CENTER FOR
PARALLEL OPTIMIZATION

OPTIMAL PROCESSOR ASSIGNMENT
FOR PARALLEL DATABASE DESIGN

by
Shahram Ghandeharizadeh
Robert R. Meyer

Gary L. Schultz
Jonathan Yackel

Computer Sciences Technical Report #1022

May 1991

OPTIMAL PROCESSOR ASSIGNMENT FOR PARALLEL
DATABASE DESIGN*

SHAHRAM GHANDEHARIZADEH!, ROBERT R. MEYER}, GARY L. SCHULTZ* AND
JONATHAN YACKEL!}

Abstract. The computing time benefits of parallelism in database systems (achieved by us-
ing multiple processors to execute a query) must be weighed against communication, startup, and
termination overhead costs that increase as a function of the number of processors used. We con-
sider problems of minimizing overhead subject to allocating data among the processors according
to specified loads. We present lower bounds for these combinatorial problems and demonstrate how
processors may be optimally assigned for some problem classes.

1. Introduction. In highly-parallel database machines (e.g., Gamma [2], Bubba
[1], Non-Stop SQL [12], XPRS [11] and Volcano [6]) relations are partitioned across
multiple processors. (Livny et al [9] and Ries and Epstein [10] introduced the related
concept of “horizontal” partitioning.) This allows each processor to execute a portion
of a query in parallel with the other processors, resulting in a lower response time
for the query. However, there is communication overhead associated with initiating
and terminating a query on multiple processors, and this overhead increases as a
function of the number of processors used to execute a query . In order to minimize
overhead while balancing the workload among the processors, Multi-Attribute Grld
deClustering (MAGIC) introduced by Ghandeharizadeh [3] partitions a relation by
assigning ranges of several attribute values to each processor in the system. To il-
lustrate MAGIC consider the partitioning of the Employee relation EMP in figure 1.

* This research was partially supported by the Air Force Office of Scientific Research under grant
89-0410, the Defense Advanced Research Projects Agency under contract N00039-86-C-0578, and
by the National Science Foundation under grants CCR-8907671 and DCR-8512862.

t Computer Science Department, University of Southern California, Los Angeles, California
90089-0782.

} Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.

1 This overhead is primarily in the form of additional messages to control the execution of the
query on additional processors and, in the Gamma database machine [2], increases linearly with the
number of employed processors.

Salary in $K

0-20 20-50 > 50
Age 0-25 | 1 1 2
in 26-50 | 1 3 3
Years > 50 [2 3 2

Fia. 1. Processor assignment for the EMP relation

For parallel computation, MAGIC partitions the EMP relation by establishing ranges
of Salary and Age attribute values. Each cell of this grid corresponds to a fragment
of the relation and must be assigned to some processor. For example, the cell which
contains records with Salary attribute values that range from 0 to 20 and Age at-
tribute values that range from 26 to 50 is assigned to processor 1. Given a query on
either the Age or Salary attribute, the predicate of the query maps to either a row
or a column (termed a “slice”) of the grid and the corresponding processors are used
to execute it. Note that, for the assignment depicted by figure 1, every processor is
assigned three cells, and every query requires two processors.

Although we concentrate on the limiting case in which overhead is minimized,
the optimal processor assignments that we obtain below have properties that suggest
that they may also be good approximations to assignments that would minimize other
response time functions. For example, suppose the response time r for an average
query as a function of the number of processors v used by the query is modeled by
r(v) = Ov + Q/v , where O is the overhead per processor and Q is the processing
time for a query on a single processor, i.e. the overhead increases proportionally with
the number of processors, while the processing time is inversely proportional to the
number of processors®. In the absence of any constraints, r is minimized when the
number of processors per query is v* = /Q/O. We shall see in (§3) that for our
version of the problem, which in some sense minimizes the number of processors used
per query (subject to a load balancing constraint), optimal assignments nevertheless
have ~ V/N processors assigned to each query, where N is the number of processors
in the system. If \/—Q_/ O < v/N, which is the case if the communication overhead
for using all N processors dominates the processing time for a single query, then
our optimal solution comes as close as possible (among assignments that balance
the workload among processors) to the unconstrained minimum of the alternative
objective r.

2. Basic Mathematical Problem Statement. Suppose that we wish to as-
sign the cells of a D-dimensional grid to N processors, and that the size of the
grid is My x My x ... x Mp (i.e., the dth attribute is partitioned into My ranges).
Let V := [I; M, denote the number of cells (volume) of the grid. A “slice” is a
(D — 1-dimensional) subgrid containing all the cells with a common value for a given
coordinate (this corresponds to a query). For example, in an M; x M, grid the slices

2 The linear speedup results presented in [2] justify this assertion.

2

are the M; rows and the M, columns, and in an M; x M, x M; grid the slices are
the My + M, + M3 two-dimensional subgrids. Let S denote the collection of slices.

