AN ANALYSIS OF TWO
PRIME NUMBER SIEVES

by

Jonathan Sorenson

Computer Sciences Technical Report #1028

June 1991

An Analysis of Two Prime Number Sieves

Jonathan Sorenson*

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706

sorenson@cs.wisc.edu

June 10, 1991

Abstract

A prime number sieve is an algorithm that finds all prime numbers up to a bound n.
In this paper, we calculate the number of arithmetic operations used by two prime num-
ber sieves: the sieve of Eratosthenes and an efficient linear sieve due to Pritchard. Al-
though Pritchard’s sieve is asymptotically faster than the sieve of Eratosthenes by a factor
of O(loglog n), we show that the sieve of Eratosthenes uses fewer arithmetic operations than
Pritchard’s sieve for most feasible inputs. In addition, we analyze and compare versions of
both algorithms that use wheels, and we give implementation timing results.

*Sponsored by NSF grant CCR-8552596

An Analysis of Two Prime Number Sieves 1
1 Introduction

In this paper, we analyze two algorithms that find all prime numbers up to a bound n. Such
algorithms are often called prime number sieves.

Perhaps the most famous prime number sieve is attributed to Eratosthenes, the ancient
librarian of Alexandria (see [DRK26]). His algorithm finds all the primes up to n using
O(nloglogn) arithmetic operations. Here an arithmetic operation is one addition, subtrac-
tion, multiplication, division, or comparison of O(logn)-bit integers. We will refer to the
sieve of Eratosthenes as Algorithm E.

In the last two decades, researchers have discovered many new prime number sieves
that require only ©(n) arithmetic operations. This includes algorithms by Mairson [Mai77],
Gries and Misra [GM78], Barstow [Bar79], Misra [Mis81], Pritchard [Pri81, Pri82, Pri87],
and Bengelloun [Ben86]. For a survey and categorization of these linear prime number sieves,
see Pritchard [Pri87].

Despite the fact that these new algorithms use fewer arithmetic operations than the
sieve of Eratosthenes by a factor of ©(loglogn), many researchers believe that the sieve of
Eratosthenes is still the best algorithm to use in practice. Our goal in this paper is to give
a rigorous basis for this belief. To be more specific, we compare the number of arithmetic
operations used by Algorithm E to the number of operations used by a linear sieve do to
Pritchard [Pri87, Algorithm 3.3, page 23]. This linear sieve is perhaps the asymptotically
most efficient known linear prime number sieve. We will refer to this sieve as Algorithm P.

In section 3, we show that Algorithm E finds all prime numbers up to n using

2nloglogn + ¢n + O(n/logn) (1)

arithmetic operations, where ¢ = 1.14. (Here log z denotes the natural logarithm of z.) We
show that the number of arithmetic operations used by Algorithm P is

8.5n + O(n/logn). (2)

Suppose n < 5 x 108; then loglogn is at most 3, and so Algorithm E uses roughly 7.14n
arithmetic operations as compared to 8.5n for Algorithm P. This suggests that Algorithm E
is faster when n < 5 x 108, In fact, we will prove that Algorithm E uses fewer arithmetic
operations than Algorithm P when 25 < n < 7 x 10'*. This range covers most practical
values of n; on a 32-bit computer, if n is to fit in one machine word then n can be at most
232 < 4.3 x 10°.

Both algorithms may be improved significantly using wheels. In section 4, we describe
how this is done and analyze the resulting algorithms. We then put our theory to the test by
giving timing results for implementations of several variants of both algorithms in section 5.
We conclude with a some remarks in section 6.

We have chosen to gauge the performance of prime number sieves by counting how many
arithmetic operations are performed, and there are two reasons for this. First, a “big-O”
estimate of the running times of these algorithms is not sufficient for our purposes. Therefore,
counting bit operations would force us to establish the precise algorithms used for the basic
arithmetic operations. Though this is feasible, we prefer to avoid such detail. Second, we
could have chosen to count other operations like indirect addressing and assignment. But for

2 An Analysis of Two Prime Number Sieves

prime number sieves, the number of arithmetic operations performed is a good predictor of
actual performance. In addition, our results could be easily modified to incorporate counts
of other operations; we leave such modifications to the reader.

Let us now review some results on the distribution of prime numbers.

2 Some Results on the Distribution of Primes

Let 7(z) denote the number of primes up to z. The Prime Number Theorem states that

7(z) ~ z/logz. Let Li(z) = [5(1/logt)dt, which has the following asymptotic expansion:
z_ . Nz - klz (

logz (logz)? (log z)k+1

Then a more precise version of the prime number theorem states that n(z) ~ Li(z). Let us
define F(z) to be the error in this approximation:

E(z) = rglsalew(t)m‘[,i(t)].

Li(z) = 1+ 0o(1)).

Vinogradov showed there exists a constant ¢ > 0 such that E(z) = O(z exp[—c (log z)*/%)).
In addition, if the Riemann Hypothesis is assumed, then E(z) = O(y/zlogz). It is also
known that E(z) > /z/logz infinitely often (see Ingham [Ing32, p. 103]). The following
explicit estimate was given by Rosser and Schoenfeld [RS62]:

T T

() < 1.26

for z > 17. (3)

log z log z

The following estimate for the sum of the logarithms of primes up to z is equivalent to the
prime number theorem:

> logp = z+ O(E(z)logz). (4)

Sums over the variable p will always denote sums over primes. For more on the prime number
theorem, see Davenport [Dav80, Chapters 7,18] and Ingham [Ing32].
Other useful estimates include the following, the second of which is Mertens’s Theorem:

> i— = loglogz + B + O(E(z)/z); (5)
~1 e
T (1-3) = st +0mE/) ©)

Here B is 0.2614972128 - - - and Euler’s constant v is 0.5772156649 - - .. The following is an
explicit version of equation (5):

1 .
- < loglogz + B+ -
?S; 4 g8 log? z
See Rosser and Schoenfeld [RS62] and Schoenfeld [Sch76].
The following lemma gives an estimate for sums of powers of primes. The error term is
an improvement over one given by Salat and Znam [SZ68].

for z > 1. (7

An Analysis of Two Prime Number Sieves 3
Lemma 2.1 Ifa > 0 then T, p* = Li(z**') + O(z* E(z)).

Proof: For a = 0, this is the prime number theorem.
For a > 0, we use integration by parts twice and the prime number theorem to get

S = /;t“dw(t) = z°n(z) — /:w(t)d(t“)

p<z

= oon(e) - [" Li()d(t*) + O (/ ’ E(t)at“‘ldt>

z o N
/2 g7t + 0" E(z).

I

Substituting w = t**! then gives

S = [0 0w BE) = Lie™) + 0 B(s).

p<z

The implied constant in the second term does not depend on . O

By invoking the prime number theorem above, we have the following equation:

Yp = 7(z?) + O(zE(z) + E(z?)).

p<z

Interestingly, this says that 3°,<, p is a very good approximation to m(z?).

Let m,a,b be positive integers. Let a mod b = a — |a/b] - b, the remainder when a is
divided by b. We write b | a (b divides a) when amod b = 0. We say that a and b are
relatively prime when, for every integer d > 0, if d | @ and d | b then d = 1. Euler’s totient
function ¢(m) gives the number of integers up to m that are relatively prime to m. So if p
is prime then ¢(p) = p — 1.

