc”y - -+ loc’s, where each of the loc”; has a value
that subsumes the value of the corresponding loc,. Lemma A.12 then follows from the assumption that
primitive operands are monotonic in all arguments. [
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LEMMA A.13 (monotonicity of condy, condg). Let 6 C o by f. Then condr(pt, o, cexp) implies
condr (pt, &, cexp), and cond (pt, ©, cexp) implies condp (pt, &, cexp).

PROOF. This lemma is proved on the depth to which not operators are nested in cexp.
BASIS (cexp contains no negations). The proof is by an analysis of the type of cexp.

If cexp is the predicate typeOf (exp,type), then let locs =idexprs (pt, 0,exp) and
locs’ = idexpr 4 (pt, &, exp). If there exists a loc € locs that satisfies maybe_oftype, then, by the mono-
tonicity of idexpr, (Lemma A.4), fonc: (loc) is in locs’. By the monotonicity of maybe_oftype (Lemma
A2), fsres (loc) also satisfies maybe_oftype. Similarly, if there exists a loc € locs that satisfies
maybe_not_oftype, then fm,e (loc) is in locs’. By the monotonicity of maybe_not_oftype (Lemma
A2). furues (loc) also satisfies maybe_not_oftype.

If cexp is the predicate Eq(expy.,expy), then let locs, = idexpr, (pt, O, expy),
locs, = idexpr 4 (pt, ©, expa), locs’ = idexpry (pt, &, expy), and locs’y = idexpr 4 (pt, o,expy). If ¢
satisfies Eq, then locs, n locs, contains some location loc. Then, by the monotonicity of idexpr, ,
locs’y ~ locs’, must contain fi,,, (loc). Hence, o’ satisfies Eq. If o satisfies the converse of Eq, the
intersection of locs; or locs, either contains a summary structure loc, or there exist a loc, € locs, and
a loc, € locs, such that loc, #loc,. In the first case, the monotonicity of is_summary ensures that
Fouee (locg) is also a summary structure (Lemma A.2). In the second case, either loc, and loc, are
mapped to different structures, satisfying the converse of Eq, or loc, and loc, are mapped to the same
summary structure, which also satisfies the converse of Eq.

If cexp is a comparison operator, then Lemma A.13 follows from the monotonicity of the map from
atoms to atoms.

INDUCTION HYPOTHESIS. Lemma A.14 holds when cexp contains £ negations.

INDUCTION STEP. Let cexp be of the form not(cexp’). Then the assertion that condr (pt, G, cexp)
implies condr (pt, &, cexp), by the definition of condr, is equivalent to the assertion that
condg (pt, ©, cexp”) implies condp (pt, &, cexp”). Lemma A.13 now follows from the induction
hypothesis. A similar argument shows that Lemma A.13 holds for condr when cexp is nested to depth
k+1. O

LEMMA A.l4 (monotonicity of evalPt,). Let state = (pt, 0, fl, label, occ) and
state’ = (pt’, &, f', label’, occ’) be states such that state T state’ w.r.t. an f that maps ¢ onto o’. Then
evalPt, (state, exp) C evalPt, (state’, exp).

PrOOE. The proof is by an analysis of the type of pt.

If pt is the predicate If (cexp), then let booly= condr(pt, O, cexp), boolp = condg (pt, G, cexp),
bool'r = condy(pt, &, cexp), and bool’s = condy (pt, &', cexp). By the monotonicity of condr and
condr (Lemma A.13), boolr implies bool’r and boolp implies bool’r. Lemma A.14 now follows
immediately from the definition of evalPt,.

The proof of Lemma A.14 for when pt is the predicate While (cexp) is similar.

If pt is the statement Assign(lexp.sel, rexp), then let rresult, = simplexp, (pt, state, rexp) and
rresult’, = simplexp 4 (pt, state’, rexp). Let (G,, fl,, label ., rvloc) be an arbitrary element of rresult,.
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By the monotonicity of simplexp, (Lemma A.12), rresult’, contains a (o, f',, label’,, rvloc”) such that
(G, label,) T (¢, label’,) by an f’ that maps rvloc to rvioc’.

Let Iresult, = idexpr, (pt, G,, lexp) and Iresult, = idexpr, (pt, &, lexp). Let Ivloc be an arbitrary
element of Iresult,. By the monotonicity of idexpr, (Lemma A.4), f’ e (IVloc) € lresull’,.