Given an assignment of cells to processors and an arbitrary slice s of the grid , let
vs denote the number of distinct processors in the slice s. Given a processor p, let load,
denote the number of cells assigned to p. The objective function for the optimization
problem that we develop measures total or worst case overhead. 0;,i,] := Z.es Vs
and Omax := maxses vs. Note that if each slice has the same frequency of access and
we are interested in minimizing the average query overhead, then we should minimize
0iotal- If, on the other hand, we are interested in minimizing the worst case overhead
incurred by any query, then 6max should be minimized. The balancing constraints
are defined by specifying a load for each processor. (In typical applications, we require
that the loads are equal or differ by at most 1.) The problem may be formally stated
as follows:

Let the following data be given: a dimension D, a number of processors N, the
cardinality vector M of the partitions in each dimension, and a load for each processor.
Find an assignment that

minimizes § (where 0 is chosen as 04,1 or Omaz)
s.t. processor p is assigned load, cells (p =1,2,...,N).
Vi

The number of assignments satisfying the balancing constraint is m
p=1 L

Complete enumeration of these assignments is not feasible even for relatively small
problems. For example, given a 5 x 5 grid, 5 processors, and a load of 5 for each
processor, there are 623, 360, 743,125, 120 assignments that satisfy the balancing con-
straint.

A similar class of data aggregation problems was studied by Helman [8]. Suppose
that we replace our notion of “slice” by “arbitrary subset”, i.e., the problem data
consist of the grid plus a collection of subsets of cells. Then the problem of minimizing
the total or maximum number of distinct processors in the subsets (with equal loads

for all processors) corresponds to one of Helman’s K -size aggregation problems, (with
K = V/N) which he shows to be NP-complete.

3. Lower Bounds. In this section we will develop lower bounds on the measures
0iota] @0d Omax. Throughout this section, the following notation is used. x? indicates
whether processor p appears in slice s: x? = 1 if p appears in slice s and y? =
0 otherwise. (Notice that v,, the number of distinct processors in slice s, can be
represented in terms of x?: v, = 3=, x?.) o, denotes the number of slices containing
processor p: o, = y_. X%, and 0,4 is the number of slices in dimension d containing
processor p.

A key relationship in the development of the lower bounds is

(1) Z Vs = Z(’p,d

slices in dim 4 p=1
i.e. the sum over the slices in a particular dimension of the numbers of distinct
processors in the slices is the same as the sum over all processors of the numbers of
slices in that dimension in which the processors appear.
3

3.1. Lower bounds on atotal’ It is useful to consider the overhead measure
0t ota] from two different points of view: Oyo1,1 = 2. vs = 22,05 We first derive a
lower bound on o,

LEMMA 3.1. For any processor p (assigned to load, cells), [D loadp%} < oy

Proof. In each dimension, permute the slices in that dimension so that the slices
containing p come first. Notice that the first 0,4 slices in dimension d will contain
p. Notice also that rearranging the order of the slices does not alter any of the o, 4.
Then the 0,1 X 0p2 X ... X 0, p box in the upper corner of the grid contains all of
the cells assigned to p. Therefore the “volume” []2., 0,4 of this box is at least load,,
ie.,

D
(2) load, < [] opa-

d=1
Taking the Dth root of both sides of (2) and applying the arithmetic mean/geometric
1
mean inequality (see Hardy et al[7]) we obtain (loadp)% < (Hfz):l (fp,d) P <Lyl opa

o,/D , whence D (loadp)% < 0,. Since the RHS of the last inequality is integral, we
may take the ceiling of the LHS. O

THEOREM 3.2.) [D 1oad§l"1 <0440 -
p

Proof. Use lemma 3.1 and the fact that 0,41 =2_,0p. O
In §4 we give cases in which the lower bound of theorem 3.2 is tight.

3.2. Lower Bounds on fmax. At this point we prove a lemma that is used
in deriving lower bounds on @max. Let 73 be the average of the v’s for the slices in
dimension d i.e. Uy := Z vs[Mjy.

slices in dim d
NDTT load¥
LEMMA 3.3. [y 74 2 —H—E‘—,w—"—

Proof. Using inequality (2) and the arithmetic mean-geometric mean inequality,

i i - bYT load™
I, loads” < T4 (Hp ap,d)N <TIl4 -Z-ENL’d . By equation (1), 'N——H%,ﬁl‘ <Tlzvg . O

1 1
THEOREM 3.4. [N (Hp load?/V) D-l < Omaz -

Proof. Lemma 3.3 gives a bound on a product of averages of v’s, so one v must
be at least as big as the ceiling of the Dth root of the bound. 0

4. Achieving the Bounds. In order to achieve the lower bound for 8, .1, each

1
processor must contribute exactly I-D loadf} to the objective function. For example,
this will occur if processor p occupies a hypercubical block of cells with sides of length

= loa,dp% . Note that since interchanging slices in the grid does not affect the objective
function, the slices of a processor’s block do not have to be contiguous. For example
both placements of processor p with a load of 9 below are equivalent and optimal for
Processor p.

