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ABSTRACT

Database applications that arise in the real-time domain have to meet timing require-
ments. At the database system interface, these timing requirements may translate into com-
pletion deadlines for transactions. In this thesis, we study the problem of transaction schedul-
ing in database systems supporting applications with deadlines. In particular, we focus on
applications with firm deadlines, which consider transactions that do not complete by their
deadlines to be worthless and therefore discard late transactions. Within the firrm-deadline
context, two cases that differ in the utility associated with completing a transaction before its
deadline are examined here. In the same-value case, all transactions have equal utility from
the application’s perspective and the goal of the real-time database systemn is to maximize the
number of in-time transactions. In the multiple-value case, different transactions have dif-
ferent utilities to the application and the goal of the real-time database system is to maximize
the total value of the in-time transactions.

In this thesis, we present new real-time concurrency control protocols and priority assign-
ment policies for transaction scheduling in the same-value and the multiple-value cases. The
concurrency control protocols are based on the optimistic approach to maintaining database
consistency. The priority policies are based on simple real-time scheduling observations and
adapt their priority assignment to match the database operating environment. Results from a
wide range of simulation experiments indicate that real-time optimistic concurrency control
protocols are fundamentally better suited than their locking-based counterparts to the firm-
deadline environment. The results also show that adaptive priority policies provide superior
performance to fixed priority policies. In particular, for the multiple-value case, priority poli-
cies that adaptively change the relative importance of transaction values and deadlines deliver
considerably better performance than policies that establish fixed tradeoffs between these
characteristics.

In summary, this thesis sheds light on issues involved in real-time transaction schedul-
ing, and presents new scheduling algorithms that come closer to meeting the challenges of the
real-time domain.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

In an effort to attract customers, many service enterprises, such as fast-food restaurants
and courier companies, promise to deliver service to customers within a deadline. If the prom-
ise is not kept, the customer is compensated in some fashion; for example, by providing the
service free of charge. Assume, for the moment, that you are the manager of such a restaurant
and that you decide when each customer order is serviced. Consider the situation where you
have two outstanding orders, one with a close deadline and the other whose deadline is a while
away. Now, would you serve the urgent order first in the hope of meeting both deadlines, or
would you serve the less urgent one first to make certain of meeting at least one deadline? If
the two orders were to have different billings or different compensations, would you decide dif-
ferently? You, the manager of a fast-food restaurant, have just been faced with one of the most
fundamental problems of a real-time system - deciding how to schedule a set of tasks with
time constraints so as to optimize some metric. In this dissertation, we address such schedul-
ing problems in the context of real-time database systems, that is, database management

systems whose workload is composed of transactions with deadlines.

Applications that deal with large quantities of information use database management sys-
tems for data storage, processing and retrieval. Our interest in real-time database systems
stems from the increasing number of data-intensive applications that are faced with timing
requirements. Such applications have arisen in diverse scientific, financial, manufacturing

and military areas, and include aircraft control, communication systems, stock trading, factory
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automation and robotics. For data-intensive real-time applications, the ability of the underly-
ing database system to satisfy transaction timing constraints becomes a key factor in deter-
mining both the feasibility of the application and the extent of its use. The real-time perfor-
mance of the database system depends on several factors such as the system architecture, the
processor speeds, etc. For a given system configuration, however, the primary performance
determinant is the policy for scheduling transaction access to system resources, since this pol-
icy determines when service is provided to a transaction. Herein lies our motivation for study-

ing scheduling issues in real-time database systems.

A real-time database system represents a "marriage” between the hitherto separate areas
of real-time systems and database systems, as shown in Figure 1.1. Research in these two

fields has, for the most part, been addressing different concerns. For the past several decades,

Integrity Constraints Time Constraints

Database Systems Real-Time Systems

Real-Time Database Systems

Figure 1.1: Family Tree of Real-Time Database Systems
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the main focus of attention in the real-time area has been the problem of scheduling tasks with
time constraints. Over the same period, one of the major challenges addressed by database
researchers has been to efficiently implement the transaction model, which provides the pro-
perties of atomicity, serializability and permanence, and thereby guarantees data integrity.
Conversely, real-time studies have paid little attention to maintaining the consistency of
shared data, while the concept of time constraints is foreign to database systems. In designing
a transaction scheduling policy for a real-time database system, an integrated approach is
required to simultaneously enforce data integrity constraints and satisfy transaction timing
constraints. This dual requirement makes real-time transaction scheduling more complex
than task scheduling in conventional real-time systems or transaction scheduling in conven-

tional database systems.

For the most part, scheduling algorithms used in current real-time systems assume com-
plete a-priori knowledge of task arrival times and task processing requirements. This permits
an off-line production of the best schedule through the use of optimization techniques. For
database applications, however, such knowledge is usually unavailable and the execution pat-
tern of transactions is often data-dependent. It is therefore not possible to statically compute
the best schedule in most cases. As a result, transaction scheduling in real-time database sys-
tems has to be dynamic and based on heuristics. These added complexities exacerbate the
scheduling problem in real-time database systems. In this study, our objective is to develop
transaction scheduling algorithms that are tuned to achieving the performance objectives of

real-time database systems.

1.2. Real-Time Database Systems

Our view of a Real-Time Database System (RTDBS) pictures it to be a transaction process-
ing engine whose workload is composed of transactions with individual timing constraints.
Typically, a time constraint is expressed in the form of a deadline, that is, the application sub-

mitting the transaction would like it to be completed before a certain time in the future. We
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assume that, from the application’s perspective, having a transaction complete just before its
deadline expires is no different than having it finish earlier. Therefore, in contrast to a conven-
tional database management systern (DBMS), where the goal usually is to minimize transaction

response times, the emphasis in an RTDBS is on meeting transaction deadlines.

Apart from assigning a deadline to each transaction, some real-time applications also
assign a value to each transaction. The value reflects the return the application expects to
receive if the transaction completes before its deadline. For example, consider an airline reser-
vation database system that allows customers to call in their reservations. Each reservation
transaction has a time constraint, which is the delay that the customer is willing to endure
before hanging up. Satisfying the request for a high-priced ticket is more beneficial to the air-
line than satisfying the request for a cheaper ticket since the high-priced ticket generates
greater revenue. In this scenario, therefore, the value of a transaction is the fare paid by the
customer. A key point to note here is that value and deadline are fundamentally different pro-
perties. The value reflects the transaction’s worth while the deadline reflects the transaction’s

urgency.

At any time, transactions in the RTDBS can be divided into two groups: feasible transac-
tions and late transactions. A transaction is feasible if its remaining service requirement is
less than the remaining time to its deadline (if the remaining service requirement is not known,
it is assumed to be zero). Therefore, a feasible transaction retains a possibility of completing
before its deadline. A late transaction, on the other hand, has either already missed its dead-
line or has no chance of successfully meeting it. The RTDBS executes feasible transactions
until they either complete before their deadline or are detected to be late. Various application-

dependent policies, described in the next section, exist to deal with late transactions.

1.2.1. Types of Real-Time Database Systems

Real-time applications can be grouped into three categories: Hard Deadline, Firm Dead-

line, and Soft Deadline. The classification is based on how the application is impacted by the




violation of time constraints. For a hard deadline application, missing a deadline is equivalent
to a catastrophe. Life-critical applications, such as flight control systems or missile guidance
systems, belong to this category. For firm deadline or soft deadline applications, however,
missing deadlines leads to a performance penalty but does not entail catastrophic results. The
distinction between firm deadline and soft deadline applications lies in their view of late tasks.
For firm deadline applications, completing a task after its deadline has expired is of no utility
and in fact may be harmful. Therefore, late tasks are required to be permanently aborted and
discarded. For soft deadline applications, however, there is some diminished utility to com-
pleting tasks even after their deadlines have expired. Financial and manufacturing applica-

tions usually fall under either firm deadline or soft deadline categories.

Database systems for efficiently supporting hard deadline real-time applications, where all
transaction deadlines have to be met, appear infeasible [Stan88a]. This is because there is
usually a large variance between the average case and worst case execution times of a transac-
tion. The large variance is due to transactions interacting with the operating system, the 1/0
subsystem, and with each other in unpredictable ways. Guaranteeing transactions under
such circumstances requires an enormous excess of resource capacity to account for the worst

possible combination of concurrently executing transactions [Stan88a].

Database systems for firm deadline or soft deadline applications, however, appear feasible
since the system is only expected to make a "best effort” to meet transaction deadlines. In this
dissertation, we restrict our attention to firm deadline applications, and late transactions are
therefore considered to be worthless and are discarded by the database system. It is our opin-
jon that understanding scheduling issues for firm deadline applications will provide a founda-
tion to address the more general framework of soft deadline applications, where transactions

may retain some utility to completing after their deadline.

Our studies consider both firm-deadline applications that do and do not assign values to
transactions. For applications where transactions are not assigned values, we assume that the

goal of the RTDBS is to maximize the number of transactions that complete before their
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deadline. For applications where transactions have associated values, we assume that the goal
of the RTDBS is to maxirnize the total value of the transactions that complete before their
deadline. Conceptually, the former class of applications can be viewed as a special case of the
latter wherein all transactions are assigned the same value. In the remainder of this thesis,
therefore, we will use the term same value to refer to the former class, and the term rultiple

value to refer to the latter.

1.3. Transaction Scheduling

An RTDBS transaction scheduling algorithm is composed of four components: Service
Eligibility, Priority Assignment, Resource Service, and Concurrency Control, as shown in Fig-
ure 1.2. The Service Eligibility component decides which transactions are allowed to execute
in the database system. All other transactions are immediately (and permanently) discarded
from the system. The Priority Assignment component assigns priorities to transactions that
are eligible to execute in the system. The Resource Service component maps a service discip-
line to each hardware resource. Finally, the Concurrency Control component maintains data-

base consistency and resolves data conflicts.

A sample RTDBS transaction scheduling algorithm, described in terms of its components,
is the following: { Feasible Only; Earliest Deadline; Priority PR (CPU), Priority LRU (Memory),
Priority HOL (Disk); 2PL-HighPriority }. This algorithm implements the Feasible Only eligibility
test [Abbo88b] which discards late transactions and permits only feasible transactions to exe-
cute in the system. The Earliest Deadline priority mapping [Liu73] assigns higher priority to
transactions with earlier deadlines. The Priority PR [Pete86] and Priority LRU [Jauh90]
scheduling disciplines provide priority-based preemptive service at the processors and memory
buffers, respectively, while Priority HOL [Klei76] provides priority-based non-preemptive service
at the disks. Finally, the 2PL-HighPriority concurrency control protocol [Abbo88b] maintains
database consistency with a two-phase locking scheme and resolves data conflicts in favor of

higher priority transactions.




Transaction Scheduling Algorithm

Service Priority Resource Concurrency
Eligibility Assignment Service Control

Figure 1.2: Scheduling Algorithm Components

To put the scheduling issue into perspective, transaction scheduling algorithms in con-
ventional database systems also have a Resource Service component and a Concurrency Con-
trol component. They do not, however, have a Service Eligibility component since all transac-
tions have to be executed to completion. They also usually do not have a Priority Assignment

component since transactions are expected to be treated on an equal basis.

1.3.1. Priority Assignment

Most conventional DBMSs strive to minimize the mean response time of transactions.
Consequently, improving the response time of one transaction at the expense of another is not
considered an improvement in system performance. In an RTDBS, the objective is to complete
transactions before their deadlines. For this objective, improving the response time of one
transaction at the expense of another can result in a system performance improvement. To

illustrate this point, consider the following possibility: Two transactions arrive at the database
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system, one with a tight deadline and the other with a loose deadline. If the transactions share
the system resources on an equal basis, the urgent transaction misses its deadline while the
slack transaction completes in time. Alternatively, if the urgent transaction progresses at the
expense of the slack transaction, it completes before its deadline. The slack transaction then,

by virtue of its loose deadline, completes in time despite its retarded progress.

From the above discussion, it is clear that providing differential service to transactions in
an RTDBS can result in a performance improvement. Priority assignment is a mechanism to
indicate the service precedence among transactions to the database system resources. In the
above example, assigning higher priority to the urgent transaction would have resulted in the

desired performance improverment.

Assigning priorities, however, is not always as clearly defined as in the case described
above. It is easy to come up with situations where the performance impacts of different prior-
ity assignments are hard to evaluate, and making a choice is therefore difficult. The problem
of assigning priorities is even more complex when transactions have different values. This is
because a tradeoff has to be made between transaction value and deadline characteristics, and
it is not clear what this tradeoff should be. In some situations, performance may be improved
by starting each transaction slowly and increasing the pace as its deadline approaches. In’

such cases, the priority assignment process has to be dynarmic.

1.3.2. Resource Service

The main physical resources in a database management system are the processors, the
memory buffers, and the disks. In conventional DBMSs, scheduling disciplines like Round
Robin, LRU, and Elevator [Pete86] are used at the processors, buffers, and disks, respectively.
Such scheduling disciplines are unacceptable, however, in a real-time database system since
they are priority-indifferent. In an RTDBS, service should be provided in a manner that
reflects transaction priorities, since the priority assignment is based on achieving performance

objectives. One approach is to make the resources behave like priority preemptive resume
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servers [Jauh90]. In such servers, the highest-priority requester is always the one receiving
service. This is achieved by preempting lower priority requesters from use of the resource.

With this approach, higher priority transactions do not "see" transactions with lower priority.

There are several practical reasons, however, that make the priority preemptive resume
goal not entirely possible or desirable in an RTDBS [Jauh90]. First, hardware restrictions
prevent certain actions, such as disk service, from being preemptable. Second, preemption
does not come for free but involves overhead such as context switching at the CPU. Third, cer-
tain database actions, such as acquiring a lock on a data item, are non-preemptable due to
either correctness requirements or performance reasons. Finally, servicing requests in abso-
lute priority order may result in degraded performance for certain resources. For example,
scheduling requests in priority order at the disk may perform worse than scan-based discip-
lines that try to minimize the distance moved by the disk head in serving multiple outstanding
requests. Therefore, for all the above reasons, a strict priority preemptive resume approach is
not practical in an RTDBS. The goal, however, is to develop resource scheduling disciplines

that efficiently approximate this behavior.

1.3.3. Concurrency Control

Data, like processors, memory, and disks, is also a resource in a database system. It
differs, however, from these physical resources in its correctness requirements. This requires
data scheduling to be treated differently from physical resource scheduling. The standard
notion of data correctness in a DBMS is serializability; that is, the outcome of concurrent
execution of transactions, as reflected in the stored data, should be the same as that produced
by executing the transactions in some serial order. Concurrency control protocols preserve
database correctness by resolving non-serial data accesses in a manner that induces a seriali-
zation order among the conflicting transactions. Several serialization mechanisms have been
proposed [Bern87], such as locking, validation and timestamping. Each mechanism takes a

different approach to achieving serializability. A question to be decided in developing an
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RTDBS concurrency control protocol is which mechanism, or combination of mechanisms, is

most suited to achieving the performance objectives of the system.

‘Two methods, blocking and restarts, are available for resolving data conflicts, and virtu-
ally all concurrency control protocols use some combination of these methods. A blocking
decision causes one of the conflicting transactions to wait for the other to complete, while a
restart decision causes one of the conflicting transactions to be rolled-back. In a conventional
DBMS, the decision on which transaction’s progress is to be hindered is usually based on
either the order of data access or on the relative ages of the conflicting transactions. This is
not suitable, however, in the context of an RTDBS. A transaction with a high priority should
not be either restarted or blocked by a transaction with a low priority. Therefore, an RTDBS
concurrency control protocol is expected to take transaction priorities into consideration when

making data conflict decisions.

1.4. RTDBS Architecture

A high-level "black-box" view of a real-time database system is shown in Figure 1.3. In
this model, the input process to the RTDBS is an arrival stream of transactions with each tran-
saction T having an associated arrival time Az, deadline Dr, and value Vy. There are two tran-
saction output streams from the RTDBS, InTime and Late. Transactions that complete before
their deadline join the InTime stream, while transactions that miss their deadline (or are cer-

tain to do so) join the Late stream.

Transaction scheduling within the RTDBS incorporates the architecture shown in Figure
1.4. The eligibility monitor tracks the eligibility status of all transactions executing in the sys-
tem. A transaction that becomes ineligible is imrediately removed from the system and dis-
carded. The priority mapper unit assigns a priority Pr to each transaction on its arrival, and
this priority is used by the hardware resource schedulers and the concurrency control
mechanism to distinguish transactions. It is possible that there is feedback in the priority

assignment process, causing the priority of a transaction to change with time; in this case, the
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Figure 1.4: Transaction Scheduling Architecture

change in priority is transmitted by the priority mapper to the transaction. This priority archi-
tecture shields the internal database mechanisms from the details of the priority assignmernt

process, and is modular since it separates priority generation {rom priority usage.
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As mentioned earlier, we restrict our attention in this study to applications that have firrn
deadlines. This means that late transactions are immediately discarded and do not execute to
completion. A second restriction is that the RTDBS has no a-priori knowledge of either tran-
saction processing requirements or transaction data accesses. This means that, from the
RTDBS perspective, transactions are distinguished only by their arrival time, deadline and
value characteristics. It also means that transactions are detected to be late only when they
actually miss their deadline since the RTDBS cannot estimate the remaining service require-

ments of a transaction (i.e. transactions remain feasible until their deadlines expire).

1.5. Organization of Dissertation

Our goal in this thesis is to profile the performance of various transaction scheduling
algorithms in an RTDBS supporting applications with firm deadlines. In order to do this, we
develop a detailed performance model of a real-time database system, and construct a simula-
tor based on this model. We then experiment with various transaction scheduling algorithms

over a wide range of workloads and system configurations.

Our performance study focuses on evaluating alternatives for the concurrency control and
priority assignment components. The results of the simulation experiments indicate that tran-
saction scheduling algorithms based on optimistic concurrency control protocols are funda-
mentally better suited than their locking-based counterparts to the firm-deadline environment.
The results also show that scheduling algorithms which adapt their transaction priority assign-
ment to the current operating environment provide better performance than algorithms with
fixed priority assignment policies. In particular, for the multiple-value case, scheduling algo-
rithms that adaptively change the relative importance of transaction values and deadlines per-
form considerably better than algorithms that establish fixed tradeoffs between these charac-

feristics.

The remainder of this dissertation is organized in the following fashion: Chapter 2 is

devoted to a review of published research on real-time database systems. A performance
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model of a real-time database system is described in Chapter 3. This chapter also includes an
overview of the methodology, metrics and workload generation process used in the simulation
studies that follow. In our initial simulation experiments, we focus on applications where all
transactions have the same value. For such applications, the performance of existing con-
currency control protocols is evaluated in Chapter 4, and a new protocol is presented in
Chapter 5. The focus of Chapter 6 is on the priority assignment component, and a new prior-
ity mapping is developed in this chapter. Our second series of simulation experiments con-
sider applications where transactions may differ in their assigned values. For such applica-
tions, the performance of existing priority mappings is evaluated in Chapter 7, and a new
priority mapping is presented in Chapter 8. Finally, Chapter 9 summarizes the main contribu-

tions of our study and outlines future avenues to explore.



CHAPTER 2

SURVEY OF RELATED RESEARCH

2.1. Introduction

Real-tirne database systems are a recent concept, and have received attention only in the
last few years. Consequently, research into issues pertaining to these systems is still in its
infancy. There have been only a handful of papers published on real-time database systems,

virtually all of which are from researchers in academia. In this chapter, a brief summary of

relevant research on RTDBSs and related areas is presented.! Time constraints, transaction
scheduling, database consistency issues, and prototype projects are covered, with special
attention paid to papers that include performance studies. Only centralized real-time database
systems are considered in the scope of our discussion; the reader is referred to [Lin88, Sha88,

Sing88, Son87, Son90b] for coverage of issues related to distributed RTDBSs.

2.2. Time Constraints

A model of generalized time constraints for real-time tasks was presented in the seminal
work of [Jens85, Lock86]. The key idea of the model is that the completion of a task has a
value to the application that can be expressed as a function of the task completion time.
These value functions are a powerful mechanism for expressing the time constraints of tasks
since they model a task’s real-time requirements over a time window, unlike deadlines which

represent only a single instant in time. A soft deadline task, for example, is captured by the

! The list of references at the end of the thesis is more exhaustive in its coverage.
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value function shown in Figure 2.1(a) - if the task completes before its deadline, its value is
obtained by the parent application; as the task is delayed beyond its deadline, the value
received decreases exponentially. The value function of a firm deadline task is shown in Figure

2.1(b) - the task loses its value if it misses its deadline.

While the value function model was developed in the context of task scheduling in real-
time operating systems, it is equally applicable to expressing transaction time constraints in a
real-time database system. Discussions on identifying value functions for real-time transac-
tions are included in [Abbo87, Abbo88a, Buch89, Huan89]. The notion of associating a nega-
tive value or penalty with transactions that miss their deadline is also considered in [Abbo87,
Abbo88a]. The penalty reflects the loss suffered by the application due to the transaction not

completing in a timely fashion.

An alternative model of real-time transaction processing is proposed in [Kort90]. In this
model, the timing constraints are associated with database consistency constraints, and not
with the transactions themselves. The goal of the system is to ensure that no consistency con-
straint remains invalid for an interval longer than its deadline. Whenever a constraint
becomes invalid, the system restores consistency by executing one or more internal transac-
tions. Executing an internal transaction may itself invalidate other constraints. It is shown

that finding an optimal (time-wise) sequence of internal transactions for restoring complete

Value? Value 4

vy T

Vr

A Dr time At Dr time

Figure 2.1(a): Soft Deadline Figure 2.1(b): Firm Deadline
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database consistency is computationally intractable. This result, however, does not preclude

the use of heuristics to develop acceptable strategies.

2.3. Task Scheduling

A great deal of attention has been devoted by the real-time research community to the
problem of dynaric (on-line) scheduling of tasks with deadlines. Liu and Layland, in their
classic paper [Liu73], proved that the Earliest Deadline priority policy is optimal for periodic
task sets with hard deadlines executing on a single processor. It is optimal in the sense that if
a set of tasks can be successfully scheduled by some priority policy, then this task set is
guaranteed to be successfully scheduled by the Earliest Deadline policy as well. In [Dert74],
the optimality of Earliest Deadline was ext‘ended to arbitrary task sets executing on a single
processor. For multi-processor systems, however, the policy ceases to be optimal except under
restricted circumstances [Mok78]. In fact, a stronger result presented in [Mok78] is that there
are no optimal on-line scheduling policies for arbitrary task sets executing on multiprocessor

systems.

If we consider real-time systems supporting same-valued tasks with firm deadlines,
scheduling optimality is defined in terms of maximizing the number of deadlines met. For this
framework, Panwar and Towsley proved in [Panw88] that the Earliest Deadline policy is
optimal for G/M/c/G queueing systems. (The notation G/M/c/G specifies that the task
arrival process can have an arbitrary distribution, the task service times are exponentially dis-
tributed, the number of servers is arbitrary, and task deadlines can have an arbitrary distribu-
tion.) The underlying assumptions under which the optimality result holds is that task execu-
tion times are independent of their relative deadlines and inter-arrival times.? In practice,
however, these distribution and independence constraints may not be satisfied by real-time

tasks. For example, it is reasonable to expect that the execution time of a task is bounded by

2 The relative deadline of a task is the difference of its deadline and arrival time.
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its relative deadline since, otherwise, meeting its deadline is an inherently impossible task.

When tasks may have different values, performance is measured in terms of the net value
realized by the system. For this metric, a high-performance scheduling algorithm called the
Best Effort scheduler [Jens85, Lock86], was developed as part of the CMU Archons project.
This algorithm provides excellent performance over a wide range of operating conditions and
workloads [Lock86]. A constraint on the use of this scheduler, however, is that it needs a-
priori knowledge of task processing requirements. It was proved recently in [Baru91] that, for
the special case where task values are equal to their execution times and task arrivals are
sporadic, no on-line uniprocessor scheduling algorithm can guarantee more than 25 percent of

the value obtained by a clairvoyant scheduler.

2.4. Transaction Scheduling

Scheduling transactions with deadlines is a more complex problem than real-time task
scheduling due to the multiplicity of resources in a database system, the need to maintain
database integrity, and the lack of a-priori knowledge of transaction processing requirements
in many database applications. The development and evaluation of transaction scheduling
algorithms has been the main focus of research on real-time database systems. All of the stu-
dies in this area have considered RTDBSs that operate under either firm deadline or soft dead-
line applications. These studies can be divided into two general groups - those that consider
applications with same-value transactions, and those that consider applications with

multiple-value transactions.