Let assign, = updref(c,, label ., ptocc, vloc, sel, rvioc) and assign’, = updref(c’,, label’,, ptocc’,
F* soruce (Wloc), sel, rvloc”). Let (,, label ;) be an arbitrary element of assign.. By the monotonicity of
updref (Lemma A.8), assign’, contains a (0’,, label’,) that subsumes (0., label ).

Lemma A.14 now follows from the observation that evalPt, (state) retumns
(nextpt, G,, fl,, label 5, occ) only if evalPt , (state”) returns (nextpt, &5, F s, label’,, occ).

If pt is a call statement, then Lemma A.14 follows immediately from the definition of evalPt, .

If pr is a return statement, let ctxloc, = idexpr, (pt, o, _curr._callcxt) and ctxloc’, =
idexpr 4 (pt, &, _curr._callctxt). Let cloc be an arbitrary element of ctxloc,. By the monotonicity of

idexpr 4 , f srucs (cloc) € ctxloc’,.

Let ctxloc. = getext (o, cloc) and ctxloc’, = getext (67, fomer (cloc)). Let (retpt, apxocc) be an arbi-
trary element of ctxloc.. By the monotonicity of getcxt (Lemma A.l), ctxloc’, contains a
(retpt, apxocc”) such that apxocc T apxocc’.

Let prevenv, = idexpr, (pt, ©, _curr._callctxt) and prevenv’, = idexpr, (pt, o', curr._callctxt). Let
eloc be an arbitrary element of prevenv,. By the monotonicity of idexpr 4 , fsmet (eloc) € prevenv’,.

By the definition of subsumption, eloc’s creation-point-label is a subset Of fsuc (eloc)’s. If eloc is
not consistent with retpt, then Lemma A.14 follows immediately. Assume, therefore, that eloc is con-
sistent with retpt. Then the hypothesis that state and state” have comparable label functions implies that
Fsruce (eloc) is consistent with reipt.

Let gEnv denote o’s global environment. By the definition of subsumption, the global environment
of & iS fuue (8Env). Let new, = updref (0, label, ptocc, gEnv, _curr, eloc) and new', =
updref (&, label’, ptocc’, fues (ENV), _CUIT, fonue (eloc)). Let (0, label,) be an arbitrary element of
new.. By the monotonicity of updref, new’. contains a (o’,,label’,) such that (o,,label,) C
(6,,label’,). Lemma A.l14 now follows from the observation that evalPty(state) returns
(retpt, ©,, fl, label ., apxocc) only if evalPt, (state’) retums (retpt, &’ I, label’,, apxocc”).

Finally, if pt is an initialization statement, then Lemma A.14 follows immediately from the definition of
evalPt,. [1
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Appendix 6. The Congruence of evalPt; and evalPt,

This appendix demonstrates that MA s state-transition function abstracts that of MS,,.

LEMMA A.1 (congruence of gettype and gettype,, etc.). If 6 > o, by a map fand loc € Domain (f), then

*  gettype (0, loc) D gettype o (Ca, fsiruee (I0€));

* atom = gettype (0, loc) = getval (G, loc) D> getval s (G4, f et (l0€));

* context = gettype(G, loc) = getext (0, loc) D getext 4 (G, farua (0C));

* For all sel € Domain(f (10c)), f st (map(sel))= map'(sel’,i"), where map = getmap(o, loc),
map’ = getmap (G, fswuee (loc)), and (loc’, sel’, i") = f s (loc, sel).

PROOF. Immediate from the definition of . (N.B.: forue and fe, which identify the structure-specific
and reference-specific parts of an embedding, are defined in Appendix4.) O

LEMMA A.2. (congruence of selexp and selexp,). If 6 > o, by a map f, and loc € Domain (f), then, for
all sexp, loc i = selexp (0, loc, sexp) = fonue: (10C ge) € selexp 4 (G, fsruee (l0C), sEXP).

PROOF. By induction on the length of sexp.

If sexp=¢, the  empty selector string, then selexp (o, loc, sexp) = loc and
selexp 4 (O, ftruer (l0C), 5€XP) = ftruce (0C).

If sexp is nonempty, let sexp be of the form sel.selexpr, where selexpr is possibly empty, and assume
that Lemma A.2 holds for selector expressions of length selexpr. If loc lacks a selector sel, then the
lemma is immediate. Otherwise, assume that the selector of type sel at loc references loc’. Then, by
the definition of D>, fyme: (loc) has a reference of type sel t0 fome (loc”). Lemma A2 now follows
from the induction hypothesis.  [J

COROLLARY 1. If 6 > 6,4 by a map f, and the evaluation of selexp (o, loc, sexp) accesses a structure or
reference at loc’, then the evaluation of selexp 4 (G, fsne: (l0C), sexp) accesses the structure or correspond-
ing reference at f,, (loc). O

COROLLARY 2. If (o, label) > (0,4, label,) by a map f, and the evaluation of selexp (T, loc, sexp)
accesses a structure or reference labeled op, then the evaluation of selexp 4 (G4, fsmer (loC), sEXP) accesses
a structure or reference whose label subsumes op.