3 The Basic Algorithms

In this section we describe and analyze the basic versions of the sieve of Eratosthenes (Al-
gorithm E) and Pritchard’s linear sieve (Algorithm P). Then we prove that the sieve of
Eratosthenes uses fewer arithmetic operations than Pritchard’s sieve for practical inputs.

3.1 The Sieve of Eratosthenes

If a positive integer z is not prime, then it has at least two prime divisors, and one of these
divisors can be no more than +/z. Using this fact, the sieve of Eratosthenes finds all the
primes up to n in two basic steps:

A. A set S is initialized to contain the integers from 2 to n.

B. For each prime p up to y/n, all multiples of p larger than p itself are removed from S.

4 An Analysis of Two Prime Number Sieves

By the fact mentioned above, if an integer z is composite, it will be removed from the set S
in step B. If z is prime, it is placed in the set S in step A but not removed. Thus S contains
precisely the primes up to n.

We can improve step B by noticing that, for each prime p, the multiples of p between p
and p? must also be multiples of smaller primes. This means the smallest multiple of p we
need to remove from the set S is p.

If we represent the set S as an array s[] of bits in the obvious way, this leads us to the
following algorithm.

Algorithm E

Input: a positive integer n

Initialization

1. s[1]:=0;

2. For z:=2ton do: s[z]:=1;

Main Loop

1. Forp:=2to |[y/n] do:

2. If s[p] = 1 then { p is prime }

3. For z := p? to n step p do: s[z] := 0;

Theorem 3.1 Let n be the input to Algorithm E. Then Algorithm E computes the set of
primes up to n using

onloglogn + (2B — 2log 2 + 2)n — 2Li(n) + O(nY/2E(n'/?))
arithmetic operations. (Here 2B — 2log 2 + 2 ~ 1.136700.)

Proof: We leave the proof of correctness to the reader.

Initialization

Step 1 uses no arithmetic operations. Each iteration of a For-loop requires 2 arithmetic
operations: incrementing the index variable, and comparing the index variable with the
upper limit. Thus step 2 uses 2(n — 1) = 2n + O(1) arithmetic operations.

Main Loop

The integer square root of n can be found with binary search in O(logn) iterations,
each using O(1) arithmetic operations. Thus steps 1 and 2 use a total of O(y/n) arithmetic
operations.

Step 3 executes once for each prime p < 1/n, and for the prime p it iterates |(n — p?)/p]
times. After counting the operation required to compute z = p?, this gives the following
total number of arithmetic operations for step 3:

2 T P22 hn) = 2 X 2-2 X p Ol
p<Vn p<Vn p<Vn

An Analysis of Two Prime Number Sieves 3

We apply (5) and Lemma 2.1 from section 2 to give
2n (log log v/ + B + O(E(n'/)/n!/?)) — 2 (Li(n) + O(n**E(n}/?))) + O(x(v/n)).
Simplifying gives us a total of
2nloglogn + (2B — 2log 2)n — 2Li(n) + O(n*/*E(n'/?))

arithmetic operations for step 3.
We combine the operation counts for all steps to complete the proof. O

Notice that if we assume the Riemann Hypothesis, the error term in Theorem 3.1 is only
O(n®*logn).
We implemented Algorithm E and counted the actual number of arithmetic operations

used. The table below compares this actual count to the number of operations predicted by
Theorem 3.1.

Algorithm E: Arithmetic Operations

n Actual | Predicted | Error
103 4921 4649 | 5.53%
106 || 6247259 | 6229374 | 0.29%

In computing the predicted number of arithmetic operations, we approximated Li(z) with
Simpson’s rule and we omitted the O(n'/? E(n'/?)) error term.

3.2 Pritchard’s Linear Sieve

Our second prime number sieve is an algorithm due to Pritchard. It begins as the sieve
of Eratosthenes does by initializing a set S to contain the integers from 2 to n. But then
it removes each composite integer from S exactly once. This is done by noticing that a
composite integer = can be written uniquely in the form z = p- f, where p is the least prime
factor of z and f = z/p. We will write Ipf(z) to denote the least prime factor of z.

The function Ipf has several useful properties: if = is composite, then Ipf(z) < /z, and
if z =p- f where p = Ipf(z), then p < Ipf(f).

The main idea behind Pritchard’s algorithm, then, is to construct each composite integer
z in the form p- f, where p = Ipf(z) and f = z/p, and then remove z from the set S. This is
done by looping through all possible values of f that can occur, and for each f value, looping
through all possible primes p such that p- f gives the unique representation we mentioned
above for some x. This leads to the following algorithm outline.

A. A set S is initialized to contain the integers from 2 to n.

B. For each value of f from 2 to n/2, for each prime p such that p < Ipf(f) and pf < n,
remove pf from the set S.

In step B we can avoid factoring f to determine Ipf(f) by noticing that p = Ipf(f) if and
only if p | f and for every prime q < p, ¢ J f. Also notice that the primes needed in step B
are bounded by /n.

6 An Analysis of Two Prime Number Sieves

Implementing the set S as an array of bits in the obvious way leads us to the following
algorithm.

Algorithm P
Input: a positive integer n

Initialization
1. Find primes up to |\/n];
2. Initialize the array s{]; (see Algorithm E)

Main Loop

1. For f:=2to |n/2] do:

2. q:=2;z:=qf;

3. Repeat: »

4. p = gq; s[z] := 0;

5. q := nextprime(p); z := ¢f;
6. Untilz >norp| f;

Here we are assuming that the primes used in the main loop are stored in an array, and
the neztprime function merely returns the next prime in that array using one arithmetic
operation.

This algorithm varies somewhat from the original algorithm given by Pritchard. For
example, Pritchard pointed out the the primes needed in step B can be computed as part of
the loop. However, finding them in the initialization step recursively is more efficient. For
more details and Pritchard’s version of this algorithm, see [Pri87].

Theorem 3.2 Let n be the input to Algorithm P. Then Algorithm P computes the set of
primes up to n using

8.5n — 5Li(n) + O(v/n + E(n))

arithmetic operations.

Proof: We leave the proof of correctness to the reader.

Initialization
Step 1 may be done recursively (details omitted) using O(\/n) arithmetic operations, and
step 2 uses 2n + O(1) operations for a total of 2n + O(y/n) for initialization.

Main Loop

Step 1 uses n+ O(1) arithmetic operations, and step 2 is executed |n/2| times using one
operation each time for a total of (3/2)n + O(1) for steps 1 and 2.

The loop in steps 3-6 iterates once for each composite integer up to n. Each iteration
uses 5 arithmetic operations: 1 is implied in the neztprime function call in step 5, 1 for
computing z := qf, 1 for testing if z > n in step 6, and 2 for testing if p | f (a division and
a comparison). Since there are n — w(n) composite integers up to n, by the prime number
theorem we have a total of 5(n — m(n)) = 5n — 5Li(n) + O(E(n)) arithmetic operations for
steps 3-6.

Combining the totals for all steps completes the proof. O

An Analysis of Two Prime Number Sieves 7

As we did with Algorithm E, in the table below we compare the actual number of oper-
ations used by an implementation of Algorithm P to the number of operations predicted by
Theorem 3.2.