2.4.1. Same Value Transactions

When all transactions have the same value, the performance objective of the RTDBS is to
maximize the number of transactions that complete by their deadlines. For this framework,
the problem of scheduling transactions was first addressed in a series of papers by Abbott and

Garcia-Molina [Abbo88a, Abbo88b, Abbo89, Abbo90]. In [Abbo88a, Abbo88b], several real-
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time scheduling algorithms for a single-processor, memory-resident database system were
presented. These algorithms had different combinations of eligibility policies, priority assign-
ments, CPU scheduling disciplines, and locking-based concurrency control protocols. A simu-
lation study of the performance of these scheduling algorithms was presented in [Abbo88b].
Based on the simulation results, recommendations were made about the algorithm of choice
under various operating conditions. For example, a scheduling algorithm that used an Earliest
Deadline priority policy, a preemptive resume CPU scheduling discipline, and a prioritized vari-
ant of the Wound-Wait locking protocol [Rose78] was observed to deliver the best performance
for firm-deadline applications for all the workloads considered in the study. In [Abbo89], the
above study was extended by considering disk-resident databases. Since the database was
disk-resident, disk service disciplines were addressed in the study. Finally, a detailed study

that focused solely on real-time scheduling of disk requests was presented in [Abbo90].

Similar studies of transaction scheduling algorithms were conducted as part of the
SPRING project [Rama89]. A feature of these studies [Huan89, Huan90a, Huan90b, Huan90c]
is that they were conducted on a physical real-time database testbed, RT-CARAT. The results
obtained therefore reflect the effect of implementation overheads, which are usually unac-
counted for in simulation studies. The use of the testbed, however, has its own limitations:
First, only a closed system (no external arrivals) with a fixed amount of resources is con-
sidered. Second, the disk scheduling is under the control of the operating system and there-
fore cannot incorporate transaction priorities. Finally, the testbed can only support smnall
transaction populations. Some of the studies on this testbed have assumed that all transac-
tions have the same value, while the others have considered transactions with different values.
The same-value studies [Huan90a, Huan90c] are discussed in the remainder of this section,
while the discussion of the multiple-value studies [Huan89, Huan90b] is deferred to the follow-
ing section.

A study of the effect of buffer management policies on the ability to meet transaction

deadlines was reported in [Huan90a]. The buffer organization consisted of two types of
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buffers: a pool of private per-transaction buffers and a shared global buffer pool. The global
buffer interfaced between the pool of private buffers and the database disks. The private
buffers were assumed to be large enough that buffer management was not required for them.
Buffer allocation and replacement policies for the global buffer pool, however, were examined
in the study. The experimental results indicated that specialized real-time buffer management
schemes have little performance impact. Instead, the CPU scheduling discipline and con-
currency control protocol were observed to be the primary performance determinants. A point
to note about this study, however, is that the buffer pool organization is different from that
seen in conventional DBMSs. In a conventional database system, all transactions share a
common buffer pool in order to avoid the poor memory utilization that can result from giving
individual transactions their own partitions. It is not clear to what extent the real-time buffer

management results in [Huan90a] were impacted by the choice of buffer organization.

A phenomenon peculiar to priority-driven systems is priority fnversion [Sha87]. This
refers to the situation where a high-priority task is blocked by a low-priority task, and typically
occurs from synchronized access to shared resources. This situation can arise in an RTDBS,
for example, if a conventional locking protocol is used to control data access — a high priority
transaction can be "locked out" by a low priority transaction that has accessed the object ear-
lier. One solution to this problem is priority inheritance [Sha87], where the low priority tran-
saction inherits the priority of the high priority waiter. Another solution is priority abort
[Abbo88b] where the low priority transaction is aborted and the lock is granted to the high
priority transaction. A study of the performance of these methods for firm-deadline applica-
tions was reported in [Huan90c], and it was shown that the priority abort scheme performs
better than the priority inheritance scheme over a wide range of system workloads. A new
scheme called conditional priority inheritance that has features of both the priority abort and
priority inheritance schemes was also presented. It was shown to perform comparably to
priority abort under low data contention, and better than priority abort under high data con-

tention. However, the conditional priority inheritance scheme requires a-priori knowledge of
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transaction lengths.

2.4.2. Multiple Value Transactions

When transactions have different values, the performance objective of the RTDBS is to
maximize the value realized by the system, and minimizing the number of missed deadlines
becomes a secondary concern. In this situation, the scheduling problem is exacerbated since
the transaction priority assignment has to take both value and deadline into account, and it is
not obvious how these orthogonal characteristics should be combined. As yet, only the RT-
CARAT group (apart from us) has included transactions with different values in their perfor-
mance evaluation framework. In [Huan89|, transactions were uniformly assigned values from
a limited set of values. Using a locking protocol as the underlying serialization mechanism, the
study investigated the performance of several scheduling algorithms. Each of these algorithms
established a different fixed tradeoff between transaction value and deadline in assigning tran-
saction priorities for CPU scheduling. A different set of fixed tradeoffs was used in assigning
priorities for data conflict resolution. In [Huan90b], this work was extended to include
optimistic methods of concurrency control. While these studies form an important step in
understanding the effect of multiple transaction values on RTDBS performance, they have the
following limitations: First, the range of values that transactions could take on was limited
and the value distribution was uniform. Second, the concurrency control algorithms that were
compared in [Huan90b] are priority-indifferent flavors of two-phase locking and optimistic con-
currency control. Finally, the use of different priority mappings for CPU scheduling and data

scheduling makes it difficult to identify the source of observed performance behaviors.

2.5. Database Consistency

A significant fraction of the research on real-time database systems has dealt exclusively
with the concurrency control component of transaction scheduling algorithms. In [Lin90}, a
real-time concurrency control algorithm that has the flavor of both locking and optimistic

methods was presented. Another algorithm that combines timestamp and optimistic
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techniques was described in [Cook91]. The objective of both these algorithms is to use the

delayed conflict resolution of the optimistic technique to adjust the transaction serialization

order dynamically in favor of higher priority transactions, with the locking or timestamp

method being used to reduce restarts for lower priority transactions. While the ideas underly-

ing these algorithms may have potential, their performance impacts have not yet been

evaluated.

A few studies have considered increasing transaction concurrency by using one of the fol-

lowing methods:

(1)

(2)

Multiple data versions [Son90a, Song90]: The advantage of having multiple versions of
data is that it allows read-only transactions to read older versions of data while update
transactions create newer versions concurrently. This increases the chances of tran-
sactions meeting their deadlines since transaction blocking times and transaction res-
tarts are reduced. There are implementation issues, such as storage overhead and ver-
sion management, however, that have to be addressed before versions can be used

effectively.

Weaker forms of database consistency than serializability [Lin89, Vrbs88, Sha88]: It
has been argued that, in an RTDBS, satisfying transaction timing constraints is more
important than maintaining data consistency. Based on this notion, algorithms that
meet transaction timing constraints by sacrificing database consistency to a limited
extent have been proposed. While weaker consistency levels may be acceptable for cer-
tain applications, however, serializability is currently the only general-purpose transac-

tion consistency model.

Transaction semantic information [Sing88, Ulu91a]: Semantic information, in terms of
a-priori knowledge of transaction data access patterns, can be used to control data
access and reduce transaction restarts, or to design non-serializable but consistent

schedules. In [Ulu9lal, for example, a locking protocol based on prioritizing data items
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is presented. Each data item carries a priority equal to the highest priority of all tran-
sactions currently in the system that include the data itemn in their access lists. A tran-
saction accessing a currently unlocked higher priority object is forced to wait until the
object’s priority is equal to its own. This scheme ensures preferential treatment for
high priority transactions and reduces the aborts of lower priority transactions.
Advance information about transaction semantics is usually, however, not available for

most database applications.
2.6. RTDBS Projects

Several research centers have cormnmissioned projects to develop prototypes of real-time
database systems. These include the KARDAMOM project [Bult88] at the University of
Karlsruhe, which is constructing a real-time dataflow database machine; the SPRING project
[Rama89] at the University of Massachusetts, which is attempting to develop predictable real-
time database systems; the HiPAC project [Daya88] at the Computer Corporation of America
and the University of Wisconsin, which focused on combining active databases and timing con-
straints; the StarLite project [Cook90] at the University of Virginia, which is developing an
RTDBS software prototyping environment; and the CASE-DB project [0szo90] at the Case

Western Reserve University, which is building a single-user relational RTDBS.

2.7. Our Research

As mentioned earlier, research efforts on real-time database systems have gained momen-
tum only in the last few years. In fact, the first significant RTDBS scheduling study,
[Abbo88b], was reported as recently as 1988. Soon afterwards, research groups at several
universities started working in this area. Our research was initiated in the fall of 1989 and
began as a complementary effort to the studies of [Abbo88b, Abbo89]. Those studies had
focused on the priority assignment component and assumed a locking algorithm to be the
underlying concurrency control mechanism. Our work focused on the concurrency control

component and studied the relative performance of different classes of concurrency control
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algorithms. Subsequently, we moved on to addressing the problem of assigning priorities
when transactions are distinguished by both value and deadline. Our work in this area fol-
lowed up on the studies of [Huan89, Huan90b] by considering a wider variety of transaction
workloads and by developing new priority assignments that allow the tradeoff between value

and deadline to be dynamically varied.



CHAPTER 3

MODEL AND METHODOLOGY

3.1. Introduction

We developed a performance model of a centralized real-time database system and its
interaction with applications to serve as the foundation for our study of real-time transaction
scheduling. A simulator of this model was implemented using DeNet {Livn88], a discrete-event
simulation language based on Modula-2 [Wirt82]. This simulator is the main tool employed in
our performance studies of RTDBS transaction scheduling algorithms, which are detailed in

subsequent chapters.

In this chapter, we describe the RTDBS performance model and discuss the experimental

methodology and performance metrics used in our studies.

3.2. Modeling a Real-Time Database System

The organization of our RTDBS model is loosely based on the single-site database model
of [Care88] and is shown in Figure 3.1. There are six components in this model, four of which
represent the database system itself, while the remaining two capture the application utilizing
the database services. The components, each of which is reaiized by a separate module in the
simulator, are the following:

» Database, which models the data and its layout;
e Source, which generates the transaction workload;
e Transaction Manager, which models the execution of transactions;

o Resource Manager, which models the hardware resources;

.24 -




25

SOURCE SINK

APPLICATION

Start Transaction End Transaction

TRANSACTION
MANAGER

Service Done

Resource Request CC Request

DATABASE

<& »
<

Resource Request Service Done

RESOURCE RTDBS CC
MANAGER MANAGER

Figure 3.1: RTDBS Model

e Concurrency Control (CC) Manager, which controls access to shared data;

o Sink, which receives exiting transactions.

The interactions hetween these modules primarily consist of service requests and completion
replies, as shown in Figure 3.1. In the remainder of this section, we describe the parameters

and internals of each of the model components.
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3.2.1. Database

The database is modeled simply as a collection of pages, and all database operations are
modeled at the page level of granularity. For example, CPU and disk costs for processing the
data are modeled on a per page basis. A parameter called DatabaseSize specifies the number
of pages in the database. The data itself is modeled as being uniformly distributed across all of

the disks.

3.2.2. Source

The Source component represents the real-time application utilizing the database ser-
vices. It generates a stream of transactions that comprise the workload of the RTDBS. Table
3.1 summarizes the key workload parameters. An open system is modeled, and transactions
are generated in a Poisson stream at a mean rate specified by the ArrivalRate parameter. Each
transaction consists of a sequence of pages to be read, a ‘subset‘. of which are also updated. In
addition, each transaction has an associated value and deadline. The mechanisms for creating

a transaction and assigning its value and deadline attributes are described in the following

subsections.
Parameter Meaning
ArrivalRate Transaction arrival rate
Page MeanTransSize Mean transaction size in pages
Assignment | SizeSprd Spread in transaction size
WriteProb Write probability per accessed page
Deadline DeadlineFormula | DF1, DF2, or DF3
Assignment | LSF Low Slack Factor
HSF High Slack Factor
Value GlobalMeanValue | Mean transaction value
Assignment | NurnClasses Number of transaction classes
ProbClass|i] Prob. of class i
OfferedValueli] Fractional value offered by class i
MeanValue[i] Mean value of class i (computed)
ValueSprd|i] Spread in value of class i

Table 3.1: Workload Parameters
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3.2.2.1. Transaction Page Assignment

The range of transaction sizes, measured in terms of the number of pages that they
access, is determined by the MeanTransSize and SizeSprd parameters; transaction sizes range
between (1-SizeSprd)*MeanTransSize and (1+SizeSprd)*MeanTransSize pages. The number of
pages accessed by a transaction varies uniformly between these limits. Page requests are gen-
erated by randomly sampling (without replacement) from thé entire database, that is, over the
range (1, DatabaseSize). A page that is read is updated with probability WriteProb. Therefore,
a page write operation is always preceded by a read for the same page; this means that the
write set of a transaction is a subset of its read set and that there are no "blind writes"
[Bern87]. A transaction that is restarted follows the page access sequence of the original tran-

saction.

3.2.2.2. Transaction Deadline Assignment

In each experiment, a single formula is used to assign deadlines to transactions, and the
choice of formula is determined by the DeadlineFormula parameter. Three different transaction
deadline assignment formulas, DF1 through DF3, are employed in our studies. In describing
these formulas, we will use Dy, Ar and Ry to denote the deadline, arrival time and resource
time of transaction T, respectively. The resource time of a transaction is the total service time
at the resources that it requires to commit, that is, it is the response time of the transaction if

it were to execute alone in the system (refer to Section 3.6 for details). Using the above nota-

tion, we define the term slack ratio to represent the ratio B-T—R
T

L The physical interpreta-

tion of this ratio is that it is the number of completion opportunities provided to the transac-
tion by the application. (A slack ratio of less than 1 implies that it is impossible for the tran-
saction to complete before its deadline.) The deadline formulas employed in our studies pri-
marily differ in the slack ratios that they assign to transactions. All of the formulas are based

on the following general expression:
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Dy =Ar+ SFr * Ry

where SFr is a multiplicative slack factor, and Ry is the resource time of somne transaction X.
The DF1 deadline assignment is:
1)'[‘=AT+SF‘RT (DF”
Here, each transaction has the same slack factor SF and the resource time is that of the tran-
saction itself. This makes all transactions, independent of their service requirement, have the
same slack ratio, namely SF. Note that with this formula, the deadline of a transaction is

linearly correlated with its execution time.

The DF2 deadline assignment is:

AT + LSF * RT p=05
Dr=var+ HSF * Ry  p=05 (DF2)
Here, half of the transactions have a slack factor of LSF (Low Slack Factor) and the other half
have a slack factor of HSF (High Slack Factor). Correspondingly, transaction slack ratios are

either LSF or HSF.

The DF3 deadline assignment is:

Dr = Ar + Uniform(LSF, HSF) * Rax (DF3)
The resource time used in this assignment, Ry.x, is the resource time of the largest transac-
tion that could be generated by the Source (refer to Section 3.6 for details). Transaction slack
factors are uniformly chosen over the range set by LSF and HSF. With this assignment, tran-
saction slack ratios are spread over a range of values, based on the ratio of R, to the Ry's
and the spread in slack factors. Note that with this assignment, short transactions (i.e. those
with smaller resource times) tend to have greater slack ratios than long transactions. This for-

mula also makes the deadline of a transaction independent of its execution time.

The LSF and HSF workload parameters set the slack factors to be used in each of the
deadline formulas. (For DF1, both the parameters are set to the same number and SF takes on
this value.) An important point to note here is that while the workload generator utilizes infor-

mation about transaction resource requirements in assigning deadlines, the real-time database
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system itself has no access to such information.

3.2.2.3. Transaction Value Assignment

The transaction workload is composed of multiple transaction value classes that are dis-
tinguished by their value distribution, and the sum of the values of the transactions submitted
to the RTDBS constitutes the total offered value. The average value of a transaction over all
classes is set by the GlobalMeanValue parameter, while the number of transaction classes is
specified by the NumClasses parameter. Each transaction class is characterized by four
parameters: ProbClass, OfferedValue, MeanValue, and ValueSprd. For a given class, ProbClass
is the fraction of input transactions belonging to the class, while OfferedValue is the fractional
contribution of the class to the total offered value. For example, a setting of ProbClass = 0.2
and OfferedValue = 0.8 captures a "20-80" class that constitutes 20 percent of the input tran-
sactions and accounts for 80 percent of the total offered value. The OfferedValue and Prob-
Class parameters, in conjunction with the GlobalMeanValue parameter, determine the average

value of transactions in each class. This average value, MeanValue, is computed with the

expression Offeredvalue *GlobalMeanValue. For a GlobalMeanValue of 100.0, the average
ProbClass
value of transactions in the 20-80 class described above is -8—'2—*100.0 =400.0. The range of

values that transactions of a class can have is bounded by the ValueSprd parameter, which is
specified as a fraction of the MeanValue of the class. For the 20-80 class, a setting of 0.5 for
this parameter limits its transaction values to be between 200.0 and 600.0, that is, between

half and one-and-a-half times the MeanValue of 400.0.

A transaction’s class is chosen according to the probability distribution established by the
ProbClass parameter. The value assigned to the transaction is chosen uniformly over the value
range of its class, and is independent of the transaction’s other characteristics. Note that tran-
saction values are taken from the real number domain. This means that the probability of

more than one concurrently executing transaction having the same value is small, except, of
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course, when the ValueSprd parameter is set to 0.0.

3.2.3. Transaction Manager

Transactions generated by the Source are delivered to the Transaction Manager of the
RTDBS. The Transaction Manager controls the execution of transactions. It implements the
Service Eligibility and Priority Assignment components of the RTDBS transaction scheduling
algorithm. Upon arrival, transactions receive a priority from the priority mapper unit (see Fig-
ure 1.4), which is embedded in the transaction manager. The priority mapper assigns priori-
ties according to the Priority Assignment component. The transaction manager executes each
transaction until it either completes or is deemed ineligible by the Service Eligibility test. Tran-
sactions that complete are marked as such and forwarded to the Sink module. A transaction
that becomes ineligible is immediately "killed"; killing a transaction consists of aborting its

execution, marking it as killed and forwarding it to the Sink module.

As described earlier, each transaction execution consists of a sequence of read and write
page accesses. For a read page access, the Transaction Manager requests access permission
from the Concurrency Control Manager. When permission is received, the Transaction
Manager requests the Resource Manager to read the corresponding disk page into memory.
After the page has been read in, the Transaction Manager requests CPU timne to process the
page from the Resource Manager. When page processing is complete, the Transaction
Manager then begins executing the next page access. A write page access is executed in simi-

lar fashion to a read page access. A difference, however, is that disk write activity is deferred

until the transaction has committed.! When all the page accesses of a transaction have been

completed, the Transaction Manager initiates commit processing for the transaction.

! We assume sufficient buffer space to allow the retention of updates until commit time.
In addition, we assume the use of a log-based recovery scheme where only log pages are forced
to disk prior to commit.
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Transactions may sometimes have to be aborted due to data conflicts. In this case, the
Concurrency Control Manager decides that the transaction should be aborted and informs the
Transaction Manager. The Transaction Manager.then invokes the abort procedure for the
transaction. After the abort procedure is completed, the transaction is restarted and follows

the same data access pattern as the original transaction.

Transactions are also aborted when they are killed due to failing the Service Eligibility
test. In this case, the Transaction Manager is the initiator of the abort process, and the

aborted transaction is not restarted but sent, instead, to the Sink.

3.2.4. Resource Manager

The Resource Manager represents the RTDBS operating system and controls access to the
physical resources of the database system. In our model, the RTDBS physical resources con-
sist of multiple CPUs and multiple disks. There is a sil;lgle common qﬁeue for the CPUs and
the service discipline is Pre-emptive Resume, with preemption being based on transaction
priorities. Each of the disks has its own queue and is scheduled according to a Head-Of-Line
(HOL) policy, with the request queue being ordered by transaction priority.? Table 3.2 sum-
marizes the key parameters of the resource model. The NurmCPUs and NumbDisks parameters

specify the hardware resource composition, while the PageCPU and PageDisk parameters cap-

Parameter | Meaning

NumCPUs Number of processors
NumbDisks | Number of disks

PageCPU CPU service time per data page
PageDisk Disk service time per data page

Table 3.2: Resource Parameters

2 Prioritized scan-based disk scheduling disciplines have been observed to perform better
than a priority HOL policy {Abbo90]; for the sake of simplicity, we only consider a priority HOL
policy here.
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ture CPU and disk processing times per data page. We assume that preemption costs at the

CPU are negligible compared to page processing times.

Memory buffer resources are an integral feature of database systemns. For the sake of
simplicity, however, we assume that all data is accessed from disk and buffer pool considera-
tions are therefore ignored. While modeling buffering would certainly result in different abso-
lute performance numbers, we do not expect that doing so would significantly alter the general

conclusions of our studies.

3.2.5. Concurrency Control Manager

The Concurrency Control Manager maintains database consistency by regulating transac-
tion access to data pages. It implements a concurrency control protocol, servicing concurrency
control requests received from the Transaction Manager. These requests include requests for
read access, write access, and to commit or abort a transaction. For processing each of these
requests, the Concurrency Control Manager requests a period of CPU service from the
Resource Manager. A parameter called CCReqCPU specifies the CPU overhead required to pro-
cess each request. In our simulator, a separate instance of the Concurrency Control Manager

was created for each of the concurrency control algorithms evaluated in our experiments.

3.2.6. Sink

The Sink module receives both completed and killed transactions from the Transaction
Manager. It gathers statistics on these transactions and measures the perforrnance of the sys-

tem from the application’s perspective.

3.3. Experimental Methodology

Our performance study of RTDBS transaction scheduling algorithins consists of five sets
of experiments; each set is discussed in a separate chapter. Chapters 4 and 5 focus on the
Concurrency Control component, while Chapters 6, 7 and 8 are primarily concerned with the

Priority Assignment component. The Service Eligibility and Resource Service components of
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the transaction scheduling algorithm are the same across all the studies: Feasible Only eligi-

bility test, priority Pre-emptive Resume at the CPUs, and priority HOL at the disks.

In all of our experiments, the deadline assignments are such that each transaction is
guaranteed to make its deadline if it were to execute alone in the system. This means that the
only reasons for transactions to miss their deadlines are resource contention and data conten-
tion. The level of resource contention in the system is determined by the quantity of resources,
the transaction processing costs, and the mean number of transactions. Similarly, the level of
data contention is determined by the database size, the transaction size distribution, the fre-
quency of updates, and the mean number of transactions. The processing costs, the database
size and the transaction size distribution are kept constant across almost all of our experi-
ments, while the resource composition, data update probability, and number of transactions

are varied.

Our experiments evaluate the impacts of resource contention and data contention, both
in isolation and in combination. For experiments intended to isolate the effect of resource con-
tention, the page write probability is set to 0.0. For experiments intended to isolate the effect
of data contention, an "infinite" resource situation [Fran85, Agra87, Tay84], is simulated. With
infinite resources, there is no queueing at the resources. A point to note here is that while
abundant resources are usually not to be expected in conventional database systems, they
may be more common in RTDBS environments since real-time systems are usually sized to
handle transient heavy loading. This directly relates to the application domain of RTDBSs,

where functionality, rather than cost, is often the driving consideration.

We began each of our studies by developing a baseline experiment. The simulation
parameters used for this experiment force the real-time database system to operate in a region
that brings out the performance differences between the transaction scheduling algorithms
under consideration. Further experiments were constructed around the baseline experiment
by varying a few parameters at a time. These experiments evaluated the performance impact

of changes in workload characteristics and system configuration. The simulator was
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instrumented to provide a host of statistical information, including CPU and disk utilizations,
mean system population, number of transaction restarts, etc. These secondary measures help

to explain the behavior of the algorithms under various loading conditions.

3.4. Performance Metrics

The sum of the values of all transactions submitted to the RTDBS constitutes the offered
value, while the sum of the values of the transactions that are completed before their deadlines
constitutes the realized value. With these definitions, the primary performance metric, Loss

Percent, is computed as

Offered Value — Realized Value

*
Offered Value 100

Loss Percent =

Thus, Loss Percent is the percentage of the offered value that is not realized by the system.