PROOF. Immediate from corollary 1 and the definitonof &>. [

LEMMA A.3 (congruence of idexpr and idexpr,). 1If o > o, by a map f, and loc € Domain (f), then, for
all sexp, 10C 15, = idexpr (pt, G, 5exp) = fiorucs (10€ 1g¢) € idexpr 4 (pt, G4, sexp).

PROOF. Immediate from Lemma A.2 and the fact that the abstraction relation maps the global environment
of o to the global environmentof 5,. [0

COROLLARY 1. If 6 > o, by a map f, and the evaluation of idexpr (pt, G, sexp) accesses a structure or
reference at location loc, then the evaluation of idexpr, (pt, G, sexp) accesses the structure or the
corresponding reference at fyn, (loc). 0O

COROLLARY 2. If (0, label) &> (G, label,) by a map f, and the evaluation of idexpr (pt, G, sexp) accesses
a structure or reference labeled op, then the evaluation of idexpr, (pt, 04, sexp) accesses a structure or
reference whose label abstracts op.
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PROOF. Immediate from corollary 1 and the definitionof &. O

LEMMA A.4 (congruence of addcontext and addcontext,). Let (o, label) D> (G, labely) by f. Let
occ > occy, retpt=retpt,, and retocc > retocc,. Let (0, fi', label’, loc”) = addcontext (5, fl, label,
occ, retpt, retocc). Let (074, fi's, label’s, loc’s) = addcontext, (G4, fla, labely, occy, retpty, retocc y).
Then (¢, label’) D> (0”4, label’,) by an f that sends loc” to loc’s.

PROOF. Immediate from the definitions of addcontext and addcontext,. O

LEMMA A.5 (congruence of addstruct and addstructy). Let (c,label) O (0,4,label,) by f. Let
occ D> occy and type D types. Let (o, f,label’,loc’y= addstruct (o, fl, label, occ, type). Let
(4, fl'a, label’y, loc’ ) = addstruct s (G4, fla, label s, occy, type ). Then (07, label”) B (074, label’s) by
an f that sends loc’ to loc’y.

PROOF. Immediate from the definitions of addstruct and addstruct,. O

LEMMA A.6 (congruence of addatom and addatom,). Let (G,label) D> (04, labely) by f. Let
occ & occy and value D> value,. Llet (o', fl’,label’,loc’)= addatom (o, fl, label, occ, value). Let
(O, fla, labely, loc,) = addatom, (Ga, fla, labels, 0cca, value,). Then (Gpew, label ,,,,) > (G4, label )
by an f that sends loc” to loc’y.

PROOE. Immediate from the definitions of addatom and addatom,. [

LEMMA A.7 (congruence of simplexp and simplexp,). Let state =(pt, o, fl, label, occ) and
state 4 = (pt, O, fla, label 4, 0cc 4) be states such that state > state, w.rt. an f that maps ¢ onto o,. Let
(&, ., label’, loc”) = simplexp (state, exp) and result,, = simplexp, (state,, exp). Then there exists a
(&4, fi'a, label’s, loc’s) in result., such that (¢, label”) > (04, label,) by a (possibly extended) f that
sends loc” to loc’y.

PROOF. The proof is by an analysis of the type of exp.

If exp is an identifier expression and idexpr (pt, G, exp) is undefined, then the lemma is immediate.
Otherwise, let loc’ = idexpr (pt, ©, exp) and loc’, = idexpr 4 (pt, G4, exp). Then, by the congruence of
idexpr and idexpr, (Lemma A.3), fonu (loc”) € loc’.. Lemma A.7 now follows from the fact that
selexp returns (Gy, fla, label s, [ (loc”)) in resuit. 4.

If exp is an atom, then Lemma A.7 follows immediately from the congruence of addatom and
addatom, (Lemma A.6). The extended f maps the new atom in & to the new atom in Gy.

If exp is a context, then Lemma A.7 follows immediately from the congruence of addcontext and
addcontext, (Lemma A.4). The extended f maps the new context in o to the new context in G,.

