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Abstract

In this paper, we present several algorithms for on-line index construction. These al-
gorithms each permit an index to be built while the corresponding data is concurrently
accessed for reads and writes. The algorithms work incrementally, producing a consis-
tent index in the end. They differ in the data structures used for storing concurrent
updates as well as in the degree of concurrency allowed during index construction. We
provide proofs that the algorithms presented here indeed create a consistent index in
the presence of concurrent updates.

1 Introduction

Database sizes are growing rapidly, and future databases are expected to be several orders of
magnitude larger than the largest databases in operation today. Databases on the order of terabytes
(1012 bytes) will soon be in active use [Silb90]. This explosion in database sizes will necessitate the
scaling up of all the algorithms used in a DBMS, including the class of database utilities. These
utilities are typically used for re-organization of data and for construction and maintenance of
hidden data structures like indices.

Indices are one of the most important hidden data structures that are created and maintained in
a DBMS. A need can arise for the construction of a new secondary index on an attribute of a relation
if it is discovered that a significant proportion of the queries on the relation could be executed more
efficiently using an index on this attribute. Currently, database systems typically perform index
construction in an off-line manner (i.e., by locking the relevant relation). This approach is not
suitable for building an index for a very large relation, however, as index construction requires a
relation scan and scanning a 1-terabyte table may take days. It is almost sure to be unacceptable
to exclude updates for such an extended period of time. In fact, leading researchers have identified
the problem of on-line index construction for very large databases as an important open research
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problem [Dewi90, Silb90].

In this paper, we present several algorithms for on-line index construction. All of the algorithms
presented scan the relation (copying out index entries) concurrently with updaters, while somehow
keeping track of the updates that take place during the scan; they then combine these updates
with the scanned entries before registering the index in the system catalogs. The algorithms differ
in the data structures used for storing the concurrent updates, their strategies for combining these
updates with the scanned entries, and finally, in the degree of concurrency allowed following the
scan. Since B-trees! are the most common dynamic index structure in database systems, we will
focus here on the on-line construction of B-tree indices. However, the techniques presented here
are also likely to be useful in designing on-line algorithms for other types of index structures.

The rest of the paper is organized as follows. Section 2 briefly reviews the B-tree index structure
and describes the B-link concurrency control algorithm [Lehm81] for supporting concurrent B-tree
operations. Earlier studies [John90, Srin91] have shown that the B-link algorithm provides the
most concurrency among B-tree concurrency control algorithms proposed in the literature (see
[Srin91] for details). In Section 3, we describe the basic steps involved in building a B-tree index.
We describe a simple off-line index construction algorithm in Section 4. After describing index
updates in Section 5, we discuss various on-line index construction algorithms in Sections 6, 7
and 8. Section 9 concludes the paper and discusses our plans for future work. Correctness proofs
for our on-line index construction algorithms are outlined in the Appendix.

2 B-trees in a Database Environment

An index is a structure that efficiently stores and retrieves information (usually one or more record
identifiers) associated with a search key. The index can be either one-to-one (unique) or ome-to-
many (non-unique). The keys themselves can have fixed or variable lengths.

2.1 B-tree Review and Terminology

The following description assumes fixed length keys, but the extension to variable length keys is
straightforward. A B-tree index is a page-oriented search structure that has the following properties.
First, it is a balanced leafsearch tree — actual keys are present only in the leaf pages, and all paths
from the root to a leaf are of the same length. A B-tree is said to be of order d if every node
has at most 2d separators? and every node except for the root has at least d separators. The root
has at least two children. The leaves of the tree are at the lowest level (level 1) and the root is
at the highest level. The number of levels in the tree is termed the tree height. A nonleaf node
with j separators contains j + 1 pointers to children, and a <pointer, separator> pair is termed an
index entry. Thus, a B-tree is a multi-level index with the topmost level being the single root page

!By B-tree we mean the variant in which all keys are stored at the leaves, often called Bt-trees [Come79)].
2A keyis usually meant to imply that associated information for that value exists in the index. A separator value
defines a search path to leaf pages that contain the actual keys and associated information.
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Figure 1: Example B-link tree page and a page split.

and the lowest level consisting of the set of leaf pages. All nodes at a level are linked from left to
right; that is, we assume the B-link tree structure described in [Lehm81]. Each page in a B-link
tree contains a high key (the highest key in the subtree rooted at the page) and a link to the right
sibling of the page. A B-link tree node is illustrated in Figure la.

As keys are inserted or deleted, the tree grows or shrinks in size. When an updater tries to
insert into a full leaf page or to delete from a leaf page with only d entries, a page split or page
merge occurs. The right link enables a page split to occur in two phases [Lehm81]: a half-split
followed by the insertion of an index entry into the appropriate parent. After a half-split, and
before the <key, pointer> pair corresponding to the new page has been inserted into the parent
page, the new page is reachable through the right link of the old page. Merges can also be done in
two steps [Lani86], via a half-merge followed by entry deletion at the next higher level. A B-link
tree page split is illustrated in Figure 1. B-trees in real database systems usually perform merges
only when pages becomes empty; nodes are not required to contain at least d entries, since this
does not decrease occupancy by much in practical workloads [John89]. We therefore assume this
approach to B-tree merges for this study.

2.2 Supporting Concurrent Tree Operations

Concurrent operations on a B-tree can be supported using the following variation of the B-link

algorithm. This variation was shown to perform very well in a recent comparative performance
study [Srin91}].



A reader descends the tree from the root to a leaf using Share locks. At each page, the next
page to be searched can either be a child or the right sibling of the current page. (Following a right
link is termed a link-chase.) Readers release their lock on a page before getting a lock on the next
page. Updaters behave like readers until they reach the appropriate leaf node. Upon reaching the
appropriate leaf, an updater releases its Share lock on the leaf and requests an Exclusive lock on
the same leaf. Once the Exclusive lock on the leaf is granted, the updater may either find that
the leaf is the correct one to update or that one or more link-chases must be performed to reach
the correct leaf. Updaters use Exclusive locks while performing all further link chases, releasing
the Exclusive lock on each current page before asking for the next one. If a page split or merge is
necessary, an updater will perform a half-split or half-merge; the Exclusive lock on a newly split
or newly merged node is then converted to a Share lock, and this lock is held until an Exclusive
lock has been acquired on the appropriate parent node, i.e., the Share lock on a node that has been
half-split or half-merged is released by an updater only after the Exclusive lock has been acquired
on its current parent.

3 Index Construction Primitives and Data Structures

In this section, we describe some basic primitives and data structures that will be used later by all
of the proposed index construction algorithms. We assume that the tuples contained in a relation
are stored as records that each have a unique record identifier (rid).

Constructing a B-tree index from a relation involves three basic steps. The first step involves
scanning the relation and collecting the (key, rid) entries that are needed to build the index. In the
second step, the entries collected in the first step are sorted to produce a linked-list of leaf pages
of the index. The third and final step involves creating the non-leaf pages in a bottom-up fashion
from the leaf page list created in the previous step. These three basic steps are implemented by
the pseudo-code functions Ewtract_keys, Sort, and Make.index respectively in Figure 2. A brief
description of these functions follows.

Extract_keys: This function reads the pages of the relation one after another, acquiring short term
Share locks on the relation pages if necessary (i.e., unless the relation itself has been locked in
Share mode). The appropriate (key, rid) entries from a page are copied into a heap file which is
the output of this function.

Sort: This procedure sorts a heap file of (key, rid) entries into increasing key order using a method
like the (two-phase) sort-merge algorithm described in [Shap86]. A heap file is scanned producing
runs of size VN pages, where N is the number of pages in the heap file. Next, these runs are
concurrently merged. This causes at most 4N I/Os (2N I/Os more than that for an in-memory
sort), and it works as long as VN pages of memory are available for use by the sort [Shap86]. If
entries with the same (key, rid) value occur many times in the input, only the last entry in the
input file for this (key,rid) value is retained in the output. (Since the file to be sorted is actually
a sequence of updates, only the last one determines the state at the end and has to be retained).
This is done by duplicate elimination during step 3 of the figure. To achieve this, the Sort routine



/* Index Construction Primitives */

function Eztract_keys(R)
begin
R: Input relation
H: Empty heap file
step 1: foreach page in R do
begin
Lock page in share mode, if necessary
Append (key, rid) entries from page to H
Unlock page
end
step 2: return H
end

function Sort(H)
begin
H: Input heap file with N pages
S: Final sorted list of pages sorted by (key,rid)
step 1: Scan H in batches of v/N pages and produce sorted output runs
step 2: Allocate one block of memory for each sorted run
step 3: Concurrently merge all runs, eliminating duplicates,
producing sorted entries, and appending the results to S
While eliminating duplicates of a (key,rid) pair, the pair
occurring last in the input file H is retained in the output
step 4: return S
end

function Make_index(S, T)

begin
S, T: Sorted files
L: Initially empty linked list of leaf pages
I: Initially empty B-tree index
step 1: Merge S and T to produce the list of leaf pages, L. During merge,

eliminate duplicates and discard matching insert/delete entry pairs

step 2: Create the higher levels of the index | based on L
step 3: return |

end

Figure 2: Index Construction Primitives

can tag all entries in the input file with a number that indicates their relative order in the input
file, and use these tags later while eliminating duplicates.

