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Abstract

Cache-coherence protocols are used in multiprocessors to maintain a programming view of a single
shared memory. Some scalable cache-coherence protocols, like the Scalable Coherent Interface (pro-
posed IEEE-P1596 standard), use linked lists of cache lines to maintain hardware cache coherence and
prevent system-wide broadcasts. As processors read and write data, the cache-coherence protocols create
lists, distribute data, and destroy lists of cache lines. It is important that these list operations are efficient
as the system size (number of processors) increases. Therefore, additional pointers are added to the lists
to make trees that are efficient for the two multicasts (data and invalidation) required by the protocols.

In this paper we determine lower bounds on the latency of reads and writes in systems with cache-
coherence protocols that use linked lists. This work is particularly relevant to the extensions for the pro-
posed IEEE-P1596 standard. First, we show that the potential advantages of additional pointers decreases
rapidly as more pointers per list element are added. Second, we show that using the same pointers for the
two multicasts necessarily increases the latency of each multicast. Third, we give an algorithm for creat-
ing pointers and show that the time to create additional pointers with this algorithm is a significant part of
one multicast latency (for data). Finally, since theoretically optimal solutions are not feasible for imple-
mentations, we propose one implementable tree and demonstrate that its use results in latency that is only
twice that of a lower bound.






1. Introduction

One of the goals of multiprocessing is to keep a large number of processors busy doing useful work.
The goal of the memory system is to manage reads and writes so that processor wait-times are short and
infrequent. This is becoming more difficult since processor speeds are currently increasing faster than
memory and interconnect speeds. In shared-memory multiprocessors, memory is cached (duplicated)
near the processors in order to reduce memory access times and interconnect congestion [Good83]. Many
implementations also cache multiple copies of shared data for simultaneous reads.

As processors read and write data in a shared-memory multiprocessor, it is important to maintain a
unified view of main memory. When one copy of shared data is modified, all other copies of that data (if

any) must be invalidated (or updated)!. This is the problem of cache coherence. Specifically, all caches
with current copies are told to invalidate (mark or destroy) their copies. After the data has been invali-
dated, caches will request new data as needed.

Broadcasting of invalidations to all caches in the system is infeasible for large multiprocessors
because the bandwidth required by this solution grows faster than the bandwidth provided by any cost-
effective interconnect. Interconnect congestion, caused by broadcasts, stalls the processors, effectively
reducing the total computing power of the system. Instead, multicasting is required, where only the
necessary subset of the system’s caches are notified of an invalidation. Note that since single buses and
their associated snooping protocols [ArBa86] are broadcast oriented, they are infeasible for large mul-
tiprocessors.

In order to multicast an invalidation, the set of destinations must be known. Copies of data in
caches are organized into cache lines, about 64 bytes each. Directories, one for each equivalent set of
cache lines, remember the destination sets. Each directory must reside in a well-known location (a func-
tion of the memory address to which it corresponds) so that it can be accessed. Spreading the directories
throughout the system (often with memory) avoids hot-spots [Pf{No85]. Some have proposed storing all
elements of one destination set in one location [ASHH88]. However, hardware constraints limit the set
size for each directory to a constant number of destinations, requiring special overflow mechanisms.
These mechanisms either default to broadcast invalidation or limit the number of simultaneous reads.

One way to avoid overflow complications is to further spread-out the directories, changing the desti-
nation set into a linked list of cache lines. Then, one hardware-maintained linked list of cache lines is
kept for each directory. This is part of the proposed IEEE-P1596 standard. Each cache line in the system
is in at most one list and each cache may be in several lists, one for each line. In addition to data, each
cache line stores part of the directory, pointers to the next and previous caches in the list. In particular,
these pointers are called list pointers and no cache line needs to store more than two. In order to provide

'Providing a global ordering on data modifications, called sequential consistency [AdHi90, DuSB86, Lamp79], is also
important, but it is not an explicit issue for this paper.



a well-known location for the linked-list directory, memory (or another fixed-location entity) keeps a
pointer to one end of the list. Using linked lists to maintain cache coherence is called linked-list cache
coherence and this is the kind of protocols we are studying.

Recall that invalidation of cache lines is a result of processor reads and writes. When processors
read data, copies are cached and lists of cache lines are built. When processors write data, copies are
invalidated and lists are broken-down. Before discussing the problem of making reads and writes
efficient for large lists, we give more detailed examples of linked-list cache coherence in the Scalable
Coherent Interface (SCI) [JLGS90]. SCI is a proposed IEEE standard (IEEE-P1596) for interconnects of
shared-memory multiprocessors, including cache coherence.

When a processor tries to read data that is not in its cache, the cache must get a current copy. This
is done in two request-response transactions, as shown in figure la. First, the cache that needs the data
consults the memory to obtain the end of the list where a current copy of the data resides. Before
responding, the memory updates its pointer to point to the requesting cache. Second, the cache requests
the data via the returned pointer and waits for a response, storing the pointer until needed later. The last
cache in the list to get the data is called the head.

When a processor tries to write data, its cache must first purge the list (invalidate cached copies and
break-down the list). Otherwise, some processors may read new copies while others are reading old
copies. This causes some programs to behave incorrectly. If the cache line is not the head of the list, it
must become the head by consulting the memory (removing itself first if it is already in the list). Then, it
can purge the other cache lines one by one, as shown in figure 1b. The head sends a purge request to the
second cache. The second cache invalidates the appropriate cache line and responds with a pointer to the
next cache, effectively removing itself from the list. Then, the head can purge the next cache, etc. When
the list is completely purged, the head can modify the data. In some cases the data modification may
occur before the list is completely purged [AdHi90, DuSB86]. Note that as processors again read the
data, the most recent writer becomes the end of the list that is opposite the head. This end is called the
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tail.

To summarize, caches in shared-memory multiprocessors are needed for efficient reads and writes.
Hardware cache coherence can be maintained with linked lists that prevent broadcasting.