Algorithm P: Arithmetic Operations

n Actual | Predicted | Error
103 7990 7617 | 4.67%
10% || 8118801 | 8102725 | 0.20%

For the predicted counts in this table we estimated Li(z) with Simpson’s rule, and we omitted
the error terms in Theorem 3.2.

3.3 A Comparison

Now we will prove that the sieve of Eratosthenes uses fewer arithmetic operations than
Pritchard’s sieve for most practical values of n.

Lemma 3.3 On input n, the number of arithmetic operations used by Algorithm E is at
most

8n
og®n

+44/n + r(n)

and the number of arithmetic operations used by Algorithm P is at least

+2v/n — 4 + r(n).

2nloglogn + 2(B — log 2 + 1)n+1

8.57 — 6.3—~

logn
Here r(n) is the number of operations used to compute the square root of n.

Proof:

Algorithm E:

Initialization uses at most 2n operations. In the main loop, steps 1 and 2 use at most
3+/n operations. Step 3 uses at most 23 ,</m n/p+ +/n operations. Applying (7) completes
the proof for Algorithm E.

Algorithm P:

Initialization uses at least 2n + 2,/n operations. In the main loop, steps 1 and 2 use
at least (3/2)n — 4 operations. Step 3-6 use at least 5(n — m(n)) operations. Applying (3)
completes the proof for Algorithm P. O

Theorem 3.4 Let n be the input for Algorithms E and P. If 25 < n < T x 10, then
Algorithm P uses more arithmetic operations than Algorithm E.

Proof: For the input n, let Eg(n) be the upper bound on the number of arithmetic opera-
tions used by Algorithm E, and let Py(n) be the lower bound on the number of arithmetic
operations used by Algorithm P, as given by Lemma 3.3. Let f(n) = Py(n) — Eo(n). Then
we have

f(n)

= 2 T.363-2loglogn —t(n)

8 An Analysis of Two Prime Number Sieves

where

6.3 8 2 4

t(n) = E—g_;z_ -+ ngT; + \/ﬁ -+ —nj
It suffices to show that f(n)/n >0 for 25 < n <7 x 10™.

On the interval 25 < n < 1500, we have t(n) < t(25) < 3.3 and loglogn <
log log(1500) < 2. This implies that f(n)/n > 7.363 —2 x 2 — 3.3 = 0.063 > 0.

On the interval 1500 < n < 10!, we have t(r) < #(1500) < 1.07, and loglogn <
log log(10°) < 3.14. Thus f(n)/n > 7.363 — 2 x 3.14 — 1.07 = 0.013 > 0.

And finally on the interval 101 < n < 7 x 10, t(n) < 0.29 and loglogn < 3.535 which
implies that f(n)/n > 0.003 > 0.

That completes the proof. O

The range of values of n for which we proved Theorem 3.4 above is not optimal. This
range can be increased both by improving the bounds given in Lemma 3.3 and by using more
subintervals combined with tighter bounds on #(rn) and loglogn on each subinterval in the
proof of the theorem.

4 Algorithms Using Wheels

Many prime number sieves can be improved through the use of a wheel. In this section we
will describe exactly what a wheel is and give an algorithm for constructing the kth wheel.
Then we will show how to use wheels to improve the sieve of Eratosthenes and Pritchard’s
algorithm. Finally, we compare these algorithms and show that, for most practical values
of n, the sieve of Eratosthenes with a wheel is more efficient than Pritchard’s sieve using a
wheel.

4.1 What is a Wheel?

Lét p; denote the sth prime, and let M = M(k) = [T5_, pi- The kth wheel W is an array of
M entries (indexed by 0... M — 1) with the following two properties:

1. If z is divisible by one of the first k primes, then Wz mod M| = 0.

2. If z is relatively prime to M (and hence not divisible by any of the first k primes) then
z+ W[z mod M] gives the smallest integer larger than z that is relatively prime to M.

M is called the size of the kth wheel. Below we give as examples the first, second, and third
wheels:

k=1, M =2:
z 0 1
W(z] 0 2

k=2 M=2-3=6:
z o 1 2 3 4 5
Wlz] o 4 0 0 0 2

An Analysis of Two Prime Number Sieves 9

k=3, M =2-3.5=30 (non-zero entries only)
T 1 7 11 13 17 19 23 29
W{z] 6 4 2 4 2 4 6 2

The major purpose of the kth wheel is to generate a list of integers relatively prime to
For example, we can list the integers from 1 up to n that are relatively prime to M as
te e vs:

1. For z:=1 ton step W[z mod M] do:
2. Output(z);

Since each loop iteration involves a division, addition, and comparison, the number of arith-
metic operations used by this loop, for large n, is 3n(¢(M)/M) + O(1). If we do not care
about the order of the integers listed, we can improve on this bound as follows:

1. Forr:=1to M step W[r mod M] do:
2. For z :=r to n step M do:
3. Output(z);

Here, the number of operations is only 2n(¢(M)/M)+ O($(M)). We will make use of similar
tricks when incorporating wheels into both algorithms.

Constructing wheels is relatively easy; Algorithm W below describes one way. The basic
idea is to think of the array W] as representing a set. It is initialized to contain the integers
from 0 to M — 1. Then all multiples of the first k primes are removed in a way similar to
that used by the sieve of Eratosthenes. Finally, a pass is made over the array to reset each
non-zero entry so that it gives the distance to the next non-zero entry.

Algorithm W
Input: k > 0, the first £ primes, and M = the product of the first & primes

I. Forz:=0to M —1do: Wiz]:=1;
For the first k£ primes p do:
For z :=0 to M — 1 step p do: W[z] :=0;
WM —1]:=2; prev:=M - 1;
For z := M — 2 to 1 step —1 do:
If W(z] # 0 then W(z] := prev — z; prev := z;

O G 0o B

Below, we show that Algorithm W uses O(M logloglog M) arithmetic operations to con-
struct the kth wheel.

Lemma 4.1 Let k, M and the first k primes p; ...px be the inputs to Algorithm W. Then
Algorithm W correctly computes the kth wheel W] using O(M logloglog M) arithmetic op-
erations.

Proof: We leave the proof of correctness to the reader.
To prove the upper bound on the number of arithmetic operations, it is enough to show
that each of the 6 steps uses O(M logloglog M) operations.

10 An Analysis of Two Prime Number Sieves
Step 1 uses 2M + O(1) = O(M) operations, and step 2 uses 2k + O(1) = O(k) = O(M)

operations.
Step 3 uses O(M/p) operations for each prime p up to px. Summing over all k primes
and using (5) from section 2 gives a total of O(M log log px) operations. But

k
logM = log[[p = D_ logp ~ m

i=1 P<pk

by (4). Thus step 3 uses O(M logloglog M) arithmetic operations.
Finally, steps 5 and 6 use O(M) operations. O

Our description of wheels has been very concrete; hopefully this makes the concept easy
to grasp. However, any data structure that uses the same basic idea is often called a wheel.
Wheels have applications other than prime number sieves. For example, the divisors needed
by a trial division algorithm can be generated efficiently using a wheel.