Make_indez: This procedure takes as input two lists of (key, rid) pairs that are each sorted in
increasing key order; at least one of these lists is required to be non-empty. If one of the input
sorted lists is empty, the non-empty sorted list of pages is used directly as the list of leaf pages,
and the nonleaf index pages are built on top of them in a bottom-up fashion (ending with the
creation of a single root page). If both input lists are non-empty, however, this function merges
them in increasing key order to form the leaf pages of the index. During the merge, duplicates are
eliminated concurrently, and specially marked deleted entries are matched with their corresponding
inserts, if any>. Note that the construction is accomplished in one pass from left to right through
the newly created leaf pages; as each new leaf page is generated, an index entry at the next level is

3The merge and duplicate elimination steps will be used in several of the on-line algorithms described later in the
paper.



Phase[R, A]
State of the index on attribute A of relation R
Possible values are:

none No index exists
scan Build process is in relation scan phase
build Build process is making the index
catchup Final clean up phase of the buiid
available  Index exists and can be accessed normally
Index[R, A]
Pointer to the index that exists or is being built on attribute A of relation R

U[R, A]
Pointer to the list of concurrent updates,
while an index is being built on attribute A of relation R

Figure 3: Shared data structures for Index Construction

generated simultaneously.

Apart from the above procedures, we also assume that for every attribute of a relation the
system catalog contains the entries ‘Phase’, ‘Index’ and ‘U’ (see Figure 3). These catalog entries
are used for communication between the updaters and the index construction process. Phase[R,
A] stores information about the state of the index on attribute A of relation R, and Index[R, A]
points to the corresponding index if it exists. Finally, U[R, A] points to a list storing the concurrent
updates, and is used in list-based on-line algorithms.

Having described the basic index utilities and shared data structures, we now describe a simple
off-line strategy for index construction that works by locking the entire relation.

4 Off-Line Algorithm

The simplest way to construct a new index on a relation would be to lock the relation in Share
mode, build the index, and then release the lock. Updaters are assumed to hold an Intention-
exclusive lock on the relation while modifying a page of the relation (2 la the hierarchical locking
scheme of [Gray79]) and would therefore be unable to execute concurrently with the index building
process. On the other hand, readers (which only acquire an Intention-share lock on the relation)
can access the relation’s pages concurrently with the building process.

The pseudo code for this algorithm is given in Figure 4. The code is straightforward and builds
the index in three steps, using the utilities described in the previous section. As an optimization,
the Make_Indez step (step 4) could be combined with the Sort (step 3) to build the index with one
fewer pass through the leaf pages. This optimization is possible since only one of the arguments
to Make_indez is nonempty and the top levels of the index can be built during the merge step of
the sort (step 3 of Sort in Figure 2). We assume that such an optimization would be made in any
implementation but we retain the present form of the code for clarity.

In the off-line strategy, the existing concurrency control mechanism will take care of conflicts

6



Build process
begin
R: Input relation
A: Attribute of R on which to build index
H: Heap file
L: List of leaf pages
step 1: Lock relation R in share mode

step 2: H = Eztraci_keys(R)
step 3: L = Sort(H)
step 4: Index[R, A] = Make_indez(L, empty file)
step 5: Phase[R, A] = available
step 6: Unlock relation R
end

Figure 4: Off-Line Algorithm

between updaters and the index building process, so no modifications to the behavior of update
transactions are needed. To the best of our knowledge, this is how most commercial database
systems operate today. We know of only one commercial DBMS (from Synapse) that used an
on-line algorithm for index construction [Wood91]. The full details of this algorithm have not been
published; we only know that it used a strategy similar to an incremental dump [Pu85] to collect
the index entries from the relation, after which it built an index using these entries and then applied
the concurrent updates recorded in the system log to the new index, to make it consistent.

Due to the absence of concurrent updaters in the off-line algorithm, the index building process
benefits in the following ways:

1. The building process faces no interference from updaters in terms of waiting for locks for
relation pages. It also avoids the overhead of locking each page, but this is likely to be
insignificant relative to the actual resources used by the index building process.

2. Since the relation is not modified during the index building time, the index building process
does not have to incorporate any concurrent updates at the end to make the index consistent.

This algorithm, therefore, is the fastest way to build the index, but it will provide zero throughput
for updaters. As we indicated earlier, the scan phase for a large relation is likely to be very large
(e.g., it may take days for a terabyte of data), and this phase will dominate the index building
process. Thus, the off-line algorithm will be unacceptable to use for building indices on very large
relations due to the lack of updater throughput for long periods of time. We plan to use the
performance of this algorithm as a baseline for understanding the behavior of alternative on-line
algorithms.

5 Concurrent Updates

One way to improve on the off-line approach is to allow updaters to proceed during the scan phase,
somehow communicating their updates to the building process at the end of the scan phase. The



scanned values and this list of updates can then be merged and made consistent. It is possible
that the duration of the scan phase will be increased due to the presence of concurrent updates,
but permitting updates during the index construction phase makes it attractive to use such on-
line strategies. All of the on-line algorithms described in the rest of this paper allow updaters to
concurrently execute during the scan phase. The algorithms will vary in the data structures used to
record concurrent updates, in the amount of concurrency allowed after the scan phase, and finally,
in the strategies used for applying the concurrent updates to the scanned entries. We will further
subdivide the on-line algorithms into list-based algorithms and index-based algorithms, depending
on whether they use a list or an index for storing concurrent updates. In this section we describe
when and how transactions perform index updates, and in the next two sections we describe the
on-line algorithms themselves.

5.1 Impact of Updates

If an index exists on an attribute of a relation, updates to the relation (in the form of inserting,
deleting or modifying a record) can result in updates to the corresponding index. An index update
consists of three parameters: a key, an associated rid, and a flag depicting whether it is an insert
or a delete. It is possible for a particular relation update (involving exactly one record) to result
in zero, one or two index updates:

e When a record in a relation is modified without changing the value of the indexed attribute,
no index update needs to be done.

e When a new record is inserted into a relation or an existing record is deleted, there is exactly
one index operation that has to be done. The key value for the index update is the value of
the indexed attribute of the inserted or deleted record, and the rid value is the rid of this
record.

e When the value of an indexed attribute in a record is modified, it causes two updates to be
done to the corresponding index: an index delete (with the key being the old attribute value)
followed by an index insert (with the key being the new attribute value).

Update transactions are assumed to execute “correctly”, and obey the following two rules: (i)
they hold an Exclusive lock on a relation page while they are making changes to it, and (ii) they
do not try to insert the same index entry (key/rid pair) twice successively without deleting it
in-between (and vice versa). To ensure correct behavior of our on-line algorithms in a serializabil-
ity sense, we also require that update transactions hold locks on record ids until they terminate
(commit or abort). It should be pointed out that the page lock mentioned in (i) above need not
be held until end of transaction; a short-term Exclusive page latch will suffice. However, all of
our algorithms will work unchanged in systems where page locks are held until commit or abort
time. Update transactions that encounter an index construction process will perform the index
updates corresponding to their relation updates using special code that depends on the type of
on-line algorithm being used. We assume for simplicity that this special code will be executed



immediately after the corresponding relation update, i.e., part of this code will be executed while
still holding the Exclusive lock on the modified relation page. We will indicate later how to relax
this restriction?, though we will also argue that this may not be such a bad idea.

5.2 Impact of Aborts

The above method of transaction execution takes care of situations like transaction abort in a
straightforward manner. During a transaction abort (even if index construction is still going on),
undo operations will generate index updates in exactly the same manner as during normal operation.
During index construction, these updates will be executed using the same special purpose code that
was used by the transaction during its forward execution. However, it should be noted that these
index updates may not be the exact inverse operations of the index updates performed during the
forward execution. For example, it is possible that a transaction undoing a record delete operation
may obtain a different record id, in which case the abort-time index update will be an insert with
the same key but a different record id [Wood91].