A secondary performance metric is Miss Percent, which is computed.as

Input Transactions — InTime Transactions
Input Transactions

Miss Percent = { }*IOO

Thus, Miss Percent is the percentage of the input transactions that the system is unable to
complete before their deadline. Note that when all transactions have the same value, the Loss

Percent and Miss Percent metrics are equivalent.

For each of these metrics, numbers in the range of O to 20 percent are taken to represent
system performnance under "normal” loads, while numbers in the range of 20 to 100 percent
are viewed as representing systemn performance under "hea-vy" loads. A long-term operating
region where the loss or miss percent is large is obviously unrealistic for a viable RTDBS.
Exercising the systemn to high loss or miss levels, however, provides valuable information on
the response of the various scheduling algorithms to brief periods of stress loading. All of our

experiments evaluate the algorithms over a wide range of loads.

The Loss Percent and Miss Percent graphs in this thesis show mean values with relative

half-widths about the mean of less than 5% at the 90% confidence interval. Each simulation
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experiment was run until at least 10000 transactions had been processed by the real-time
database system simulator. Only statistically significant differences are discussed in this

thesis.

Transactions are all assigned the same value in the studies of Chapters 4, 5 and 6, and
the Loss Percent and Miss Percent performance metrics are therefore equivalent. We discuss
the Miss Percent metric in these chapters. Different transactions may have different values in
the studies of Chapters 7 and 8, so both the Loss Percent and Miss Percent metrics are con-

sidered there.

3.5. Fixed Parameter Settings

As mentioned earlier, some of the workload and system parameters have the same setting
across virtually all of the experiments reported here. These "constant” parameters and their
settings are listed in Table 3.3. With regard to the workload parameters, the average transac-
tion size is maintained at 16, and the size spread parameter is set to 0.5. This means that
transaction sizes are uniformly distributed over the range (8, 24) pages. While the distribution
of transaction values may vary, the values are assigned such that the average value of a tran-
saction is always 100.0. With regard to the system parameters, the database size is fixed at
1000 pages, while the CPU and disk costs for processing a page are set to 10 milliseconds and
20 milliseconds, respectively. The concurrency control CPU overhead is assumed to be negligi-

ble compared to the 10 millisecond CPU time for page processing and is therefore set to 0.0.

Workload System

Parameter Value Parameter Value

MeanTransSize 16 pages || DatabaseSize | 1000 pages

SizeSprd 0.5 PageCPU 10ms

GlobalMeanValue | 100.0 PageDisk 20ms
CCReqCPU 0.0

Table 3.3: Fixed Parameter Settings
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While the above settings hold for most of the experiments described in this thesis, we also
evaluated the sensitivity of the performance results to changes in these "constant” parameters.

A few of these sensitivity experimnents are also included in the thesis.

3.6. Resource Time Computations

The resource time of a transaction, Ry, is computed with the following expression
Rr = NumReadsr * (PageCPU + PageDisk) + NumWritesr * PageCPU ;
where NumReadsy and NumWritesr are the number of pages that are read and updated by the
transaction, respectively. The disk time for writing updated pages is not included in the

resource time computation since these writes occur after the transaction has committed.

Deadline formula DF3 uses Ry, the resource time of the largest workload transaction, in
their deadline computations. Based on the transaction page assignment mechanism (refer to
Section 3.2.2.1), the largest possible transaction is one that reads and updates
(1+SizeSprd)*MeanTransSize pages. Rpnax is therefore computed with the formula given above
by setting NumReads and NumWrites to this value. Note that for the special case where Wri-
teProb is 0.0, the largest possible transaction merely reads (1+SizeSprd)*MeanTransSize pages.
To maintain uniformity across experiments, however, the R, value is always computed

assuming that the largest possible transaction updates all of its pages.




CHAPTER 4

THE POTENTIAL OF OPTIMISTIC CONCURRENCY CONTROL

4.1. Introduction

A hallmark of modern computer systems is their support for multi-programming,
whereby multiple programs can execute simultaneously in the computer system. The benefit
of multi-programming is that it increases the utilization of system resources, and can therefore
result in increased task throughput. In a multi-programmed database system, it is necessary
to control concurrent transaction execution to maintain database consistency. This control is
achieved by requiring transactions to follow a concurrency control protocol while accessing

data.

Several different concurrency control mechanisms have been proposed in the database
literature [Bern87]; two well-known classes are locking protocols (e.g. [Gray79]), and
optimistic techniques (e.g. [Kung81]). Performance studies of these mechanisms in conven-
tional database systems (e.g. [Agra87]) have concluded that, under limited resource conditions,
locking protocols outperform optimistic techniques. These results may not apply to real-time
database systems, however, due to the significant differences between conventional and real-
time database systems.

In this chapter, we profile the performance behavior of locking protocols and optimistic
techniques in the context of a firm-deadline real-time database system. All transactions have
the same value in the experiments of this chapter, so the performance metric of interest is the

number of missed deadlines.

.37 -
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4.2. Concurrency Control Algorithms

Several concurrency control algorithms have been developed based on the locking and
optimistic concurrency control mechanisms [Bermn81]. We compare a specific locking protocol,
2PL-HP, with a specific optimistic technique, OPT-BC, in this chapter. These particular
instances were chosen because they appear well-suited to an RTDBS environment, are of com-
parable complexity and are general in their applicability. The details of these algorithms are

explained below.

4.2.1. 2PL-HP

In classical two-phase locking (2PL) [Eswa76, Gray79|, transactions set read locks on
objects that they read, and these locks are later upgraded to write locks for the objects that are
updated. If a lock request is denied, the requesting transaction is blocked until the lock is

released. Read locks can be shared, while write locks are exclusive.

In 2PL-HP, the basic 2PL algorithm is augmented with a High Priority [Abbo88b] conflict
resolution scheme to ensure that high priority transactions are not delayed by low priority
transactions. This scheme resolves all data conflicts in favor of the transaction with the higher
priority. When a transaction requests a lock on an object held by other transactions in a
conflicting lock mode, if the requester's priority is higher than that of all the lock holders, the
holders are restarted and the requester is granted the lock; if the requester’'s priority is lower,

it waits for the lock holders to release the object.! An additional benefit of the High Priority

scheme is that it serves as a deadlock prevention mechanism.?

! In addition, a new reader can join a group of read-lockers only if its priority is higher
than that of all waiting writers.

2 This is true only for priority assignment policies that assign unique priority values and
do not change a transaction’'s priority during the course of its execution.
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4.2.2. OPT-BC

In classical optimistic concurrency control (OPT) [Kung81], transactions are allowed to
execute unhindered until they reach their commit point, at which time they are validated. A
transaction is restarted at its commit point if it fails its validation test. This test checks that
there is no conflict of the validating transaction with any of the transactions that have commit-
ted since it began execution.

In OPT-BC, the basic OPT algorithm is modified to implement the so-called Broadcast
Commit (BC) [Mena82, Robi82] scheme.3 Here, when a transaction commits, it notifies other
currently running transactions that conflict with it and these conflicting transactions are
immediately restarted. A conflict exists between the validating transaction V and an executing
transaction E iff the intersection of the write set of V and the current read set of E is non-
empty.* Note that there is no need to check for conflicts with previously committed transac-
tions since, in the event of a conflict, any such transaction would already have restarted the
validating transaction at its (the committed transaction’s) own earlier commit time. This also
means that a validating transaction is always guaranteed to commit. The broadcast commit
method detects conflicts earlier than the basic OPT algorithm, resulting in earlier restarts and
lesser wasted resources: this increases the chances of meeting transaction deadlines. A point
to note is that this algorithm does not use transaction priorities in resolving data contention.

We will return to this issue later in the chapter.

3 The Broadcast Commit scheme is also referred to as "forward" optimistic concurrency
control [Hard84].

4 A scheme for implementing the broadcast commit method is discussed in Appendix A.
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4.3. 2PL-HP versus OPT-BC

Locking and optimistic concurrency control represent two exiremes in terms of data
conflict detection and conflict resolution - locking detects conflicts as soon as they occur and
resolves them using blocking; optirnistic concurrency control detects conflicts only at transac-
tion commit times and resolves them using restarts. Earlier comparative studies of locking
and optimistic algorithms for a conventional DBMS (e.g. [Agra87]) have shown that, under
operating circumstances of limited resources, locking provides significantly better performance
than optimistic concurrency control. Some fundamental aspects of the RTDBS environment,

outlined below, indicate a potential for these previous results to be altered here.

4.3.1. Blocking

The main reason for the good performance of locking in a conventional DBMS is that its
blocking-based conflict resolution policy results in conservation of —resources. while the
optimnistic algorithm with its restart-based conflict resolution policy wastes more resources. In
an RTDBS environment, however, we expect to see a smaller difference between the useful
resource utilizations of the two algorithms, thus reducing the advantage that locking has over
optimistic algorithms. This is because OPT-BC implicitly derives a blocking effect due to
resource contention - low priority transactions wait when resources are captured by high prior-
ity transactions. Low priority transactions that may conflict with high priority transactions are
thus effectively prevented from making progress by priority-based resource scheduling, thereby
decreasing the chances of data conflicts. Also, if a conflict does occur and the low priority
transaction has to be restarted, the wasted resource utilization is at least reduced. Conversely,

2PL-HP loses some of basic 2PL's blocking factor due to the partially restart-based nature of

the High Priority scheme.
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4.3.2. Restarts

In locking algorithms, data conflicts are resolved as soon as they occur, while in optimnis-
tic algorithms, data conflicts are resolved only when a transaction attempts to commit. In a
conventional DBMS, the delayed conflict resolution of optimistic algorithms causes them to
waste more resources than locking algorithms. In an RTDBS, however, this delayed conflict
resolution can actually aid in making better decisions since more information about the
conflicting transactions is available when the conflict is resolved. For example, with 2PL-HP, a
transaction could be restarted by a higher priority transaction that later misses its deadline
and is discarded. This means that the restart did not result in the higher priority transaction
meeting its deadline. In addition, it may cause the lower priority transaction to miss its own
deadline. Therefore, such wasted restarts can result in performance degradation. With OPT-
BC, however, a transaction that reaches its validation stage is guaranteed to commit and com-
plete before its deadline. Since only validating transactions can cause restarts of other tran-

sactions, no wasted restarts are generated by the OPT-BC algorithm.

4.3.3. Priority Reversals

With some transaction priority assignment schemes (e.g. LeastSlack [Abbo88b]), it is pos-
sible for a pair of concurrently running transactions to have opposite priorities relative to each
other at different points in time during their execution. We will refer to this phenomenon as
priority reversal® With 2PL-HP, data conflicts between members of such a pair could result in

mutual restarts, that is, the pair may restart each other.

An example of the mutual restart phenomenon is shown in Figure 4.1. There we show
the priority profile as a function of time for two concurrently executing transactions A and B,

with deadlines D, and Dg, respectively. In these profiles, although A initially has higher -

5 This is different from priority inversion [Sha87], which refers to the situation where a
transaction is blocked (due to a data or resource conflict) by a lower-priority transaction.
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Priority

3

Xy X X3 Dg Dy Time

Figure 4.1: Mutual Restarts with 2PL-HP

priority than B, the situation gets reversed with the passage of time because B has a higher
rate of priority increase. At time t = X, transaction B locks object X. At time t = X, transac-
tion A attempts to access the same object in a conflicting mode. Since, at this time, the prior-
ity of A is greater than that of B, B is restarted and A is granted the lock. B begins re-
executing with a new priority profile and attempts to access object X at time t = X3. At this
time, A is still holding the lock on object X. Since B now has a higher priority than A, it is A’'s
turn to be restarted while B is given the lock. Finally, B misses its deadline at Dg, while A
misses its deadline at D,. The observation here is that the sequence of restarts hindered the

progress of both transactions, thus resulting in degraded performance.

Based on the above example, we can envision situations where, because of dynamically
shifting transaction priorities, mutual restarts take place leading to an increased number of

missed deadlines. Also, depending on the dynamics of the priority profile, the database system
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may have to "constantly" poll all locked data objects to check that lock holders still maintain

higher priority over their associated lock waiters.® If a priority reversal is detected, the High

Priority scheme is applied between the waiters and the lock holders.

In contrast to the above behavior of 2PL-HP, such priority related problems do not arise

with OPT-BC since it does not make use of priorities in resolving data conflicts.

We conducted experiments to evaluate the performance effects of the above-mentioned
factors, and the following section describes the experimental setup and the results that were

obtained.

4.4. Experiments and Results

In this section, we present performance results for our experiments comparing 2PL-HP
and OPT-BC in a firm-deadline RTDBS environment. We began our investigation by first
developing a baseline experiment. Further experiments were constructe—d around the baseline
experiment by varying a few parameters at a time. These experiments evaluate the impact of
data contention, resource contention, deadline tightness/slackness and priority reversals. To
serve as a basis for comparison, the performance achievable in the absence of any concurrency
control are also shown on the graphs under the title NO-CC. The NO-CC curve should be
interpreted as the contribution of resource contention alone towards performance degradation.
In Appendix B, a theoretical basis is established for the shapes of the curves seen in the simu-
lation results.

In all the experiments described in this chapter, deadline formula DF1 is used to assign

transaction deadlines. This means that all transactions have the same slack ratio. The tran-

saction priority assignment in most of the experiments is Earliest Deadline — transactions with

6 This is required not only to ensure that higher priority transactions are not held up by
lower priority transactions, but also for deadlock prevention - the High Priority scheme does
not function as a deadlock prevention mechanism if priority reversals are possible.



44

earlier deadlines have higher priority than transactions with later deadlines. For one experi-

ment, however, which is designed to investigate the impact of priority reversals, the priority
assignment is discrete LTD (Least Tirne to Deadline).7 In the basic LTD scheme [Abbo89], the

priority of a transaction at tirne t is evaluated® as (Dr - t). For the discrete variant, the priority
of a transaction is evaluated when it arrives and reevaluated only whenever it is restarted. In
between reevaluations, the priority remains at its previously computed value. Since priorities
are recomputed only at restarts, it is not necessary to poll data objects to check that lock hold-

ers maintain higher priority than their associated lock waiters.

4.4.1. Experiment 1: Baseline Experiment

The settings of the workload parameters and system parameters for the baseline experi-
ment are listed in Table 4.1. (For clarity, the workload parameters related to transaction value
distribution are not shown since all transactions have the same value, namely 100.0.) These

settings generate an appreciable level of both data and resource contention, thus serving to

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages || DatabaseSize | 1000 pages
SprdSize 0.5 NumCPUs 10
WriteProb 0.25 NumbDisks 20
DeadlineFormula | DF1 PageCPU 10ms

LSF 4.0 PageDisk 20ms

HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

Table 4.1: Baseline Parameter Settings

7 Priority reversals do not occur with the Earliest Deadline priority assignment since tran-
saction priorities remain unchanged relative to each other.

8 The scheme described in [Abbo89] is actually LeastSlack, where the priority is computed
as (Dr - t- rp), with rr being the remaining service requirement of transaction T. Since we as-
sume that the RTDBS has no knowledge of transaction service requirements, the formula has
been modified accordingly.
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bring out the performance differences between the algorithms. For this experiment, Figures
4.2(a) and 4.2(b) show the Miss Percent behavior under normal load and heavy load condi-
tions, respectively. From these graphs it is clear ﬁhat, at very low arrival rates, 2PL-HP and
OPT-BC perform almost identically, but as the arrival rate increases, OPT-BC performs pro-

gressively better than 2PL-HP. The cause for the better performance of OPT-BC is its lower

number of restarts, as shown in Figure 4.2(c).° With OPT-BC, only a committing transaction
can cause the restarts of other transactions. With 2PL-HP, however, a transaction can gen-
erate restarts at any time during the course of its execution. Therefore, even a transaction
which is eventually discarded may cause the restarts of other transactions during its sojourn

in the system. At higher loads, when many transactions miss their deadline and have to be
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9 All "restart" graphs are normalized on a per-transaction basis; that is, they are comput-
ed as the number of restarts divided by the number of input transactions.



46

discarded, 2PL-HP has significantly more restarts than OPT-BC. This is brought out clearly in
Figure 4.2(c), where a large difference is observed between the "useful restarts” curve for 2PL-
HP, which shows the number of restarts caused only by eventually comritted transactions,
and the "total restarts” curve for 2PL-HP, which shows the total number of restarts caused by
all transactions. (The restarts decrease after a certain load because resource contention,
rather than data contention, becomes the more dominant reason for transactions missing their

deadlines}.

Figure 4.2(d) shows the average progress made by transactions before they were restarted
due to data conflicts. It is clear from this figure that 2PL-HP consistently detects conflicts ear-
lier than OPT-BC. One might therefore expect 2PL-HP to waste less resources than OPT-BC.
However, since OPT-BC has far fewer restarts, it actually makes better overall use of resources
than 2PL-HP. This concept is quantified in Figure 4.2(e), where the total utilization and the
useful utilization of the processors are shown. Useful utilization is computed as the processor
usage made by those transactions that eventually met their deadlines. The processor utiliza-
tion is selected here because the processors are the bottleneck resource with the parameter
settings of this experiment. From the utilization curves, it is clear that OPT-BC is more

resource-efficient than 2PL-HP.

An important point to note is that the transaction workload of this experiment could be
expected, in the absence of deadlines, to generate exactly the opposite results in a resource-
limited conventional DBMS: A locking algorithm would perform better than an optimistic algo-
rithm because (a) it has no wasted restarts since all transactions are eventually executed to

completion, and (b) it is better at conserving resources.

4.4.2. Experiment 2: Pure Data Contention

The goal of our next experiment was to isolate the impact of data contention on the per-

formance of the concurrency control algorithms. For this experiment, therefore, the resources
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were made "infinite".!° The performance results for this system configuration are presented in
Figures 4.3(a) and 4.3(b) (the NO-CC graph is not shown since resource contention is absent in
this experiment). These figures show OPT-BC to perform much better than 2PL-HP in terms of
both normal load performance and heavy load performance. There are two reasons for OPT-BC
outperforming 2PL-HP here: First, the basic wasted restarts problem of 2PL-HP, as outlined
earlier for the baseline experiment, occurs here too. This effect is shown in Figure 4.3(c).
Second, the blocking component of 2PL-HP reduces the number of transactions that are exe-
cuting and making progress. The blocking causes an increase in the average number of tran-
sactions in the system, thus generating more conflicts and a greater number of restarts. This
behavior of 2PL-HP is in contrast to that of OPT-BC, where transactions are always executing

and are never blocked. This effect is quantified in Figure 4.3(d).

An important observation here is that while resource contention can be reduced by pur-
chasing more resources and/or faster resources, there exists no equally simple mechanism to
reduce data contention. It should also be noted that optimistic algorithms perform better than
locking protocols under infinite resource conditions in a conventional DBMS setting as well

[Fran85, Agra87].

4.4.3. Experiment 3: Deadline Tightness / Slackness

Our next experiment examined the effect that the tightness or slackness of deadlines had
on the relative performance of the algorithms. For this experiment, the Slack Factor in the
deadline formula (DF1) was varied from 1 through 10, keeping all the other parameters the
same as those of the baseline experiment. The experiment was conducted for arrival rates of
10 and 30 transactions/sec and the corresponding Miss Percent graphs are shown in Figures
4.4 and 4.5, respectively. At low slack factors, both algorithms show a high Miss Percent since

transactions are operating under very tight deadlines. As the slack factor increases,

10 A5 mentioned in Section 3.3, infinite resources means that there is no queueing for
resources.
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transactions are given more time to complete and the Miss Percent decreases sharply. For the
10 transactions/second arrival rate, the Miss Percent goes down all the way to zero. For the
30 transactions/second arrival rate, however, the Miss Percent stays virtually constant beyond
a slack factor of 5 for both 2PL-HP and OPT-BC. This behavior is explained as follows: Since
increasing the slack factor provides transactions with more time to complete, it results in more
transactions concurrently executing in the system rather than being discarded as late. As the
number in the system increases, the resources in the system eventually saturate and the Miss

Percent then becomes constant for a fixed arrival rate.

We also observe from Figures 4.4 and 4.5 that the superior performance of OPT-BC over

2PL-HP is maintained across the entire range of slack factors.

4.4.4. Experiment 4: Priority Reversals

In order to examine the performance effect of priority reversals, we conducted an experi-
ment where discrete LTD was used as the transaction priority assignment while keeping the

other parameters the same as those of the baseline experiment. For this experiment, the 2PL-
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HP algorithm was altered in the following manner: The priority of the requesting transaction is
compared not with the current priority of the lock holders, but with the priority the lock hold-
ers would have if they were to be restarted. The reason for this change is to prevent immediate
mutual restarts [Abbo89], where a pair of transactions repeatedly restart each other since the

priority of each, after a restart, is greater than that of the other.

The results of this experiment are shown in Figure 4.6(a). We observe here that 2PL-HP
does significantly worse than OPT-BC over almost the entire range of loadings. For the
corresponding experiment using the Earliest Deadline priority assignment (Experiment 1),
however, 2PL-HP performed comparably to OPT-BC at very low and very high loads, and was
noticeably worse only at intermediate loads. The restart curves in Figure 4.6(b) show the rea-
son for the performance of 2PL-HP being further degraded here: It now suffers not only from
the wasted restarts problem but also from the problem of mutual restarts. The "NO-MUTUAL"

curve in Figure 4.6(b) shows the total number of restarts discounting those caused due to
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priority reversals.!! It is evident from this figure that mutual restarts make a noticeable contri-
bution to the total number of restarts and therefore play a role in degrading the performance of

2PL-HP.

An important point to note here is that the discrete priority evaluation scheme used in
this experiment produces limited fluctuation in transaction priorities since priorities are
recomputed only at transaction restart times. For priority assignments that generate greater
fluctuations in priority, such as basic LTD, the mutual restarts problem could be expected to

have a greater imnpact on the perforrnance of 2PL-HP.

A second point to note is that 2PL-HP was modified in this experiment to eliminate
immediate mutual restarts. When the experiment was conducted with the original unmodified
version of 2PL-HP, the performance of 2PL-HP was observed to be substantially worse due to

immediate mutual restarts.

A final observation is that the modification of 2PL-HP to eliminate immediate mutual res-
tarts works only for priority assignments that maintain a constant transaction priority between
restarts. If transaction priorities can change in between restarts, immediate mutual restarts

can occur even with the modified 2PL-HP algorithm.

4.4.5. Other Experiments

We studied the sensitivity of the results of the experiments described in this chapter to
changes in the mean transaction size, the database size and the transaction page write proba-
bility (refer to [Hari90a] for details). In one experiment, the mean transaction size was varied
from 4 through 32, keeping the other parameters the same as those of the baseline experi-
ment. In another experiment, the number of pages in the database was varied from 100

through 5000, keeping the other parameters the same as those of the baseline experiment.

11 The mutual restart counter is incremented whenever a transaction A is restarted by
another transaction B, with A itself having restarted B earlier.
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Both these experiments were conducted for an arrival rate of 30 transactions/sec and the
corresponding Miss Percent graphs are shown in Figures 4.7 and Figure 4.8. From these
figures, we observe that when data contention is low (small transactions or large database),
both concurrency control algorithms perform almost the same. This is as expected since,
under low data contention, performance is primarily determined by the resource scheduling
algorithm rather than the concurrency control algorithm. As data contention increases, how-
ever, OPT-BC performs progressively better than 2PL-HP, since 2PL-HP suffers from a greater
number of wasted restarts. A similar behavior of OPT-BC and 2PL-HP was seen in experi-

ments where the transaction page write probability was varied.

In all of the experiments described in this chapter, deadline formula DF1 was used to
assign transaction deadlines. With this formula, all transactions have the same slack ratio.
As explained in the next chapter, a common transaction slack ratio minimizes the adverse

impacts of OPT-BC’s priority indifference. We therefore see OPT-BC outperforming 2PL-HP
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over the entire range of loadings in the experiments discussed here. However, when transac-
tion deadline formulas such as DF2 are used, which result in transactions having different
slack ratios, 2PL-HP outperformed OPT-BC at very low loads. This is because OPT-BC's
priority-indifference has a greater detrimental impact when transactions have different slack
ratios. With increased loading, however, the performance of 2PL-HP steeply degraded due to
the detrimental effects of its wasted restarts dominating the benefits of its priority-cognizance.
In this loading region, therefore, OPT-BC performed better than 2PL-HP in similar fashion to

that seen in the experiments discussed here.