1.1. Problem Description

Processor speeds have increased dramatically in the last few years, but interconnect latencies have
remained relatively constant. Since this trend is expected to continue, the latency of a message between
caches is modeled as two interconnect delays, one for sending the request and one for retumning the
response. In particular, latency of cache coherence protocols is measured by the number of messages on
the critical path, ignoring processing speed. Traffic is measured by the total number of messages.

Consider a shared variable that is read often by many processors. Each time the variable is written,
the associated list is purged. When the processors read the new value of the variable, the list is created
and the data is distributed. For the coherence protocol to be efficient, these three operations must be
efficient. For lists of size N, the defined cache coherence protocol has O (V) traffic and O (N) latency.
Although the traffic is acceptable (it is impossible to do better), the latency is not. We can do much
better. This is the problem of scalablé® linked-list cache coherence (SLC) and it is particularly relevant
to the extensions [IEEE90] for the proposed IEEE-P1596 standard.

The key idea [JLGS90] is to add a small constant number of temporary pointers to the lists. Shown
in figure 2, temporary pointers increase the connectivity of the lists, making them more like trees. Using
temporary pointers, protocols can distribute data and purge lists with sublinear latency, often O (1og(N)).
Of course, the choice of which temporary pointers to add affects these two latencies as well as the latency
to create the temporary pointers.

The latency of SLC protocols is the sum of the latencies for three operations: list creation, data dis-
tribution, and list purging. However, we are only interested in part of this latency: temporary pointer
creation and two multicasts (data and invalidations). In particular we assume that the list has already
been created and that each cache knows its position in the list (distance from the last writer). These
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ZFor this paper, scalable intuitively means (with respect to system size) sublinear latencies (usually logarithmic), linear
traffic that is uniformly distributed, and nearly constant space per processor (except normal memory).



assumptions are reasonable in that efficient preliminary solutions have been developed for list creation
[JLGS90j and position numbering [IEEES0]. Furthermore, we are not interested in the latency of
breaking-down the list, only the latency of propagating the signal to do so (invalidation multicasting).
Efficient preliminary solutions have also been developed for efficient list destruction [IEEE90]. We leave
ourselves with the problem of deciding which temporary pointers to create and how to create and use
them. We want to minimize the latency for their creation and their use for two multicasts, while limiting
the traffic to O (N).

In this paper we give a number of lower bounds on latency for temporary pointer creation and two
associated multicasts. Lower bounds on this problem are important in that they provide a standard
against which proposed implementations can be measured. Furthermore, it does not suffice to determine
complexity orders since constants affect which solutions are candidates for hardware implementations. A
study of lower bounds also yields insight into what characteristics make solutions good and bad.

In studying lower bounds, we have discovered some important results. First, we show that the
potential advantages of additional temporary pointers decreases rapidly as more pointers per cache line
are added. This is reassuring since hardware limitations probably restrict the number of temporary
pointers to one or two per cache line. Second, we show that using the same temporary pointers for data
distribution and invalidation necessarily increases the latency of both, assuming one temporary pointer
per cache line. Third, we give an algorithm for creating temporary pointers and show that creation of
temporary pointers contributes significantly to latency and can not be easily overlapped with data distri-
bution. Finally, since control complexity in hardware is an issue, we propose an implementable choice of
temporary pointers that yields about twice a lower bound on latency.

1.2. Related Work

Scalable linked-list cache coherence (SLC) with temporary pointers is fundamentally different than
most communication problems in that no cache line knows all of the desired destinations for a multicast.
Cache lines are allowed to change which destinations they know, effectively changing the logical com-
munication topology. Furthermore, no cache line can remember more than a constant number of destina-

tions at any one time (probably less than five) and message sizes are limited to a constant size®. Broad-
casting variants of the gossiping problem [HeHL88] are not multicasting and do not allow modification of
the communication topology. For multicasting in networks [Deer88, FrWB85], including the Steiner
problem in networks [Wint87], algorithms either create new nodes or make use of nodes that are not des-
tination set. This is not allowed by SLC.

The skip lists of Pugh [Pugh90] are similar to our cache lists in that additional pointers are added to
increase list connectivity. However, some nodes of Pugh’s lists may have up to a logarithmic number of

3Maximum packet sizes for coherent data in the Scalable Coherent Interface are one cache line (64 bytes) plus a header.




pointers per node. This is not appropriate for SLC since current constraints for hardware implementations
would limit the number of additional pointers to one or two.

The algorithm outlined by Hillis and Steele [HiSt86] for finding the end of a linked list has loga-
rithmic latency, but requires O (N log(N)) traffic. A refinement of this algorithm, that creates temporary
pointers and requires only O (N) traffic, is described in the next section.

A number of groups are currently exploring linked-list cache coherence [TDLS90]. The Scalable
Coherent Interface (SCI) [JLGS90] uses the protocols described earlier (see figure 1). Preliminary solu-
tions for scalable extensions to SCI [IEEE90] are not optimal and no analysis of latency is yet offered.
Gjessing et al [GJKMO90] are studying different connectivities for list purging in SCI. However, their
analysis tries to balance latency with traffic, whereas our analysis gives priority to latency. SCI is based
on a doubly linked list of cache lines for easier error recovery and more efficient cache line replacement,
discussed in the references.

The Stanford Distributed-Directory Protocol (SDD) [ThDe90] is based on a singly linked list of
cache lines and makes no attempt to achieve scalable performance. It reduces the number of messages
from four to three by having the memory forward requests for data (see figure 1). However, the four mes-
sage protocol is also included to avoid special deadlock situations related to finite queues. SDD also uses
forwarding for invalidation, thereby reducing the number of messages to about half, but they give no
description of deadlock avoidance for invalidations in the cited reference.