6 List-Based Algorithms

The list-based algorithms, like all on-line algorithms described in this paper, allow updaters to
concurrently operate on the relation during the scan phase. Updaters that execute concurrently
with an index construction process store index updates (corresponding to their relation updates) in
a special update-list. There is one such list for every index that is being built, and it is maintained
as a heap file. The individual list-based algorithms differ from each other in their method of
combining the list of concurrent updates with the scanned list of entries, and also in the amount
of concurrency provided after the scan phase. We will begin our discussion of these algorithms by
discussing three methods for combining the list of concurrent updates and the scanned list in order
to produce a consistent index.

A simple way of combining the scanned entries with the update-list is to first build an inter-
mediate index using the scanned entries alone, and then sequentially apply the update-list entries
to this index like ordinary index inserts and deletes. A disadvantage of this strategy is that it
may result in leaf nodes of the intermediate index being accessed more than once, especially if
the number of entries in the update-list is large. If the buffer space is small enough so that leaf
pages are typically paged out before being accessed again, such repeated accesses will result in an
increased number of 1/0s.

A second method of combining the scanned entries with the update-list is to build an interme-
diate index using the scanned entries (as above) but then additionally sort the update-list before

4Note that this restriction applies only for index updates that occur during the on-line index construction phase.
Index updates at other times can be handled either immediately after the corresponding relation update or grouped
together at commit time.



sequentially applying its entries to the intermediate index. In such a strategy, the problem of addi-
tional I/Os will be solved since the leaf pages of the intermediate index will be scanned once from
left to right5. Also, sorting the update-list has an added advantage: we can eliminate matching
inserts and deletes during the sort, and thus avoid inserting entries into the intermediate index that
have a corresponding delete entry later in the unsorted list (and vice versa).

A third method of combining the concurrent updates with the scanned entries would be to
first sort the scanned entries, as well as the update-list entries, to produce two sorted lists. The
index can then be built in a bottom-up manner using the Make_Indez function (of Figure 2) with
the two sorted lists as parameters. This merging approach is bound to be better than either of
the sequential strategies if the number of operations performed in the sequential strategies is very
large. An added advantage of merging is that the utilization of the pages in the final index can be
strictly controlled, being kept at any desired (high) level of occupancy. In contrast, this occupancy
can be strictly controlled only for the intermediate index in the sequential insert strategies, and
the sequential inserts performed later could reduce the occupancy of leaf pages.® This effect will
be significant when the number of sequential inserts is large.

Name How Updates Are Applied? After Scan Phase
List-X-Basic | Sequentially apply from unsorted list | X lock list, no concurrent updaters
List-X-Sort Sequentially apply from sorted list X lock list, no concurrent updaters
List-X-Merge | Merge sorted list and scanned entries | X lock list, no concurrent updaters
List-C-Basic | Sequentially apply from unsorted list | Concurrent updaters allowed
List-C-Sort Sequentially apply from sorted list Concurrent updaters allowed
List-C-Merge | Merge sorted list and scanned entries | Concurrent updaters allowed

Table 1: List-Based Algorithms.

Apart from the above, list-based algorithms can also vary in the amount of concurrency allowed
after the scan phase. (Recall that all of our on-line algorithms will allow concurrent updaters
during the scan phase.) The simplest strategy involves locking out updaters after the scan phase,
and applying the concurrent updates using one of the three methods described above. This way,
no concurrent updaters are allowed while the scanned entries are being combined with the updates
that took place during the scan phase. If the amount of the time taken to apply these changes is
significant compared to the scan time, however, locking out updaters could lead to a noticeable loss
of concurrency. To avoid such a loss, updaters can be allowed to execute concurrently during the
scan phase also; this requires an appropriate strategy for merging in these second set of concurrent
updates at the end. Such a strategy is quite a bit more complicated than the one that Exclusively
locks the relation after the scan phase; we will postpone the details of this strategy until later.

Based on the three possible ways of merging the update-list with the scanned entries, and the
presence or absence of concurrent updaters after the scan phase, there are six possible variations
of the list-based algorithms. Their names and classifications are given in Table 1. We will now
describe each of these list-based algorithms in more detail.

5This strategy could be further optimized by grouping together all inserts from the sorted list that can be accom-
modated in a leaf page before making the next index traversal from the root page.
8The expected leaf page occupancy of a B-tree built with random inserts is about 69% [Yao78).
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Build process
begin

R: Input relation
A: Attribute of R on which to build index
H: Heap file
step 1: U[R,A] = empty, Phase[R, A] = scan
step 2: H = Extraci_keys(R)
step 3: H = Sort(H)
step 4: Index[R, A] = Make_indez(H, empty)
step 5: Lock U[R,A] in exclusive mode

step 6: Phase[R, A] = build

step 6a: if algorithm is List-X-Sort then
U[R,A] = Sort U[R,AR

step T: foreach entry in U[R,A] do

case entry type of
insert: if entry not in Index|[R, A], insert it
delete: if entry in Index[R, A], delete it

end
step 8: Phase[R, A] = available
step 9:  Unlock U[R,A]
end

Update transaction
begin
R: input relation
Normal processing

step n: if Phase[R, A] = scan or build then
begin
Lock U[R,A] in exclusive mode
if Phase[R, A] = scan then
Append (key, rid, insert/delete) entry to U[R,A]
else Unlock U[R,A], goto step n
Unlock U[R,A]
end
end

Figure 5: The List-X-Basic and List-X-Sort Algorithms
6.1 The List-X-Basic Algorithm

In this algorithm (described in Figure 5), the building process executes in two phases, the scan
and build phases, executing all steps except step 6a in the figure. In the scan phase, the building
process first creates an empty update-list. It then proceeds to scan the relation, a page at a time,
collecting index entries into a heap file. The heap file is sorted, and an intermediate B-tree index is
built on these data items. After this, the index building process locks the update-list in Exclusive
mode and enters the build phase.

In the build phase, the building process applies the entries from the update-list one after another
to the intermediate index, bringing it up to date. Applying an update-list entry (step 7 in Figure 5)
to the intermediate index may involve either inserting an entry, deleting an entry, or no action at
all. The last case could occur, for example, if the page on which a concurrent insert acts is scanned
in the scan phase after the insert has been done. In this case, no change needs to be made to

11



the intermediate index on encountering the corresponding entry in the update-list, and an index
traversal will find the appropriate entry to be already present in the intermediate index. An
analogous scenario could occur for deletes. After all of the entries in the update-list have been
applied to the intermediate index, the lock on the update-list is released and the index is made
available for normal use.

Unlike the off-line case, where the code for update transactions did not change due to the
presence of an index building process, updaters behave differently here in the presence of an index
building process. In the List-X-Basic algorithm, an updater that finds an index building process in
the scan phase will append an index update (corresponding to its relation update) to the update-
list. Each entry in the update-list consists of three components: the key, the rid, and the type of
operation (insert or delete). Each list append is done while holding an Exclusive lock on the list,
so these entries are ordered according to when the list updates are performed. The special code
needed for update transactions is illustrated by step n of the update process in Figure 5. For every
update to a relation, there will be one such step executed for each attribute of the relation on which
an index is being currently built.” During the time while the index construction process is in the
build phase (steps 6 and 7 in Figure 5), updaters cannot proceed. However, assuming that the
number of entries in the update-list will be much smaller than the size (in pages) of the relation
being scanned, this phase should be much shorter than the scan phase.

Due to the concurrent execution of updaters in the scan phase, unlike the off-line algorithm,
this algorithm is expected to provide a significant level of throughput for updaters. On the other
hand, the time for building the index will be longer than in the off-line algorithm, due to both
page-locking interference with updaters during the scan phase and the extra work needed to apply
scan phase updates to the intermediate index.

6.2 The List-X-Sort Algorithm

The List-X-Sort algorithm is described in Figure 5 along with the List-X-Basic algorithm. The
code for the update transaction in this algorithm is the same as for the List-X-Basic algorithm.
However, the code for the build process includes a step for sorting the update-list entries (step
6a in Figure 5). As explained earlier, sorting the update-list before inserting its entries into the
intermediate index (created in step 4) avoids repeated accesses to the same leaf page. Another
potential advantage of the List-X-Sort algorithm is that its sort step provides an opportunity to
match inserts with later deletes, if any, and vice versa.