4.2 Using a Wheel with the Sieve of Eratosthenes

Recall that the sieve of Eratosthenes has two main steps: (A) the set S is initialized to be the
integers from 2 to n, and (B) for each prime p up to y/n, the multiples of p are removed from
the set S. The basic idea for improving this algorithm is to use the kth wheel to “move” the
execution of step B for the first k primes to step A. In other words, we have the following
outline:

A. The set S is initialized to contain both the integers from 2 to n that are relatively
prime to M and the first k£ primes.

B. For each prime p > py up to y/n, all multiples of p larger than p itself and relatively
prime to M are removed from S.

One way to implement step A is as follows:

Find the first k£ + 1 primes and store them in array pr];
Compute M = [T, pr[i] and the kth wheel W[];
For z := 2 to n do:

If W[z mod M] = 0 then s[z] := 0 else s[z] := 1;
s[1] :=0;
For ¢ :=1 to k do: s[pr[é]] := 1;

S S e

For step B, we can generate the integers from p to n/p that are relatively prime to M using
the kth wheel, and multiplying each by p gives the multiples of p we wish to remove.

1. For p:= prk + 1] to |\/n] do:
2. If s[p] = 1 then { p is prime }
3. For f := p to [n/p] step W[f mod M] do: s[pf]:=0;

An Analysis of Two Prime Number Sieves 11

We can reduce the number of arithmetic operations for both steps using tricks similar to the
one mentioned in the previous subsection. The details are in Algorithm E; below.

Algorithm E;

Input: positive integers n, k

Initialization

1. Find the first k 4+ 1 primes and store them in array pr|[];
2. Compute M = [T, pr[i] and the kth wheel W[];

3. Forr:=1to M do:

4. If W[r mod M] =0 then b:=0 else b:=1;

5. For z :=r to n step M do: s[z]:= b;

6. s[1]:=0;

7. Fori:=1to k do: s[prli]] := 1;

Main Loop

1. For p:=prlk + 1] to |/n] do:

2. If s[p] = 1 then { p is prime }

3. For f:=ptop+ M — 1 step W[f mod M] do:
4. For z := pf to n step Mp do: s[z] := 0;

Note that Algorithm Eg is identical to Algorithm E. We have the following estimate for the
number of arithmetic operations used by Algorithm E;.

Theorem 4.2 Let n,k be the inputs to Algorithm Ey, let M be the product of the first k
primes, and let p; be the ith prime. Then Algorithm Ei computes the set of primes up to n
using

2¢(Aj¥)nlog logn 4+ (2 + C(k))n — 2?—(1‘%4—2112(7;) + 4¢(M)Li(n1/2) + R(n, k)

arithmetic operations, where

cw = 2#G0 (5oge- 1) < o

p<pk

R(n,k) = O (M loglog log M + (n'/? + ¢(M))E(n1/2)) .

Proof: We leave correctness to the reader.

Initialization

Using Lemma 4.1 we find that steps 1 and 2 require at most O(M log log log M) arithmetic
operations. Steps 3-7 require 2n + O(M) arithmetic operations. Thus initialization uses
2n + O(M loglog log M) arithmetic operations total.

Main Loop
Steps 1 and 2 use O(y/n) arithmetic operations.

12 An Analysis of Two Prime Number Sieves

Step 3 executes at most once for each prime below 1/n. The loop iterates ¢(M) times
using 3 arithmetic operations per iteration (the mod operation adds 1 to the standard For-
loop operation count). This gives us a total of 3¢(M)r(v/n)+ O(y/n) arithmetic operations.

Step 4 is executed ¢(M)(w(y/n) + O(1)) times. Mp can be calculated during step 2 for
a total cost of O(y/n). Computing pf takes one operation for a total cost of ¢(M)(7(v/n) +
O(1)). For the prime p the loop iterates |(n — p?)/Mp] times at 2 operations per iteration.
This gives us

won) 3 [PEE| = of00 [n silaylioy p+0<w‘z)]

Pr<P<VA p<vaP <P <R

arithmetic operations. We apply the results from section 2 and simplify to give a total of

p<pk

+ ¢(M)Li(n"/?) + O ((Vr + $(M))E(n'/?))

Qib-(jw]\—d—)- {n loglogn + (B ~log2—) —1-) n - Lz(n)]

arithmetic operations for step 4.
Combining operation counts for all steps completes the proof. O

4.3 Using a Wheel with Pritchard’s Linear Sieve

We modify Pritchard’s sieve to use a wheel by altering the initialization step as we did for
the sieve of Eratosthenes, and in the main loop we allow f to take on only those values that
are relatively prime to M. This gives us the following algorithm.

Algorithm Py
Input: positive integers n, k

Initialization

1. Find primes up to [+/n];

2. Compute M, pr{], W[], and initialize the array s[];
(see algorithm Eg)

Main Loop

1. For g:=prlk+1] to prlk+ 1]+ M — 1 step W[g mod M] do:
2. For f:=g to |n/prlk + 1]| step M do:

3. q:=prlk +1]; z:= qf;

4. Repeat:

5. p:=gq; s[z] :=0;

6. q := nextprime(p); ¢ := qf;

7. Untilz >norp| f;

We now give an estimate on the number of arithmetic operations used by Algorithm Pj.

An Analysis of Two Prime Number Sieves 13

Theorem 4.3 Let n,k be the inputs to Algorithm Py, let M be the product of the first k
primes, and let p; be the ith prime. Then Algorithm P, computes the set of primes up to n
using

d(M d(M .
(2 + 3M(pk+)1 +5 (M)) n —5Li(n) + O (MlogloglogM +vn + E(n))

arithmetic operations.

Proof: We leave the proof of correctness to the reader.

Initialization

This requires 2n + O(M logloglog M + \/n) arithmetic operations.

Main Loop

Step 1 uses O(M) arithmetic operations. Step 2 uses 2n/Mpg.; + O(1) operations each
time 1t is executed. Since it executes ¢(M) times, this gives us a total of 2(¢(M)/Mpiy1)n +
O(1) arithmetic operations for step 2. Step 3 is executed (¢(M)/Mpry1)n times. This gives
us a total of 3(¢(M)/Mpi41)n + O(1) arithmetic operations for steps 1-3.

The loop in steps 4-7 iterates once for each composite integer up to n that is relatively
prime to M. Each iteration uses 5 arithmetic operations (see the proof of Theorem 3.2).
This gives us a total of 5((¢(M)/M)n—mn(n)) = 5(¢(M)/M)n—5Li(n)+O(E(n)) arithmetic
operations for steps 4-7.

Combining the totals for all steps completes the proof. O

4.4 A Comparison

We conclude our analysis of prime number sieves by showing that the sieve of Eratosthenes
uses fewer arithmetic operations than Pritchard’s sieve for most practical inputs, even when
wheels are added to both algorithms.

In the table below we compare the number of operations used by Algorithms E; and
Py for several different values of k. The entries in this table are accurate up to O(n/logn)
terms, and the constants are rounded to the nearest 100th. Notice that increasing k (and
hence M) improves both algorithms.

Comparing Arithmetic Operations
Algorithm E; Algorithm Py
2.00nloglogn + 1.14n 8.50n
1.00nloglogn + 1.07n 5.00n
0.67nloglogn + 1.16n 3.87n
0.53nloglogn + 1.22n 3.45n
0.46nloglogn + 1.26n 3.21n
0.42nloglogn +1.29n 3.09n

O QO N - O

From this, it appears that Algorithm E; will outperform Algorithm Pj for most practical
values of n. We make this observation formal below.