Throughout this paper we give lower bounds on latency for a number of constraints. In most cases
we solve the equivalent problem of maximizing the number of cache lines for a given latency instead of
minimizing the latency for a given number of cache lines. In section 2 we describe the the mechanism for
creating temporary pointers. In section 3 we give lower bounds on the latency for one multicast and
determine that the number of temporary pointers per cache line need not be large. In section 4 we give
lower bounds on the latency for both multicasts (data and invalidation), given that they must use the same
temporary pointers. In section 5 we give lower bounds on the latency of the first multicast (data), includ-
ing the latency for creating temporary pointers. In section 6 we compare the lower bounds of sections 4
and 5 to one solution that is reasonable to implement. Finally, we conclude with a summary of the results
in section 7. The appendix contains additional equations, graphs, secondary text, and some of the longer
arguments.

2. Recursive Doubling

The object of recursive doubling is to efficiently create temporary pointers that will be useful for
efficient distribution of data. First, each cache line determines the position number of the line to which it
wants a temporary pointer, if any. This is a function f of the system size M and the line’s own position
number x such that temporary pointers point downstream (towards the tail) and pointers are nested. For-
mally, x = fy(x) and if y > x > fy(y) then fy;(x) > fy(y). It remains to show how to create the temporary
pointers for some function fy;. For all cache lines u such that u # fys(#), line u requests a pointer to line
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fyy(u) from its forward neighbor, line u—1. When a line v=fyy(v) receives a request for a pointer to v—1,
it returns pointer v—1 to the requester (figure 3a). Otherwise, line v forwards the request to v—1 (figure
3b). When line u receives a request while waiting (figure 3c), it delays the request in its constant storage
until it receives the pointer to fy;(u). Finally, u forwards the delayed request to fp (u).

After the temporary pointers are created, the data and invalidations can be efficiently multicasted. If
a cache line has a temporary pointer, then it receives the data from line fy,(#) and later forwards invalida-
tions to that line and line u — 1. Otherwise, it requests data and forwards invalidations with respect to line
v—1. Note that line v =fy;(u)—1 requests the data from line f;(#) on behalf of line u. This prevents an
extra message delay.

Since pointers are nested, it can be shown by induction on x—fj(x) that all cache lines will eventu-
ally receive their desired pointers. Furthermore, pointer nesting along with delayed forwarding guaran-
tees that no line will receive more than one request for a pointer. It can also be shown that no line will
need to respond to more that two requests for data and no line will receive more than two invalidations.
Therefore, traffic is O (V).

This algorithm can work with the request-response paradigm as well. When cache line x receives a
request that would normally be forwarded, it returns the forwarding pointer“, namely min{x—1, f(x)}.
Then if required, the requester simulates the forwarding by sending a new request via the forwarding
pointer. Data propagates with request-response as well, but invalidations must revert back to the sequen-
tial method. Algorithm termination and constant space requirements are still satisfied and latency is no
more than doubled, except for invalidations.

3. Fundamental Constraints

In this section we analyze the effectiveness of multiple temporary pointers per cache line in doubly
linked lists and show that the latency of one multicast is proportional to 1/log(1+p+1), where p is the
maximum number of temporary pointers per cache line. In other words, we show that the advantage of
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additional temporary pointers decreases rapidly as more pointers per cache line are added, shown in figure
4. Since each additional temporary pointer is costly (about 16 bits per cache line in a system with 64K
caches), it is doubtful that implementations will allow more than one or two. We also analyze the disad-
vantages of unidirectional information flow (information propagates away from the originator) and
bidirectional temporary pointers (two pointers simulate an undirected edge in the graph). We show that
these two constraints are less important than the number of temporary pointers (see figure 4). Note that
lower bounds for doubly linked lists are also lower bounds on singly linked lists because the extra link
can be simulated with an additional temporary pointer. It should also be noted that in this section we are
only considering one multicast in isolation.

The equations in the appendix relate to circular linked lists, where the ends of the list have pointers
to each other. These results show that the difference in latency between circular and non-circular lists is
negligible for large doubly linked lists.

3.1. General Bound

The following equation bounds the maximum number of cache lines in a non-circular list. This
result bounds all other results for non-circular lists. Based on this equation we derive a lower bound on
latency for one multicast with one temporary pointer,

Mlmmal Multicast Latency for 64K Cache Lines Minimal Multicast Latency for 1K Cache Lines
.............................................. 2 e e e e e e e e
{J Both constraints [0 Both constraints
Q Either constraint Q  Either constraint
+  Neither constraint + Neither constraint
Constraints: Constraima:
1) unidirectional information flow 1) unidirectional information flow

20 J 2) bidirectional temporary pointers 20 2) bidirectional terporary pointers

o o ep
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Temporary Pointers Temporary Pointers

Figure 4
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h(N)=0. . - N 21
(N)=0.786410g,(N)+0.5729 N 05429
Equation 3.1 The maximum number of cache lines contained in a non-circular doubly linked
list is
N(hp)=K p+1+'\/D1 h 1 +K p+1—\jD1 h"‘K p+1+\JD1 h —]:_
PI=21 2 2p YT 2 ~h 2 2p’
K _D1+(3p+1)\/D1 K __Dl—(3p+1)\]D1 Dy =p46p+1

where each cache line has at most p =1 temporary pointers and kA >0 is the height of the
shortest-path spanning tree that is rooted at one end of the list.

Arguments: We can define two interdependent recurrence relations by identifying the two types of
cache lines in a spanning tree and noting their maximum branching factors. Note that temporary pointers
are unidirectional and list pointers come in pairs. See figure 5. If a line is connected to its parent by a
temporary pointer, then the line can have p +2 children: p by temporary pointers and 2 by list pointers.
However, if a line is connected to its parent by a list pointer, then the line can have only p +1 children
because its second list pointer connects to the parent. This leads us to the following recurrence relations,
where £ is the height of a subtree and T (h) and L (h) are the maximum number of lines in a subtree whose

root is visited by a temporary pointer and a list pointer respectively.