It is possible that multiple insert and delete entries may be present in the update-list for the same
(key, rid) pair. In this case, only the latest update entry needs to be applied to the intermediate
index. This is because insert and delete entries for the same (key, rid) pair have to alternate in
the update-list, and the last entry determines whether this (key, tid) pair should be present in the
final index or not. The duplicate elimination step of the sort routine (step 3 of Sort in Figure 2)

"In Figure 5, we do not show the logic for index updates for existing indices. In fact, an updater that was waiting
for an Exclusive lock in step n of Figure 5 may find, after the lock is granted, that the index is indeed available for
normal use. In this case, it must perform a normal index update.
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Build process
begin

R: Input relation
A: Attribute of R on which to build index
H: Heap file
step 1: U[R,A] = empty, Phase[R, A] = scan
step 2: H = Egztract_keys(R)
step 3: H = Sort(H
step 4 Lock U[R,A] in exclusive mode

step 5: Phase[R, A] = build
step 6: U[R,A] = Sort(U[R,A])
step T: Index[R, A] = Make_indez(H, U[R,A])
step 8: Phase[R, A] = available
step 9: Unlock U[R,A]
end

Figure 6: The List-X-Merge Algorithm

therefore, retains only the latest index operation for a (key, rid) pair that occurs many times in the
update-list.

The first two list-based algorithms both use a two pass strategy to build the index: first, they
build an intermediate index from the scanned entries, and then they sequentially insert the entries
from the update-list into this index.

6.3 The List-X-Merge Algorithm

The List-X-Merge algorithm merges a sorted list of the scanned entries with the sorted update-list
to build the index in one pass. The pseudo-code for this algorithm is given in Figure 6. The code
for the updaters is the same as that for the earlier algorithms (see Figure 5). Also, as in the two
earlier List-X-* algorithms, the index building process works in two phases, scan and build, with
concurrent updaters permitted only in the scan phase.

The key difference between the earlier algorithms and the List-X-Merge algorithm is that the
Make_Indez function, which was executed in the scan phase earlier (step 4 in Figure 5), has now
been moved to the build phase (step 7 of Figure 6). Also, Make_Index takes two sorted lists as
arguments here. Note the slight difference between the entries of the sorted update-list (U[R,A])
and the sorted scanned list(H). While the former contains information on the latest operation for a
(key, rid) pair, the latter contains just (key, rid) index entries. The merge step in the Make_Index
function (step 1 of Make_-Indez in Figure 2) now performs all of the actions that were done by the
sequential inserts into the intermediate index in the two earlier algorithms. In particular, a (key,
rid) pair in the sorted list of scanned entries will appear in the final index only if the entry for the
same pair in the sorted update-list is not a delete entry.

In the three algorithms discussed so far, there is one major critical section (steps 5-9 in Figure 5
and steps 4-9 in Figure 6). If the list of updates is large, then this critical section may take a
significant amount of time. During this time, updaters are locked out. It may be possible to
increase updater throughput in these algorithms by replacing the one long critical section with
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several smaller ones, thus allowing concurrent updates even during the build phase. The three
remaining list-based algorithms are modifications of the first three algorithms, respectively, that
allow concurrent updates both during and after the scan phase.

6.4 The List-C-Basic Algorithm

In the List-C-Basic algorithm (described in Figure 7), the index building process executes in three
phases, the scan, build and catchup phases. The scan phase of this algorithm is identical to the scan
phase of the List-X-Basic algorithm. As before, the relation is scanned, and an intermediate index
is then built with the scanned entries. The build phase here is also similar to the build phase of
the earlier algorithm, except that the exclusive lock is released as soon as the phase state has been
changed. During the build phase, the updates that occurred during the scan phase are now applied
to the intermediate index, just as in the earlier List-X-Merge algorithm. Therefore, after step 8 of
Figure 7 has been completed, the intermediate index (Index[R,A]) contains an index that would
be up to date with respect to all of the concurrent updates that occurred during the scan phase.
However, since updaters are allowed to execute during the build phase also, there will probably
be additional entries to apply to the index at the end of the build phase. All that remains to be
done is to incorporate, into the intermediate index, concurrent updates that took place since the
beginning of the build phase. This is done in the catchup phase.

Before we describe the detailed behavior of the build process in the catchup phase, note that
the behavior of the updaters (given in Figure 8) in the scan and build phases in this algorithm is
the same as their behavior in the scan phase of the three earlier List-X-* algorithms (Figure 5).
Also note that, at the end of the build phase in Figure 7, the intermediate index (Index[R,Al]) is
consistent® w.r.t all of the scan phase updates, unlike the intermediate index at the start of the
build phase. That is, at the end of the build phase (step 10 in Figure 7), Index[R,A] is consistent
with respect to the state of the relation as of the start of the build phase (step 6 in Figure 7).
This is because the inconsistencies introduced during scanning are removed due to the build phase
incorporation of all scan phase updates into the index. This index is still behind by one phase,
however, so the build phase updates have to be applied to bring it up to date.

One way of implementing the catchup phase would be by using a single critical section. With
this approach, the build phase updates would be sequentially applied to the index during the
catchup phase without allowing concurrent updaters. In such an algorithm, the catchup phase
would be similar to the exclusive build phase of the earlier List-X-Basic algorithm. It turns out,
however, that we can devise a strategy for the catchup phase that allows concurrent execution of
updaters along with the build process. In this strategy, the build process (described in Figure 7)
enters the catchup phase after applying the scan phase updates to the intermediate index. This
phase change occurs in a short critical section (steps 9-11 of Figure 7). During the catchup phase,
the build process actually shares the index with concurrent updaters: i.e., when index building is
in the catchup phase, updaters register their index updates directly in the intermediate index.

8 A consistent index is one that correctly reflects the actual state of the corresponding relation as of some time.
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Incorporating the build phase changes is slightly different than incorporating the scan phase
changes since (i) the build phase changes are applied starting from a consistent initial index (In-
dex[R,A] at step 10 of Figure 7), whereas the scan phase changes are applied starting from a
possibly inconsistent index built using scanned entries (Index[R,A] at step 6), and (ii) build phase
changes are applied to the index while updaters are also concurrently operating on the same index.
Because of these differences, the routine NSort (used in step 12 of Figure 7) is slightly different

Build process
begin
R: Input relation
H: Heap file
S: Temporary file
step 1. Phase[R, A] = scan, U[R,A] = empty list
step 2: H = Extract_keys(R)
step 3: H = Sori(H)
step 4: Index[R,A] = Make_indez(H, empty)
step 5: Lock U[R,A] in exclusive mode
step 6: S = U[R,A], U[R,A] = empty
Phase[R, A] = build
step 7: Unlock U[R,A]
step 7a: if algorithm is List-Sort then
S = Sor{(S)
step 8: foreach entry in S do
case entry type of
insert: if entry not in Index|[R, A}, insert it
delete: if entry in Index|[R, A, delete it
end
step 9: Lock U[R,A] in exclusive mode
step 10: S= U[R,A*, U[R,A] = empty
Phase[R, A] = catchup
step 11: Unlock U[R,A]
step 12: S = NSori(S)
step 13: foreach entry in S do
case entry type of
insert: if marked delete entry present in Index|[R,A] then
Delete the marked entry
else Insert this entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present
end
step 14: Phase[R, A] = available
end

Figure 7: Build Process in the List-C-Basic and List-C-Sort Algorithms

from the earlier Sort routine (Figure 2), in that it eliminates duplicates differently. If an even
number of occurrences of a (key, rid) entry is found in the input file, NSort eliminates this entry
altogether from the output file. If an odd number of entries (for the same key/rid pair)is found in
the input file, however, the latest entry is kept in the output file. Recall that the earlier procedure
Sort always retained the latest entry. The reason that NSort removes the entry in the even case
here is that, since we start with a consistent index, and since insert and delete entries have to
alternate, the state for this entry after an even number of inserts and deletes is the same as in the
initial consistent index (Index[R,A] at step 10 of Figure 7). Note that the build process code for
applying these build phase updates (step 13 of Figure 7) differs from the code for applying scan
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phase updates (step 8).

Update transaction
begin
R: input relation
Normal processing

step n: if Phase[R, A] = scan or build then
begin
Lock U[R,A] in exclusive mode
if Phase[R, A] = scan or build then
Append (key, rid, insert/delete) entry to U[R,A]
else Unlock U[R,A], goto step n
Unlock U[R,A]
end
else if (Phase[R, A] = catchup) then
case updater of
insert:
if the entry is present in Index[R,A] then
Add a specially marked insert entry
else Insert (key, rid) into Index[R,A]
delete:
if the entry is not present in Index[R,A] then
Add a specially marked delete entry
else Delete (key, rid)from Index[R,A]
end
end

Figure 8: Updater in the List-C-Basic, List-C-Sort and List-C-Merge Algorithms

The actions performed by updaters during the catchup phase are given in Figure 8. As men-
tioned earlier, updaters are allowed to register their updates directly in the intermediate index
during the catchup phase (though the index is still not available for normal use). In this phase,
special handling of certain deletes (those that do not find an entry to delete in the index) and
certain inserts (those that find an entry already in the index) is required. This is accomplished
via the use of special marked index entries, which are removed when the index update for such a
special entry is performed by the build process using the sorted update-list (step 13 of Figure 7)
and do not re-appear afterward. When the build process has completed all of its updates, no such
special entries will remain in the index, at which point the index is made available for normal use
(step 14 of Figure 7). We prove the above assertions in the appendix.