If exp is a new(type) instruction, then let (¢, fI’, label’, loc”) = addstruct (o, fl, label, ptocc, type), and
(674, 4, label’ s, loc’y) = addstruct, (G, fla, labely, ptocc’, type’). By the congruence of addstruct
and addstruct, (Lemma A.5), (0, label) > (o, label’) by an extended f that sends loc” to loc’s. If
type = env, then Lemma A.7 is immediate. Otherwise, the proof of the new case is completed by using
the congruence of addatom and addatom, (Lemma A.6) to argue that adding a set of new references at
loc’ and loc’s to new nil atoms preserves the embedding from the updated (o, label”) to the updated
(&4, label’y).
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Finally, if exp is the primitive operator op(exp,, - - -, exp,), then the definition of # ensures that each of
the exp;’s are either atoms, or identifier expressions that denote atoms. An induction on n can be used
to show that if simplexp (state, exp) invokes op on a set of atoms loc, --- loc, then
simplexp 4 (state 4, exp) invokes op on a set of atoms loc’y - - - loc’,, where each of the loc’; has a value
that subsumes the value of the corresponding loc;. Lemma A.7 then follows from the assumption that
the approximation semantics’ primitive operands are isotone in their arguments. [

LEMMA A.8 (congruence of cond, condT, condF). Let o > o4 by f. Then cond (pt, G, cexp) implies
condt (pt, G, cexp), and — cond (pt, G, cexp) implies cond g (pt, G4, cexp).

PROOF. This lemma is proved on the depth to which not operators are nested in cexp.
BASIS (cexp contains no negations). The proof is by an analysis of the type of cexp.

If cexp is the predicate typeOf (exp, type) expression, then let loc = idexpr(pt, ©,exp) and
locs’ = idexpr , (pt, 04, exp). By the congruence of idexpr and idexpr, (Lemma A.3),
Forues (loC) € locs’. If gettype (G, loc) = type, then the congruence of gettype and gettype, (Lemma A2)
implies that type € gettype s (O, fomc: (loc)).  Then, by the definition of maybe_oftype,
condr (pt, G4, cexp) is true. Similarly, if gettype(o,loc)=type’, where type’ #type, then the
congruence of gettype and gettype, implies that type’ € gettypes (O, faret (loc)). Then, by the
definition of maybe_not_oftype, condr (pt, G4, cexp) is true.

If cexp is the predicate Eq(exp,, exp,), then let loc, = idexpr (pt, G, exp,), loc, = idexpr (pt, ©, expa),
locs’y = idexpr 4 (pt, G, expy), and locs’, = idexpr 4 (pt, G4, exp2). Then, by the congruence of idexpr
and idexpr, (Lemma A.3), fone: (loc,) € locs’y and fope, (loc2) € locs,. I loc, = loc,, then the fact
that f is a map implies that fyne (Ioc1)= fome (locz). By the definition of may_coincide,
condr (pt, G4, cexp) is true. Otherwise, if loc, # loc, then f either sends loc, and loc to the different
locations, or to the same location. In the former case, fimuer (10€1) # fsmier (0C2), and the definition of
may_differ implies condr (pt, G4, cexp) is true. Otherwise, fme (locy), by the definition of an embed-
ding, must be a summary structure. The definition of may_differ again implies cond g (pt, G4, cexp) is
frue.

The argument that the base case of Lemma A.8 is true when cexp is a comparison operator is similar to
the argument that primitive operators are isotone (¢f. Lemma A.7).

INDUCTION HYPOTHESIS. The lemma holds when cexp contains k negations.

INDUCTION STEP. Let cexp be of the form not(cexp”). Then the assertion that cond (pt, G, cexp) implies
cond (pt, G4, cexp), by the definition of condr, is equivalent to the assertion that — cond (pt, ©, cexp”)
implies cond g (pt, G4, cexp’). Lemma A.8 now follows from the induction hypothesis. A similar argu-
ment shows that Lemma A.8 holds for condr when cexp is nested to depth k+1. O

LEMMA A9 (congruence of evalPt; and evalPty). Let state = (pt, o, fl, label, occ) and
state , = (pt, Ga, fla, label, occ ) be states such that state D state, w.r.t. an f that maps ¢ onto G4. Then
evalPt, (state, exp) and result’, = evalPt, (state’, exp). Then there exists a (0’4, fI'y, label’y) in resulf’,

such that (¢”, label”) B> (67,, label’s).
PROOF. The proof is by an analysis of the type of pt.