14 An Analysis of Two Prime Number Sieves

Lemma 4.4 Let M be the product of the first k primes, and let p; denote the ith prime. On
inputs n, k, the number of arithmetic operations used by Algorithm Ey is at most

(M)
20

nloglogn+ C(k)n + 2-‘-‘%@—4143\/? (46(M) + 3)(1. 26)3—‘/-:+I(n k) +r(n),
log® logn

and the number of arithmetic operations used by Algorithm Py is at least

M
9(M) <5 +——§—)n—-5(1 26)———+2\/——3+I(n k) + r(n).
M Pr+1 log

Here r(n) is the number of operations to compute the square root of n, I(n, k) is the cost of
initialization for Algorithm Ey, and C(k) is as in Theorem 4.2.

Proof:

Algorithm Ey:

The cost of initialization is covered by I(n,k). In the main loop, steps 1 and 2 use at
most 34/n operations. Step 3 uses at most (3 + 4¢(M))7(y/n) operations, including the cost
of computing Mp and pf for step 4. Finally, step 4 uses at most 2¢(M) 3, <p<./zn/Mp
operations. Applying the results from section 2 completes the proof.

Algorithm Py:

Initialization uses at least 2,/n + I(n, k) operations. In the main loop, steps 2 and 3 use
at least (3/px+1)(¢(M)/M)n — 3 operations. Step 3-6 use at least 5(¢(M)/M)n — 5n(n)
operations. Applying (3) completes the proof. O

Theorem 4.5 Let n,k be the inputs for Algorithms Ey and Py, let M be the product of the
first k primes, and let g(M) = 10¢(M)? + 100M — 506(M) —~40. If1 < n/g(M) < 10" and
0 <k <9, then Algorithm P, uses more arithmetic operations than Algorithm Ej.

Proof: Oninputsn, k, let Ex(n) be the upper bound on the number of arithmetic operations

used by Algorithm Ei, and let Pi(n) be the lower bound on the number of arithmetic

operations used by Algorithm Py, as given by Lemma 4.4. Let fi(n) = Pi(n) — Ex(n).
Then we have

filn) M
n ¢(M) =

> ¢(k) — 2loglogn — t(n, k)

M
¢(M)

where

ck) = 5+3/p1 —C(k) = 5+3/pey1 —2B+2log2+2 > 1/p

5(126) , 8 ¢(M) , 1 (46(M) + 3)2(1. 26§ "

logn = logn M ' /n Vnlogn
It suffices to show that (fi(n)/n)(M/¢(M)) > 0 for the range indicated in the theorem.

The proof then proceeds as in Theorem 3.4, repeated for each k. Due to the large
number of calculations needed, the author completed the proof of this theorem with the aid

t(n, k)

3
+=+
n

An Analysis of Two Prime Number Sieves

15

of a computer program that determined what subintervals to use and verified that fi(n)/n -

M/¢(M

of this proof) appears below.

0; M=1;

[1]

0000e+01 ,
4986e+01 ,
2715e+03,
9967e+10,
2950e+15,

2.
4,
4,
7.
1.
4.9850e+15,

* Mmoo e X

4.
4.

8

1.
5.

s

2930e+03] :
.0369e+10] :
3015e+157:
0101e+15]:
.7116e+15]:
* For k=0 Valid interval =

t(n,k)
t(n,k)
t(n,k)
t(n,k)
t(n,k)
t(n,k)
[20 »

<=
L4
=
<=
41
<=

4.684703; 2+*loglog n
3.114052; 2+loglog n
0.916376; 2*loglog n
0.263646; 2»loglog n
0.187656; 2*loglog n
0.180420; 2*loglog n

5.71160+15] »x»

phi(M)=1; phi(M)/M= 1.0000000; c(0)= 7.3632998; g(M)=20
5212e+01] :

<= 2.675968;

<=
<
<=
<
<=

4.
.446524;
.0993656;
.175367;
7.

6
7
7

248049;

182603;

<= 3.975742;
<= 5.802998;

<
<
<
<

wounonHu

<=

AAAAANAN
o uwnuwn

7

4.

NNNNo o

.145972;
7.
7.
7.

503002;
562745,
571712;

129737;

.334591;
.771586;
.480668;
.676383;
.719037;
.727782;

.3585377; g(M)=3200

<= 4.513247;
<= 5.469673;
<= 6.779195;
<= 7.552379;

P
<

<
<

7.

7
7

812830;

.879801;
.895786;
7.

899470;

g(®)=41600

=

A A A

A A

A
Honouw o o# ouu

NNNNNo o

A

4

.812501;
.160692;
.125441;
.179109;
.720973;
.904202;
.955621 ;
,969215;

(£(n)/n)*(M/phi(M))
(£{(n)/n)«(M/phi(}))
(f(n)/n)*(M/phi(K))
(£(n)/n)*(M/phi(M))
(£(n)/n)+(M/phi(H))
(£(n)/n)*(M/phi(H))

(£(n)/n)*«(M/phi(M))
(£(n)/n)*(K/phi(K))
(f(n)/n)*(M/phi(K))
(£(n)/n)*(M/phi(M))
(£(n)/n)*(M/phi(M))
(£(n)/n)*(H/phi(M))

(£(n)/n)*(M/phi(H))
(£(n)/n)*(M/phi(K))
(£(n)/n)*(M/phi(K))
(£(n)/n)*(M/phi(M))
(£f(n)/n)*(H/phi(¥))
(£(n)/n)*(M/phi(¥))
(£(n)/n)*«("/phi(M))

(£(n)/n)*(M/phi(8))
(£(n) /n)*(M/phi(M))
(£(n)/n)*(¥/phi(M))
(£(n)/n)*=(M/phi(¥))
(£(n)/n)=(M/phi(N))
(£f(n)/n)*(H/phi(W))
C£(n)/n)*(M/phi(K))
(£(n)/n)*(M/phi(K))

(£(n) /n)*(M/phi(M))
(£f(n)/n)*(M/phi(N))
(£(n)/n)«(M/phi(M))
(£(n)/n)*(H/phi (M)
(£(n)/n)*(M/phi(M))
(£(n)/n)*(H/phi(K))
(£(n)/n)*x(M/phi(M))
(f(n)/n)*(H/phi(H))

2077922; c(5)= 8.6282682; g(M)= 2.51096e+06

<=

A A A

A A

A
o0 a4 n 8 0 u

@O OE~N~NN

A

5.
.164805;
.200994;
.793966;
.009160;
.072611;
.090041;
.094732;

5§31593;

K=1; M=2; phi(M)=1; phi(H)/M= 0.5000000; c(1)= 7.8632998; g(M)=120
[1.2000e+02, 1.4803e+03]: t(n,k) <= 1.943092; 2%loglog n
[1.4729e+03, 8.0310e+07]: t(n,k) <= 1.029875; 2*loglog n
[7.9909e+07, 2.9565e+15]: ti(n,k) <= 0.358523; 2+loglog n
[2.9418e+15, 3.1219e+18]: t(n,k) <= 0.180031; 2¢loglog n
[3.1063e+18, 1.1355e+19]: t(n,k) <= 0.150163; 2*loglog n
[1.1299e+19, 1.3830e+19]: t(n,k) <= 0.145680; 2%loglog n
*% For k=1 Valid interval = [120, 1.3830e+19] *x%