Several other experiments that compare the performance of 2PL-HP and OPT-BC under
different scenarios are detailed in [Hari90a]. In each of these experiments, OPT-BC and 2PL-

HP showed similar behavioral patterns to those observed in the experiments of this chapter.

4.5, Conclusions

In this chapter, we compared the performance of locking and optimistic methods of con-
currency control in a firm deadline RTDBS environment. Detailed experiments were carried
out with two representative algorithms, 2PL-HP and OPT-BC. Our experiments demonstrated
that OPT-BC outperforms 2PL-HP over a wide range of system loading and resource availabil-
ity. This is a surprising result since optimistic algorithms perform worse than locking proto-
cols in resource-limited conventional DBMSs. The improved performance of OPT-BC seen here
stems primarily from the firm-deadline feature of discarding late transactions. In this context,
the delayed conflict resolution policy of OPT-BC aids in making better conflict decisions than
2PL-HP, which resolves conflicts immediately. Since the conflict resolution period of OPT-BC
and 2PL-HP are common to algorithms of their respective classes, we conclude that optimistic
algorithms are basically better suited than locking algorithms to the firm-deadline environ-

ment.

A second surprise is that OPT-BC achieved superior performance in spite of being

priority-indifferent, unlike 2PL-HP, which used priorities to "help" transactions make their
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deadlines. From a performance standpoint, therefore, we conclude that in the firm real-time
domain, even a "vanilla" optimistic algorithm can perform better than a locking algorithm that
is "tuned” to the real-time environment. The development of an optimistic algorithm that
incorporates transaction priorities to further decrease the number of missed deadlines is the

subject of the next chapter.



CHAPTER 35

REAL-TIME OPTIMISTIC ALGORITHMS

5.1. Introduction

In the previous chapter, we studied the relative perforrnance of locking and optimistic
methods of concurrency control in a firm deadline RTDBS environment. Those experiments
demonstrated some fundamental aspects of firm-deadline RTDBSs that result in optimistic
concurrency control outperforming locking. The conventional optimistic algorithm used in
those experiments, OPT-BC, did not factor in transaction deadlines in making data conflict
resolution decisions. However, it still outperformed 2PL-HP, a priority-cognizant locking algo-
rithm. The following question then naturally arises: Can priority information be used to
improve the performance of the optimistic algorithm and thus further decrease the number of

late transactions?

A straightforward way to introduce priority would be to use priority information in the
resolution of data conflicts, that is, to resolve data conflicts always in favor of the higher prior-
ity transaction. For optimistic algorithms, this would mean that a low priority transaction
would never be allowed to restart a higher priority transaction. This approach has two prob-
lems, however: First, giving preferential treatment to high priority transactions may result in
an increase in the number of missed deadlines. This can happen if helping one high priority
transaction make its deadline causes several lesser priority transactions to miss their dead-
lines. Second, if fluctuations can occur in transaction priorities, repeated conflicts between a
pair of transactions may be resolved in some cases in favor of one transaction and in other

cases in favor of the other transaction. This would hinder the progress of both transactions
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and result in degraded performance. Therefore, a priority-cognizant optimistic algorithm must

address these two problems in order to perform better than a simple optimistic scheme.

In optimistic algorithms, data conflicts are detected only at the time of transaction valida-
tion. Therefore, different approaches to conflict resolution can be introduced only at this junc-
ture. A validating transaction can follow one of three paths: commit, restart or wait. In the
commit option, the validating transaction comrmits, restarting conflicting transactions in the
process. In the restart option, the validating transaction restarts itself. Finally, in the wait
optioh. the validating transaction neither commits nor restarts, but simply waits. A validating
transaction that chooses the wait option may later, after waiting for a while, follow either the

commit or restart options.

In this chapter, we develop several new real-time optimistic concurrency control algo-
rithms based on the above options. A performance study of these algorithms shows one of
them, WAIT-50, to be especially promising. The WAIT-50 algorithm incorporates a priority
wait mechanism that makes low priority transactions wait for conflicting high priority transac-
tions to complete, thus enforcing preferential treatment for high priority transactions. To
address the first problem raised above, WAIT-50 features a wait control mechanism. This
mechanism monitors transaction conflict states and, with a simple "50 percent" rule, dynami-
cally controls when and for how long a transaction is made to wait. The second problem is
handled by having the priority wait mechanism resolve conflicts in a manner that results in the

commit of at least one of the conflicting transactions.

In this chapter, we first discuss the limitations of OPT-BC and then outline alternative
methods of adding priority information to optimistic algorithms. Finally, we compare the per-
formance of various real-time optimistic algorithms, including WAIT-50, to that of OPT-BC. All
transactions have the same value in the experiments of this study, and the performance metric

is the number of missed deadlines.
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5.2. Limitations of OPT-BC
The validation algorithm of OPT-BC can be succinctly written as:

restart all conflicting transactions;
commit the validating transaction;

With this validation algorithrn, transactions reaching their validation stage always commit, and
do not consider the priorities of the transactions that they restart in the process. To illustrate
the problem caused by this unilateral commit, consider the scenario in Figure 5.1, where the
execution profile of two concurrently executing transactions, X and Y, is shown. X has an
arrival time Ay and deadline Dy, and Y has an arrival time Ay and deadline Dy. Assume that
transaction X, by virtue of its earlier deadline, has a higher priority than transaction Y. Now,
consider the situation where at time t = valy, when transaction X is close to completion, tran-
saction Y reaches its validation point and detects a conflict with X. Under the OPT-BC algo-
rithm, Y would immediately commit and in the process restart X. Restarting X at this late

stage guarantees that it has no chance of meeting its deadline.

comy Dy

Figure 5.1: Poor OPT-BC decision
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In the above example, a priority-cognizant algorithm would have prevented Y from commit-
ting until X had completed. With this decision, we could possibly gain the completion of both
transactions X and Y before their deadlines, as shown in Figure 5.1, where X completes at time

t = comy and Y completes later at time t = comy.

It is important to note that preventing transaction Y from committing does not guarantee
that both transactions will eventually make their deadline. In fact, there are several possible
outcomes: (1) transactions X and Y both miss their deadlines; (2) only one of the transactions
makes its deadline; or, (3) both transactions make their deadlines. The above example, how-
ever, serves to show that OPT-BC’s indifference to transaction priorities can result in degraded
performance. Another drawback of OPT-BC is that it has an inherent bias against long tran-
sactions, just like the classical optimistic algorithm.! The use of priority information in resolv-

ing conflicts may help to counter this bias as well.

5.3. Prioritized Optimistic Algorithms

In this section, we describe several new optimistic algorithms that try to address the
problems of OPT-BC without sacrificing the performance-beneficial aspects of the broadcast
commit scheme. In the subsequent discussion, the term conflict set is used to denote the set
of currently running transactions that conflict with a validating transaction. The acronym CHP
(Conflicting Higher Priority) is used for the set of transactions that are in the conflict set and
have a higher priority than the validating transaction. Similarly, the acronym CLP (Conflicting
Lower Priority) refers to transactions that are in the conflict set and have a lower priority than
the validating transaction. In this section, our aim is to motivate the development of the algo-

rithms and discuss, at an intuitive level, their potential strengths and weaknesses.

! Locking algorithms in general, and 2PL-HP in particular, do not have this bias.



60

The example of the previous section, illustrating a poor conflict decision by OPT-BC,
showed that a mechanism is required to prevent low priority transactions that conflict with
higher priority transactions from unilaterally committing. The following two options are avail-

able:
(1) Restart: The low priority transaction is restarted.
(2) Block: The low priority transaction is blocked.

In the following section, we develop two algorithms, OPT-SACRIFICE and OPT-WAIT, based on
the restart and block options, respectively. WAIT-50 is then developed as an extension of the

OPT-WAIT algorithm.

5.3.1. OPT-SACRIFICE

In this algorithm, a transaction that reaches its validation stage checks for conflicts with
currently executing transactions. If conflicts are detected and at least one of the transactions
in the conflict set is a CHP transaction, then the validating transaction is restarted - that is, it
is sacrificed in an effort to help the higher priority conflicting transactions make their dead-

lines. The validation algorithm of OPT-SACRIFICE can therefore be written as:

if CHP transactions in conflict set then
restart the validating transaction;
else
restart transactions in conflict set;
cornmit the validating transaction;

In the example of Figure 5.1, the OPT-SACRIFICE algorithm would restart transaction Ty at

time t = valy due to its conflict with the higher priority transaction X.

OPT-SACRIFICE is priority-cognizant and satisfies the goal of giving preferential treatment
to high priority transactions. It suffers, however, from two potential problems. First, there is
the problem of wasted sacrifices, where a transaction is restarted on behalf of another tran-
saction that is later discarded. Such restarts are useless and cause performance degradation.

Second, priority reversals can lead to mutual sacrifices, where a pair of transactions restart
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themselves for each other, thus hindering the progress of both transactions. For example, the
situation may arise where transaction A is restarted for transaction B because B's priority is
currently greater than A’s priority, and at a later time, transaction B is restarted for transac-
tion A because A's priority is now greater than B's priority. These two drawbacks of OPT-
SACRIFICE are analogous to the "wasted restarts" and "mutual restarts" problems of 2PL-HP

that were described in the previous chapter.

5.3.2. OPT-WAIT

The OPT-WAIT algorithm incorporates a priority wait mechanism: a transaction that
reaches validation and finds CHP transactions in its conflict set is temporarily "put on the
shelf”, that is, it is made to wait and not allowed to commit immediately. This gives the higher

priority transactions a chance to make their deadlines first. The validation algorithm of OPT-

WAIT can therefore be written as?:

while CHP transactions in conflict set do
wait;

restart transactions in conflict set;

commit the validating transaction;

In the example of Figure 5.1, the OPT-WAIT algorithm would force transaction Y to wait at
t = valy, without committing, allowing transaction X to complete first. Of course, X's comple-

tion could cause Y to be restarted.

There are several reasons which suggest that the priority wait mechanism may have a

positive impact on performance, and these are outlined below:
(1) In keeping with the original goal, precedence is given to high-priority transactions.

(2) The problem of "wasted sacrifices” does not exist here. This is because the waiter is

immediately "taken off the shelf’ and committed if the CHP transaction misses its

2 A scheme for implementing the priority-wait mechanism method is discussed in Appen-
dix A.
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deadline and is discarded (assuming, of course, that no other CHP transactions

remain).

(3)  The problem of "mutual sacrifices" does not exist here. This is because the waiter will
stop waiting and commit if the CHP transaction that is being waited for ever becomes a

CLP transaction (assuming, of course, that no other CHP transactions remain).

(4) A blocking effect is derived from the transaction wait process - this results in conserva-

tion of resources, which can be beneficial to performmance [Agra87].

(5)  The fact that a CHP transaction commits does not necessarily imply that the waiting

transaction has to be restarted (!).

The last point requires further explanation: The key observation here is that if transac-
tion A conflicts with transaction B, this does not necessarily mean that the converse is true
[Robi82, Hard84]. This is explained as follows: Under the broadcast commit scheme, a vali-
dating transaction A is said to conflict with another transaction B if and only if

WriteSet, ~ ReadSetg # ¢ (1)
We will denote such a conflict from transaction A to B by A—B. For transaction B to also
conflict with transaction A, i.e. for B—A, it is necessary that

WriteSetgy (~ ReadSet, # ¢ (2)
From Equations (1) and (2), it is obvious that A—B does not imply B—A. Therefore, if in fact
B—A is not true, then by committing the transactions in the order (B,A) instead of the order

(A, B), both transactions can be successfully committed without restarting either one.

As per the explanation given above, it is possible with OPT-WAIT’s waiting scheme for the
CHP transaction to commit, and for the waiting transaction to commit immediately afterwards.
This means that the conflict between the waiter and the CHP transaction was resolved without
a restart. Therefore, the priority wait mechanism has a potential to actually eliminate some
data conflicts. In Appendix C, a simple probabilistic analysis of the extent to which waiting

can cause a reduction in data conflicts is presented.
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Although the waiting scheme has many positive features, it has some drawbacks as well.
One potential drawback is that if a transaction finally commits after waiting for some time, it
causes all of its CLP transactions to be restarted at a later point in time. This decreases the
chances of these transactions meeting their deadlines, and also wastes resources. A second
drawback is that the validating transaction may develop new conflicts during its waiting
period, thus causing an increase in conilict set sizes and leading to more restarts. Another
way to view this is to realize that waiting causes objects to be, in a sense, "locked" for longer
periods of time. Therefore, while waiting has the capa?_ility to reduce the probability of a
restart-causing conflict between a particular pair of t'ransactions, it can simultaneously
increase the probability of having a larger number of conflicts per transaction. This increase

may be substantial when there are many concurrently executing transactions in the system.

5.3.3. WAIT-50

The WAIT-50 algorithm is an extension of OPT-WAIT. In addition to the priority wait
mechanism, it also incorporates a wait control mechanism. This mechanism monitors tran-
saction conflict states and dynamically decides when, and for how long, a low priority transac-
tion should be made to wait for its CHP transactions. A transaction’s conflict state is assumed
to be characterized by the index HPpercent, which is the percentage of the transaction’s total
conflict set that is formed by CHP transactions. The operation of the wait mechanism is condi-
tioned on the value of this index. In WAIT-50, a simple "50 percent” rule is used - a validating
transaction is made to wait only while HPpercent 2 50, that is, while half or more of its conflict
set is composed of higher priority transactions. The validation algorithm of WAIT-50 can

therefore be written as:

while CHP transactions in conflict set and HPpercent > 50 do
wait;

restart transactions in conflict set;

commit the validating transaction;
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The aim of the wait control mechanism is to detect when the beneficial effects of waiting,
in terms of giving preference to high priority transactions and decreasing pairwise conflicts, are
outweighed by its drawbacks, in terms of later restarts and an increased number of conflicts.
The "effective priority" of a conflict set is measured in terms of its high priority component.
Based on this measure, it is decided whether or not waiting could be expected to increase the
number of in-time transactions. Therefore, while OPT-WAIT and OPT-BC represent the
extremes with regard to waiting (OPT-WAIT always waits for a CHP transaction, and OPT-BC
never waits), WAIT-50 is a hybrid algorithm that controls the amount of waiting based on tran-
saction conflict states. In fact, we can view OPT-WAIT, WAIT-50, and OPT-BC as all being spe-
cial cases of a general algorithm WAIT-X, where X is the cutoff HPpercent level, with X taking

on the values 0, 50, and «, respectively, for these algorithms.

We conducted experiments to evaluate the performance of the various optimistic algo-
rithms, and the following section describes the experimental setup and the results that were

obtained.

5.4. Experiments and Results

We began our experiments by evaluating the algorithms for the baseline experiment of the
previous chapter. Subsequently, for reasons explained in the following discussion, a new
baseline experiment was developed. Further experiments were constructed around the new
baseline experiment by varying a few parameters at a time:. These experiments evaluate the

impact of data contention, resource contention, and the wait control mechanism parameters,

For the most part, the experimental framework of this chapter is identical to that of the
previous chapter. A difference, however, lies in the deadline formulas that are used in the
baseline experiments. Deadline formula DF1, which assigns the same slack ratio to all tran-
sactions, was used in the baseline experiment of the previous chapter. Here, in order to evalu-
ate the effects of variability in transaction slack ratios, deadline assignment formula DF2 is

used in the baseline experiment. In the following description, the terms FIX-SR (Fixed Slack
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Ratio) and VAR-SR (Variable Slack Ratio) are used to distinguish between the baseline experi-

ments of the previous chapter and this chapter.

5.4.1. Experiment 1: Fixed Slack Ratio

The settings of the workload parameters and resource parameters for the FIX-SR baseline
experiment are listed in Table 5.1 (reproduced from Table 4.1). For this experiment, Figures
5.2(a) and 5.2(b) show Miss Percent behavior under normal load and heavy load conditions,

respectively.

From this set of graphs, we observe that OPT-SACRIFICE performs poorly over the entire
operating region, and in fact performs worse than the priority-indifferent OPT-BC. The poor
performance of OPT-SACRIFICE is primarily due to its "wasted sacrifices" problem, which was
discussed in Section 5.3.1. Turning our attention to the wait-based algorithms, OPT-WAIT and
WAIT-50, we observe that at normal loads, their performance is superior to that of OPT-BC.
This is due to the beneficial effects of their priority cognizance. At heavy loads, however,
WAIT-50 and OPT-WAIT behave identically to OPT-BC. This is because, with heavy resource
contention, it is uncommon for a low priority transaction to get access to the resources. Con-
sequently, transactions usually reach their validation stage only when their deadline is quite
close. Also, since the priority assignment is Earliest Deadline, the conflicting higher priority

transactions of a waiting transaction usually end up missing their deadlines since their dead-

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages || DatabaseSize | 1000 pages
SprdSize 0.5 NumCPUs 10
WriteProb 0.25 NumbDisks 20
DeadlineFormula | DF1 PageCPU 10ms

LSF 4.0 PageDisk 20ms

HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

Table 5.1: FIX-SR Baseline Parameter Settings
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lines are even closer than that of the waiting transaction. This means that waiting transac-
tions are rarely restarted and usually comnmit after waiting for a short while. Therefore, the
priority wait mechanism has very limited impact, and WAIT-50, OPT-WAIT, and OPT-BC

become essentially the same algorithm.

When the above experiment is carried out with infinite resources, Figures 5.3(a) and
5.3(b) are obtained. In these figures, we observe that OPT-SACRIFICE performs much worse
than the wait-based algorithms, relative to the corresponding performance under finite
resources. For the most part, OPT-SACRIFICE also performs worse than OPT-BC. The perfor-
mance of OPT-SACRIFICE is further degraded here since the high data contention levels lead
to a steep increase in the number of conflicts and, consequently, in the number of "wasted
sacrifices".

Turning our attention to OPT-WAIT, we observe that it performs very well at low levels of

data contention due to the beneficial effects of its priority cognizance. As data contention




259 +——+ OPT-BC 60 2 T — OPT-BC

o—0 OPT-WAIT o OPT-WAIT

° > WAIT-50 o———&  WAIT-50

H—A - .

OPT-SACRIFICE A& OPT.SACRIFICE
M M /A
1 i
s s 40 1
S S
P P __°
e e
T T
. . /
e e 20 4 /
n n
t {
¢
0.0 10.0 20.0 30.0 40.0 50.0 50.0 60.0 70.0 80.0 90.0 100.0
Arrival Rate Arrival Rate
Figure 5.3(a): ~ Resources (Normal) Figure 5.3(b): - Resources (Heavy)

increases, however, its performance steadily degrades. Finally, at high data contention levels,
it performs noticeably worse than OPT-BC. The reason for OPT-WAIT's poor performance in
this region is that its priority wait mechanism causes a significant increase in the average
number of transactions in the system. This increase in population leads to an increased

number of data conflicts and results in degraded performance.

Moving on to the WAIT-50 algorithm, we observe that it provides the best overall perfor-
mance. WAIT-50 behaves like OPT-WAIT under low data contention, and behaves like OPT-BC
under high data contention. The explanation for this behavior of WAIT-50 is provided in the

next section.

The above set of experiments were encouraging because they showed that there are per-
formance benefits to be gained by using priority-cognizant algorithms. It was all the more
encouraging that these performance improvements were obtained despite all transactions hav-
ing the same slack ratio. A fixed transaction slack ratio reduces the likelihood that a priority

inversion restart, where a transaction is restarted by a lower priority transaction, results in the
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higher priority transaction missing its deadline. This creates favorable circumstances for
OPT-BC since the detrimental effects of its priority insensitivity are reduced. When transac-
tions have different slack ratios, however, the chances of a priority inversion restart proving
"fatal" to the restarted higher priority transactions are increased. This is because transactions
with small slack ratios have limited completion opportunities and therefore easily succumb to

restarts from lower priority transactions.

5.4.2. Experiment 2: Variable Slack Ratio

The VAR-SR baseline experimented was developed in order to obtain a workload with vari-
ation in transaction slack ratios. This experiment uses deadline assignment formula DF2 to
generate variation in transaction slack ratios. The deadline-related workload parameters, LSF
and HSF, are set at 2.0 and 6.0, respectively. This means that half the transactions have a
slack ratio of 2.0 and the other half have a slack ratio of 6.0. Therefore, the mean transaction
slack ratio is the same as that of the FIX-SR baseline experiment, namely 4.0. The remaining
workload parameter settings and resource parameter settings are the same as those of the
FIX-SR baseline experiment (see Table 5.1). In the subsequent discussions, we will compare
the performance of only the OPT-BC, OPT-WAIT and WAIT-50 algorithms since OPT-

SACRIFICE invariably performed worse than the wait-based algorithms.

For the VAR-SR baseline experiment, Figures 5.4(a) and 5.4(b) show the behavior of the
algorithms under normal load and heavy load, respectively. From this set of graphs we
observe that the priority-cognizant algorithms, WAIT-50 and OPT-WAIT, now perform
significantly better than OPT-BC under normal loads. The beneficial effects of their priority
cognizance show up to a greater exten here since the priority inversion restarts of OPT-BC are

more harmful when transactions may have small slack ratios.

When the same experiment is carried out under infinite resources, Figures 5.5(a) and
5.5(b) are obtained. We observe that, at normal loads, the performance improvement of the

wait-based algorithms over OPT-BC is greater relative to the corresponding performance under
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finite resources. The reason for this behavior is the following: Under resource contention, the
priority indifference of OPT-BC is masked to some extent by the priority scheduling at the
resources. Under pure data contention, however, the negative effects of OPT-BC’s priority-

indifference show up in their entirety.

Considering performance at high loads, we observe that OPT-WAIT performs worse than
OPT-BC. This is due to the beneficial aspects of waiting being more than countered by its
negative aspects in terms of later restarts and increased conﬁicts. In contrast, WAIT-50, which
had been behaving like OPT-WAIT at normal loads, now changes character and behaves like
OPT-BC. Therefore, WAIT-50 turns in the best overall performance by behaving like OPT-WAIT

when data contention is low and like OPT-BC when data contention is high.

From the results of all of the above experiments, we can conclude that WAIT-50 provides
performance close to that of either OPT-BC or OPT-WAIT in operating regions where they

behave well, and provides the same or slightly better performance at intermediate points.
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Therefore, in an overall sense, WAIT-50 effectively integrates priority and waiting into the
optimistic concurrency control framework. The control mechanism is clearly quite effective at
deciding when the benefits of waiting, in terms of helping high priority transactions to make
their deadlines, are outweighed by the drawbacks of causing an increased number of conflicts.
In Figure 5.5(c), the "wait factor" of WAIT-50 with respect to that of OPT-WAIT is plotted. The
wait factor measures the total time spent in priority-waiting using WAIT-50, normalized by the
waiting time of OPT-WAIT.® From this figure, it is clear that WAIT-50's wait factor is close to
that of OPT-WAIT at low contention levels but decreases steadily as the data contention level is
increased. Therefore, while OPT-WAIT and OPT-BC represent the extremes with regard to
waiting, WAIT-50 gracefully controls the degree of waiting to match the level of data contention

in the system.

5.4.3. Experiment 3: Wait Control Mechanism

Our next experiment examined the effect of the choice of 50 percent as the cutoff value
for the HPpercent control index. Keeping the workload and system parameters the same as
those of the VAR-SR baseline experiment, we measured the performance of WAIT-25 and
WAIT-75 under conditions of both finite and infinite resources. Figures 5.6(a) and 5.6(b) show
the results of the finite resources experiment under normal load and heavy load, respectively,
while Figures 5.7(a) and 5.7(b) give the corresponding results under infinite resources. From
these graphs, we observe that lowering the cutoff value to 25 percent results in slightly
improved normal load performance but worsened heavy load performance. This behavior is
due to the increased wait factor that is delivered by the decreased cutoff setting. On the other
hand, raising the cutoff value to 75 percent has the opposite effect: the normal load perfor-
mance becomes worse while the heavy load performance improves slightly. This behavior is

due to the decreased priority cognizance that is delivered by the increased cutoff setting.