Maximum Lines for One Temporary Pointer

L
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Th)=1+pTh-1)+2L(h-1), T(H)=1, TO)=0,
L(h)=1+pT(h-1)+L(h-1), L(1)=1, and L({0)=0.
L (h) is the desired function because the end of the list can have only one list pointer. Standard methods
[PuBr85] yield the result to be proved. Note that the contribution of one root becomes negligible for
large h. []

3.2. Additional Constraints

Here, we examine two constraints, separately and collectively. One constraint is that temporary
pointers are bidirectional, meaning that two temporary pointers simulate an undirected edge in the graph.
This constraint may help in the process of creating the temporary pointers for algorithms not discussed in

this paper. It may also prevent drastic loss of performance due to cache line removals®. The other con-
straint is that information flow is unidirectional, meaning that information propagates away from the ori-
ginator, as determined by the list ordering. This constraint will help reduce the amount of traffic because
the number of outgoing messages is reduced for some cache lines. It may also allow implementations
with singly linked lists. The analysis shows that these constraints have less effect, separately and collec-
tively, than changing the number of temporary pointers by one (see figure 4).

Equation 3.2 If either temporary pointers are bidirectional or information flow is unidirec-

tional, then the maximum number of cache lines contained in a non-circular doubly linked list
is

1 a1

N(hp)=—@+1)'——

b p

where p and h are as given in equation 3.1.

Arguments: We can derive the formula for N (h,p) by showing that the maximum branching factor is
p +1 for all non-leaf cache lines in the spanning tree. 0

Equation 3.3 If temporary pointers are bidirectional and information flow is unidirectional,
then the maximum number of cache lines contained in a non-circular doubly linked list is

p+VDz}” 2 p—JDz_”~K,[p+VDz_” 2
2 2 TR -

N(h,p)"-"K7 —;+Kg e

p

D,+2D,
pD;
where p and h are as given in equation 3.1.

D, 2D
 Kg=——"2 D,=p?+4,

7
pD»

Arguments: Similar to equation 3.1 and given in the appendix. []

Since the equations of this section are related by

SCache lines may be victimized by cache replacement algorithms, causing them to be removed from the list. We assume
that these removals do not occur often.



+1 <p+2,

p+1+\)D1
D <"—'—'2‘—"—‘ <

p+\D2
< [N ———
2
we make two conclusions. First, the latency of one multicast is proportional to 1/log(1+p£l). Second,
the issues of unidirectional information flow and bidirectional temporary pointers are less important than
the number of temporary pointers.

4. Dual Constraints

In this section we study the interaction between the flows of data and invalidations, while ignoring
the time to create the temporary pointers. We give the optimal set of temporary pointers, assuming that
the worst-case latencies is when the list size N equals the system size M. Since these assumptions are
more permissive than SLC, the analysis gives a lower bound on latency for SLC.

There is a fundamental difference between the two flows of information. Data flow is demand
driven because reads in SLC introduce cache lines into the list. On the other hand, invalidation flow is
knowledge driven because the time of a future write is unknown. This means that data will propagate as
responses to requests, but invalidations will simply propagate as requests. Therefore, pointers used for
data flow are stored in cache lines that need the information, but pointers used for invalidation flow are
stored in cache lines that have the information.

In keeping with the assumptions of equation 3.2, we assume that data flow is unidirectional, mean-
ing that all requests must be sent and forwarded downstream (towards the tail). We also assume that
invalidation flow is unidirectional and that the same temporary pointers are used for data and invalida-
tions.

Equation 4.1 Given two spanning trees of a non-circular doubly linked list with only one tem-
porary pointer per cache line such that (1) each tree uses only one direction of the list pointers
and (2) the trees are rooted at opposite ends of the list, then the maximum number of cache
lines contained in the list is T (1,d):

T0,00=T0,d)=T(0)=0,
_ max il . .
where [ >1 and d =1 are the heights of the spanning trees.

Arguments: Given in the appendix. []

Note that we want to know the maximal number of cache lines N for a given sum 4 of the two multicasts
latencies in SLC. Using regression analysis we can show that
N(h)=max{T(,d):l+d=h}=1.1 (1.3)".

Comparing this to equation 3.1 for p=1 we conclude that using the same temporary pointers for both
multicasts necessarily increases the latency of both.
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5. Recursive Doubling Constraints

In this section we give the lower bound on the latency for simultaneously creating the pointers with
recursive doubling and distributing the data. We conclude that the latency of recursive doubling contri-
butes significantly to the latency of reads and can not be easily overlapped with data distribution. This
conclusion follows by comparing the following result with equation 3.1, where N (h)= e forp=1.

Equation 5.2 Assuming at most one temporary pointer per cache line and that information
flow is unidirectional, the maximum number of cache lines to which information can be distri-
buted in 4 > 1 message delays using recursive doubling is

N(h)=2.9460(1.3247)" -4
+(0.0270+0.1184 1) (=0.6624 — 0.5623 1) + (0.0270—0.1184 i) (~0.6624 +0.5623 i)",

where i=\f:f.

Arguments: Formal arguments are given in the appendix. It suffices to say that the exact formula in the
appendix is verified by exhaustive search for 0SN <73 (1<h <12). Therefore, N (h) is correct as stated.
Note that the contributions of two roots become negligible for large h. []

6. Simple Solution

In the section 2 we described recursive doubling, a simple mechanism for constructing temporary
pointers. This mechanism assumes that a cache controller can easily compute the list position of the
cache line to which it needs a temporary pointer, given its own position x and the maximum list size M.
Functions for near-optimal solutions (often recursive functions) are probably not appropriate for hardware
implementation, due to their complexity. In this section we give a function that is appropriate for
hardware implementation and useful for efficient pointer creation and multicasts.

Figure 6 gives a function (written in C and tested for sizes 32 and 64) that retums the distance of the
desired temporary pointer. One subtraction (from its position x) then yields the function required by
recursive doubling. The figure also shows the pointer structure (same as figure 2) that would then be
created by recursive doubling for 16 cache lines. Although this is similar to the figure in [IEEES0}, ours
is well-defined by the given function. It is important to note the simplicity of the hardware components
that would be required in the implementation of this function for system size M being a power of two.
There is only one loop and no recursion. Each loop iteration requires only three compares for equality,
only one compare for inequality against a power of two, and only one decrement by either a one or a
pc;wer of two minus one. Outside the loop the hardware is similarly simple. Although we have not
implemented this function in hardware, our experience leads us to believe that it would be straight-
forward and appropriate as part of a real implementation.