K=2; M=6; phi(M)=2; phi(M)/M= 0.3333333; c(2)= 8.1299667; g(H)=500
[5.0000e+02, 2.6552e+03]: t(n,k) <= 1.332986; 2*loglog n
[2.6419e+03, 1.7958e+061: t(n,k) <= 0.931560; 2#loglog n
[1.7868e+06, 6.75567e¢+12]: t(n,k) <= 0.452680; 2*loglog n
[6.721%9e+12, 1.9455e+18]: t{n,k) <= 0.216354; 2xloglog n
[1.9358e+18, 1.4765e+20]: t(n,k) <= 0.151123; 2%loglog n
[1.4692e+20, 4.0181e+20]: t(n,k) <= 0.136906; 2*loglog n
[3.9980e+20, 4.9466e+20]: t(n,k) <= 0.133991; 2*loglog n
#% For k=2 Valid interval = [500, 4.9466e+20] »=»

K=3; M=30; phi(M)=8; phi(M)/M= 0.2666667; c(3)= 8

[3.2000e+03, 1.4056e+04]: t(n,k) <= 1.025131; 2*loglog n
[1.3985e+04, 4.9122e+06]: t(n,k) <= 0.770190; 2*loglog n
[4.8876e+06, 7.5609e+12]: t(n,k) <= 0.421068; 2+loglog n
[7.5231e+12, 9.0510e+18]: t(n,k) <= 0.214914; 2*loglog n
[9.0057e+18, 3.9200e+21]: t(n,k) <= 0.145468; 2*loglog n
[3.9004e+21, 2.1365e+22]: t(n,k) <= 0.127585; 2»loglog n
[2.1258e+22, 3.2194e+22]: t(n,k) <= 0.123349; 2%loglog n
[3.2033e+22, 3.5421e+22]: t(n,k) <='0.122367; 2*xloglog n
** For k=3 Valid interval = [3200, 3.5421e+22] *=»

K=4; M=210; phi(M)=48; phi(M)/M= 0.2285714; c(4)= 8.4884081;
[4.1600e+04, 6.5663e+04]: t(n,k) <= 0.840001; 2*loglog n
[6.5335e+04, 5.4129e+051: t(n,k) <= 0.760447; 2*loglog n
[5.3858e+05, 1.9394e+09]: t(n,k) <= 0.540000; 2%loglog n
[1.9297e+09, 5.3611e+15]: t(n,k) <= 0.299205; 2#loglog n
[5.3343e+15, 4.2070e+20]: t(n,k) <= 0.175366; 2*loglog n
[4.185%e+20, 4.0057e+22]: t(n,k) <= 0.133489; 2+loglog n
[3.9857e+22, 1.5535e+23]: t(m,k) <= 0.121737; 2*loglog n
[1.5458e+23, 2.2361e+23]: t(n,k) <= 0.118630; 2#loglog n
#* For k=4 Valid interval = [41600, 2.2361e+23] #**

K=5; M=2310; phi(M)=480; phi(M)/H= 0.

[2.5110e+06, 7.9740e+06]: t(n,k) <= 0.643334; 2*loglog n
[7.9341e+06, 2.9668e+09]: t(n,k) <= 0.511793; 2*loglog n
[2.9520e+09, 7.9857e+15]: t(n,k) <= 0.296520; 2¢loglog n
[7.9458e+15, 2.4580e+21]: t(n,k) <= 0.173319; 2%loglog n
[2.4457e+21, 6.6150e+23]: t(n,k) <= 0.128608; 2*loglog n
[6.5819e+23, 3.8758e+24]: t{n,k) <= 0.115424; 2*loglog n
[3.8564e+24, 6.3618e+24]: t(n,k) <= 0.111803; 2¢loglog n
[6.3300e+24, 7.2748e+24]: t(n,k) <= 0.110828; 2*%loglog n
** For k=5 Valid interval = [2.51096e406, 7.2748a+24] #*

(£(n)/n)+(M/phi(M))
(£(n)/n)*(M/phi(M))
(£(n)/n)*(H/phi(H))
(£(n) /n)*(K/phi(M))
(£(n)/n)*(8/phi(M))
(£(n)/n)*(M/phi(M))
(£(n)/n)«(M/phi(M))
(£(n)/n)*(M/phi(M))

K=6; M=30030; phi(M)=5760; Phi(M) /M= 0.1918082; c(6)= 8.7278156; g(")= 3.34491e+08
t(n,k) <= 0.486765; 2%loglog n <= 6.189693; (£(n)/n)*(H/phi(M))

[3.3449e+08, 3.

8942e+09] :

VvV VVVVY
oo uwn

v
LI O I I L A 1}

v Vv VYV

v Vv

v
o owonon o ounn

v

VVVVYVVYVY
LU T A [1)

vV Vv Vv

v Vv Vv

v
goun g o0 0o

v

COO0OO0OO0C ©CO0OO0OO0O0O0O C OO O0O0CO

OO0 OO0O0OCOOC

C OO O0OO0O0O0C

OO OO0 O0O0CCO

.002629;
.001198;
.000399;
.000288;
.000277;
.000276;

.001373;
.000551 ;
.000281 ;
.000235;
.000228;
.000227;

.001271;
000696 ;
.000339;
.000238;
.000216;
.000211;
.000210;

.001049;
.000651 ;
.000338;
.000230;
.000202;
.000195;
.000193;
.000193";

.000904 ;
.000759;
.000469;
.000277;
.000211;
.000193;
.000188;
.000186;

.000631;
.000460;
.000274;
.000204;
.000183;
.000177;
000176;
000175

.000454;

) was positive on each subinterval. The output from that program (which is the rest

16 ' An Analysis of Two Prime Number Sieves

[3.8747e+09, 2.5324e+14]: t(n,k) <= 0.330773; 2*loglog n <= 7.003013; (£f(n)/n)*(W/phi(H)) >= 0.000302;
[2.5198e+14, 5.1234e+20]: t(n,k) <= 0.191492; 2+loglog n <= 7.729255; (£(n)/n)=(M/phi(K)) >= 0.000210;
[5.0977e+20, 1.3594e+24]1: t(n,k) <= 0.132804; 2+loglog n <= 8.0362563; (£(n)/n)*(H/phi(K)) >= 0.000180;
[1.3526e+24, 2.2587e¢+25]: t(n,k) <= 0.113880; 2¢loglog n <= 8.133927; (£(n)/n)*(M/phi(M)) >= 0.000172;
[2.2474e+25, 5.2527e+25]: t(n,k) <= 0.108374; 2+loglog n <= 8.162632; (f(n)/n)»(M/phi(K)) >= 0.000169;
[5.2264e+25, 6.6770e+25]: t{n,k) <= 0.106823; 2%loglog n <= 8.170718; (£(n)/n)*(M/phi(M)) >= 0.000169;
** For k=6 Valid interval = [3.34491e+08, 6.68770e+25] #=

K=7; M=510510; phi(¥)=92160; phi(M)/M= 0.1805254; c¢(7)= 8.8268871; g(M)= 8.49811e+10