D b p pipp
p|p|Pp
pi{p;p

p D p

p p b

However, the block occupied by a processor may be irregular and still be optimal.
Consider a 2-dimensional grid where a processor’s load is 7. Then the lower bound
is [2\/71 = 6. The following non-square blocks (and obvious variants) have height +
width = 6, and are therefore optimal:

If optimal blocks for each processor can be interleaved so as to cover the grid then the
lower bound on §; ;.1 can be met. One class of problems that have easily obtainable
optimal solutions are instances in which hyper-rectangular blocks are optimal for
each processor and the grid can be covered by these blocks. Below we demonstrate
an optimal assignment for such an instance: a 6 x 15 grid with 6 processors, each of
which has a load of 15. (See Ghandeharizadeh et al [5] for a collection of classes for
which optimal solutions are developed.)

1111141 (21212|2{23[|3|3|3]3
111111212122 2]|3]|3 313
1111|112 (2|2|2(2|3{3[|3]|3]3
41414144 (5|5[5|5|5]6|6[6|6|6
414141414 |5|5{5|5[5]6|6]6|6]6
41414(4(4(5]|5|5]5|5|6|6]|6]6]|6

Another class of problems for which it is possible to construct optimal assignments
for both 0;,i.1 and Omax is the class of N x N grids with N processors, where
each processor has a load of N. We have developed an algorithm that constructs
optimal assignments for such problem instances [5]. Figure 1 is an example of such
an assignment. Note that for any processor the slices in figure 1 may be permuted so

that the set of cells occupied has the following optimal shape:

5. Conclusions and Future Work. We have formalized the problem of par-
titioning data on a parallel database machine in order to minimize overhead. Lower
bounds on the objective functions have been developed and we have demonstrated
how the bounds can be attained in many cases. We would like to explore other ap-
proaches to the data partitioning problem. A branch and bound type of approach in
a suitably restricted search space seems promising. We also have a nonconvex nonlin-
ear programming formulation of the problem that suggests other solution techniques.
Extending the work already done, the square grid assignment algorithm may general-
ize to more than 2 dimensions. In addition, we would like to deal with more general
objective functions and load balancing constraints. Finally, it would be interesting
to consider other applications that fit into the task assignment/parallel computing
framework developed here (see, e.g., Ghandeharizadeh et al [4]).

REFERENCES

[1] H. BoraL, W. ALEXANDER, L. Cray, G. COPELAND, S. DANFORTH, M. FRANKLIN,
B. Harr, M. SMITH, AND P. VALDURIEZ, Prototyping Bubba, a highly parallel database
system, IEEE Transactions on Knowledge and Data Engineering, 2 (1990).
[2] D. DEWITT, S. GHANDEHARIZADEH, D. SCHNEIDER, A. BRICKER, H. Hs1a0, AND R. Ras-
MUSSEN, The Gamma database machine project, IEEE Transactions on Knowledge and
Data Engineering, 2 (1990).
[3] S. GHANDEHARIZADEH, Physical Database Design in Multiprocessor Systems, PhD thesis, Uni-
versity of Wisconsin - Madison, 1990.
[4] S. GHANDEHARIZADEH, L. RAMos, Z. AsAD, AND W. QURESHI, Object placement in parallel
hypermedia systems. to appear in the proceedings of the 1991 VLDB Conference.
[5] S. GHANDEHARIZADEH, G. L. ScHULTZ, R. R. MEYER, AND J. YACKEL, Optimal balanced
assignments and a parallel database application, Computer Sciences Technical Report 986,
University of Wisconsin - Madison, Madison, WI, December 1990.
. GRAEFE, Volcano: An extensible and parallel dataflow query processing system, Computer
Science Technical Report, Oregon Graduate Center, Beaverton, OR, June 1989.
. Harpy, J. LiTTLEWOOD, AND G. PoLYA, Inequalities, Cambridge, 1959.
. HELMAN, A family of NP-complete data aggregation problems, Acta Informatica, 26 (1989),
pp. 485-499.
. LivNy, S. KHOSHAFIAN, AND H. BorAL, Multi-disk management algorithms, in Pro-
ceedings of the 1987 ACM SIGMETRICS Int’l Conf. on Measurement and Modeling of
Computer Systems, May 1987.
[10] D. Ries AND R. EPSTEIN, Evaluation of distribution criteria for distributed database systems,
UCB/ERL Technical Report M78/22, UC Berkeley, May 1987.

[11] M. STONEBRAKER, D. PATTERSON, AND J. OUSTERHOUT, The design of XPRS, in Proceed-
ings of the 1988 VLDB Conference, Los Angeles, CA, September 1988.

[12] TANDEM PERFORMANCE GROUP, A benchmark non-stop SQL on the debit credit iransaction,
in Proceedings of the 1988 SIGMOD Conference, Chicago, IL, June 1988,

=
2 TQ Q