Using recursive doubling with this function produces a solution to SLC with a latency of
91og,(N)—21 message delays, N 216. This is 123 message delays for 64K caches. In particular, recur-
sive doubling creates the longest temporary pointers in 3logz(N)—7 message delays (N 28), data is dis-
tributed to the remaining caches in 2 log, (N)—4 message delays (N 216), and the worst-case invalidation
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Choice of Temporary Pointers

16 15 14 13 12 11 10— 9 |-+ 8 7 6 5 4 l—- 3 2 1
distance (size, position) /* returns distance of temporary pointer */
int size, position; /* 1 <= position <= size == power of two */

{
if (position <= 2 || size~1l <= position) return (0);
while (position !'= size-2 && position != size/2 && position != 2) {
size = size / 2;

if (position > size) position = position - (size - 1);
else position = position - 1;
}
if (position == 2) return (0);
return (size/2-2);
}
Figure 6

takes 4log,(N)—10 message delays (N 216). The invalidation latency is this bad because some of the
longest temporary pointers can only be used when the list size N is maximal. One of the worst-cases for
invalidation occurs when the list size is M —logy (M), which is also the one of the worst cases for data dis-
tribution. When the list size is maximal, the latency for invalidations is about 21og,(N). Due to sym-
metry, data distribution is also about 2 log, (N) when ignoring the time to create the temporary pointers.

These latencies compare favorably with the lower bounds given in previous sections. The latency
of recursive doubling alone (see appendix) and recursive doubling with data distribution (see section 5)
are each about twice the lower bound on latency. When data distribution and invalidation are considered
together (see section 4), the latency is only half more than the lower bound. These results are summar-
ized in figure 7b.

This function is the simplest known function that recursive doubling can use to produce temporary
pointers as part of a logarithmic-latency solution to SLC. Also, there is no known non-recursive function
that recursive doubling can use to provide a lower-latency solution. Since the protocol latency that results
from the use of this function is about twice that of a lower bound and since its implementation complexity
is reasonable, it is doubtful that a better function will be proposed. If improvements are to be found, it is
likely that recursive doubling will be replaced by another algorithm, possibly interacting with list creation
and combining (discussed in [JLGS90]).

7. Summary

In this paper we described the problem of scalable linked-list cache coherence (SLC). The problem
is particularly relevant to the extensions [IEEE90] for the proposed IEEE-P1596 standard. As processors
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read and write shared data, linked lists of cache lines are maintained by hardware. The cache-coherence
protocols create these lists, distribute data, and purge these lists. To be scalable, temporary pointers are
added, a small constant number per cache line. The problem is to determine which pointers are best to
add and then determine how to create and use them.

We gave lower bounds on latency for creating these temporary pointers and using them for two
separate multicasts. We showed (figure 4) that the potential advantages of additional temporary pointers
decreases rapidly as more temporary pointers per cache line are added. This is reassuring since space
limitations in the cache probably restrict the number of temporary pointers to one or tw0 per cache line.
We showed (summarized in figure 7a) that a number of other issues (circular lists (see appendix), uni-
directional information flow, and bidirectional temporary pointers) are less important for one multicast
than the number of temporary pointers.

We examined the pairwise interactions between recursive doubling and the two required multicasts,
summarized in figure 7b. We showed that using the same temporary pointers for data distribution and
invalidation necessarily increases the latency of both, assuming one temporary pointer per cache line. We
gave an algorithm for creating temporary pointers, called recursive doubling, and showed that creation of
temporary pointers contributes significantly to the latency of reads and can not be easily overlapped with
data distribution. Finally, since control complexity in hardware is an issue, we proposed an

-13-



implementable choice of temporary pointers that yields about twice the latency of some theoretical lower

bounds.

8. Acknowledgements

Advisor Jim Goodman, Dave James, and other members of the SCI working group provided

interesting problems to solve and stimulating discussions. Eric Bach also provided stimulating com-
ments. Stuart Friedberg provided papers on multicast. Many provided helpful suggestions on earlier
drafts: Eric Bach, Jim Goodman, Dave James, and Steve Scott. This work was supported in part by NSF
Grant CCR-892766.

9. References

[AdHi90]

[ASHHS8]

[ArBa86]

[Deer88]

(DuSB86]

[FrWB8S5]

[GIKM90]

[Good83]

[IEEES0]

[HeHL88]

[HiSt86]
[JLGS90]

(Lamp79]

Sarita V. Adve and Mark D. Hill, "Weak Ordering - A New Definition," Proceedings of the
Seventeenth Annual International Symposium on Computer Architecture 18, 2 (May 1990),
2-14.

Anant Agarwal, Richard Simoni, John Hennessy and Mark Horowitz, "An Evaluation of
Directory Schemes for Cache Coherence," Proceedings of the F ifteenth Annual
International Symposium on Computer Architecture, May 1988, 280-289.

James Archibald and Jean-Loup Baer, "Cache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model," ACM Transactions on Computer Systems 4, 4
(November 1986), 273-298.

Stephen E. Deering, "Multicast Routing in Intemetworks and Extended LANS,"
Proceedings of the 1988 SIGCOMM Symposium, August 1988, 55-64.

M. Dubois, C. Scheurich and F. A. Briggs, "Memory Access Buffering in
Multiprocessors," Proceedings of the Thirteenth Annual International Symposium on
Computer Architecture 14, 2 (June 1986), 434-442.

Ariel J. Frank, Larry D. Wittie and Arthur J. Bemstein, "Multicast Communication on
Network Computers," IEEE Software 2, 3 (May 1985), 49-61.

Stein Gjessing, Sverre Johansen, Stein Krogdahl and Ellen Munthe-Kaas, "Fast
Distribution of Information in SCI-like Cache Protocols," manuscript in preparation,
Department of Informatics, University of Oslo, Norway, November 1990.

James R. Goodman, "Using Cache Memory to Reduce Processor-Memory Traffic,"
Proceedings of the Tenth Annual International Symposium on Computer Architecture,
June 1983, 124-131.