[8.4981e+10, 3.4569e+12]: t(n,k) <= 0.379255; 2*loglog n <= 6.725702; (£(n)/n)*(M/phi(M)) >= 0.000347;
[3.4396e+12, 3.7804e+18]: t(n,k) <= 0.237333; 2*loglog n <= 7.511972; (£(n)/n)*(H/phi(H)) >= 0.000234;
[3.7615e+18, 6.1239e+23]: t(n,k) <= 0.148095; 2xloglog n <= 8.006346; (f(n)/n)*(M/phi(M)) >= 0.000183;
[6.0933e+23, 1.0803e+26]: t(n,k) <= 0.115515; 2%loglog n <= 8.186837; (£(n)/n)*(M/phi(M)) >= 0.000167;
[1.0749e+26, 5.8246e+26]: t(n,k) <= 0.105608; 2%loglog n <= 8.242275; (f(n)/n)»(M/phi(M)) >= 0.000163;
[5.7954e+26, 9.5670e+26]: t(n,k) <= 0.102613; 2+loglog n <= 8.258314; (£(n)/n)*(M/phi(M)) >= 0.000161;
[9.5191e+26, 1.1024e+27]: t(n,k) <= 0.101790; 2%loglog n <= 8,262872; (f(n)/n)t(H/phi(H)) >= 0,000161;
#x For k=7 Valid interval = [8.49811e+10, 1.1024e+27] #*

K=8; M=9699690; phi(M)=1658880; phi(H)/H= 0,1710240; c(8)= 8.9046907; g(H)= 2.75197e+13

[2.7520e+13, 1.3965¢+15]: t(n,k) <= 0.308013; 2+loglog n <= 7.103411; (£(n)/n)«(R/phi(H)) >= 0.000287;
[1.3895e+15, 1.2465e+21]: t(n,k) <= 0.194674; 2*loglog n <= 7.766203; (£f(n)/n)+(M/phi(H)) >= 0.000206;
[1.2403e+21, 2.9141e+25]: t(n,k) <= 0.130300; 2+loglog n <= 8.142636; (£(n)/n)*(H/phi(M)) >= 0.000171;
[2.8995e+25, 1.5554e+27]: t(n,k) <= 0.107853; 2#xloglog n <= 8.273899; (£(n)/n)+(M/phi(M)) >= 0.000160;
[1.5476e+27, 5.5463e+27]: t(n,k) <= 0.100978; 2*loglog n <= 8.314105; (f(n)/n)*(H/phi(H)) >= 0.000157;
[5.5186e+27, 8.0923e+27]: t(n,k) <= 0.098961; 2+loglog n <= 8.325897; (£(n)/n)«(H/phi(M)) >= 0.000156;
#% For k=8 Valid interval = [2.75197e+13, 8.0923e+27] *»

K=9; M=223092870; phi(M)=36495360; phi(")/H= 0.1635882; c(9)= 8.9646606; g(H)= 1.33191e+16

[1.33196+16, 3.4326e+17): t(n,k) <= 0,256486; 2*loglog n <= 7.396534; (£(n)/n)+*(M/phi(M)) >= 0.000248;
[3.4154e+17, 4.7011e+22]: t(n,k) <= 0.172442; 2+loglog n <= 7.910344; (£f(n)/n)*(M/phi(M)) >= 0.000192;
[4.6776e+22, 3.2840e+26]: t(n,k) <= 0.121203; 2*loglog n <= 8.223592; (f(n)/n)*(M/phi(M)) >= 0.000164;
[3.2676e+26, 9.7077e+27]: t(n,k) <= 0.103543; 2+loglog n <= 8.331553; (£(n)/n)*(M/phi(M)) >= 0.000156;
[9.6591e+27, 2.8713e+28]: t(n,k) <= 0.098084; 2*loglog n <= 8.364929; (£f(n)/n)*(M/phi(M)) >= 0.000153;
[2.8569e+28, 3.9818e+28]: t(n,k) <= 0.096456; 2%loglog n <= 8.374884; (f(n)/n)*(H/phi(H)) >= 0.000152;

** For k=9 Valid interval = [1.33191e+1
That completes the proof. O

o

3.9818e+28] *=*

5 Implementation Results

In this section, we give the timing results from implementations of several versions of both
the sieve of Eratosthenes and Pritchard’s linear sieve. We used a DECstation 3100, and
we used the “C” programming language [KR78]. The DECstation has a RISC-style MIPS
R2000 CPU. which is rated at 12 MIPS.

In previous sections we analyzed the number of arithmetic operations used by prime
number sieves. Although we believe that such an analysis gives a reasonable prediction of
how prime number sieves behave in practice, there are several other factors such an analysis
does not take into account that can affect program behavior. Below we describe three of
these factors.

e Multiplication and Division.
Our analysis treated all arithmetic operations equally. In practice, multiplication and
division are much slower operations than addition and subtraction. As a result, since
Algorithm E uses none of the more expensive multiplies or divides in its innermost loop
and Algorithm P does, we expect the difference between their actual running times to
be greater than what our theory predicts.

An Analysis of Two Prime Number Sieves 17

e Compiler Optimization.
The compiler optimized all the algorithms that were implemented. Often it is difficult
to say exactly what effect optimization has on the running time and whether the results
of optimization improve both algorithms equally.

e Cache.
The MIPS R2000 CPU has a cache used to decrease the average cost of fetching
instructions and data from main memory. The presence of a cache will cause algorithms
with some locality of reference to execute faster. However, prime number sieves using
larger wheels tend to generate seemingly random memory references, thus degrading
their performance.

To help alleviate this problem, we used the following alternate initialization routine
for all algorithms that used wheels.

Forz:=0to M —1 do:
If W[i] = 0 then Y[i] := 0 else Y[i] := 1;
For j := 0 to n step M do: *
Fori:=0to M — 1 do: s[j +] := Y[¢];

W=

Notice that this algorithm proceeds sequentially through the array s[]. Although
more arithmetic operations are used, the increase in memory reference locality greatly
improved performance. For example, for n = 5000000, Algorithm Ps used more than
9 CPU seconds with the old initialization routine as compared to less than 5 with the
new one.

This improvement does not help the main loop of either algorithm.

In the table below we give timing results for several variants of the sieve of Eratosthenes.
The left column gives the input n, and under each algorithm is the average number of CPU
seconds used to find the primes up to n.

Sieve of Eratosthenes: Timing Results

| nll Bo| Ei] Bo] Es| B B
500 || 0.00043 | 0.00029 | 0.00027 | 0.00048 | 0.00140 | 0.01035
5000 || 0.00473 | 0.00305 | 0.00254 | 0.00293 | 0.00551 | 0.03207
50000 || 0.05156 | 0.03281 | 0.02617 | 0.02578 | 0.03164 | 0.10663
500000 || 0.55817 | 0.35037 | 0.28240 | 0.28358 | 0.28397 | 0.47028
5000000 || 6.06719 | 3.82905 | 3.20722 | 3.25214 | 3.28104 | 3.38455

Each algorithm was run several times on each input, and the time reported in the table is
the average of these times. The results of all algorithms were checked using a trial division
routine.