3 The wait factor of OPT-BC is trivially zero as the algorithm has no wait component.



mm....g

Ll I e B T « Mg w]

mm._..z

~ 3 0 0" 0o T

201 +——-+  OPT-BC
O————© OPT-WAIT
S————O  WAIT-50
LA WAIT-25
15
10 1
5 F
1] - & ¥ v T v 1
0.0 5.0 10.0 15.0 20.0 25.0
Arrival Rate

Figure 5.6(a): Wait Control (Normal)

201 +——+ OPT-BC
G—9 OPT-WAIT
& WAIT-50
A WAIT-25
B8 WAIT-75
151
101
54
0.0 10.0 20.0 30.0 40.0 50.0

Arrival Rate
Figure 5.7(a): « Resources (Normal)

mvx»—-.z

~ 3 00" 0T

l‘ﬂ!ﬂ'—"z

~ 8 00~ o

72

100 - OPT-BC
G—-—0 OPT-WAIT

801

601

40

201

0 Ll L 1
25.0 50.0 75.0 100.0
Arrival Rate

Figure 5.6(b): Wait Control (Heavy)

501 +-——t  QPT-BC
G—O OPT-WAIT
S——0  WAIT-50
O———_f  WAIT-25
401 B—£t  WAIT-7S

50.0 60.0 70.0 80.0 90.0 100.0
Arrival Rate

Figure 5.7(b): « Resources (Heavy)




73

Based on these results, a 50 percent cutoff setting appears to establish a balanced trade-
off between the opposing forces of priority cognizance and increased data contention, and pro-
vides good performance across the entire range of loading. The basic philosophy is that
priority-based waiting is quite beneficial under light loads, when data contention levels are low,
Under heavy loads, however, when data contention levels are high, waiting becomes detrimen-
tal to performance. WAIT-50 is effective in dynamically changing its behavior to match the

level of data contention in the system.

5.4.4. Other Experiments

We studied the sensitivity of the results of the experiments described in this chapter to
changes in transaction write probabilities, deadline formulas, and priority assignment policies.
In these sensitivity experiments, the various optimistic algorithms showed similar behavioral
patterns to those observed in the experiments described here (refer to [Hari90b] for details). In
some of the experiments, however, the control mechanism of WAIT-50 slightly underestimated
the benefits of waiting at normal loads under infinite resources, and WAIT-50 therefore did not
track OPT-WAIT as closely as in the other experiments. This is related to the fact that the con-
trol mechanism uses a single, simple parameter to characterize transaction conflict states and
therefore cannot be expected to completely capture the performance tradeoffs of waiting versus
not waiting. For the most part, however, the choice of 50 percent for the cutoff parameter was

effective in delivering good performance.

Another observation of the above experiments was that the performance improvement of
the wait-based algorithms over OPT-BC at normal loads increased with the range of variation
in slack ratios. This is because the "fatality factor” of priority inversion restarts increases with

the variance in slack ratios.

Another interesting observation was that the heavy load performance of OPT-WAIT
became extremely poor for workloads with high transaction write probabilities. This is due to

two reasons: First, the high write probability generates heavy data contention which, in com-
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bination with the population increase effect of the wait mechanism, results in a steep increase
in the number of restarts. Second, the conflict-elimination capability of OPT-WAIT decreases
with increased write probability. In fact, at a write probability of 1.0, OPT-WAIT's conflict elim-

ination capability completely vanishes since all conflicts become bi-directional.

5.5. Conclusions

In this chapter, we addressed the problem of incorporating transaction deadline informa-
tion in optimistic concurrency control algorithms. We presented and studied several new real-
time optimistic concurrency control algorithms. Among these algorithms, one of them, WAIT-
50, was observed to provide the best overall performance over a range of workloads and
operating conditions. The WAIT-50 algorithm monitors transaction conflict states and gives
precedence to urgent transactions in a controlled manner. It features a priority wait mechan-
ism that provides preferential treatment to high priority transactions, eliminates some data
conflicts by changing the commit order of transactions, and provides immunity to priority

fluctuations.

While the priority wait mechanism of WAIT-50 works well at low data contention levels, it
can cause significant performance degradation at high contention levels by generating a steep
increase in the number of data conflicts. A simple wait control mechanism consisting of a "50
percent” rule is used in the WAIT-50 algorithm to address this problem. The "50 percent” rule
is the following: If half or more of the transactions conflicting with a validating transaction are
of higher priority, the transaction is made to wait; otherwise, it is allowed to commit. WAIT-50
was shown to provide significant performance gains at normal loads over the priority-
insensitive OPT-BC algorithm, especially when there was variance in transaction slack ratios.
In summary, we conclude that the WAIT-50 algorithm successfully utilizes transaction priority

information to provide improved performance in a stable manner.

In the experiments of this chapter, the Earliest Deadline priority assignment was used to

assign transaction priorities. This assignment guarantees that a transaction at its deadline
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has the highest priority in the system. This means that a waiting transaction in either OPT-
WAIT or WAIT-50 will never be still waiting at its deadline. Priority assignments that do not
provide the above guarantee, however, raise an interesting question for the wait-based algo-
rithms: If the deadline of a waiter is reached during the waiting process, should the waiter be
committed or discarded? A decision to commit implies that the algorithms lose some of their
priority cognizance. On the other hand, a decision to discard makes “wasted sacrifices" possi-
ble since the higher priority transactions being waited for may themselves be eventually dis-
carded. Obviously, the choice of committing or discarding should be made based on the asso-
ciated performance impacts, but predicting these impacts is not a simple problem. This is an

open research issue that we hope to address in the future.



CHAPTER 6

ADAPTIVE EARLIEST DEADLINE

6.1. Introduction

In the preceding two chapters, we focused on alternatives for the concurrency control
component of a firrn deadline real-time database system. For priority assignment, we used the
Earliest Deadline mapping which is widely used in existing real-time systerns. In this context,
we showed that optimistic concurrency control is fundamentally better suited than locking to
the firm deadline environment, and developed a new high-performance real-time optimistic CC

algorithm.

If we take a second look at the experimental results of Chapters 4 and 5, an additional
observation is that the performance of all the concurrency control algorithms degrades steeply
under heavy load conditions. Since all of them are affected in this manner, it would seem that
their instability does not lie in the concurrency control scheduling but, instead, in the common
Earliest Deadline priority policy. In this chapter, we therefore shift our focus from the con-

currency control aspect to the priority assignment aspect of real-time transaction scheduling.

A common observation of earlier studies on real-time database systems (e.g. [Abbo88,
Abbo89]) is that the Earliest Deadline priority policy, compared to other priority assignments,
minimizes the number of late transactions under low or moderate levels of resource and data
contention. This is due to Earliest Deadline giving the highest priority to transactions that
have the least remaining time in which to complete. These earlier studies have also observed, .
however, that the performance of Earliest Deadline steeply degrades in an overloaded system.

This is because, under heavy loading, transactions gain high priority only when they are close
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to their deadlines. Gaining high priority at this late stage may not leave sufficient time for
transactions to complete before their deadlines. Under heavy loads, then, a fundamental
weakness of the Earliest Deadline policy is that it assigns the highest priority to transactions
that are close to missing their deadlines, thus delaying other transactions that might still be

able meet their deadlines.

From the above discussion, the following question naturally arises: Can a priority assign-
ment policy be developed based on the Earliest Deadline approach that stabilizes its overload
perfoi‘mance without sacrificing its light-load virtues? A scheme based on simple real-time
principles was presented in [Jens85] for realizing this objective. In order to use this scheme,
which was developed in the context of task scheduling in real-time operating systems, a-priori
knowledge of task processing requirements is necessary. Unfortunately, as mentioned in ear-
lier chapters, knowledge about transaction resource and data requirements is usually unavail-
able in database applications. Therefore, the scheme described in [JehsSS] cannot be used
and methods applicable to transaction scheduling in real-time database systems have to be
developed. The challenge is to develop a computationally simple priority policy that adapts to

system loading levels and thereby provides better performance.

In this chapter, we present Adaptive Earliest Deadline (AED), a new priority assignment
algorithm that stabilizes the overload performance of Earliest Deadline. The AED algorithm
uses a feedback control mechanism to achieve this objective and does not require knowledge of
transaction characteristics. We compare the performance of the AED algorithm to that of Ear-
liest Deadline and other fixed priority mappings. All transactions have the same value in the
experiments of this study, as in the preceding chapters, and the performance metric is the

number of missed deadlines.

6.2. Priority Mappings

The choice of priority mappings in an RTDBS is limited when transactions are dis-

tinguished only by their deadlines. Apart from the previously discussed Earliest Deadline pol-
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icy, there are a few other mappings mentioned in the literature that fit our operating con-
straints. These mappings are described first in this section. Subsequently, the new priority
mapping, Adaptive Earliest Deadline, is presented. The priority assignments of all the map-
pings are such that smaller transaction priority (P7) values reflect higher system priority. The

details of the mappings are presented below.

6.2.1. Earliest Deadline (ED)

The Earliest Deadline mapping assigns higher priority to transactions with earlier dead-

lines, and the transaction priority assignment is Pr = Dr.

6.2.2. Latest Deadline (LD)

The Latest Deadline mapping is the opposite of the Earliest Deadline mapping. It gives

higher priority to transactions with later deadlines, and the transaction priority assignment is

Pr = -—Ijl—r— We expect that, for many real-time applications, newly-submitted transactions will
tend to have later deadlines than transactions already executing in the system. Therefore, it

seems plausible that the Latest Deadline mapping would rectify the overload drawback of Ear-

liest Deadline by giving transactions high priority early on in their execution.

6.2.3. Random Priority (RP)

The Random Priority mapping randomly assigns priorities to transactions without taking
into account any of their characteristics. The transaction priority assignment is Py = Random
(0, »). The performance obtained with this priority mapping reflects the perforinance impact of

the mere existence of somne fixed priority ordering among the transactions.

6.2.4. No Priority (NP)

The No Prority mapping gives all transactions the same priority, and the transaction
priority assignment is Pr = 0. This effectively means that scheduling at each resource is done

in order of arrival to the resource (i.e., local FCFS). The performmance obtained under this
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mapping should be interpreted as the performance that would be observed if the real-time
database system were replaced by a conventional DBMS but the feature of discarding late tran-

sactions was retained.

6.2.5. Adaptive Earliest Deadline (AED)

Our new Adaptive Earliest Deadline priority assignment algorithm modifies the classical
Earliest Deadline mapping based on the following observation: Given a set of tasks with dead-
lines that can all somehow be met, an Earliest Deadline priority ordering will also meet all (or
most of) the deadlines [Jens85]. The implication of this observation is that in order to maxim-
ize the number of in-time transactions, an Earliest Deadline schedule should be used among
the largest set of transactions that can all be completed by their deadlines. The flaw of the
pure ED mapping is that it uses this schedule among all transactions in the system, even
when the system is overloaded. Instead, if the system could "magically" determine at arrival
time what the eventual completion status (in-time or late) of each transaction would be if these
transactions were scheduled by a clairvoyant scheduler, it should use an Earliest Deadline
schedule among the in-time transactions and discard the late transactions. In the absence of
such perfect foresight, alternate methods are required to estimate the completion status of a
transaction. The AED algorithm takes the approach of using a feedback control process as the

estimation method.

6.2.5.1. Group Assignment

In the AED algorithm, transactions executing in the system are collectively divided into
two groups, HIT and MISS, as shown in Figure 6.1. Transactions in the HIT group are
expected to complete before their deadlines, while transactions in the MISS group are expected
to miss their deadlines. Each transaction, upon arrival, is assigned to one of the groups. The

assignment is done in the following manner: The newly-arrived transaction is assigned a
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Figure 6.1: AED Priority Mapping

unique'! key, Ir, with the key being a randomly chosen integer. The transaction is then
inserted into a key-ordered list of the transactions currently in the system, and its position in
the list, posr, is noted. If posr is less than HITcapacity, which is a dynamic control variable of
the AED algorithm, the new transaction is assigned to the HIT group; otherwise, it is assigned

to the MISS group.

6.2.5.2. Priority Assignment

After a new transaction is assigned to a group, it is then assigned a priority using the fol-

lowing formula:

! Transaction keys are sampled uniformly over the set of 32-bit integers. In the unlikely
event that a new key matches that of an existing transaction, the key is re-sampled until a
unique key is obtained.
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(0, Dr, Iy) if Group = HIT
PT =
(1, 0, @) if Group = MISS

With this priority assignment scheme, all transactions in the HIT group have a higher priority
than transactions in the MISS group. (Since the priority is a vector, priority comparisons are
made in lexicographic order.) The transaction priority ordering in the HIT group is Earliest
Deadline. In contrast, the priority ordering in the MISS group is Random Priority since the It's
are selected randomly. For transactions in the HIT group that may have identical deadlines,

the Ir component of the priority serves to break the tie, thus ensuring a total priority ordering.

An important point to note about the AED algorithm is that transactions retain their ini-

tial group and priority assignments for the entire duration of their residence in the system.

6.2.5.3. Discussion

The goal of the AED algorithm is to collect the largest set of transactio-ns that can be com-
pleted before their deadline in the HIT group. It trys to achieve this by controlling the size of
the HIT group, using the HITcapacity setting as the control variable. Then, by having an Earli-
est Deadline priority ordering within the HIT group, the algorithm incorporates the observation
made in [Jens85] that was discussed earlier. The motivation for having a Random Priority

mapping in the MISS group is explained in Section 6.4.

We define the "hit ratio” of a transaction group to be the fraction of transactions in the
group that meet their deadline. Using this terminology, we would ideally like to have a hit ratio
of 1.0 in the HIT group and a hit ratio of 0.0 in the MISS group, since this combination of hit
ratios ensures that all the "doable" transactions, and only these transactions, are in the HIT
group. Achieving this goal would require absolute accuracy in predicting the completion status
of a transaction; this is impossible as the RTDBS has no advance knowledge of transaction
processing requirements and of the future transaction arrival pattern. From a practical stand-
point, therefore, our aim is to maintain a high hit ratio in the HIT group and a low hit ratio in

the MISS group. The key to achieving this lies in the HITcapacity computation, which is



82

discussed below.

6.2.5.4. HIT Capacity Computation

A feedback process that employs system output measurements is used to set the
HITcapacity control variable, as shown in Figure 6.2. The measurements used are
HitRatio(HIT) and HitRatio(ALL). HitRatio(HIT) is the fraction of transactions in the HIT
group that are making their deadline, while HitRatio(ALL} is the corresponding measurement
over all transactions in the system. Using these measurements, and denoting the number of
transactions currently in the system by NumTrans, the HITcapacity is set with the following

two-step computation:

(STEP 1) HITcapacity := HitRatio(HIT) * HITcapacity * 1.05;
(STEP 2} if HitRatio(ALL) < 0.95 then

HITcapacity := Min (HITcapacity, HitRatio(ALL) * NuymTrans * 1.25 );V

STEP 1 of the HITcapacity computation incorporates the feedback process in the setting of
this control variable. By conditioning the new HITcapacity setting based on the observed hit
ratio in the HIT group, the size of the HIT group is adaptively changed to achieve a 1.0 hit ratio.
Our goal, however, is not just to have a HitRatio(HIT) of 1.0, but to achieve this goal with the

largest possible transaction population in the HIT group. It is for this reason that STEP 1
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includes a 5 percent expansion factor. This expansion factor ensures that the HITcapacity is
steadily increased until the number of transactions in the HIT group is large enough to gen-
erate a HitRatio(HIT) of 0.95.% At this point, the transaction population size in the HIT group is
close to optimal, and the HITcapacity remains stabilized at this setting (since

0.95 * 1.05 = 1.0).

STEP 2 of the HITcapacity computation is necessary to take care of the following special
scenario: If the system experiences a long period where HitRatio(ALL) is close to 1.0 due to the
system being lightly loaded, it follows that HitRatio(HIT) will be virtually 1.0 over this extended
period. In this situation, the HITcapacity can become very large due to the 5 percent expan-
sion factor, that is, there is a "runaway" effect. (For a 5 percent expansion factor and a
HitRatio(HIT) of 1.0, the HITcapacity doubles every fifteen cycles of the feedback loop.) If the
transaction arrival rate now increases such that the system becomes overloaded (signaled by
HitRatio(ALL) falling below 0.95), incrementally bringing the HITcapac%ty down from its
artificially high value to the right level could take a considerable amount of time. This means
that the system may enter the unstable high-miss region of Earliest Deadline as every new
transaction will be assigned to the HIT group due to the high HITcapacity setting. To prevent
this from occurring, an upper bound on the HITcapacity value is used in STEP 2 to deal with
the transition from a lightly-loaded condition to an overloaded condition. The upper bound is
set to be 25 percent greater than an estimate of the "right" HitCapacity value. (The choice of 25
percent is based on our expectation that the estimate is fairly close to the "right" value.) This
estimate is derived by computing the number of transactions that are currently making their
deadlines. After the HITcapacity is quickly brought down in this fashion to near the appropri-
ate setting, the HitRatio(HIT) value then takes over as the "fine tuning" mechanism in deter-

mining the HITcapacity setting. The mechanism for computing HitRatio(ALL) and HitRatio(HIT)

2 The 0.95 cutoff used for HitRatio(HIT) is unrelated to the 0.95 value used for
HitRatio(ALL) in STEP 2.
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is described in the next section.

6.2.5.5. Feedback Process

The feedback process for setting the HITcapacity control variable has two parameters,
HITbatch and ALLbatch. These parameters determine the sizes of transaction batches that are
used in computing the output hit ratios. The feedback process operates in the following
manner: Assume that the priority mapper has just set the HITcapacity value. The next HIT-
batch transactions that are assigned to the HIT section of the bucket are marked with a special
label. At the RTDBS output, tl;e completion status (in-time or late) of these specially-marked
transactions is monitored. When the last of these HITbatch transactions exits the systern,
HitRatio(HIT) is measured as the fraction of these transactions that completed before their
deadline. HitRatio(ALL). on the other hand, is continuously measured at the output as the hit
ratio of the last ALLbatich transactions that exited from the systern.® After each measurement
of HitRatio(HIT), the HitRatio(HIT) value is fed back to the priority mapper along with the
current HitRatio(ALL) value. The priority mapper then reevaluates the HITcapacity setting, after

which the whole process is repeated.

At system initialization time, both HitRatio(HIT) and HitRatio(ALL) are set to 1.0, while the
HITcapacity is set equal to the database administrator's estimate of the number of concurrent
transactions that the RTDBS can handle without missing deadlines. Note that this estimate
does not have to be accurate; even if it were grossly wrong, it would not impact system perfor-
mance in the long run. The error in the estimate only affects how long it takes the HITcapacity

control variable to reach its steady state value at system startup time.

3 The reason that HitRatio(ALL) is measured continuously, rather than in batches, is that
it serves only to detect a transition from a lightly loaded to a heavily loaded system and is
therefore not usually involved in the HITcapacity computation feedback process.
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6.3. Concurrency Control Algorithms

We have shown in Chapters 4 and 5 that optimistic algorithms outperform locking algo-
rithms in a firm deadline RTDBS. Those chapters assumed an Earliest Deadline priority pol-
icy. One of the goals of the performance evaluations in this chapter is to determine whether
the results of Chapters 4 and 5 are also applicable under the Adaptive Earliest Deadline prior-
ity mapping.

If the OPT-WAIT or WAIT-50 optimistic algorithms are used with the AED priority map-
ping, it is possible for a transaction to still be priority-waiting when its deadline is reached. As
mentioned in Chapter 5, it is not clear whether such a transaction should be committed or
sacrificed. In this chapter, we compare the performance of 2PL-HP with two versions of OPT-
WAIT and WAIT-50. In the first version, a waiting transaction always commits at its deadline.
In the second version, the waiting transaction is always discarded, that is, it is sacrificed. In
the following experiment section, the "commit” version of OPT-WAIT and WAIT-50 are referred
to by OPT-WAIT(C) and WAIT-50(C), while the "sacrifice” versions are referred to as OPT-

WAIT(S) and WAIT-50(S), respectively.

6.4. Experiments and Results

In this section, we present performance results for our experiments comparing the vari-
ous priority mappings in a firm-deadline RTDBS environment. We discuss our results with
regard to the impact of resource contention, data contention, and fluctuations in the transac-
tion arrival pattern. In order to represent a general workload where transactions may have a
range of slack ratios, deadline formula DF3 is used to assign transaction deadlines in all the

experiments of this chapter.,

While describing the AED algorithm in Section 6.2, we mentioned two parameters, HIT-
batch and ALLbatch, that determine the sample sizes used in computing transaction hit ratios.
The choice of the sample sizes is constrained by two opposing considerations: A large sample

size reduces the responsiveness of the feedback system. On the other hand, a small sample
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size makes the system extremely sensitive to short-term input fluctuations. Experimentation
with several different sample sizes showed that settings between 10 and 30 delivered a reason-
able tradeoff between these opposing considerations for the workloads considered here. We

therefore chose 20 as the setting for the HITbatch and ALLbatch parameters.

6.4.1. Experiment 1: Resource Contention (RC)

Our first experiment investigated the performance of the priority mappings when resource
contention is the sole performance limiting factor. The settings of the workload parameters
and systern parameters for this experiment are listed in Table 6.1. The WriteProb parameter,
which specifies the update probability for each page that is read, is set to 0.0 to eliminate data
contention. Therefore, no concurrency control is required in this experiment since all transac-
tions are queries. The slack factor parameters, LSF and HSF, are set to 1.33 and 4.0, respec-

tively, thus ensuring a significant spread in transaction slack ratios.

For this experiment, Figures 6.2(a) and 6.2(b) show the Miss Percent results under nor-
mal load and heavy load conditions, respectively. From this set of graphs, we observe that
under normal loads, the ED (Earliest Deadline) mapping misses the fewest deadlines among
the non-adaptive priority mappings. As the system load is increased, however, the perfor-
mance of ED steeply degrades, and its performance actually is close to that of NP (No Priority)

under heavy loads. This is because under heavy loads, where the resources become saturated,

Workload System

Parameter Value Parameter Value
MeanTransSize 16.0 pages || DatabaseSize | 1000 pages
SprdSize 0.5 NumCPUs 8
WriteProb 0.0 NumDisks 16
DeadlineFormula | DF3 PageCPU 10ms

LSF 1.33 PageDisk 20ms

HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

Table 6.1: Baseline Parameter Settings
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transactions under ED and NP make progress at similar average rates. This is explained as
follows: Under NP, every transaction makes slow but steady progress from the moment of
arrival in the system since all transactions have the same priority. Under ED, however, a new
transaction usually has a low priority since its deadline tends to be later than those of the
transactions already in the system. Therefore, transactions tend to start off at low priority and
become high priority transactions only as their deadline draws close. This results in transac-
tions making little progress initially, but making fast progress as their deadline approaches.
The net progress made by ED, however, is about the same as that of NP. This was experimen-
tally confirmed by measuring the average progress that had been made (i.e. number of steps
executed) by transactions that missed their deadline; indeed, we found that once the
resources become saturated, the average progress made by transactions is almost the same for

NP and ED.

Turning our attention to the RP (Random Priority) mapping, we observe that it behaves
poorly at normal loads since it does not take transaction time constraints into account. At
heavy loads, however, it (surprisingly) performs significantly better than ED. The reason for
this behavior is the following: Under ED, as discussed above, transactions gain priority
slowly. At heavy loads, this gradual process of gaining priority causes most transactions to
miss their deadlines. The RP mapping, on the other hand, due to its static random assignment
of priorities, allows some transactions to have a high priority right from the time when they
first arrive in the system. Such transactions tend to make their deadlines, and therefore RP
ensures that there is always some fraction of the transactions in the system that will almost

certainly make their deadlines.

Focusing next on the LD (Latest Deadline) mapping, we observe that it performs worse
than all the other mappings at normal loads. The reason is that this mapping gives the
highest priority to transactions that have loose time constraints, thus tending to miss the
deadlines of transactions that have tight time constraints. At heavy loads, it performs better

than ED, however, since transactions with loose time constraints continue to make their
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deadlines as they retain high priority for a longer period of time.

Moving on to the AED mapping, we observe that it behaves identically to Earliest Deadline
at normal loads. As the overload i‘egion is entered, it changes its behavior to be qualitatively
similar to that of RP, and in fact, performs even better than RP. Therefore, in an overall sense.
it delivers the best performance. In Figure 6.2(c), the hit ratios in the HIT and MISS groups are
shown. It is clear from this figure that a hit ratio of more than 0.90 in the HIT group and less
than 0.10 in the MISS group is achieved throughout the entire loading range. (The
HitRatio(MISS) is not shown for arrival rates of less than 35 transactions/sec because no tran-
sactions are assigned to the MISS group in this region as the HitCapacity is greater than the

maximum nurmber of transactions in the system.)