"The Extended SCI Cache-Coherence Protocols," in The Scalable Coherent Interface, vol.
0.74 - P1596/Part I1I-C, David B. Gustavson and David V. James (eds.), October 1990.

Sandra M. Hedetniemi, Stephen T. Hedetmiemi and Arthur L. Liestman, "A Survey of
Gossiping and Broadcasting in Communication Networks," Networks 18, 4 (1988), 319-
349.

W. Daniel Hillis and Guy L. Steele, Jr., "Data Parallel Algorithms," Communications of
the ACM 29, 12 (December 1986), 1170-1183.

David V. James, Anthony T. Laundrie, Stein Gjessing and Gurindar S. Sohi, "Scalable
Coherent Interface," IEEE Computer 23, 6 (June 1990), 74-77.

Leslie Lamport, "How to Make a Multiprocessor Computer That Correctly Executes
Multiprocessor Programs," IEEE Transactions on Computers C-28, 9 (September 1979),

-14 -




[PfN085]

[Pugh90]
[PuBr85]
[TDLS90]
[ThDe90]

[Wint87]

690-691.

G. F. Pfister and V. A. Norton, "*‘Hot-Spot”’ Contention and Combining in Multistage
Interconnection Networks," ACM Transactions on Computer Systems C-34, 10 (October
1985), 943-948.

William Pugh, "Skip Lists: A Probabilistic Altemative to Balanced Trees,"
Communications of the ACM 33, 6 (June 1990), 668-676.

P. W. Purdom, Jr. and C. A. Brown, The Analysis of Algorithms, CBS Publishing, New
York, 1985.

Shreekant Thakkar, Michel Dubois, Anthony T. Laundrie and Gurindar S. Sohi, "Scalable
Shared-Memory Multiprocessor Architectures,” IEEE Computer 23, 6 (June 1990), 71-74.

Manu Thapar and Bruce Delagi, "Stanford Distributed-Directory Protocol,” I[EEE
Computer 23, 6 (June 1990), 78-80.

Pawel Winter, "Steiner Problem in Networks: A Survey," Networks 17, 2 (1987), 129-167.

-15-



10. Appendix

The appendix contains additional equations, graphs, secondary text, and some of the longer argu-
ments. Exact analytical solutions have been computed for all recurrence relations and have then been
verified by Vaxima, a symbolic manipulator. In addition, exhaustive searches of all pointer combinations
for small numbers of cache lines have verified many of the equations. Where possible, exact solutions
have been transformed to numerical solutions (accurate to four decimal places) to aid understanding and
the exact solutions have been placed here.

In most cases we solve the equivalent problem of maximizing the number of cache lines for a given
latency instead of minimizing the latency for a given number of cache lines. An approximation for
number of cache lines in terms of latency is given here for the relevant cases. It can be shown that for

t
N=kirh+c+Skrt, h21, |1 <1, 21,
i=2

4
fel+3 ki
log,(N)  log,(k = '
_ g22(V)  log,( 1)j: =2 N> e+ Lhrl.
logy(ry)  log.(ry) : i=2
log,(r))|N—-lc|-3X lkiri
| i=2

Although a smaller error term could be found by more detailed analysis, the given one is sufficient for
interesting (large) N.

Equation 3.1

See figures 4 and 8. Also, N (k) =0.6036 (2.4142)" —0.5000 -0.1036 (-0.4142)" and

h(N)=0.786410g,(N)+0.5729 & _06160

p=1, N=1.
N—-05429"

Equation 3.1c The maximum number of cache lines contained in a circular doubly linked list
is

p+1+vD; |* 1 p+1-—\/D1]h~K {p+l+\fD1 P
L badl. 5 S £ ~| =Ky | ———| -=

N(h.p)=K3 5

+K4

’

2 2 p

% ~D1+(p+1)‘\jD1 K _Dl—(p+1)'\JD1
7 2pDy 7' 2pDy
where p and h are as given in equation 3.1.

, Dy =p2+6p+1,

Arguments: A (h) from equation 3.1 is the desired function to solve because the "end" of a circular list
has two list pointers. Standard methods [PuBr85] yield the result to be proved. Note that the contribution
of one root becomes negligible for large A. []

Also, N (h) =0.6768 (2.4142)" — 1 —0.1464 (-0.4142)" and

1.2034
N)=0. ' 507
h(N)=0.786410g;(N)+0.1797 £ ==

p=1, N22
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Minimal Latency for One Multicast 30One Multicast (unidirectional information flow)
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Equation 3.2
1.4427
See figures 4 and 8. Also, h(N) =logay(N+1) = logZ(NHOiTT’ p=1, N22.

Equation 3.2¢ If information flow is unidirectional then the maximum number of cache lines
contained in a circular doubly linked list is the same as for a non-circular list. However, if tem-
porary pointers are bidirectional then the maximum number of cache lines contained in a circu-
lar doubly linked list is

N(h,p)= K;l (p+ 1) —%, h22,

where p and h are as given in equation 3.1.

Arguments: If information flow is unidirectional then the "end" of the circular list still has only p+1
usable pointers, but if temporary pointers are bidirectional then the "end" of the circular list has two
usable list pointers. Except for the root cache line, the maximum branching factor is p +1, yielding a
geometric sum,

Nhp)=1+(p +2)hi2(p +1)%
i=0

Algebraic manipulation yields the result to be proved. []
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2.8854
N-2"

Also, h(N) =1oga(N)—-0.5850% p=1, N23.

Equation 3.3

Arguments: Again, we can define two interdependent recurrence relations by identifying the two types
of cache lines in the spanning tree and noting their maximum branching factors. If a line is connected to
its parent by a list pointer, then the line can have p +1 children: p by temporary pointers and 1 by the list
pointer of the appropriate direction. However, if a line is connected to its parent by a temporary pointer,
then the line can have only p children because one of its temporary pointers connects to the parent. This
leads us to the following recurrence relations, where # is the height of a subtree and L (h) and T (h) are the
maximum number of lines in a subtree whose root is visited by a list pointer and a temporary pointer
respectively.