Algorithm E; gives the best performance in practice. This contradicts our previous
analysis; we would expect that using larger wheels would improve performance when n is
sufficiently large. This discrepancy is most likely due to the CPU’s cache; for larger wheels,
the array s[] appears to be accessed randomly causing the cache to be missed almost every
time.

18 An Analysis of Two Prime Number Sieves

We also timed several variants of Pritchard’s sieve, and those results appear in the table
below. The methods used were identical to those used for the sieve of Eratosthenes.

Pritchard’s Sieve: Timing Results

| n | Po] Pi] Po| Ps] Pa] P
500 || 0.00147 [0.00074 | 0.00050 | 0.00051 | 0.00095 | 0.00649
5000 | 0.01519 | 0.00777 | 0.00527 | 0.00453 | 0.00430 | 0.00973
50000 || 0.15507 | 0.08203 | 0.05664 | 0.04843 | 0.04180 | 0.04413
500000 || 1.60732 | 0.86245 | 0.61597 | 0.53825 | 0.47146 | 0.43787
5000000 || 16.47706 | 9.00177 | 6.57146 | 5.83518 | 5.27427 | 4.88251

Here we see that as larger wheels are used, the running time decreases. This is what our
theory predicts.

Our main result, Theorem 4.5, essentially says that the sieve of Eratosthenes uses fewer
arithmetic operations than Pritchard’s sieve. So we expect the sieve of Eratosthenes to
perform better in practice. This is in fact the case, as can be seen by comparing the time
used by variants of both algorithms on the input n = 5000000.

Comparing Algorithm E; to Algorithm Py for » = 5000000

k=1 0 | L 2| 3 | 4| 5 |
E. || 6.06710 | 3.82905 | 3.20722 | 3.25214 | 3.28104 | 3.38455
P, || 16.47706 | 9.00177 | 6.57146 | 5.83518 | 5.27427 | 4.88251

In the table above we have simply copied the last line of each of the two previous tables.

6 Remarks

We conclude with a few remarks:

Luo [Luo89] conjectured that, for Algorithm Ej, choosing k > 2 would result in a less
efficient algorithm due to the cost of increased overhead. In theory, Luo was not correct.
Using larger wheels is beneficial if n is sufficiently large. However, in practice Luo was
correct, but we believe it is not because of an increased cost in overhead. We think that the
reason for degraded performance is due to a decrease in the locality of memory references.

In this paper, we did not concern ourselves with the space used by prime number sieves.
In fact, by segmenting the sieve of Eratosthenes we get an algorithm using only O(\/n) space;
see the paper by Bays and Hudson [BH77].

In addition, the kth wheel can be used to reduce the space requirement of Pritchard’s
sieve to O((¢(M)/M)n). The technique is to only store a bit for each integer relatively
prime to M. With some precomputation, it is possible to construct an invertible mapping to
this space from the integers 1...n such that the mapping is computable in O(1) arithmetic
steps.

It is possible to choose a wheel based on the size of the input. If k is chosen maximal so
that M < /n, by (5) from section 2 we have

$(M) _
!

1 1 1 (2
p evlogpe e'loglogM ~ ~ \loglogn)’

An Analysis of Two Prime Number Sieves 19

By using a wheel of this size and incorporating the space reduction method mentioned
above for Pritchard’s algorithm, the result is a prime number sieve using only O(n/loglogn)
arithmetic operations. Such sublinear prime number sieves are not new; the first is due to
Mairson [Mai77], and Pritchard’s dynamic wheel sieve is the first sublinear sieve that uses
only additions and subtractions [Pri81, Pri82].

Pritchard’s fixed wheel sieve [Pri83], which uses O(n) arithmetic operations and O(y/n)
space, is essentially a segmented version of the sieve of Eratosthenes using a wheel of size
M = \/n as mentioned above. This is probably the most practical sieve algorithm known.
Parberry[Par81] gave a practical parallel version of this algorithm running in O(y/n) time
using O(/n) processors.

Acknowledgements

My thanks go to Jim Larus, Dan Lieuwen, and Scott Vandenberg for explaining to me some
of the peculiarities of the C compiler, to Karen Miller for providing information on the MIPS
R2000 CPU, to Joao Meidanis both for pointing out that Lemma 2.1 holds for all positive
values of a and for his comments on a earlier draft of this paper, and finally to my PhD
advisor Eric Bach for encouraging me to write this paper. :

References

[Bar79] D. R. Barstow. An experiment in knowledge-based automatic programming. Ar-
tificial Intelligence, 12:73-119, 1979.

[Ben86] S. Bengelloun. An incremental primal sieve. Acta Informatica, 23(2):119-125,
1986.

[BH77] C. Bays and R. Hudson. The segmented sieve of Eratosthenes and primes in
arithmetic progressions to 10'%. BIT, 17:121-127, 1977.

[Dav80] H. Davenport. Multiplicative Number T heory. Springer-Verlag, New York, 1980.

[DRK26] M. L. D’ooge, F. E. Robbins, and L. C. Karpinski. Nicomachus of Gerasa: In-
troduction to Arithmetic. MacMillan, New York, 1926. University of Michigan
Studies Humanistic Series Volume 16.

[GMT78] D. Gries and J. Misra. A linear sieve algorithm for finding prime numbers. Com-
munications of the ACM, 21(12):999-1003, 1978.

(Ing32] A. E. Ingham. The Distribution of Prime Numbers. Cambridge Tract No. 30.
Cambridge University Press, 1932.

[KR78] B.W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,
1978.

[Luo89] X. Luo. A practical sieve algorithm for finding prime numbers. Communications
of the ACM, 32(3):344-346, 1989. Correction in 32(11):1367.

20
[Mai77]

[Mis81]

[Par81]

[Pri81]

[Pri82]
[Prig3)

[Pri84]

[Pri87]

[RS62]

[Sch76]

[SZ68]

An Analysis of Two Prime Number Sieves

H. G. Mairson. Some new upper bounds on the generation of prime numbers.

Communications of the ACM, 20(9):664-669, 1977.

J. Misra. An exercise in program explanation. ACM Transactions on Programming
Languages and Systems, 3(1):104-109, 1981.

I. Parberry. Parallel speedup of sequential prime number sieves. Technical Report
TR30, University of Queensland, 1981.

P. Pritchard. A sublinear additive sieve for finding prime numbers. Communica-
tions of the ACM, 24(1):18-23,772, 1981.

P. Pritchard. Explaining the wheel sieve. Acta Informatica, 17:477-485, 1982.

P. Pritchard. Fast compact prime number sieves (among others). Journal of
Algorithms, 4:332-344, 1983.

P. Pritchard. Some negative results concerning prime number generators. Com-
munications of the ACM, 27(1):53-57, 1984.

P. Pritchard. Linear prime-number sieves: A family tree. Science of Computer
Programming, 9:17-35, 1987.

J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime
numbers. [llinois Journal of Mathematics, 6:64-94, 1962.

L. Schoenfeld. Sharper bounds for the Chebyshev functions 0(z) and ¥(z). IL.
Mathematics of Computation, 30(134):337-360, 1976.

T. Salat and S. Znam. On the sums of prime powers. Acta Facultatis Rerum
Naturalium Universitatis Comenianea: Mathematica, 21:21-25, 1968.