The AED performance results indicate that the feedback mechanism used to divide tran-
sactions into the HIT and MISS groups is effective and achieves the goal of having a high hit
ratio in the HIT group and a low hit ratio in the MISS group. In Figure 6.2(d), the average
number of transactions in the HIT group and the average number of transactions in the whole
system are plotted. From this figure, we can conclude that for the given workload, the RTDBS
can successfully schedule about 60 concurrently executing transactions under an Earliest
Deadline schedule. For system loadings above this level, a pure Earliest Deadline schedule
causes most transactions to miss their deadline since they receive high priority only when they
are close to missing their deadline. The AED mapping, however, by dividing transactions into
different priority groups, creates a "core set" of transactions in the HIT group that are virtually
certain to make their deadlines independent of system loading conditions. Viewed from a dif-
ferent perspective, we have revisited the classic multi-programming thrashing problem where
increasing the number of transactions in a system can lead to a decrease in throughput. In
our real-time framework, adding transactions to a set of transactions that can just be com-
pleted with an Earliest Deadline schedule results in an increase in the number of missed dead-

lines.



90

As promised in the description of the AED algorithm in Section 6.2.5, we now provide the
rationale for using a Random Priority mapping in the MISS group. The reason is the following:
Transactions assigned to the MISS group essentially "see" a heavily-loaded system due to hav-
ing lower priority than the transactions in the HIT group. Since our experiments show Ran-
dom Priority to have the best performance among the non-adaptive mappings at heavy loads,
we have chosen this priority ordering for the MISS group. The reason that AED does better
than the pure RP mapping at heavy loads is that the transaction population in the HIT group is
sufficiently large that using ED, instead of RP, among this set has an appreciable performance
effect. As the loading level is increased even further, however, the performance of AED would
asymptotically reach that of RP since the number of transactions in the MISS group would be

much larger than the number in the HIT group.

Summarizing the results of the above set of experiments, we can draw the following con-
clusions for the query workloads examined in this section: First, the AED mapping provides
the best overall performance among the priority mappings examined here. Its feedback
mechanism is effective in detecting overload conditions and limiting the size of the HIT group
to a level that can be handled by Earliest Deadline scheduling. Second, at normal loads, the
Earliest Deadline priority ordering meets most transaction deadlines and is therefore the right
priority mapping in this region. At heavy loads, however, the Random Priority mapping
delivers the best perforrnance among the non-adaptive mappings due to guaranteeing the com-
pletion of some fraction of the transactions by assigning them high priority throughout their

residence in the system.

Earlier studies have observed that the No Priority mapping performs worse than Earliest
Deadline at low loads and about the same or worse at heavy loads. These behavioral charac-
teristics were also seen in our experiments. In addition, Latest Deadline was observed to con-
sistently perform worse than Random Priority for the workloads considered here. Therefore,
for subsequent experiments, we will present results only for the Earliest Deadline, Random

Priority and Adaptive Earliest Deadline priority mnappings.
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6.4.2. Experiment 2: Resource and Data Contention (RC + DC)

Our next experiment explored an RTDBS situation where both resource contention and
data contention contribute towards system performance degradation. This was done by chang-
ing the write probability from 0.0 to 0.25, which implies that one-fourth of the data items that
are read will also be updated. The settings of the remaining workload parameters are identical
to those for the Resource Contention case (listed in Table 6.1). In this experiment, the 2PL-HP
algorithm is used as the concurrency control mechanism. (A comparison of the various con-

currency control alternatives is made in Experiment 4).

For this experiment, Figures 6.3(a) and 6.3(b) show the Miss Percent results for the vari-
ous priority mappings under normal load and heavy load conditions, respectively. From these
figures it is evident that Earliest Deadline performs the best at low loads, while Random Prior-
ity is superior at heavy loads. The AED mapping behaves almost as well as ED at low loads
and behaves like RP in the overload region, thus providing the best ove;all performance. In
this experiment, the increased contention levels cause the population in the HIT group to be
quite small compared to the overall system>population at heavy loads. Therefore, using ED
instead of RP in this group does not have an appreciable performance effect. This is why the

performance of AED approaches that of RP at a lower load than in the pure resource conten-

tion experiment (see Figure 6.2(b)).

In Figure 6.3(c). we show the hit ratio in the HIT group and the corresponding HITcapa-
city settings as a function of time for an arrival rate of 30 transactions/sec.. This figure graph-
ically shows how the HITcapacity keeps increasing whenenver the HITratio is 0.95 or greater
and decreases for a HITratio of less than 0.95. We also observe some steep falls occurring
occasionally in the HITcapacity setting. These falls are due to STEP2 kicking in since it detects

that the system has transitioned from a lightly loaded condition to a heavily loaded condition.

From the above results, we conclude that the AED algorithm delivers good performance

across the entire loading range under both resource contention and data contention.



mm-ng

-3 0 0™ o

92

25 1
201
M
i
S
151 §
p
e
4
10 c
e
n
t
5 o}
0 & T v . 0 v v v \
0.0 5.0 10.0 15.0 20.0 20.0 40.0 60.0 80.0 100.0

Figure 6.3(a): RC+DC (Normal Load)

Arrival Rate

100 4

o oaoe o

0

Figure 6.3(c):

80[&

60 1

Arrival Rate
Figure 6.3(b): RC+DC (Heavy Load)

@——8 HiRatio(HIT)

+——+  HITcapacity

0.0 100.0 200.0 300.0
Simulation Time

Feedback Process (Arr. Rate = 30)




93

6.4.3. Experiment 3: Bursty Arrivals

In the previously described experiments, each simulation was run for a particular arrival
rate. In practice, however, the transaction arrival rate may change over time. Therefore, we
also conducted experiments to determine how well the AED mapping could adapt to fluctua-
tions in the transaction arrival pattern. For this experiment, the transaction arrival process
was constructed in the following manner: The transaction arrival rate is repeatedly toggled
between a base arrival rate and a secondary arrival rate. The time period for which each
arrival rate is in effect is chosen from a common uniform distribution. This means that the

effective transaction arrival rate is the average of the base and secondary arrival rates.

In our experiments with this type of transaction arrival process, the base arrival rate was
kept fixed at 20 transactions/second and the experiment was conducted for different secon-
dary arrival rates. The time period for which each arrival rate was in effect ranged uniformly
between 10 and 40 seconds. For this workload, Figure 6.4 shows the Miss Percent charac-
teristics as a function of the secondary arrival rate for the pure resource contention workload
of Experiment 1. Figure 6.5 shows the corresponding Miss Percent characteristics for the
workload of Experiment 2 which results in both resource and data contention. From these
figures, it is evident that the performance characteristics of the AED mapping are similar to
those seen for the fixed arrival rate experiments. This implies that the algorithm is robust with

respect to fluctuations in the transaction workload pattern.

In Experiments 1-3, we have seen that the AED algorithm exhibits ED-like behavior in the
light-load region and RP-like behavior in the overload region. From these results, it might
appear that a much simpler approach than AED would be to switch from ED to RP (for all tran-
sactions) when the miss percentage exceeds a threshold. The threshold, of course, would be
the miss level at which RP starts performing better than ED. The problem with this approach
is that we do not a-priori know this changeover threshold. Also, the threshold is a function of

workload characteristics and may vary dynamically with changes in the input workload. For
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example, in the pure resource contention experiment (Experiment 1), the ED to RP changeover
miss percent threshold is about 20 percent (see Figure 6.2(a)); in the resource plus data con-
tention experiment (Experiment 2), however, the threshold is about 50 percent (see Figure
6.3(b)). Therefore, while the AED algorithm is somewhat comnplicated, the complexity appears
necessary to make the priority assignment truly adaptable to changing workload and system
conditions. In addition, when resource contention is the main performance determinant, the

AED algorithm performs somewhat better than RP at high loads.

6.4.4. Experiment 4: Concurrency Control

The experiments thus far in this chapter have shown that the AED priority assignment
algorithm provides the best overall performance. In this experiment, we investigate the
behavior of various concurrency control algorithms in association with the AED algorithm. We
compare the performance of 2PL-HP with the commit and sacrifice versions of both OPT-WAIT

and WAIT-50. The workload parameters are the same as for Experiment 2.
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For this experiment, Figures 6.6(a) and 6.6(b) show the Miss Percent results under nor-
mal load and heavy load conditions, respectively. From these figures, we observe that the
optimistic algorithms clearly outperform 2PL-HP over the entire loading range. This is impor-
tant since it shows that optimistic algorithms are the concurrency control mechanism of choice

with AED, just as they were with ED.

An interesting point is that the sacrifice and commit options of the wait-based algorithms
show virtually no performance difference over the entire loading range. At high loads, this is
because the priority-wait mechanism rarely comes into play - the heavy resource contention
prevents low-priority transactions from reaching validation much hefore their deadlines. At
low loads, AED is almost identical to an ED policy since most of the transactions are making

their deadlines. Therefore, transactions rarely have to wait until their deadlines in either case.

From this experiment, we conclude that the basic results about the superior performance

of optimistic algorithms hold under the AED priority assignment policy also.
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6.5. Conclusions

In this chapter, we addressed the issue of stabilizing the overload performance of Earliest
Deadline in a firrn-deadline RTDBS environment. We introduced the Adaptive Earliest Dead-
line (AED) priority policy and studied its performmance relative to Earliest Deadline and other
fixed priority mappings. Our experiments showed that for workloads generating only resource
contention, the AED priority policy delivered the best performance over the entire loading
range. At light loads, it behaved exactly like Earliest Deadline; at high loads its behavior was
better than that of Random Priority, which was the best performer among the fixed priority
mappings studied. The feedback control mechanism of AED was found to be accurate in
estimating the number of transactions that could be successfully handled with an Earliest
Deadline schedule. AED's policy of restricting the use of the Earliest Deadline approach to the
HIT group delivered stabilized perforrnance at high loads. For workloads that generated both
data and resource contention, the AED policy again delivered the best overall performance. At
low loads AED performed similarly to Earliest Deadline as before, while at high loads its
behavior followed that of Random Priority. The AED policy was also shown to be robust to

fluctuations in the transaction arrival pattern.




CHAPTER 7

VALUE AND DEADLINE

7.1. Introduction

Our studies thus far have considered applications that associate the same value with all
transactions. Consequently, the performance objective has been to minimize the number of
missed deadlines. We now move on to consider firm-deadline applications that assign different
values to different transactions. When transactions have different values, the goal of the sys-
tern is to maximize the sum of the values of transactions that commit by their deadlines.
Minimizing the number of missed deadlines becomes a secondary concern in such systems. A
fundamental problem in this situation is how to establish a priority ordering among transac-
tions that are distinguished by both values and deadlines [Biya88]. In particular, the "correct”
tradeoff to be established between transaction values and deadlines in generating the priority

ordering is not obvious.

In this chapter, we address this issue of priority assignment in a value-based RTDBS.
The goal is to establish a priority ordering that reflects the objective of maximizing the total
realized value. In the absence of detailed knowledge of transaction resource requirements and
data accesses, two basic principles, Earliest Deadline and Highest Value, can be used to guide
the priority ordering. The Earliest Deadline principle is that transactions with closer deadlines
should be given higher priority since delaying them might cause their deadlines to be missed
and result in their value being lost. The Highest Value principle is that transactions with
higher values should be given higher priority since it would be beneficial to make certain that

their deadlines are met and thereby realize their high values.

- 97 -
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When the transactions competing for service in the RTDBS have similar deadlines, it
would appear, from an intuitive standpoint, that the ordering established by the Highest Value
principle is the right ordering. This is because, if transactions are of similar urgency, complet-
ing the more valuable transactions first ensures that more value is realized. Conversely, when
the competing transactions have similar values, it would seem that the Eariiest Deadline prin-
ciple provides the right priority ordering. This is because, if transactions have similar utility,

completing the more urgent transactions first should result in more realized value.

When transactions differ in both their value and deadline characteristics, it is not obvious
which principle should be followed. To provide a simple example, consider the scenario where
a pair of transactions, A and B, arrive at time t=30 and compete for service. Assume that
V,4=50 and D,=80, while Vg=100 and Dg=110, as shown in Figure 7.1. In this case, following
the Earliest Deadline principle would yield the priority ordering (A, B), while following the

Highest Value principle would yield the priority ordering (B, A). It is not clear which of these

Value?

100

50

30 80 110 ’ time

Figure 7.1: Priority Order Dilermma
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priority orderings would realize more value. The dilemma here is to decide whether the value
difference of 50 hetween A and B is more important or less important than their deadline
difference of 30 time units. In a more general sense, deciding on a priority ordering when tran-
sactions differ in both value and deadline requires the value and deadline characteristics to be
weighted in some fashion. A succinct statement of this requirement is that a priority mapping
has to be established from the pair (Dr, Vy) to Py, where P; denotes the priority of transaction T.

For example, a possible priority mapping, which gives equal weight to value and deadline, is

D
Pr= ——V—T— In the example mentioned above, this mapping would result in the priority ordering
T

(B, A).

The performance of several priority mappings that combine the Earliest Deadline and
Highest Value principles with different fixed tradeoffs between value and deadline was exam-
ined in [Huan89]. This study was conducted on the RT-CARAT real-time database testbed.
There are some aspects of this study that leave room for further investigation: First, the range
of values that transactions could take on was limited and the value distribution was uniform.
Second, a locking scheme was used as the underlying concurrency control mechanism in all
the experiments. Finally, the RTDBS was configured as a closed queueing system with a fixed

amount of resources.

In this chapter, we evaluate the impact of various priority mappings on the value realized
by a firm-deadline real-time database system. These mappings are a representative subset of
the mappings that were examined in [Huan89]. Our work differs from [Huan89] in that we
consider a variety of transaction workloads that have different degrees of spread and skew in
transaction value. In addition, we consider both locking and optimistic concurrency control

algorithms. Finally, an open system with different levels of resource availability is modeled.
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7.2. Priority Mappings

In this section, we describe the priority mappings that are evaluated in the experiments of
this chapter. These mappings cover a range of fixed tradeoffs between value and deadline. The
first two mappings implement extreme tradeoffs between value and deadline, while the others

Bl

implement intermediate tradeoffs.

7.2.1. Earliest Deadline (ED)

The Earliest Deadline mapping follows the Earliest Deadline principle, so the transaction
priority assignment is Pr = Dr. It represents an extreme tradeoff as the value of the transac-
tion is not taken into consideration. As discussed in the previous chapter, using an Earliest
Deadline schedule results in the fewest missed deadlines in lightly-loaded or moderately-

loaded real-timme systems.

7.2.2. Highest Value (HV)
The Highest Value mapping follows the Highest Value principle, so the transaction prior-

ity assignment is Py = It represents the other extremne tradeoff as the deadline of the

1
V'
transaction is not taken into consideration. Note that this mapping does not distinguish
between transactions that have the same value in terms of the priority assigned to them.

Therefore, if all transaction values are the same, this mapping is equivalent to having no prior-

ity in the system.

7.2.3. Value-inflated Deadline (VD)

The Value-inflated Deadline mapping combines the Earliest Deadline and Highest Value

principles by using the transaction priority assignment Pr = It gives equal weight to

T
deadline and value. Moreover, within a group of transactions that have the same value, the

priority ordering established by this mapping is identical to that of the ED mapping; within a

group of transactions that have the same deadline, the priority ordering established is identical
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to that of the HV mapping.

7.2.4. Value-inflated Relative Deadline (VRD)

The Value-inflated Relative Deadline mapping is similar in flavor to VD, but it uses the

relative deadline, instead of the absolute deadline, in combining the Earliest Deadline and

Dr - Ar

v It gives

Highest Value principles. The transaction priority assignment here is Pr =

equal weight to relative deadline and value. Note that if all transactions have their deadlines at
a fixed distance from their arrival times (i.e. Dy — Ay = constant), this mapping produces a
priority ordering identical to that established by the HV mapping. If transaction relative dead-
lines are linearly correlated to their execution times, the VRD mapping gives priority to tran-
sactions that can deliver the most value for the smallest amount of resource consumption. In
this scenario, if transactions also all have the same value, the VRD mapping establishes a
Shortest Job First priority ordering. For these cases, therefore, the VRD mapping behaves like
a simple "greedy” algorithm that tries to maximize short-term benefits without taking transac-

tion time constraints into account.

7.3. Concurrency Control Algorithms

Three different concurrency control algorithms are evaluated in this chapter. The
selected algorithms are 2PL-HP, OPT-BC and OPT-WAIT (refer to Chapters 4 and 5 for details
of these algorithms). In Chapter 4, it was shown that OPT-BC, in spite of being priority-
indifferent, provided better performance than 2PL-HP in a firm deadline environment. That
chapter assumed that all transactions have the same value. One of the goals of this chapter is

to determine whether those results are still applicable when transactions have different values.

The OPT-WAIT variant considered in the experiments of this chapter is the OPT-WAIT(S) °
algorithm of Chapter 6. This algorithm implements a policy where a transaction that is
priority-waiting at its deadline is always aborted and discarded, thus ensuring that high-

priority transactions are never restarted by low priority transactions. The reason for choosing
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the OPT-WAIT(S) option is explained in the following experiment section.

In Chapter 5, the dynamic WAIT-50 algorithm was shown to provide better overall peifor-
mance than either OPT-BC or OPT-WAIT. There, the 50 percent rule in WAIT-50 was
developed on the basis that meeting the deadline of any transaction was equally useful to the
application. When transactions have different values, however, this is not the case and the 50
percent rule is inappropriate. Also, the dilemma described above for OPT-WAIT (with respect
to priority mappings that do not assign the highest priority to a transaction at its deadline), is
also féced by WAIT-50. Finally, our focus here is on the priority assignment component and
less so on the concurrency control component. Therefore, for all these reasons, we do not
address the issue of developing an appropriate dynamic optimistic algorithm for the value-
based framework here. It is, however, an open research problem that We hope to address in

the future.

7.4. Experiments and Results

In this section, we present the results of our experiments comparing the performance of
the various priority mappings. These experiments evaluate the impact of data contention,
resource contention, and distribution of transaction values. An important point to note is that,
unlike the previous studies, the Loss Percent and Miss Percent metrics are not equivalent here
since transactions have different values. Therefore, both of these metrics are discussed in the

experiments of this chapter.

To serve as a basis for comparison, apart from the candidate priority mappings described
In Section 7.2, the performance of the No Priority and Random Priority mappings described in

Chapter 6 are also evaluated in our experiments here.

7.4.1. Experiment 1: Resource Contention (RC)

Our first set of experiments investigated the performance of the priority mappings when

resource contention is the sole performance limiting factor. As usual, we began our experi-




103

ments by first developing a baseline experiment. Further experiments were constructed
around the baseline experiment by varying a few parameters at a time. The settings of the
workload parameters and the resource parameters for the baseline experiment are listed in
Table 7.1. The WriteProb parameter, which gives the probability that a page that is read will
also be updated, is set to 0.0 to eliminate data contention. Therefore, no concurrency control
is necessary for this set of experiments. There is a single transaction class, and transaction
values range between 50.0 and 150.0. As in the previous chapter, deadline formula DF3 is
used to assign transaction deadlines in the experiments described here. With DF3, a general
workload where transactions have a range of slack ratios is constructed. The slack factor
parameter settings are the same as those of the pure resource contention experiment in the
previous chapter. These value and deadline parameter settings ensure that both characteris-

tics play a role in determining overall system performance.

7.4.1.1. Baseline Experiment

For the baseline experiment, Figures 7.2(a) and 7.2(b) show the Loss Percent results
under normal load and heavy load conditions, respectively. Figure 7.2(c) shows the

corresponding Miss Percent results. (Note that the curves for HV and VD are identical in these

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages || DatabaseSize | 1000 pages
SprdSize 0.25 NumCPUs 8
WrriteProb 0.0 NumbDisks 16
DeadlineFormula | DF3 PageCPU 10ms
LSF 1.33 PageDisk 20ms
HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

NumcClasses 1

ProbClassil 1.0

OfferedValueli] 1.0

MeanValueli] 100.0

SprdValuefi] 0.5

Table 7.1: Baseline Parameter Settings
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figures). From this set of graphs, it is clear that at low loads, the ED (Earliest Deadline) map-
ping realizes the most value (smallest Loss Percent). This might be considered surprising since
ED is a value-indifferent mapping, while some of the other mappings are value-cognizant. The
reason for ED’s good performance can be understood, however, by examining the Miss Percent
characteristics (Figure 7.2(c)) at low loads. Since ED misses the deadlines of very few (if any)
transactions, it delivers the most value. The value-cognizant mappings, HV (Highest Value),
and to a lesser extent, VRD (Value-inflated Relative Deadline), focus their effort on completing
the high-value transactions. In the process, they prevent some lower value transactions from
making their deadlines, even though most of the deadlines could have been met (as demon-
strated by ED), thereby losing more of the offered value. As the systemn load is increased, how-
ever, the performance of ED steeply degrades and becomes close to that of NP (No Priority) at
high loads. As discussed in Chapter 6, this is because Earliest Deadline assigns the highest
priority, under heavy loads, to transactions that are close to missing -their deadlines, thus

delaying other transactions that can still meet their deadlines.

Focusing next on the HV (Highest Value) mapping, we observe that it performs worse than
ED at low loads but improves its performance as the load increases. In fact, at high loads, it
outperforms all the other mappings (except for VD, which is discussed next). This is because
following the Highest Value principle is a good idea at high loads, where the system has
sufficient resources to handle only a fraction of the transactions in the system. In such a
situation, the transactions that should be run are clearly those that can deliver high value. If
we look at the Miss Percent characteristics (Figure 7.2(c)), we observe that HV and RP (Random
Priority) behave identically with respect to this metric. The reason for this behavior is that
transaction values in the workload are independent of other transaction characteristics and all
transaction values are distinct. For this case, a HV priority ordering is no different from an RP
priority ordering in terms of the ability of the RTDBS to make transaction deadlines. Note that

if there were groups of transactions that had the same value, then this would not be the case,




w wn O

LB~ T« B B « i =

105

G ED
< HV

25+ ——o ED 100 1
D e S & AV
| e VRD
Ly NP
8] RP
20 *¥———X VD
L
(o]
S
151 5
P
e
T
101 c
e
n
t
5..
om —ip : . 0
0.0 10.0 20.0 30.0 40.0
Arrival Rate

Figure 7.2(a): RC Baseline (Normal)

v wn -

~ 300" o0

40.0

70.0 85.0 100.0

Arrival Rate

55.0

Figure 7.2(b): RC Baseline (Heavy)

100 1 O ED
O VY
801
60 1
40 4
20+
0 ;' ' ' '
0.0 25.0 50.0 75.0
Arrival Rate

100.0

Figure 7.2(c): Miss Percent (RC Baseline)



106

as same-value transactions introduce NP-type behavior into the performance of HV.

Moving on to the VD (Value-inflated Deadline) mapping, we observe that although this
mapping appears to combine the Earliest Deadline and Highest Value principles in its priority

assignments, it performs identically to the HV mapping. This is not a coincidence, but is, in

D
fact, always true: As time progresses, the Dy term in _Vl becomes large enough that it is
T

approximately the same for all transactions. Therefore, once the clock time is sufficiently
large, VD behaves exactly like HV. For this reason, we will not consider the VD mapping any
further in this study. The more general lesson that can be learned from the behavior of VD is
that priority computations that combine values and absolute deadlines should be designed
with care to ensure that the above problem is not encountered. In [Huan89], it was observed
that a priority assignment of Pr = V¢ (w,(t - Ap)-w, *Dg), where w, and w, are weighting fac-
tors, displayed little change in performance with different settings for the weights. The prob-
able reason is that with any non-zero value for w,, the absolute deadline (D7) term in the for-
mula dominates the other term once the clock time is sufficiently large, and thus the priority
assignment degenerates to an HV mapping. Therefore, the actual weights should not, in fact,

be expected to impact the long-term performance of this mapping.

Turning our attention to the VRD (Value-inflated Relative Deadline) mapping, we observe
that its performance is intermediate to that of ED and HV. At low loads it is slightly worse
than ED, while at high loads it is slightly worse than HV. In a sense, therefore, it delivers the
best overall performance. Note that while VRD, like VD, takes both deadlines and values into
account, it does not behave like HV. The reason is that the mapping uses the relative deadline,
rather than the absolute deadline, to compute transaction priorities. This makes the VRD
mapping both value and deadline cognizant for this workload. The reason that the VRD map- .
ping does better than HV at low loads is that it has a partial Earliest Deadline effect in that
jobs with smaller relative deadlines are given priority over jobs with larger relative deadlines.