L(h)=1+LMh-D+pTH-1), L(D)=1, LO)=0,

T(h)=1+Lth-D+@-1)THh-1), T()=1, and T(0)=0.
L (h) is the desired function because the end of the list can have only one list pointer. Standard methods
[PuBr85] yield the result to be proved. Note that the contribution of one root becomes negligible for
large h. []

See figure 4. Also, N(h)=1.1708 (1.6180)* —2-0.1708 (-0.6180)" and

42918
= - — e p= 23.
h(N)=1.440410g,(N)—-1.3277+ N—20652" p=1, N23

Equation 3.3c If temporary pointers are bidirectional and information flow is unidirectional,
then the maximum number of cache lines contained in a circular doubly linked list is the same
as for a non-circular list, where p and 4 are as given in equation 3.1.
Arguments: The "end" of a circular list also has p +1 children. []
Equation 4.1
Arguments: Let j be the number of pointers in T (/,d) that are not nested (see figure 9). Intuitively, this

Construction for Two Multicasts

i=0 i =1 i=j-1
T(-1,d)  T{-2, d-j+1) T(l-j, d-1)
Figure 9
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divides T (I,d) into two groups of cache lines: (1) j+1 lines, including the endpoints, that are sequentially
connected by temporary pointers (or list pointers for the base cases) and (2) the j segments of the lines
that are spanned by the j pointers. (If a segment is spanned by a list pointer, its length is zero.) Note that
it takes i +1 hops for information to reach and enter the i  segment (0<i < j) from the left endpoint and
so the spanning tree from that endpoint has /—(i+1) hops remaining. Likewise, it takes j—i hops to reach
and enter the segment from the right endpoint, leaving d—(j—i) hops. Therefore, the i** segment contains
exactly T (I—i—1d—j+i) cache lines and T (/,d) contains the unnested cache lines plus the sum of the seg-
ments, as given by the formula.

It remains to determine j. There can be at most min{/,d }~1 nested segments because spanning trees for
nested segments cannot have negative height. For the same reason, j can not be less than zero. There-
fore, T (I,d) is maximized according to the given formula. []

See figure 10. Experimentally, we have found that j is not fixed as ! and d vary. Due to this, we have

been unable to find a closed-form solution. However, linear regression analysis for 1 <log,(N (h)) <31

gives h(N)=2.6log2(V)+02. We have also noted that lim T(Ld)= lim T(,d)=2""4) _1 for
300 —00

1,d £40, which agrees with equation 3.2 forp =1.

Two Mulucast Latency (without pointer reversing) Two Multicast Latency (with pointer reversmg)
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We relax the constraints of the previous equation for the next equation. Since all temporary
pointers for data flow must point downstream (towards the tail) to be useful, some pointers in the equa-
tion may need to be reversed for invalidation. Pointer reversing is as follows. When a cache line
responds to a request for data, the destination of the response is saved and the downstream pointer is dis-
carded, if any. The choice of which pointers to reverse is independent of the mechanism.

Equation 4.2 Given three end-rooted trees of a non-circular doubly linked list with only one
temporary pointer per cache line such that (1) the first and second trees collectively span the list
and are rooted at opposite ends of the list and (2) the third tree (a) is rooted at the same end of
the list as the second tree, (b) independently spans the list, and (c) allows only unidirectional
information flow, then the maximum number of cache lines contained in the list is T'(/,r,d):

T(0,0,0)=7(0,0,d)=T(,r, 0)=0,
T(,r,d) =max{min{l+r, d}, F (I,r,d)},
max j-1 [Gk=0,i,1-i-1,r—j+i-1),
F{l,rd)= 1<j <min{l+r, d} 1+j+ Y TG k=1, i, 1-i =2, r—j+i-0),
max {0, j—r} <k <min{j, /} i=0 d—j+i

X ifu>v

G(u,v,x,y)={ y ifu<v,
max{x,y} ifu=v

where [ =0, r 20, and d > 1 are the heights of the first, second, and third trees respectively and
I+rz1.

Arguments: Figure 11 gives the intuition for the construction. We have not yet tried to worked through
the details of a argument. Parts of the equations have been verified by exhaustive search. O

Note that we want to know the maximal number of cache lines N for a given sum A of the two multicasts
latencies in SLC. Using regression analysis we can show that

Construction for Pointer Reversing

/'\ /\ e ‘ /\
i=0  i=1 i=k2 i=k1 Q=K i=k+ i=j2 Q=1
T(-1, 1-2, d-j) T(l-k+2, I-k+1, d-j+k-2) T(r-3, 1-2, d-2)
T(-2, 1-3, d-j+1) T(l-k-1, max{l-k, r-j+k-1}, d-j+k-1) T(r-2, r-1, d-1)

T(max{l-k,r-j+k-1}, r-j+k, d-j+k)
T(r-j+k, r-j+k+1, d-j+k+1)

Figure 11
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N(h)=max(T(, 0,d):[+d=h} =0.5(1.4)"
See figure 10. Linear regression analysis for 1 <loga(N) <31 gives £(N) = 2.0loga(N)+1.9.

Equation 5.1 Assuming at most one temporary pointer per cache line and that information
flow is unidirectional, T (r,d) is the maximum number of cache lines such that data can be dis-
tributed in 4 message delays after a pointer between the endpoints exists after » message delays,
where

T(rd)=TF~1,d-1)+T(r-2,d-1)+1, T0,0)=T(x,0)=T(1,x)=0.