6.5 The List-C-Sort Algorithm

The List-C-Sort algorithm differs from the List-C-Basic algorithm in that the build process sorts
the update-list before inserting its entries sequentially into the intermediate index. This is indicated
by the addition of an extra sort step for this algorithm (step 7a of Figure 7). The differences here
are identical to the differences between the List-X-Basic and the List-X-Sort algorithms described
earlier. The code for the updaters here is identical to that in the List-C-Basic algorithm (Figure 8).
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Build process
begin

R: Input relation
H: Heap file
S: Temporary sort file
step 1: Phase[R, A] = scan, U[R,A] = empty list
step 2: H = Extract keys(R)
step 3: H = Sor{(H
step 4: Lock U[R,A] in exclusive mode
step 5: S = U[R,A}, U[R,A] = empty

Phase[R, A] = build
step 6. Unlock U[R,A]
step 7: S = Sort(S)
step 8: Index[R, A] = Make_indez(H, S)
step 9: Lock U[R,A] in exclusive mode
step 10: S = U[R,A], U[R,A] = empty

Phase[R, A] = catchup
step 11: Unlock U[R,A]
step 12: S = NSor{(S)
step 13: foreach entry in S do

case entry type of

insert: if marked delete entry present in Index|R,A] then
Delete the marked entry
else Insert this entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present

end

step 14: Phase[R, A] = available
end

Figure 9: The List-C-Merge Algorithm
6.6 The List-C-Merge Algorithm

The last list-based algorithm that we discuss is the List-C-Merge algorithm (Figure 9). This algo-
rithm is derived from the List-C-Basic algorithm in the same way that the List-X-Merge algorithm
was derived from the List-X-Basic algorithm earlier. For the build process, the key difference from
List-C-Basic and List-C-Sort is that the intermediate index is built in one pass using both the
scanned entries and the scan phase updates. Just like in List-C-Basic and List-C-Sort, concurrent
updates are allowed in the build phase in List-C-Merge also, and these updates are then applied
to the intermediate index during the catchup phase. Notice that the code for the catchup phase
in this algorithm (steps 12-14 in Figure 9) is the same as that in the List-C-Basic and List-C-Sort
algorithms (steps 12-14, Figure 7). The code for the updaters is also the same here (Figure 8).

6.7 System Log Versus Update-List

Instead of using a special update-list to store concurrent updates, the system log can be used for
this purpose (as was done in a commercial DBMS from Synapse [Wood91]). The advantage of using
the log would be that no changes are needed to the logic for concurrent updates, just as in the
off-line algorithm. There are several disadvantages to using a log-based strategy to build an index
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on a large relation, however. Because the portion of the log to be processed may be large (since
scanning may take days), it may be unreasonable to expect all of the log records written during
the scan to be on-line. Moreover, only a small fraction of the log will be relevant to a particular
index construction process, and this fraction will be distributed throughout the overall log. These
disadvantages led us to use a special update-list in the algorithms presented in this section.

7 Index-Based Algorithms

Index-based algorithms use an index to store concurrent updates instead of the update-list used
by the list-based algorithms. All of the index-based algorithms, like all of our on-line algorithms,
allow updaters to execute concurrently during the scan phase. Like the list-based algorithms, the
different index-based algorithms differ in their method of combining the scanned entries with the
concurrent updates as well as in the amount of concurrency allowed after the scan phase. However,
there are only four possible index-based algorithms. This is because there are no counterparts to
the List-C-Sort and List-X-Sort algorithms in the index case, as the leaf pages of the public index
(created by concurrent updates) already contain the keys in sorted order. The various possible
index-based algorithms are listed in Table 2.

Name How Updates Are Applied? After Scan Phase
Indez-X-Basic | Sequentially apply from leaf-page list X lock index, no concurrent updaters
Indez-X-Merge | Merge leaf-page list with scanned entries | X lock index, no concurrent updaters
Indez-C-Basic | Sequentially apply from leaf-page list Concurrent updaters allowed
Indexz-C-Merge | Merge leaf-page list with scanned entries | Concurrent updaters allowed

Table 2: Index-Based Algorithms.

7.1 The Index-X-Basic Algorithm

The pseudo-code for the Index-X-Basic algorithm is given in Figure 10. The build process executes
in two phases, the scan and build phases, and is very much like the build process in the List-X-Basic
algorithm (Figure 5). The difference here is the use of a “public” B-tree index (visible to concurrent
updaters, Index[R,A] in Figure 10) to store the concurrent updates. As before, the build process
scans the relation to gather index entries and builds a private intermediate index (T in Figure 10)
with these scanned entries. It then enters the build phase, locking the public index in Exclusive
mode. The entries in the leaf pages of the public index (built by concurrent updaters) are applied
to the privately built index, bringing it up to date. The build process here treats the leaf pages
of the public index in much the same way that the List-X-Basic build process treated the list of
updates. After all of the entries in the leaf pages have been applied to the intermediate index, the
build process makes the index available for normal use (step 8), releasing the Exclusive lock.

Updaters finding that index construction is in the scan phase directly update the public index
(step n of Figure 10). There are several key differences in the way that this public index is used,
however, compared to how a normal (available) index is used:
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¢ Updaters take a Share lock on the public index before accessing it in the scan phase while this
step is not used for a normal index traversal. This share lock is used by updaters simply to
exclude the build process from the index; concurrent updaters can still concurrently update
this index. Concurrent updaters resolve their conflicts on individual index pages using the
B-tree concurrency control algorithm described in Section 2.2.

¢ The public index cannot be used for searching like a normally available index. In Figure 10,
until the build process makes the final consistent index available in step 8, no searches can
take place using the index.

o Updates to this public index add entries that are similar to those appended to the update-list
in the list-based algorithms: each entry here has three components, a key, an rid, and the
operation type (insert/delete). (Entries in a normal index do not have the third, operation
type, component.)

o Updates to the public index differ from normal index updates in that they leave special entries
that keep track of the latest operation, if any, that took place for a particular (key, rid) entry
in the index. This is to ensure that enough information is available about the concurrent
updates to prevent inconsistent situations® from occurring when the scanned entries and
the concurrent updates are combined. Any inconsistencies that are present in the private
intermediate index built using the scanned entries alone will be removed by the index building
process during the build phase (step 7 of Figure 10).

The behavior of updaters here can be best understood by noting that the leaf pages of the public
index at the end of the scan phase have the same contents as would be obtained by storing these
updates in a list and then sorting them, eliminating any duplicates by keeping only the latest entry.
Recall that this is what the build process in the List-X-Sort algorithm accomplished by sorting the
scan phase updates (using the Sort function of Figure 2) in the exclusive build phase. In the
Index-X-Basic algorithm, this work is done by updaters using the public index. The build process
in the Index-X-Basic algorithm thus performs less work in the critical section than the List-X-Sort
algorithm. Updaters, however, perform more work in the Index-X-Basic algorithm; since an index
insert is bound to take more time than list append, especially if the leaf pages of the public index
do not all fit in memory.