Among sets of similar-valued jobs that arrive at around the same time, the priority ordering is
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therefore approximately Earliest Deadline. Due to this effect, fewer deadlines are missed by
VRD at low loads when compared to HV (Figure 7.2(c)). Conversely, at high loads, when a large
fraction of deadlines are missed, the fact that VRD takes deadline into account works against it

since a high-value transaction may not be completed due to a large relative deadline.

7.4.1.2. Increased Value Spread

Our next experiment examined the effect of increasing the spread in transaction values.
For this experiment, the SprdValue parameter was increased from the baseline value of 50 per-
cent up to 99 percent, keeping the other parameters the same as in the baseline experiment.
This means that transaction values ranged uniformly between 1.0 and 199.0. The Loss Per-
cent results for this experiment are shown in Figures 7.3(a) and 7.3(b). We first note that the
performance of the ED, RP and NP mappings remains the same as in the baseline experiment.

This is because these mappings are value-indifferent, and therefore changes in the value distri-
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bution do not affect their performance (as long as the mean value remains the same). How-
ever, the value-cognizant mappings, HV and VRD, improve their performance considerably.
This is because these mappings concentrate on the more valuable transactions, and increasing
the value spread implies that, on the average, greater value is obtained for each high-value
transaction that is completed. Also, the low-value transactions that are missed have a lesser
effect on the realized value since their values are smaller due to the increased spread. Note
that the Miss Percent characteristic of HV is the sarne as in the baseline experiment (Figure 3c)

since the workload assigns values to transactions independently of their other characteristics.

7.4.1.3. Decreased Value Spread

The next experiment examined the effect of decreasing, rather than increasing, the spread
in transaction values. For this experiment, the SprdValue parameter was set to O percent,
keeping the other parameters the same as those of the baseline experiment. This means that
all transaction values had the same value of 100.0. The Loss Percent results for this experi-
ment ‘are shown in Figures 7.4(a) and 7.4(b). The value-cognizant mappings, HV and VRD,
perforn worse here when compared to the baseline experiment. The HV mapping, in fact,
behaves just like the NP mapping. The reason for HV behaving like NP is that when all values
are the same, HV gives every transaction the same priority. While all transactions having the
saine value is an extreme case, similar problems will arise when the workload consists of mul-
tiple transaction classes where all transactions within a class have the same value. The VRD
mapping, unlike HV, does not behave like NP; this is because the relative deadline component
of its priority mapping ensures that there is a priority ordering among the transactions. Also,
at high loads, VRD behaves similar to RP rather than ED. This implies that VRD is more a
value-oriented mapping than a deadline-oriented mapping at high loads since the relative

deadline component has only a randomizing effect when all values are the same.

As in Chapter 6, we observe here that the RP (Random Priority) mapping performs quite

well at high loads. This means that if a randomn "noise” element is added to priority values,
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stability in high-load performance can be obtained even when most or all of the priority values
would otherwise be the same. For example, if even an infinitesimally small noise is added to
the transaction priorities generated by the HV mapping for this experiment, the heavy load per-
formance would be like that of RP rather than that of NP. This is because the addition of the
noise would cause a priority ordering to exist where there was none originally. Note that the
noise should be random, and not based on transaction characteristics. If transaction dead-
lines were used to generate the noise. for example, the perférmance would be like that of ED,
and not of RP, at high loads. It should also be noted that the high-load stability obtained by
the addition of noise is gained at some cost in normal load performance. as RP performs worse

than NP under normal loads.

Summarizing the results of the above resource contention experiments, we can draw the
following conclusions for the uniform-value workloads examined in this section: First. at low
loads. when the Miss Percent is low, the Earliest Deadline priority ordering is the right choice,

while at high loads. when the Miss Percent is high, the priority ordering given by the Highest
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Value principle realizes the most value. Second, the degree of spread in transaction values has
a significant effect on the performance of the value-cognizant mappings. In particular, their
performance improves with an increased spread in values. Third, the use of absolute dead-
lines in priority assignments should be handled with care. Finally, priority mappings should
have a built-in noise factor to guard against the possibility of transactions having identical
priorities, as otherwise transactions can hinder the progress of each other and thus degrade

performance at high loads.

7.4.1.4., Skewed Value Distribution

The next experiment examined the effect of having a skew in the transaction value distri-
bution. For this experiment, the parameters are set as shown in Table 7.2. They construct a
two-class workload where 10 percent of the transactions deliver 90 percent of the offered
value. The values of the transactions from the first class vary between 450.0 and 1350.0.
while the values of the second class vary between 5.5 and 16.0. The Loss Percent results for
this experiment are shown in Figure 7.5. As in the previous experiments, the performance of
the ED. RP and NP mappings remains the same as in the baseline experiment since these

mappings are value-indifferent. The figure also shows that the performance of the value-

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages DatabaseSize | 1000 pages
SprdSize 0.5 NumCPUs 8
WriteProb 0.0 NumbDisks 16
DeadlineFormula | DF3 PageCPU 10ms
LSF 1.33 PageDisk 20ms
HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

NumClasses 2

ProbClassli] 0.1,0.9

OfferedValueli] 0.9,0.1

MeanValuefi] 900.0,11.1

SprdValueli 0.5,0.5

Table 7.2: Skewed Value Settings
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cognizant mappings, HV (Highest Value) and VRD (Value-inflated Relative Deadline), improves
greatly as compared to the baseline experiment and they are now much superior to the value-
indifferent mappings. Note that even at low loads here, they perform almost as well as the Ear-
liest Deadline mapping. The value-cognizant mappings, by making certain that all of the rela-
tively few high-value transactions make their deadlines, ensure that they realize at least 90
percent of the offered value. In addition, at low loads, the value of the missed transactions
constitutes a very small fraction of the total value, and therefore the performance impact of
having a higher number of missed deadlines than ED is negligible. Note also that the perfor-
mance of the VRD mapping here is almost identical to that of the HV mapping. This is
because when the spread in value is much larger than the spread in relative deadline, the V4
component of the VRD mapping dominates the (Dr— Aq) component in determining relative
transaction priorities. Therefore, for workloads with these features, the VRD mapping is only
marginally deadline-cognizant and therefore generates a priority ordering very similar to that of

the Highest Value (HV) mapping.
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We conclude from this experiment that skew in transaction values causes the value-
cognizant mappings to perform much better. For workloads that have a considerable spread in
transaction values, the priority ordering establishgd by the Highest Value principle ensures
good performance through the entire loading range. These results also demonstrate the

significant impact of value distributions on the relative performance of the priority mappings.

7.4.2. Experiment 2: Data Contention (DC)

The second set of experiments investigated the performance of the priority mappings
when data contention is the sole performance degradation factor. As before, we began our
experiments by first developing a baseline experiment around which we then constructed
further experiments by varying a few parameters at a time. The settings of the workload
parameters for this baseline experiment are identical to those for the Resource Contention case
(listed in Table 7.1) except that the WriteProb parameter is set to 0.25 instead of 0.0. The set-
tings of the resource parameters are made "infinite”, and therefore the performance differences
observed between the mappings are solely due to data contention. For graph clarity, we do not

consider the RP (Random Priority) and NP (No Priority) mappings in the following sections.

7.4.2.1. Baseline Experiment

For the baseline experiment, Figures 7.6(a) and 7.6(b) show the Loss Percent results for
the various priority mappings under normal loads and heavy loads, respectively. Figure 7.6(c)
shows the corresponding Miss Percent behavior. The results shown were separately obtained
with the 2PL-HP, OPT-BC and OPT-WAIT concurrency control algorithms. Focusing our atten-
tion on the performance of 2PL-HP (the solid lines), we observe that, qualitatively, the map-
pings exhibit the same behavior as in the case of the resource contention baseline experiment
(Figures 7.2(a). 7.2(b)). The ED (Earliest Deadline) mapping performs the best at low loads,
while the HV (Highest Value) mapping outperforms all of the other mappings at high loads. As
before, ED performs well at low loads since it misses far fewer deadlines. Moreover, data con-

tention (unlike resource contention) is not work-conserving because already performed work
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has to be redone after a transaction restart; therefore, ensuring that the most urgent transac-
tions are given the highest priority is even more beneficial at low loads here. At high loads, fol-
lowing the Highest Value principle is again the right approach, as the data contention level is
high enough that only a fraction of the transactions in the system are able to complete before
their deadlines: in such a situation, the transactions that should be given priority are those

that can deliver high values.

Turning our attention to OPT-BC (the dashed line), here all of the priority mappings
behave exactly the same. This is because OPT-BC is a priority-indifferent algorithm and there
is no resource contention: therefore, transaction priority does not play a role in determining
system performance. In spite of this priority indifference, however, OPT-BC performs better
than 2PL-HP for most of the loading range, especially at higher loads. The reason for this is
obvious when we compare the Miss Percent characteristics, where we observe that OPT-BC
misses far fewer deadlines than 2PL-HP (Figure 7.6(c)). The primary reason for the lower
number of misses is that discussed in Chapter 4: The optimistic approach, due to its valida-
tion stage conflict resolution, ensures that eventually discarded transactions do not cause the
restart of other transactions. The locking approach, on the other hand, allows these soon-to-
be-discarded transactions to cause other transactions to be either blocked or restarted due to

lock conflicts, thereby increasing the number of late transactions.

Moving on to OPT-WAIT (the dotted lines), we observe that it performs worse than OPT-BC
for all of the priority mappings except ED at low loads. The reason for OPT-WAIT doing better
than OPT-BC at low loads for the ED priority mapping is that priority waiting is a good idea
here since the more urgent transactions are not restarted by less urgent transactions. At high
loads, however, the priority wait mechanism causes performance degradation due to an
increase in system population (many waiters), which causes a steep increase in the number of
conflicts. This behavior of OPT-WAIT was observed and discussed in detail in Chapter 5.

Although the experiments of Chapter 5 did not consider transaction values, the explanations
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carry over here since ED is a value-indifferent priority mapping.

The reason that OPT-WAIT performs worse than OPT-BC over most of the loading range
for the mappings other than ED is the following: With the ED priority mapping, a waiting tran-
saction never has to wait beyond its deadline, as it will have the highest priority in the system
when it reaches its deadline. For the other mappings, however, this is not necessarily the
case. If we consider HV, for example, it is clear that the waiting process could extend beyond
the waiter's deadline since some or all of the higher-value conflicting transactions may not
have éompleted by the waiter's deadline. In such a case the waiter is aborted and discarded,
and the waiter's value is therefore lost. This wouldn’t be so bad if the higher priority transac-
tions then made their deadlines and the system realized their values. There is no guarantee,
however, that this will actually happen. We could, instead, have many wasted sacrifices —
cases where a transaction is discarded on behalf of another transaction that later does not
complete. Such sacrifices are useless and cause performance degradation as discussed in
Chapter 5. It is due to these wasted sacrifices that we also see a seemingly odd performance
ordering of the various mappings with OPT-WAIT: ED performs better than HV and VRD. It
should be noted, however, that the performance of OPT-WAIT is still better than that of 2PL-HP

for all of the mappings throughout the entire loading range.

7.4.2.2. Skewed Value Distribution

The next experiment examined the effect of having a skew in the transaction value distri-
bution. For this experiment, the workload parameters are the same as for experiment 7.4.1.4
(listed in Table 7.2, except that the WriteProb parameter is set to 0.25. The Loss Percent
results of the experiment are shown in Figure 7.7 for the 2PL-HP, OPT-BC and OPT-WAIT con-
currency control algorithms. Focusing our attention on 2PL-HP (solid lines), we observe that
the performance of the value-cognizant mappings improves greatly and that they are now far
superior to the ED mapping, as in the pure resource contention case. The reason for this

improvement is the following: 2PL-HP ensures that the highest priority transactions are
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virtually guaranteed to make it to their deadlines. The value-cognizant mappings, in combina-
tion with 2PL-HP, realize a high value since they assign the highest priorities to the high-
valued transactions. Successfully making the deadlines of the few high-value transactions is

by itself sufficient to realize at least 90 percent of the workload’s offered value.

Moving on to OPT-BC (dashed line), we note that its performnance remains the same as in
the baseline data contention experiment (Experiment 7.4.2.1). This is because OPT-BC does
not take into account transaction values, and therefore changes in the transaction value distri-
bution do not affect its performance. From Figure 7.7, it is clear that here the performance of
the value-cognizant mappings under 2PL-HP is superior to their perforrnance under the OPT-
BC algorithm. Note that this is in spite of 2PL-HP having a much higher Miss Percent than
OPT-BC. Since 2PL-HP concentrates on the high-value transactions, the value it derives from
these transactions more than compensates for the value lost due to missing the deadlines of a
large number of low-value transactions. OPT-BC, on the other hand, treats all transactions

equally, which can cause high-value transactions to be restarted (and therefore miss their




deadline) due to the commits of low-value transactions.

Turning our attention to OPT-WAIT (dotted lines) and comparing these results with the
9PL-HP results, it can be observed that all of the mappings perform better for OPT-WAIT than
for 2PL-HP, including the value-cognizant mappings. The reason for this is that, since OPT-
WAIT is priority cognizant and is willing to sacrifice low priority transactions for high priority
transactions, the high-value transactions are guaranteed to complete before their deadlines.
This is similar to the behavior of 2PL-HP. In addition, OPT-WAIT gains some extra value over
9PL-HP due to missing the deadlines of a smaller number of low-value transactions. To sum
up, as compared to 2PL-HP, OPT-WAIT meets the deadlines of all of the high-value transac-
tions and misses fewer low-value transactions. Note that the "commit at deadline” version of
OPT-WAIT (i.e. the OPT-WAIT(C) algorithm of Chapter 6) could be expected to perform poorly
here since it allows low-value waiters to restart high-value conflicting transactions. This
expectation was confirmed experimentally. It is for this reason that we chose the OPT-WAIT(S)
algorithm for evaluation in the experiments of this chapter. Another point to note is that the
various mappings with OPT-WAIT no longer have the "odd" performance ordering seen for the
uniform, limited spread value distribution of the previous experiment: HV and VRD now per-

form better than ED.

In Chapter 4, it was shown that optimistic algorithms outperform locking algorithms
when transactions all have the same value. The results from our experiments here demon-
strate that optimistic algorithms can also perform better than locking algorithms when the
real-time environment incorporates the notion of value and the priority mapping is value-

cognizant.

7.4.3. Other Experiments

In addition to the experiments presented here, we conducted several experiments where
both resource contention and data contention contribute towards system performance degra-

dation (refer [Hari91a] for details). The qualitative results were the same as those obtained for
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resource contention or data contention alone. The ED (Earliest Deadline) mapping performs
the best at normal loads, while the HV (Highest Value) mapping provides the best performance
at high loads. Also, the performance of the value-cognizant mappings improves with the tran-

saction value spread or with the transaction value skew.

7.5. Conclusions

In this chapter, we addressed the issue of how to assign priorities to transactions in a
firm-deadline RTDBS when the workload consists of transactions that are characterized by
both values and deadlines. We studied the performance of several priority mappings that
establish different fixed tradeoffs between values and deadlines. Our experiments showed that
for workloads with a limited, uniform spread in the transaction values, the Earliest Deadline
(ED) mapping provided the best performance among the fixed-tradeoff mappings under light
loads. Although ED is a value-indifferent mapping, the database system had sufficient
resources at low loads to meet most transaction deadlines; consequently, prioritizing transac-
tions according to their urgency led to the fewest missed deadlines and generated the most
value. Under heavy loads, however, it was the Highest Value (HV} mapping that delivered the
best perforrmance in spite of being deadline-indifferent. A large fraction of the deadlines were
missed under all the mappings at high loads, and the fact that HV prioritizes transactions by
value alone ensured that high-value transactions rarely missed their deadlines. The Value-
inflated Deadline (VD) mapping, which combines both values and deadlines by weighting them
equally, was found (perhaps surprisingly) to behave identically to HV. Finally, the Value-
inflated Relative Deadline (VRD} mapping, which equally weights relative deadlines and values,
provided the best overall perfortnance among the fixed-tradeoff mappings; it was almost as

good as ED at low loads, and was close to HV at high loads.

For workloads that had a large spread or a pronounced skew in the distribution of tran-
saction values, the HV mapping was found to deliver the best performance throughout almost

the entire loading range. Although HV missed more deadlines than the ED mapping at low
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loads, the value gained by HV's ability to complete virtually all of the high-value transactions
more than compensated for its missing more deadlines of low-value transactions. In addition
to these results regarding the relative performance of the fixed-tradeoff mappings, our experi-
ments also showed that they are susceptible to performance breakdown based on workload
characteristics. For example, workload characteristics that lead a priority mapping to assign
the same priority to a number of high-value transactions were shown to be quite detrimental to
performance at high loads; adding a random noise component to the priority mappings allevi-

ated this problem by inducing a total priority ordering among the transactions.

Experiments were also conducted to explore the impact of data contention on the perfor-
mance of the various priority mappings. These experiments were conducted with several con-
currency control algorithms in order to evaluate their performance and to study their impact, if
any, on the priority mapping results. The same qualitative behavior that was observed in the
presence of resource contention was obtained in the pure data contention experiments; this
was also the case when data and resource contention were combined. In Chapter 4, we
showed that optimistic concurrency control outperforms locking in a firm real-time environ-
ment. The experiments of Chapter 4 employed an Earliest Deadline priority mapping and
assumed that all transactions have the same value. The ‘conclusion of the present chapter's
experiments is that these results generally carry over to the value-based RTDBS domain for all

of the priority mappings that we have considered.



CHAPTER 8

HIERARCHICAL EARLIEST DEADLINE

8.1. Introduction

In the preceding chapter, we demonstrated that, from a performance perspective, there is
no single fixed tradeoff between transaction value and deadline that is appropriate under all
circumstances. Rather, the choice of the "right" tradeoff depends on the workload and system
operating conditions. Therefore, a mechanism is required for varying the tradeoff to match the

operating environment in order to achieve good performance in a stable fashion.

In this chapter, we present Hierarchical Earliest Deadline (HED), a new priority assign-
ment algorithm that integrates the value and deadline characteristics of transactions. The
HED algorithm is a value-based extension of the AED algorithm described in Chapter 6. It
adaptively varies the tradeoff between value and deadline to maximize the value realized by the
system. When all transaction values are the same, the HED algorithm reduces to the AED

algorithm.

In the experiments of the previous chapter, one of two fixed-tradeoff mappings - either
Earliest Deadline (ED) or Highest Value (HV), which implement extreme tradeoffs - almost
always provided the best performarice. We evaluate the performance of the HED algorithm

with respect to these two mappings in this chapter.

8.2. Hierarchical Earliest Deadline (HED)

The Hierarchical Earliest Deadline algorithm extends the Adaptive Earliest Deadline algo-
rithm by accounting for transactions having different values. Informally, the HED algorithm

groups transactions, based on their values, into a hierarchy of prioritized buckets. It then

- 120 -
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uses an AED-like algorithm within each bucket to determine the relative priority of transac-
tions belonging to the bucket. The details of the HED algorithm are described below, after

which the rationale behind the construction of the algorithm is discussed.

8.2.1. Bucket Assignment

The HED algorithm functions in the following manner: The priority mapper unit main-
tains a value-based dynamic list of buckets, as shown in Figure 8.1. Every transaction, upon
arrival, is assigned based on its value to a particular bucket in this list. Each bucket in the
list has an associated MinValue and MaxValue attribute — these attributes bound the values
that transactions assigned to the bucket may have. Each bucket also has an identifier, and
bucket identifiers in the list are in monotonically increasing order. There are two special buck-
ets, Top and Bottorn, which are always at the head and tail of the list, respectively. The Min-
Value and MaxValue attributes of Top are set to «, while the MinValue and MaxValue attributes
of Bottom are set to zero. Since we assume that all transaction values are finite and positive,
no transactions are ever assigned to these buckets, and their function is merely to serve as
permanent list boundaries. The identifiers of the Top and Bottom buckets are preset to 0 and

MAXINT, respectively.

When a new transaction, T, arrives in the system, it is assigned to the bucket closest
to Top that satisfies the constraint MinValue < Valuepe,, < MaxValue. If no such bucket exists,
a new bucket is inserted in the list between the bucket closest to Top that satisfies
MinValue < Value,., and its predecessor, and the transaction is assigned to this bucket. A
newly created bucket is assigned its identifier by halving the sum of the identifiers of its prede-
cessor and successor buckets. For example, a bucket inserted between buckets with
identifiers 256 and 512 will have 384 as its identifier. When a transaction leaves the system, it
is removed from its assigned bucket. A bucket that becomes empty of transactions is immedi-

ately deleted from the bucket list.
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Figure 8.1: HED Bucket Hierarchy

The MinValue and MaxValue attributes of a bucket are set as follows: Each bucket main-
tains an AvgValue attribute that monitors the average value of the set of transactions that are
currently assigned to the bucket. The MinValue and MaxValue attributes of the bucket are
then computed as (AvgValue/SpreadFactor) and (AvgValue*SpreadFactor), respectively, where

SpreadFactor is a parameter of the HED algorithm. The SpreadFactor parameter controls the
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maximum spread of values allowed within a bucket. Whenever a transaction enters or leaves

the system, the associated bucket updates its AvgValue, MinValue and MaxValue attributes.

8.2.2. Group Assignment

In similar fashion to the AED algorithm, each bucket has transactions divided into HIT
and MISS groups, with the HIT group size controlled by a HITcapacity variable. After a new
transaction has been assigned to a bucket, its group assignment within the bucket is as fol-
lows: The transaction is assigned a unique'! key, Ir, with the key being a randomly chosen
integer. It is then inserted into a value-ordered list of transactions belonging to the bucket,
with transactions that have identical values being ordered by their keys. The position of the
new transaction in the list, posr, is noted. If posr is less than the HITcapacity of the bucket,
the new transaction is assigned to the HIT group in the bucket; otherwise, it is assigned to the
MISS group. The HITcapacity computation in each bucket is implemented with a separate
feedback process; each feedback process is identical to that described in Chapter 6 for the

AED algorithm.

8.2.3. Priority Assignment

After its bucket and group assignment, a new transaction is assigned its priority using

the following formula:

(Br., 0. Dy, I if Group = HIT
PT =
1

(Br, 1, ——, Iy} if Group = MISS
Vr

where By is the identifier of the transaction’s bucket.

I As in the AED algorithm, transaction keys are sampled uniformly over the set of integers.
In the unlikely event that a new key matches that of an existing transaction, the key is re-
sampled until a unique key is obtained.
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The above priority assignment results in transactions of bucket i having higher priority
than all transactions of bucket j for j > i, and lower priority than all transactions of bucket g
for g < i. Within each bucket, transactions in the HIT group have a higher priority than tran-
sactions in the MISS group. The transaction priority ordering in the HIT group is Earliest
Deadline, while the priority ordering in the MISS group is Highest Value. The I priority com-
ponent serves to break the tie for transactions in the HIT or MISS group that have identical
deadlines or values, respectively. This ensures a total priority ordering of all transactions in

the system.

As mentioned earlier, the priority assignment process within each bucket is similar to
that of the AED algorithm. There are, however, two important differences: First, the transac-
tion list within a bucket is ordered based on transaction values, instead of transaction keys.
Second, the priority ordering within the MISS group is Highest Value instead of Randomn Prior-
ity. In the special case where all the transactions of a bucket have the same value, however,

the priority assignment process is identical to that of the AED algorithm.

An important point to note here is that transactions retain their initial bucket, group and

priority assignments for the entire duration of their residence in the system.

8.2.4. Discussion

The core principle of the AED mapping is to use an Earliest Deadline schedule among the
largest possible set of transactions that can be completed by their deadline, i.e. the HIT group.
The HED mapping extends this principle in two ways: First, within a bucket, it ensures that
higher-valued transactions are given precedence in populating the HIT group, as this should
increase the realized value. Second, by creating a value-based hierarchy of buckets, the HED
algorithm ensures that transactions with substantially different values are not assigned to the
same bucket. The reason for doing this is the following: The AED algorithm only approximates
a hit ratio of 1.0 in the HIT group. Therefore, there is always the risk of losing an extremely

high-valued transaction since transactions within the HIT group are prioritized by deadline and
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not by value. Missing the deadlines of such "golden” transactions can seriously affect the real-
ized value:; our solution is to establish a value-based bucket hierarchy, thus ensuring the

completion of these high-valued transactions.