~ 161 -

If pt is the predicate If (cexp), let bool = cond (pt, O, cexp), boolr = condt (pt, G4, cexp), and boolg =
condg (pt, G4, cexp). By the congruence of cond, condr, and condp (Lemma A.8), bool implies boolr
and — bool implies bool . Lemma A.9 now follows immediately from the definition of evalPt,.

The proof of Lemma A.9 for when pt is the predicate While (cexp) is similar.

If pt is the statement Assign (lexp.sel, rexp), then let (o,, fl,, label,, rvloc) = simplexp (pt, state, rexp)
and rresult, = simplexp, (pt, state’, rexp). By the congruence of simplexp and simplexp, (Lemma
A.7), rresult’, contains a (o, fi',, label’,, rvloc”) such that (o,, label,) > (¢’,, label’,) by an f’ that
maps rvloc to rvioc’.

Let Ivloc = idexpr (pt, ©,, lexp) and Iresult’, = idexpr s (pt, G4, lexp). Then, by the congruence of
idexpr and idexpr , (Lemma A.3), f' s (Vloc) € lresult’,.

Let (¢, label’) denote the effect of setting reference sel at Ivloc in o to rvloc, and updating label
accordingly. Let assign’, = updref(Ca , fla , label, , ptocc’, f'(IVloc), sel, rvloc”). The definition of
updref now implies that there is a (6”4, fI's, label’,) in assign’, that abstracts (¢”, label”).

Lemma A.9 now follows from the observation that evalPt; (state) returns (nextpt, &, fi’, label’, occ)
only if evalPt , (state) returns (nextpt, &4, fi'a, label’s, 0cc ).

If pt is a call statement, then Lemma A.9 follows immediately from the definition of evalPt,.

If pt is a return statement, let cloc= idexpr(pt, o, curr._callcixt) and cwxloc’, =
idexpr (pt, 64, curr._callctxt). Then, by the congruence of idexpr and idexpr 4, fsrut (cloc) € ctxloc’,.

Let (retpt, retocc) = getcxt (G, cloc) and ctxloc’. = getcxt (G, fsmur (cloc)). Let (retpt, apxocc a) be
an arbitrary element of ctxloc,. By the congruence of getcxt and getcxt, (Lemma A.1), ctxloc’, con-

tains a (retpt, apxocc’) such that retocc > apxoccgy.

Let prevenv, = idexpr(pt, o, _curr._callctxt) and prevenv’, = idexpr (pt, Oy, _curr._callctxt). Let
eloc be an arbitrary element of prevenv,. Then, by the congruence of idexpr and idexpr 4,

Fstruce (€lOC) € preveny’, .

By the definition of abstraction, eloc’s creation-point-label is abstracted by Fstruct (€loc)’s 1abel. Then
f st (€loc) must be consistent with retpt.

Let gEnv denote ¢’s global environment. By the definition of abstraction, the global environment of
Oy iS feut (8ENV). Let (G,, label ) denote the effect of resetting the local environment of o to eloc.
Let new’, = updref (Ga, label s, ptocc’, fomct (SENV), _CUrT, fone (eloc)). By the definition of updref,
new’, contains a (&, label’,) such that (c,, label,) > (¢’,, label’,). Lemma A.9 now follows immedi-
ately from the observation that evalPt; (state) returns (retpt, o, fl, label ., retocc) iff evalPt, (state”)
returns (retpt, &, fl, label’,, apxocc »).

Finally, if pt is an initialization statement, then Lemma A.9 follows immediately from the definition of
evalPt; and evalPt,. [0
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Appendix 7. A Semantics for the Language S

The following is a formal semantics for the language S.

State = Store x Freelist

Store =Var — Value  Freelist =Ref*  Value = Atom +Ref

M, : Prog - Store — Freelist — Store |

M.S (prog' g, ﬂ) =

let program = finalize (initialize (prog)) in
let evalPgm = fix A f. A ((pt, &, A)). pt =final - o [| flevalPt; ((pt, &', f1)))
in evalPgm((inital, , o, 1))

end’

Function fix is the least fixpoint functional.

The function initialize (prog) prepends a two-part prologue t prog. The first part of this prologue is the statement
“[initial, ] initialize ;". The second part simulates the call to main () at point “(initial, ]”; i.e., it simulates the alloca-
tion of main ()’s local environment, and subsequent transfer of control to main ()’s first statement.