7.2 The Index-X-Merge Algorithm

The Index-X-Merge algorithm is illustrated in Figure 11. The build process again executes in two
phases, and is very much like the List-X-Merge build process (Figure 6). The only differences are

® An example inconsistency is as follows: During the scan phase, if a deleter finds a to-be-deleted entry to already
be present in the public index, this entry must have been inserted after the start of the scan phase. Thus, it is
possible for the index building process to have read the entry during the relation scan after it was inserted and before
the impending delete. If the deleter now completely removes this entry from the public index, it may reappear later
as a spurious entry (from the scanned list) when the index building completes, thus leaving an inconsistent index.
Retaining a delete entry in the public index, and later matching this delete entry with the spurious entry in the
scanned list, prevents this inconsistency in the final index.
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Build process
begin

R: Input relation
T: Temporary B-tree index
A: Attribute of R on which to build index
H: Heap file
L: Head of a list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty index
step 2: H = Eztraci_keys(R)
step 3: H = Sort(H)
step 41 T = Make_indez(H, empty)
step 5: Lock Index|[R, A] in exclusive mode

step 6: Phase[R, A] = build
L = List of leaf pages of Index[R, A]
Index[R, A] =T

step 7: foreach entry in L do

case entry type of
insert: if entry not in Index[R, A], insert it
delete: if entry in Index[R, A], delete it

end
step 8: Phase[R, A] = available
step 9: Unlock Index[R,A]

end

Update transaction
begin
R: Input relation
Normal processing

step n: if Phase[R, A] = scan or build then
begin
Lock Index[R, A] in share mode
if Phase[R, A] # scan then
Unlock Index|[R, A], goto step n
else case updater of
insert: if delete entry present in Index[R, A] then
Replace the entry by an insert entry
else Add an insert entry
delete: if insert entry present in Index[R,A] then
Replace the entry by a delete entry
else Add a delete entry
end
Unlock Index[R, A]
end
end

Figure 10: The Index-X-Basic algorithm
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Build process
begin

R: Input relation
A: Attribute of R on which to build index
H: Heap file
L: Head of a list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty index
step 2: H = Extract_keys(R)
step 3: H = Sori(H)
step 4: Lock Index[R, A] in exclusive mode

step 5: Phase[R, A] = build
L = List of leaf pages of Index[R, A]
step 6: Index[R, A] = Make_indez(H, L)
step 7: Phase[R, A] = available
step 8:  Unlock Index|[R, A]
end

Figure 11: The Index-X-Merge Algorithm

(i) the use of a public B-tree index in lieu of the update-list used earlier, and (ii) the absence of
the sort phase (step 6 of Figure 6) that was necessary for merging in the list of updates in the
earlier algorithm. The reason for difference (ii) is that the leaf pages of the public index already
contain the keys in sorted order and, since the leaf pages are linked from left to right, it can be
directly used as an argument to the Make_index procedure (step 6 of Figure 11). The code for
update transactions is exactly the same as that for the Index-X-Basic algorithm (see Figure 10).

The preceding index-based algorithms do not allow concurrent updaters after the scan phase.
We now describe their counterparts that allow concurrent updaters throughout the entire execution
of the index building process. The next index-based algorithm we discuss is the Index-C-Basic
algorithm.

7.3 The Index-C-Basic Algorithm

The build process of the Index-C-Basic Algorithm is described in Figure 12, and the corresponding
update transaction code is given in Figure 13. The build process of this algorithm is similar to the
build process in the List-C-Basic algorithm (see Figure 7). The build process here also executes
in three phases, the scan, build and catchup phases. The scan phase here is similar to the scan
phase of the earlier Index-X-Basic algorithm. In this phase, the build process first scans the entries
from the relation and then builds an intermediate index using the scanned entries. During the scan
phase, concurrent updaters operate on the public index in the same manner as in the Index-X-Basic
algorithm, i.e., the scan phase code for updaters is identical in Figures 10 and 13.

After building the intermediate index (after step 4, Figure 12), the build process locks the public
index in Exclusive mode, driving away any updaters, and copies the head of the leaf page list of
the public index. It then re-initializes the public index to be empty, changes the state variable to
indicate to updaters that the build phase has started, and finally releases the Exclusive lock on
the public index. During the build phase, the build process sequentially applies the updates from
the leaf page list (saved above) to the intermediate index that it built with the scanned entries.

21



Build process
begin
R: Input relation
H: Heap file
T: Temporary B-tree index
L: Head of a linked list of leaf pages
step 1: Phase[R, A] = scan, Index|[R, A] = empty
step 2. H = Exitract_keys(R)
step 3: H = Sori(H)
step 41 T = Make_indez(H, empty)
step 5: Lock Index[R, A] in exclusive mode
step 6: L = leaf page list of Index|R, A]
Index[R, A] = empty
Phase[R, A] = build
step 7:  Unlock Index[R, A]
step 8: foreach entry in L do
case entry type of
insert: if entry not in T, insert it
delete: if entry in T, delete it
end
step 9: Lock Index|[R, A] in exclusive mode
step 10: L = leaf page list of Index[R, A]
Index[R, A] =T
Phase[R, A] = catchup
step 11: Unlock Index[R, A]
step 12: foreach entry in L. do
case entry type of
insert: if marked delete entry present in Index|[R,A] then
Delete the marked entry
else Insert the entry normally
delete: if marked insert entry present in Index[R,A] then
Delete the marked entry
else Delete the normal entry that is present
end
step 13: Phase[R, A] = available
end

Figure 12: Build Process in the Index-C-Basic Algorithm

Updaters continue to add their updates to the public index during the build phase but these build
phase updates are stored differently from the scan phase. This is illustrated by the difference in
the code segments for the scan and build phases in Figure 13. The basic idea in the build phase
is to retain the latest update for a (key, rid) pair only if an odd number of operations took place
after the start of the build phase. (Recall that at the start of the build phase, the public index is

empty.)

This difference between the handling of scan phase and build phase updates is similar to the
difference between the Sort and NSort functions described earlier. The explanation is analogous,
so we do not repeat it here.

After applying all of the scan phase updates to the intermediate index, the build process enters
the catchup phase, where the intermediate index is made visible to concurrent updaters. The
build process now applies the build phase updates to this intermediate index. During the catchup
phase, updaters apply their updates directly to the public intermediate index, behaving exactly like
updaters in the catchup phase of the List-C-Basic algorithm (Figure 8). These concurrent updaters
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Updaie transaction
begin
R = input relation
Normal processing

step n: if PhaseLR, A] = scan then
begin
Lock Index|[R, A] in share mode
if Phase[R, A] # scan then
Unlock Index[R, A], goto step n
else case updater of
insert: 1if delete entry present in Index|[R, A] then
replace the entry by an insert entry
else add an insert entry
delete: if insert entry present in Index[R,A] then
replace the entry by a delete entry
else add a delete entry

end
Unlock Index[R, A]
end
else if Phase[R, A] = build then
begin

Lock Index[R, A] in share mode
if Phase[R, A] # build then
Unlock Index|[R, A], goto step n
else case updater of
insert: 1if delete entry present in Index[R, A] then
remove the entry
else add an insert entry
delete: if insert entry present in Index[R,A] then
remove the entry
else add a delete entry
end
Unlock Index[R, A]
end
else if (Phase[R, A] = catchup then
case updater of
insert:
if entry is already present in Index[R,A] then
add a specially marked insert entry
else insert this (key, rid) in Index[R,A]
delete:
if entry is not present in Index[R,A] then
leave a specially marked delete entry
else delete this entry from Index|[R,A]
end
end

Figure 13: Update Transaction in the Index-C-Basic and Index-C-Merge Algorithms
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Build process
begin
R: Input relation
H: Heap file
T: temporary B-tree index
L: Head of a linked list of leaf pages
step 1: Phase[R, A] = scan, Index[R, A] = empty
step 2: H = Extract_keys(R)
step 3: H = Sor(H)
step 4: Lock Index|[R, A] in exclusive mode
step 5: L = leaf page list of Index[R, A]
Index|R, A] = empty
Phase[R, A] = build
step 6: Unlock Index[R, A]
step 7: T = Make_indez(H, L)
step 8: Lock Index[R, A] in exclusive mode
step 9: L = leaf page list of Index[R, A]
Index[R, A] =T
Phase[R, A] = catchup
step 10: Unlock Index[R, A]
step 11: foreach entry in L do
case entry type of
insert: if marked delete entry present in Index[R,A] then
delete the marked entry
else insert the entry normally
delete: if marked insert entry present in Index[R,A] then
delete this marked entry
else delete the normal entry that is present
end
step 12: Phase[R, A] = available
end

Figure 14: The Index-C-Merge Algorithm

leave specially marked entries in the index in case they detect inconsistencies (e.g., an inserter finds
the entry to be inserted already in the index, or a deleter does not find an entry to delete). These
marked entries will be found and removed by the build process as it executes step 12 of Figure 12.
When the build process is finished applying all of the build phase updates, the index is up to date
and is made available for normal use.