8.3. Concurrency Control Algorithms

We have shown in Chapters 4, 5 and 6 that optimistic algorithms outperform locking
algorithms in a firm deadline RTDBS when all transactions have the same value. In Chapter 7,
these- results were extended to the case where transactions have different values assuming
fixed-tradeoff priority assignments. One of the goals of this chapter is to determine whether
the superior performance of optimistic algorithms also holds for the HED algorithm. We com-
pare the performance of the 2PL-HP, OPT-BC and OPT-WAIT concurrency control algorithms in
this chapter. As in Chapter 7, the OPT-WAIT variant considered in the experiments of this
chapter is the OPT-WAIT(S) algorithm. This algorithm implements a policy where a transaction
that is priority-waiting at its deadline is always aborted and discarded, thus ensuring that

high-priority transactions are never restarted by low priority transactions.

8.4. Experiments and Results

In this section, we present performance results for a set of experiments comparing the
Earliest Deadline, Highest Value and Hierarchical Earliest Deadline priority mappings. We dis-
cuss our results with regard to the impact of different transaction value distributions. As in
the previous chapter, deadline formula DF3 is used to assign transaction deadlines in the
experiments described here. With DF3, a general workload where transactions have a variety

of slack ratios is constructed.

While describing the HED algorithm in Section 8.2, we mentioned a parameter, Spread-
Factor, which determines the allowable spread of transaction values in each bucket. The
choice of SpreadFactor is constrained by two opposing considerations: Having a large Spread-

Factor results in high-valued transactions being grouped with low-valued transactions. As an
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extreme case, a SpreadFactor of « assigns all transactions to a single bucket. On the other
hand, having a small SpreadFactor causes the algorithm to give undue importance to value
over deadline. As an extreme case, again, a SpreadFactor of O assigns a different bucket for
each distinct transaction value. We conducted several experiments on the performarce sensi-
tivity of HED to the SpreadFactor settings for different value distributions. Our experiments
showed that settings between 2 and 4 delivered a reasonable tradeoff between the above
conflicting considerations for the range of workloads studied in this chapter. For the experi-
ments presented here, we chose a value of 3 for the SpreadFactor setting. In addition, the
HITbatch and ALLbatch parameters of the AED algorithm employed in each bucket are set to

20 (as in Chapter 6) for the experiments described here.

8.4.1. Experiment 1: Uniform Value Distribution

Our first experiment investigated the case where transaction values are uniformly distri-
buted over a limmited range. The settings of the workload parameters and the system parame-
ters for this experiment are shown in Table 8.1. The value-related parameter settings are
identical to those of the uniform-value experiments of Chapter 7. They construct a single-class

workload where transaction values range uniformly between 50.0 and 150.0. The settings also

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages || DatabaseSize | 1000 pages
SprdSize 0.5 NumCPUs . 8
WriteProb 0.25 NumbDisks 16
DeadlineFormula | DF3 PageCPU 10ms
LSF 1.33 PageDisk 20ms
HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

NumClasses 1

ProbClass(i] 1.0

OfferedValueli] 1.0

MeanValuelfi 100.0

SprdValueli 0.5

Table 8.1: Baseline Parameter Settings
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result in the system performance being limited by both resource contention and data conten-
tion. For this experiment, 2PL-HP is used as the concurrency control mechanism, and the

various concurrency control alternatives are compared in Experiment 3.

For this experiment, Figures 8.2(a) and 8.2(b) show the Loss Percent results under nor-
mal load and heavy load conditions, respectively. From this set of graphs, it is clear that at
normal loads, the Earliest Deadline (ED) mapping delivers the most value. As the system load
is increased, however, ED's performance steeply degrades and becomes considerably worse
than that of HV at high loads. This behavior of ED and HV is exactly what would be expected
from our observations in the experiments of Chapter 7. Moving on to the HED mapping, we
see that at normal loads it behaves almost identically to Earliest Deadline. Then, as the over-
load region is entered, it changes its behavior to be similar to that of Highest Value. Therefore,
in an overall sense, the HED mapping delivers thé best performance. It should be noted that

for this uniform workload, all transactions are assigned to the same bucket since transaction
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values are all within a factor of 3 (the SpreadFactor setting) of each other. The HED mapping’s
feedback mechanism is effective in detecting overload conditions and limiting the size of the
HIT group to a manageable number. HED’s priority assignment mechanism then realizes a

high value by populating the HIT group with higher-valued transactions.

8.4.2. Experiment 2: Skewed Value Distribution

The next experiment examined the effect of having a skew in the transaction value distri-
bution. For this experiment, the parameters are set as shown in Table 8.2. The value-related
parameter settings are identical to those of the skewed value experiments of Chapter 7. They
construct a two-class workload where 10 percent of the transactions deliver 90 percent of the
offered value. The values of the transactions from the first class vary between 450.0 and

12.75.0, while the values of the second class vary between 5.5 and 16.0.

The Loss Percent results for this experiment are shown in Figures 8.3(a) and 8.3(b). From
these figures we note that the performance of the Earliest Deadline (ED) mapping remains the
same as for the uniform value distribution {(compare with Figures 8.2(a) and 8.2(b)). since the
ED mapping is value-indifferent. The figures also show that the performance of the Highest

Value (HV) mapping improves greatly as compared to the uniform value case. This is exactly

Workload System

Parameter Value Parameter Value
MeanTransSize 16 pages DatabaseSize | 1000 pages
SprdSize 0.5 NurmnCPUs 8
WriteProb 0.25 NumbDisks 16
DeadlineFormula | DF3 PageCPU 10ms
LSF 1.33 PageDisk 20ms
HSF 4.0 CCReqCPU 0.0
GlobalMeanValue | 100.0

NumClasses 2

ProbClasslil 0.1,0.9

OfferedValueli] 0.9,0.1

MeanValueli] 900.0,11.1

SprdValuefi] 0.5,0.5

Table 8.2: Skewed Value Settings
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the behavior that would be expected from our observations in the experiments of Chapter 7.
Moving on to the HED mapping, we observe that it performs better than both ED and HV over
the entire loading range. The reason for its good performance is twofold: First, the bucket
hierarchy construction ensures that the few high-valued transactions in the workload at any
given time are assigned to a separate higher priority bucket. This guarantees that these tran-
sactions are completed and therefore their value is realized. Second, using the AED algorithm
within each bucket results in more deadlines being made and provides a corresponding

increase in the realized value.

8.4.3. Experiment 3: Concurrency Control

The earlier experiments have shown that the HED priority assignment algorithm provides
the best overall performance. Here, we investigate the behavior of various concurrency control
algorithms in association with the HED algorithm. We compare the performance of 2PL-HP

with that of OPT-BC and OPT-WAIT for both the uniform value distribution of Experiment 1
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and the skewed value distribution of Experiment 2.

For the uniform value case, Figure 8.4 shows the Loss Percent results. We observe here
that OPT-WAIT performs better than 2PL-HP over the entire loading range. This is because
OPT-WAIT, which is as priority-cognizant as 2PL-HP, misses fewer deadlines than 2PL-HP.
While OPT-WAIT does suffer from the problem of "wasted sacrifices," the effects of this problem

are smaller than those of the "wasted restarts" problem of 2PL-HP.

OPT-BC performs worse than 2PL-HP at very low loads due to its priority-indifference. At
slightly higher loads, however, it begins to perform better since its fewer missed deadlines
more than compensate for its priority-indifference. OPT-WAIT and OPT-BC perform identically
at heavy loads since the priority wait-mechanism rarely comes into play - heavy resource con-
tention prevents low-priority transactions from reaching validation much before their dead-

lines. This is sirilar to our observations in the experiments of Chapter 5.

For the skewed value case, Figure 8.5 shows the Loss Percent results. We observe here
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that OPT-WAIT performs better than 2PL-HP over the entire loading range. Since OPT-WAIT is
willing to sacrifice low priority transactions for high priority transactions, high value transac-
tions are essentially guaranteed to complete before their deadlines. This is similar to the
behavior of 2PL-HP. In addition, OPT-WAIT gains some extra value over 2PL-HP due to miss-
ing the deadlines of a smaller number of low-value transactions. To sum up, as compared to
2PL-HP, OPT-WAIT meets the deadlines of all of the same high-value transactions and misses
fewer low-value transactions. The performance of OPT-BC, on the other hand, is significantly
worse than that of the other two algorithms. This is because OPT-BC does not take transac-
tion priorities into account, and therefore permits high-value transactions to be restarted by
low-value transactions. This results in some of the "golden" transactions missing their dead-

lines.

From the above experiments, we conclude that the basic results about the superior per-

formance of optimistic algorithms hold under the HED priority assignment policy as well.

8.5. Conclusions

In this chapter, we introduced the Hierarchical Earliest Deadline (HED) algorithm to
address the issue of priority assignment when transactions are distinguished by both values
and deadlines. The HED algorithm groups transactions, based on their values, into a hierar-
chy of prioritized buckets; it then uses the AED algorithm within each bucket. Our experi-
ments showed that, both for workloads with limited spread in transaction values and for work-
loads with pronounced skew in transaction values, the HED algorithm provided the best
overall performance. At light loads, its behavior was identical to that of Earliest Deadline,
while at heavy loads its performance was better than that of Highest Value. Use of the AED
algorithm within the transactions of a bucket decreased the number of missed deadlines. Also,
by giving preference to more valuable transactions in populating the HIT group of each bucket,
the HED algorithm increased the realized value as compared to HV. For workloads with pro-

nounced skew in transaction values, the hierarchical nature of the HED algorithm was effec-
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tive in ensuring that "golden" (high-valued) transactions were completed and their value real-

ized.




CHAPTER 9

SUMMARY AND FUTURE RESEARCH

9.1. Summary of Results

In recent years, applications from increasingly complex domains have started using data-
base technology. For many such applications, the complexities of the domain are reflected in
the underlying database system. Therefore, the database system can no longer be viewed in
isolation but must be viewed, instead, as an integral component of the application. In this
thesis, we have considered data-intensive applications that have timing requirements, such as
program trading in stock markets and operation controllers in computer integrated manufac-
turing systems. The objective of our investigation has been to determine how database sup-
port for such applications can include helping them meet their timing requirements. In partic-
ular, we have addressed the issue of how transactions with application-defined deadlines

should be scheduled by a database system in order to meet their deadlines.

We have restricted our attention in this dissertation to real-time database applications
that have firm deadlines. For such applications, transactions that miss their deadline are con-
sidered to be worthless and are therefore immediately discarded. In this framework, we con-
sidered two cases: (1) the case where transactions all have the same value from the
application's perspective and the goal of the RTDBS is to maximize the number of in-time tran-
sactions, and (2) the case where transactions have different values and the goal of the RTDBS
is to maximize the total value of the in-time transactions. Using a detailed simulation model of
a multiprocessor RTDBS, we studied the real-time performance of various transaction schedul-

ing algorithms. These algorithms varied in their priority assignment and concurrency control
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components but had common priority-based resource scheduling disciplines. None of the
algorithms assumed any a-priori knowledge of transaction processing requirements or transac-
tion data accesses. Five sets of experiments were conducted, the first three dealing with the
same-value case and the remaining two with the multiple-value case. Before summarizing the
results of these experiments, we caution the reader that the results are applicable solely to

firm-deadline applications.

We began our study of RTDBS transaction scheduling algorithms by investigating the
case where transactions all have the same value. In the first set of experiments, we evaluated
the performance of various concurrency control alternatives. In particular, we compared a
real-time locking protocol with a conventional optimistic concurrency control algorithm. Our
results showed the optimistic algorithm to perform better than the locking protocol over a wide
range of system loading and resource availability. This was an important result because it is
opposite to that seen in resource-constrained conventional DBMSs, where locking algorithms
outperform optimistic protocols. The change in behavior primarily arises from the RTDBS
feature of discarding late transactions. This feature caused the locking algorithmn, which
resolved data conflicts as soon as they occur, to be adversely affected by transactions that were
eventually discarded. In contrast, the optimistic algorithm was unaffected by such transac-
tions due to its delayed conflict resolution approach. Interestingly, this effect was strong
enough to make the conventional (non-real-time) optimistic algorithin perform better than the

real-time locking algorithm.

Having established that the basic optimistic approach to concurrency control has features
that are suited to the firm-deadline RTDBS environment, we followed up by evaluating different
approaches to developing real-time optimistic algorithms. Our experiments showed that a
priority-wait approach, where low priority validating transactions wait for high-priority
conflicting transactions to complete first, delivers the best performance at low loads. At high
loads, however, priority-waiting actually degraded performance by significantly increasing the

level of data contention in the system. Therefore, we developed the WAIT-50 dynamic
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optimistic algorithm, which uses a simple 50% rule to control the priority-wait mechanism.

Our experiments showed WAIT-50 to deliver improved performance in a stable manner.

In these initial sets of experiments, transactions were prioritized according to Earliest
Deadline, a priority policy that is commonly used in existing real-time systems. Apart from the
cofxcurrency control results, a secondary observation of these experiments was that using Ear-
liest Deadline resulted in few missed deadlines at light loads but in steeply degraded perfor-
mance at heavier loads. In fact, at sufficiently heavy loads, even a random priority assignment
was found to provide better performance than Earliest Deadline. To address this instability
problem of Earliest Deadline, we developed the Adaptive Earliest Deadline (AED) priority
assignment algorithm. AED stabilizes the overload performance of Earliest Deadline while
retaining its low load virtues. The AED algorithm uses a feedback process to estimate the
number of transactions that could be successfully completed by the system, and restricts the
use of an Earliest Deadline priority ordering to a set of transactions whose number is equal to
this estimate. Experiments comparing AED with several other fixed priority mappings showed

it to provide the best overall performance under a variety of workloads.

Having studied the priority assignment and concurrency control components of real-time
transaction scheduling for the same-value case, we then moved on to the case where transac-
tions have different values. Our first set of experiments here focused on the priority assign-
ment component. We conducted experiments for various transaction value distributions with
several priority mappings that establish different fixed tradeoffs between values and deadlines.
Our experiments showed that no single tradeoff is appropriate under all circumstances.
Rather, the right tradeoff is a function of the workload and system operating conditions. This
result highlighted the need for a priority assignment algorithm that could adaptively vary the
value-deadline tradeoff to match the operating environment. With this goal in mind, we
developed the Hierarchical Earliest Deadline (HED) priority assignment algorithm. The HED
algorithm groups transactions, based on their value, into a hierarchy of prioritized buckets; it

then uses the AED algorithm within each bucket. Our final set of experiments showed that the
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HED algorithm consistently provides better overall performance than all of the fixed-tradeoff
algorithms that were examined. With regard to concurrency control, our experiments showed
that real-time optimistic algorithms outperform real-time locking protocols in the value-based

framework as well.

To sumimarize, this thesis has shown that fixed priority assignment policies and locking-
based concurrency control protocols are not the methods of choice for transaction scheduling
in a firm-deadline RTDBS. Instead, we recommend the use of adaptive algorithms like HED for

priority assignment and priority-wait-based optimistic algorithms for concurrency control.

9.2. Future Research Directions

We developed the WAIT-50 algorithm assuming the use of an Earliest Deadline priority
policy and that all transactions have the same value. An attractive avenue for future work is to
develop similar dynarnic optimistic algorithms that are suitable for use with priority assign-
ments like AED or HED. One of the main problems here is how to decide whether a transac-

tion that is waiting at its deadline is to be committed or discarded.

Memory resources (i.e. buffer frames) are an integral feature of database systems. For the
sake of simplicity, we have not included this resource in our performance evaluation frame-
work. An interesting future area of research would be to develop real-time policies for buffer

allocation and replacement and evaluate their performance effects.

A basic assumption in our study is that the RTDBS has no a-priori knowledge of transac-
tion processing requirements or of transaction data accesses. It would be worthwhile to inves-
tigate how, and to what extent, performance could be improved if the RTDBS were to be pro-

vided more information about transaction characteristics (e.g., transaction size estimates).

As mentioned earlier, our study has focused on firmm deadline real-time database applica-
tions. Late transactions are therefore considered to be worthless and are simply discarded.
There exist real-timne database applications, however, that have soft deadlines; that is, there is

some residual utility to completing transactions after their deadlines. Developing transaction
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scheduling algorithms to maximize the realized value for such applications is a challenging
future research problem. The problem is complicated since the database system has to effec-
tively schedule both feasible and late transactions. Also, the priority assignment policy has to
take into consideration the values of a transaction both before and after its deadline; if the
value of late transactions decreases with their delay, the priority assignment must adjust to
the transaction’s decreasing value. Finally, since the feature of discarding late transactions is
absent in a soft deadline application, the performance behavior of the various concurrency

control mechanisms may differ from what was seen here for the firm deadline environment.

An implicit assumption in this study, and in most related work on real-time database sys-
tems, is that timing constraints are associated only with transactions. There are several appli-
cations, however, where the data itself is subject to time constraints. For example, in applica-
tions involving object tracking, the data describing object locations is time-constrained in that
it is valid for a limited time only. Transactions operating with such data have to ensure that
they use temporally consistent values. This may call for the use of multiple versions of each
data item to provide a history of data values. We therefore need to look into the performance

of different real-time multi-version concurrency control algorithms.

Finally, data distribution and replication offer opportunities for improving real-time per-
formance through load balancing, increased availability of data, and increased reliability. At
the same time, though, they magnify the problems of transaction scheduling since factors like
inter-site communication and consistency of replicated data have to be considered. A poten-
tially fruitful area of future research is to develop and evaluate distributed real-time transac-

tion scheduling algorithms.
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APPENDIX A

Implementation of OPT-BC

We present here a lock-based mechanism for implementing OPT-BC, the broadcast com-
mit optimistic concurrency control algorithm. Our method is as follows: Whenever a transac-
tion wants to read an object, it sets a read lock on it. If an object is to be written, the update is
made to a- private copy. After the transaction comes to validation and decides to commit,
which requires all of its private copies to be made public, write locks are set on all the objects

that are to be updated, and the updates are then performed.

Read locks are individually requested with the synchronous lock call (using System R lock
manager notation [Gray79]) LOCK (ReadSet;, SHARED, WAIT), where ReadSet; refers to the
specific data object on which the read lock is being requested. All write locks are requested
simultaneously at commit time with the non-blocking lock call LOCK (WriteSet, EXCLUSIVE,
TEST). Write locks preempt read locks and therefore the writeset lock request will always

succeed’, except as noted below.

In the process of giving locks on the writeset, the lock manager informs the recovery
manager of the list of preempted conflicting transactions to be aborted. The transaction abort
processing can be done asynchronously by having the lock manager maintain a table of the
current status of all executing transactions. The status of a transaction can be either Running,
AbortScheduled or Committing. Any further lock request from a transaction scheduled for abort

is refused by the lock manager. In particular, a validating transaction will be refused its

I A special case where the writeset lock request may fail temporarily is for transactions
with "blind writes” [Bern87]. A transaction with blind writes will have its writeset lock request
granted once the write locks currently existing on objects in its "blind write set” are released.
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writeset lock request if it has been scheduled for abort by a previously committed (or currently
committing) transaction. A transaction whose lock request is thus denied is put to sleep.and

aborted at a later time.

Once a transaction has obtained its write locks, it releases all its read locks with the fol-
lowing call to the lock manager UNLOCK(ReadSet — WriteSef). It then makes its updates and

commits, releasing all write locks at the end with the call: UNLOCK(WriteSet).

Implementation of OPT-WAIT

In the OPT-BC algorithm, when a validating transaction makes the request for simultane-
ous locks on its entire writeset, the request is guaranteed to succeed unless the transaction
has been scheduled for abort. For the OPT-WAIT algorithm, however, the success of the
request is also dependent on the current composition of the conflict set of the validating tran-
saction. If there are higher priority transactions in the conflict set, the writeset lock request is
refused and the transaction is made to wait. A waiting transaction needs to periodically re-
issue its writeset lock request since the composition of its conflict set is a function of time. A
reasonably efficient method to do this is for the lock manager to maintain a list of waiters for
each running transaction together with a count of conflicting higher priority transactions for
each waiting transaction. This count is evaluated at the time of making the writeset lock
request, and if the count is non-zero, the requesting transaction is put to sleep. Whenever a
transaction comimits, restarts, or is discarded, the high priority count of each of its waiters is
decremented. The terminated transaction is also taken off any list of waiters in which it is a
member. If a waiter's high priority count goes to zero, it is awakened. The awakened waiter
then reissues its writeset lock request. This process continues until the waiter is either res-

tarted or is given the writeset lock.

The WAIT-50 algorithm can be implemented, in a similar fashion, by making simple

extensions to the scheme described above.




APPENDIX B

Analytical Results

In all the resource-constrained experiments of this thesis, the Miss Percent characteris-
tics of transaction scheduling algorithms exhibited a S-shape. In this section, we try to provide
a theoretical basis for this shape. Using the terminology of queueing networks we can, in a
very loose and abstract fashion, compare a firm deadline system to a M/M/1/K system. A
M/M/1/K queueing model characterizes a system with Poisson customer arrivals, exponential
customer service times, a single server, and a maximum of K customers in the system. New
customers that arrive when there are already K customers in the system are thrown away. If
we take the percentage of customers thrown away by the server to be analogous to the Miss
Percent metric, and denote it by o, we then have the result (using Jackson’s Theorem [Jack63],
and assuming a mean customer service requirement of 1 time unit),

A -1
o= 100*{1*'")?{75‘:—1:\

where A is the customer arrival rate. A sample graph of a versus A for K = 10 is shown in Fig-
ure B.1 and the observed behavior is very similar to that seen in the resource-limited experi-

ments described in this thesis.

The formula for o can be split up in the following fashion :

ForA < 1,

o = 100 * AK.

For A > 1,
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Figure B.1: ALPHA (M/M/1/K Model)
=100 * |1-2
A

These two formulas give good approximations for the basic shape of the curves seen at normal

and heavy loadings, respectively.




APPENDIX C

Conflict Elimination Probability

In this section, we carry out a simple probabilistic analysis of the extent to which the
waiting scheme described in Chapter 5 can reduce data conflicts. To do this, we ask the fol-
lowing question: Given that transaction A conflicts with transaction B {A—B), what is the pro-
bability that transaction B does not conflict with A (B»A)? Assuming a uniform database
access pattern and that WriteSet ¢ ReadSet for all transactions, and using overlap to refer to
the cardinality of the set ReadSet, — ReadSetg, the probability [Ig,4,a_5 is given by the fol-
lowing expression

max(overlap)
pswajasp = E Pr(B=A | k overlap) Pr(k overlap | A—B)
=1

which can be re-written as

IBwala—B (C1)

1 max(overlap)

= BASH kz=:1 Pr(B>$A | k overlap) Prik overlap} Pr(A—B | k overlap)

The terms in Equation (C1) can be evaluated as shown in Table C.1, where the symbols have

the following meaning:

N = number of data items in the database
Ry =  size of readset of transaction A
Ry =  size of readset of transaction B
W, = size of writeset of transaction A
Wg =  size of writeset of transaction B

For the sake of simplicity, let us assume that every transaction has the same ratio between the
sizes of its write set and read set, and denote it by f (05f£1). A sample plot of Ilg,a)a—p @s a

function of f is shown in Figure C.1, for N = 100 and N = 1000, keeping the read set sizes of
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Pr(A—B) = 1-

Pr(B»A | k overlap)

Pr(k overlap)

H
—
|

Pr(A—B | k overlap)

1

max(overlap) min{R4,Rg)

Table C.1: Term Evaluations -

both A and B constant at 16. Note that for N » (R4 Rg), which is usually true since database

sizes are typically much larger than transaction sizes, Equation (C1) reduces to

Hpwajass=1-f (C2)

and this is evident in the IIga;a-,g curve for N = 1000 in Figure C.1. This means that if the
write fraction is 0.25, for example, then by waiting, we can resolve about 75% of the conflicts

without restarting either transaction.

It should be noted that neither Equation (C1) nor Equation (C2) gives the actual probabil-

ity with which conflicts will be reduced by waiting in our system - this is because some of the
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Figure C.1: Uni-directional conflict probabilities.

assumptions made in deriving the equations do not hold in our scenario. These assumptions
include the facts that only conflicts with a single transaction are considered, and that transac-
tion priorities are not taken into account. The equations provide a rough idea, however, of the

extent to which waiting can be beneficial with respect to reducing data conflicts.