The function finalize (prog) appends a two-part epilogue to prog. The first part of this epilogue simulates the implicit
return statement at the end of main(); i.e., it resets the local environment, and transfers control to point final. The
second part of this epilogue is the statement “[final | skip”.

evalPt: State — State |

evalPt; ((pt, o, fl))

case formOf (pt, program) in

If (cexp):

Case (exp, cases):

Assign (lexp, rexp):

Assert (cexp):

Initialize :

Fail :
end

let nextpty and nextptr be pt's true and false control-flow successors
in (cond (pt, G, cexp) — nextpty [| nextpty, 6, fl)
end
let (', value) = rvalue (o, fl, exp) in
let evalCase = fix Af. Acases’ .
cases’ =€ — | [ let ((cguard, cpoint), cases’”) = cases’
in value & cgudrd — (cpoint, o, ') [] f (cases’)
end
in evalCase(cases)
end’
let nextpt be pt ’s control-flow successor in
let (ff', value) = rvalue (G, fl, exp) In (nextpt, clvalue / var], f{’) end
end
let nextpt be pt 's control-flow successor
in cond(c, cexp) — (nextpt, 0, 1) {1 L
end

let nextpt be pt ’s control-flow successor in
let ¢’ be acopy of G in (nextpt, &', f1) end
end

1

Function formOf pairs every program point with its associated syntactic construct.
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cond : Store xCond — Bool |
cond (G, cexp) =
case cexp in
TypeOf (var, type): var & type
Compare (expy, op, expy): let val| = simplexp (G, exp,) and val, = simplexp (G, exp;) In
{valy,valy} c Atom — (val, opval)[] L
end
Not (cexp): — cond (G, cexp)
esac

rvalue : Store x Freelist x Exp — (Freelist xValue),
rvalue (6, fl, exp) =

case exp in
Primop (op, expy, -, exp,): (fl, op(simplexp (G, sexp,), * -+, simplexp (0, sexp ,))
Freelist(): read (fl)
Atom (exp), Var (exp): (f, simplexp (o, exp))

esac

simplexp : Store X Exp — Value = A (0, exp) . exp € Atom — exp [] o(exp)

The variable program is treated as a global to simplify the semantics. This variable is implicitly referenced
by statements that determine a program point’s control-flow successors.

The function read : Freelist — (Ref X Freelist), accepts one argument, a stream s. It remmns 1 if 5 is
empty, and the first element of s paired with the tail of s otherwise.



~ 164 —

Appendix 8. Definition of an Spdg

An S-language pdg (spdg) gives a control-flow-graph-based characterization of a program’s control depen-
dences, and an execution-based characterization of its flow and def-order dependences. The following is
the formal definition of an spdg.

A program Pg’s spdg must contain one edge for each of Pg’s static control dependences (¢f. §3.2.2.1).
Edges that correspond to true control dependences are labeled true; edges that correspond to false control
dependences are labeled false.

A program’s data dependences are defined with the aid of a state transition relation, |~ g. This relation is
similar to state transition relations defined in Chapters 3 and 4: i.e.,

DEFINITION. A state in a language S computation is a (program-point,store,freelist) triple. 0
DEFINITION. The state transition relation -+ -5 -+ —> --- is defined as follows:

prog |-s state; — % srate j © state; = state;

prog g state; —>" state; < I state’: prog |- state; —> " state’ A state; = evalPt(prog, state)
prog |- state; —>" state; < In:prog |- state; —>" state;

prog |5 state; —>* state; < In>0:prog -5 state; —>" state;

prog |5 state, —> +-+ —> state, < Vi:n<i<m-1:prog \-s state; —>state;,;, 0O

The expression evalPtg (prog, state’) (once again) constitutes a minor abuse of notation. The function
evalPt (cf. Appendix 7) actually takes one formal parameter—a state—and four non-local parameters that
describe prog’s control-flow graph, structure declarations, and local identifiers. The definitions of data
dependence are now similar to the ones given in Chapter 3.

Pg’s spdg w.r.t. InSet must depict p —>; q whenever P exhibits p —>¢ g W.r.L. InSet. Similarly, Pg’s
spdg w.r.t. InSet must depict p —>4,¢ g whenever Py exhibits p —4¢y ¢ W.I.L InSet. Labels that iden-
tify loop-carried and loop-independent dependences are not needed in the spdg, since S is a loop-free
language.

Program Pg’s spdg must also contain one edge for each of Pg's stream-mediated data dependences.
Stream-mediated dependences, however, play only a minor role in the thesis; the proof of the Simulation
Equivalence Lemma reduces programs that access the simulated freelist to equivalent programs that do not
access the freelist.
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