7.4 The Index-C-Merge Algorithm

The last index-based algorithm that we discuss is the Index-C-Merge Algorithm. The build process
in this algorithm (Figure 14) differs from the Index-C-Basic build process only in the manner
in which the intermediate index is built. This index is built in one pass in step 7 (Figure 14)
using the leaf page list of the concurrent scan phase updates as well as the sorted list of scanned
entries. This is similar to how the intermediate index was built in the List-C-Merge algorithm.
Update transactions in the Index-C-Merge algorithm execute just like updaters in the Index-C-
Basic algorithm (Figure 13).
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8 More Concurrency for Updaters

In Section 5, we stated that concurrent updaters register their index updates immediately into
the updates-list or the temporary index during index construction. This ensures that all updates
to a page that occur after index construction starts but by the time when this particular page
is scanned by the build process are registered in the updates-list or the temporary index before
the scan phase completes. This is necessary to prevent inconsistent situations from being seen
by update transactions due to the late application of index updates'®. We will now explain how
immediate index updates affect concurrency for the various algorithms.

For the list-based algorithms, the above requirement means that updaters have to request an
Exclusive lock on the list while still holding a short-term Exclusive lock on a newly modified relation
page. The relation page lock can be released only after the list lock is granted. If the list becomes
a concurrency bottleneck, this strategy may slow down other updaters as well as the scan phase
of the build process due to interference at the relation page level. This seems unlikely to happen,
however, due to the fact that the list append is likely to be an in-memory operation and therefore
very fast (since the last page will always be in memory). In the index-based algorithms, updaters
have to get a Share lock on the index before releasing the Exclusive lock on the modified relation
page. This Share lock is only used to exclude the build process from the index, so multiple updates
can still proceed concurrently on the temporary index. It therefore appears that there is a smaller
chance of a concurrency problem arising here as compared to the list case.

If the requirement of immediate index updates is considered undesirable, it can be relaxed by
employing the page coloring technique of [Pu85]. In this strategy, all relation pages are colored
“white” when the build process starts. As soon as a relation page is scanned in the scan phase, it is
colored “black.”. Now, instead of always registering their index updates to the update-list or the
temporary index, updaters will only register their index updates on black pages (pages that have
already been scanned by the index construction process). This prevents the inconsistent situations
mentioned earlier from occurring even if the index updates are not registered immediately. Also,
it reduces the total number of updates registered during the scan phase, reducing the work of the
build process in the end. An implementation of this algorithm requires a special “color bit” in
every relation page to keep track of the color of the page. Multiple color bits per relation page
would be needed to accommodate more than one index construction process at a time.

9 Summary and Future Work

In this paper, we have presented a range of solutions to the important problem of on-line index
construction. In particular, we have described two families of on-line index construction algorithms.

10 An example inconsistency is as follows: Suppose a page was scanned by the build process after a (key, rid) pair
was inserted into it, but the index construction process completes before the corresponding index update is performed.
When the index update for this (key, rid) pair is finally performed by the update transaction (on the newly built
index, which is now available as a normal index), the updater will find that this entry is already in the index. While
this is legal during the construction phase, during normal operation it is an error.
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These on-line algorithms vary in the sort of data structures that they use to store the concurrent
updates (list or index), the strategies used to actually build the index from leaf-level entries, and
the degree of concurrency allowed for concurrent updates. The algorithms trade off, to varying
degrees, increased building time for increased updater throughput. Proofs of correctness of these
algorithms can be found in the appendix.

In our discussions of the proposed algorithms, we have identified certain situations that could
favor one on-line algorithm over another, but a detailed performance study is needed to clearly
understand the tradeoffs among of these algorithms under various system resource and workload
conditions. An important question to be answered in such a performance study is: How much
of an increase in updater throughput warrants allowing a certain increase in build response time?
In answering this question, it is necessary to keep in mind that increasing the build time also
increases the “lost opportunity” cost for queries that can run only after the index is built (since
they may have unacceptably high cost without the index). This suggests that a new cost model
needs to be developed to evaluate the performance tradeoffs of these algorithms. In addition, as
mentioned earlier, index construction for a terabyte relation may take days (due to the scan phase
itself). This means that the index building process must be able to survive crashes and to complete
without having to restart from scratch after every crash. Appropriate recovery strategies have to
be designed for this purpose. Finally, since a terabyte relation is likely to be declustered across
several disks, it is necessary to parallelize the various on-line algorithms for use in such parallel
database systems. These issues are all good candidates for future work.!?
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A Correctness Proofs

A relation consists of records, each of which is identified by an identifier called its record id (rid)
which is unique within all records of the relation. The set of rids in a relation R is given by S(R).
The value of the attribute A of the record associated with rid = is denoted by A(r). A relation is
assumed to be stored in pages 1..N. We assume that N is a large constant and is the maximum
possible size of the relation. The mapping M(R) maps individual elements in S(R) to a value
between 1 and N, i.e., M(R) gives the page where a record with a particular rid resides. The
mapping M(R) is a many-to-one and into function, i.e., every rid is mapped to exactly one page,
and there can be pages that are not mapped from any rid (empty pages of the relation). To keep
our discussion simple, we will assume further that, given a set of rids of a relation, the mapping
from rids to pages for this set can be determined from fields of the rid itself. Therefore, S(R), the
set of rids, also determines M (R) completely. In other words, we assume physical rids, though it is
straightforward to extend the proofs for logical rids also. An index on an attribute A of a relation
R (Indexz[R, A)]) consists of a set of entries, each of the form (k,7), where k¥ € Dom(A) (where
Dom(A) is the set of all possible values for attribute A) and r € S(R). Finally, the set of rids S(R)
can vary with time, and the value of the set at time ¢ is denoted by S:(R).

Definition A.1 A relation update consists of the 3-tuple (7, v,0) where r is the record id, v is
the value of all of the fields of the inserted or deleted record, and o is one of ¢ (insert) or d (delete).
An index update is also a 3-tuple (k, 7, 0) where % is a key value, 7 is a record id and o is one of ¢
(insert) or d (delete). Also, every relation update u = (r,v, 0), gives rise to a corresponding index
update t(u) = (A(r),r, o) for every indexed attribute A. O

From Definition A.1, it follows that modifying a field of a record is considered as two operations, a
delete of the old record followed by an insert of a new record with the same record id but a different
value for the modified field. Such a two-operation modification will result in two corresponding
index updates. Recall from our discussion in Section 5 that an update transaction performing a
relation update (7, v,0) holds an Exclusive lock on the page where r resides. This lock is released
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after the update on the page is completed. The release of this lock is assumed to be done in a
critical section in the lock manager.

Definition A.2 A relation update is defined to occur atomically at the time when the Exclu-
sive lock on the modified relation page is released. Similarly, an index update is defined to occur
atomically at the time when the Exclusive lock on a modified leaf page is released by the B-tree
concurrency control algorithm (Section 2.2). O

Definition A.3 If s and ¢ are times such that s < ¢, then U, s,¢ is the sequence of updates to relation
R in the time interval between s and ¢, in increasing order of lock release time. For the sequence
Us,t of relation updates of length n, we define a sequence T;¢ of index updates (to an index on
attribute A) also of length n as follows: if the i** entry of Us ; is u, then the i** entry of T,z is t(u).
[

Definition A.4 An index I[R, A] is consistent with respect to the relation R at time ¢ if (i) for
every rid 7 in Sy(R), the entry (A(r),r)is present in I[R, A], and (ii) for every entry (k,r) in the
index, r € S(R) and A(r)is k. O

A.1 Proof for the List-X-Basic Algorithm

Let ¢; denote the time at the start of the scan phase, step 1 of Figure 5. Let £, denote the start of
the build phase, i.e., the Exclusive lock on U[R, A] (step 5 of Figure 5) is granted at time t,. Finally
let ¢ be the time when the index construction terminates (step 9 of Figure 5). Recall that, in this
algorithm, update transactions that make a relation update u add the corresponding index update
t(u) to the update-list U[R, A] using an Exclusive lock (step n, Figure 5). Therefore, just like for
relation updates, the append to the update-list can be viewed as an atomic occurrence at the time
when the Exclusive lock on the list is released. The updates list U[R, A] contains a sequence of
index updates ordered by this lock release time.

Definition A.5 The time when a page p is scanned by the index construction process is denoted
by t,. For all pages p in a relation R, t; < t, < t;. O

Lemma A.1 If a relation update u is performed on a page p at any time ¢, t, < t < tp, then t(u)
will be added to U[R,A] before time t;.

Lemma A.2 The sequence of index updates present in U[R, A] at t, is Ty, 4,. Recall that Tt 1, 1S
the sequence of index updates corresponding to the actual relation updates Ui, 1, that took place in
[ts, 5] (see Definition A.3).

Proof: Both of the lemmas above can be proved from the fact that an updater in the List-X-
Basic algorithm will release its Exclusive lock on the modified relation page only after getting an
Exclusive lock on the update-list, U[R,A] (Section 8).