Arguments: Construct the temporary pointers for the list as follows (see figure 12). Partition the list
into M segments, where M =min{r—2, d—1} and the right endpoint of one segment is the same as the left
endpoint of another. Then create a temporary pointer across each segment from the left endpoint to the
right. Recursively construct the temporary pointers for each list with new rules for r and d, as follows.
Since data reaches the z'® segment in z message delays, the data must be distributed throughout that seg-
ment in d —z message delays. Since recursive doubling for the whole list must complete in r message
delays, the z'™" segment must finish recursive doubling in r —z —1 message delays. Also note that recur-
sive doubling can not complete in less than 2 message delays (request and response) and that data can not
be forwarded in less than 1 message delay. These observations lead to the following formula.
T(rdy=M+1+ % T(r-z-1,d-z), r22,d21, TO,00=Tx 0)=T(1,x)=0, x21.

z=1

M +1 represents the number of overlapping endpoints of these segments, sequentially connected by tem-
porary pointers for segments that are longer than two. Each term of the summation represents the length
of the temporary pointer that spans the z'" segment (length zero if no temporary pointer). Since this con-
struction satisfies the constraints of 7 and d, it remains to show that it is maximal and that it is equivalent
to the result to be proved.

Three observations show that T (r,d) is maximal. First, M is the largest number of segments that are pos-
sible for the given values of r and d. Second, decreasing the length of any segment would not allow an
increase in the length of any other segment because the constraints are independent. Third, decreasing the

First Construction for One Multicast with Recursive Doubling

z=M zZ=2 z=1
T(r-M-1, d-M) T(r-3, d-2) T(r-2, d-1)
Figure 12
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number of segments decreases the total length of the list because removal of the last i segments does not
relax the constraints (on r or d) for the other M —i segments. Therefore, T (r,d) is maximal.

Finally, subtracting T (r,d) from T (r+1, d+1) yields the result to be proved. l:]
j .
Since it can be shown that ) [;z] =T(n+j, n)~-T(n+j, n=1), j<n and since there is no known
i=0

closed-form solution for partial sums of Pascal’s triangle, we believe that T'(r,d) does not have a closed-
form solution.

Equation 5.2 N N
D%/B +22/3 D%/3 a_)+22/3 ® D%/3 0)+22/3 6
N(h) =K DY3 2133 —4+K4 D3 2133 +Kis D3 2133
where
E;+F4 E;0+F; @ E;0+F3®
Kpy=l+——=> Kyg=ld——— Kis=1+ ,
B 276 1 276 13 276
E,=D33 213 [207— 19w/§w/2—§], Fy=D}3 223 [92\[3_—18\53-], Dy =23 +313,
and ® = :1—'*:2—'@— is a primitive cube root of unity.

Arguments: Construct the temporary pointers for the list as follows (see figure 13). Partition the list
into 4 —2 segments, where the right endpoint of one segment is the same as the left endpoint of another.
Then create a temporary pointer across each segment from the left endpoint to the right. Recursively con-
struct the temporary pointers for each segment with rules for T'(r,d) as follows. First, recursive doubling
must complete in r =z + 1 message delays so that data reaches the z™ segment in z + 1 message delays.
Second, the data must be distributed throughout the z™ segment in d = 4 —(z + 1) message delays so that
the latency is & message delays. These rules lead to the following formula.

Second Construction for One Multicast with Recursive Doubling

z=h-2 z=2 z=1
T(h-1,1) T(3,h-3) T2 h-2)
Figure 13
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NMhy=h-1 +h§T(z+l, h-z-1), h21.
z=]
The h —1 term represents the number of overlapping endpoints of these segments, sequentially connected
by temporary pointers for segments that are longer than two. Each term of the summation represents the
length of the temporary pointer that spans the z™ segment (length zero if no temporary pointer). Since
this construction satisfies the constraints of 4, it remains to show that the formula is equivalent to the
result to be proved and that it is maximal for given A.

First, show equivalence. Using the formula for N (k) and the recurrence relation for T (r,d), we derive a
recurrence relation for N (h).

h-2 h-1
Nh)=h=1+ Y, T+, h-z-1)=h-1+3, T(z, h-2).
z=1 z2=2
h h+2
NMh+l)=h+3Y T(z, h+1-2), N(h+3)=h+2+ > T(z, h+3-2).
z=2 z2=2
h+2 h+2
Nh+3)=h+2+ Y T(z-1, h+2-z)+ 3, T(z-2, h+2-z)+(h +1),
z2=2 z=2

h+1 h
Nh+3)=2h+3+ Y T(z, h+1-2)+ 3, T(z, h—2),

z=1 2=0
h h~-1
NMh+3)=h+h-1)+4+ Y T(z, h+1-2)+ 3, T(z, h-2).
z=2 z=2

N(h+3)=Nh+1)+N((h)+4, where N(1)=0,N2)=1,and N(3) =3.
Standard methods [PuBr85] yield the result to be proved.

Three observations show that T (r,d) is maximal. First, #—2 is the largest number of segments that are
possible for the given value of h. This is because it takes two message delays for data to reach the first
segment (one request and one response) and then the remaining message delays to reach the remaining
endpoints at the rate of one message delay per endpoint. Second, decreasing the length of any segment
would not allow an increase in the length of any other segment because the constraints are independent.
Third, we believe that decreasing the number of segments could not increase the total length of the list.
The exact formula is verified by exhaustive search for # <12 and N <72. Therefore, N (h) is correct as
stated. Note that the contributions of two roots become negligible for large 4. []

See figure 14, Also, & (N) = 2.46501ogy (V) —3.8423 £ —42152_ y 55

N-42111

Equation 5.3 The longest temporary pointer that can be created in 421 message delays by
recursive doubling is

h h h
N(h)=[1+2«/5'] _1{1-2\/5‘] :[1+2‘\/5—] L
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Recursive Doubling and One Multicast
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Figure 14

Arguments: (sketch) The construction is shown in figure 15. Also recall figure 3c.

=0.

=2, N(1)

3, NQ2)

=2

i

NHh)-Nh-1)-Nh-2)=1, N2)

NMh)=+Y N(@), hz4, N(3)

=0.

2, N(1)

Construction for Longest Temporary Pointer

TN,

—

——

0

0

Figure 15
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Note that the contribution of one root becomes negligible for large 4. []

3.3624

See figure 14. Also, N(h)=(1.6180)" =1 +(-0.6180)" and h(N)=1.44041og,(N)+0% —= 0,

N 22.
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