Since the build process has not scanned page p before time ¢, it can scan p only after the updater
has acquired the Exclusive lock on U[R,A] and released its page lock (since the builder needs a
Share lock on p to read it). So, before the time when the build process gets the Exclusive lock in
step 5 of Figure 5 (), the index update #(u) will be in the update-list. This proves the first lemma
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above.

It also follows from the lock-chaining strategy described above that the order of releasing relation
page locks (which determines the relative order between relation updates) is the same as the order
of releasing update-list locks (which determines the relative order of index updates). This, along
with the additional fact that the index update is registered in U[R, A] immediately after the relation
update, proves the second lemma. O

Theorem A.1 At time ty, the indez Index[R, A] is consistent with respect to R.

Proof: We will prove this theorem by proving that, for any page p in the relation, the entries in
index Index[R, A] at t; accurately reflect the state of that page at t5. Since we assume physical
rids, the rid of a record determines uniquely the page of the relation where the record is stored.
Therefore, of the sequence of updates in U [R,A] at %, it is possible to identify the sub-sequence of
index updates that were caused by relation updates to page p. This sub-sequence of updates can
be further divided into the sequence of updates B, that took place before tp (the time when this
page was scanned by the build process), and the sequence A, of updates that took place after tp.
Consider the execution of step 7 (in Figure 5) of the build process. For page p, the sequence of
index updates in B, are first redone on the page p, followed by the (new) index updates in Ap.

For page p, Indexz[R, A] at t; is consistent w.r.t the state of the relation page p at time ip.
Consider a record id 7 that does not occur in By. In this case, applying B, to I ndez[R.A] does not
change the entry corresponding to r in I ndez[R, A]. Consider a record id ¢ that occurs in B,. In
this case, applying B, leaves the state of this record consistent with the last index update in B, for
q- But this will be the same as the state of this record id as read from the page itself at ¢, because
of Lemmas A.1 and A.2. Therefore, at the time when all updates from B, have been applied and
no updates from A, have begun, the state of the page p in the index is consistent with the state
of p at time ¢, when it was scanned i.e., only valid entries, one for each record in p, will exist in
Indexz[R, A]. Applying the index updates in A, cannot cause any consistency problems as these
updates happened after page p was scanned and will be applied in the same order as the relation
updates themselves.

The same argument can be used for all pages in R. Furthermore, no updates will be lost since it
is clear from Lemma A.2 that all relation updates that have completed before #, will be present in
U[R,A]. Also, no updates can complete in [y, 7] due to the Exclusive lock. ] ndex[R, A] is therefore
consistent w.r.t R at ¢y. O

The above proof can be extended to prove Theorem A.1 for the List-X-Sort algorithm as follows.
Lemmas A.1 and A.2 are true here also. To prove the theorem, one has to show that the sort (step
6a in Figure 5) does not change the proof above. This follows from the fact that for every (key,
rid) pair e in the update-list U [R, A], the sort retains the latest entry for e that was appended
to U[R, A], thus causing the same effect for e as would be obtained by sequentially inserting the
unsorted entries in the same order in which they were appended to U[R, A].

For the List-X-Merge algorithm, the proof of Theorem A.1 directly follows from the proof for
the List-X-Sort algorithm. The reason is that merging the sorted scanned entries with the sorted
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update-list in List-X-Merge (step 7, Figure 6), is identical to creating an index out of the sorted
scanned entries first and then sequentially applying the entries from the sorted updates list to this
index (as in List-X-Sort, step 7 in Figure 5).

A.2 The List-C-Basic Algorithm

In this algorithm, as before, t5 and t; are times that denote the start of the scan and build phases,
respectively (steps 1 and 6 respectively in Figure 7). Time t; is again the time when the index
construction process is completed (step 14). In addition to these, we denote as t. the time of the
start of the catchup phase (step 10 in Figure 7). These times are illustrated in Figure 15. We further
assume the correctness of the B-tree concurrency control algorithm used for performing concurrent
operations on the index. Lemmas A.1 and A.2 are true here as before. Our goal now is to prove
Theorem A.1 here as well.

Lemma A.3 At time t., the index Indez|[R, A] is consistent with respect to the state of R at 1,
S, (R).

Proof: The proof of this lemma follows from the proof of Theorem A.l earlier and the fact that
during [25,1.] there is no interference between concurrent updaters and the build process. O

Lemma A.4 The sequence of index updates present in U[R, A] at &, is Ty, 1, (see Definition A.3).
Proof: This proof follows the same logic as that for Lemma A.2. O
Theorem A.2 At time i5, the index Index[R, A] is consistent with respect to the state of R at ty.

Proof: For a moment, assume that no concurrent updater accesses the index during [t,ts]. Under
this assumption, we will prove that the above theorem is true. The routine NSort (step 12, Figure 7)
retains the latest entry for only those (key, rid) pairs that occur an odd number of times in T}, ;..
It is clear that, since Index[R, A] at 1. is consistent w.r.t. S, (R) (Lemma A.3), the (key, rid) pairs
with an even number of entries in T}, ;. can be ignored (since inserts and deletes for a (key, rid)
pair have to alternate in T}, ., see Section 5). Also, if a (key, rid) pair has an odd number of index
updates in Ty, ., only the latest entry determines the state of this (key, rid) pair in the final index.
Recall that T, s, truly reflects the relation updates Uy, ;, (by definition). Since in the absence of
concurrent updates, the catchup phase merely performs actions that are equivalent to applying
T}, 4. to an index that is consistent w.r.t to St,(R), at time ¢. the index is consistent w.r.t. Si.(R),
the state of the relation at #.. Since Uy ¢, is empty due to our assumption of no concurrent updates
in the catchup phase, the theorem is therefore true.

Now, we must prove that the theorem is true even in the presence of concurrent updaters in the
catchup phase. First, if no (key, rid) pair associated with index updates performed during [t,%;]
is present in T}, ;. (the build phase updates applied to the index in the catchup phase), then the
theorem is trivially true.

Now consider a (key, rid) pair e for which one or more concurrent index updates occurs in
[tc, 5], and where there is at least one entry for e in T}, .. If there are an even number of entries for
e in Ty, 1., then Index[R, A] contains the true state for e at t., and any updates during the catchup
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Figure 15: Phases in the List-C-Basic algorithm

phase [t., ;] will not see any consistency. Also, the build process will not insert or delete any index
entry during [t., 1] for e, since it ignores all rids with even number of entries in Ty, 1.

If there is an odd number of entries for e in T3, .t., the build process applies only the latest entry
for e to the index at some time . in [t., ;] (see Figure 15). If the first concurrent update to e after
lc occurs after 1., then no inconsistency is seen by a concurrent update, either then or at any time
afterward. If one or more concurrent updates to e occurs after ¢, but before te, then the first
update will necessarily find an inconsistent situation. This follows directly from Lemmas A.3 and
A.4 and the fact that insert and delete entries for e have to alternate. Since the latest update for e
in T}, . is not entered in the index until ¢,, the first concurrent index update for e (which happens
before 2) will detect this inconsistency (i-e., an insert will find an entry and a delete will not find
the required entry) and add a special marked entry to the index (step n, Figure 8). After this first
index update for e, the state in the index for e is a true reflection of its state in the relation, ignoring
the marked entry for e. Subsequent updaters to e ignore the marked entry for e and will not find
any consistency. At ., the build process will access the index and find the marked entry and delete
it, after which no marked entry can be introduced. Since the above is true for every e in Ty, 4., at
ts, Indez[R, A] will be consistent w.r.t to the state of the relation at ty. O

The proof for the List-C-Basic algorithm can be extended to prove the correctness of the List-
C-Sort and the List-C-Merge algorithms. The only difference is in the proof of Lemma, A.3, which
is similar to how Theorem A.1 was proved for the List-X-Sort and List-X-Merge algorithms. Apart
from Lemma A.3, the rest of the proofs for List-C-Sort and List-C-Merge are the same as for
List-C-Basic, as all three algorithms behave similarly in the catchup phase.

A.3 Proofs for Index-Based Algorithms

We saw earlier that for all of the list-based algorithms, Lemmas A.1 and A.2 were true. For all of the
index-based algorithms, only Lemma A.1 holds. Lemma A.2 doesn’t hold here because, unlike the
list-based algorithms, where an Exclusive lock is requested on the update-list before releasing the
Exclusive lock on the modified relation page, here only a Share lock is requested on the temporary
index before releasing the relation page lock. However, it turns out that proofs similar to those
earlier can still be obtained by using the following weaker lemma which has to hold (by definition)
for serializability of transactions (assuming that a relation update and the corresponding index
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update occur within the same transaction).

Lemma A.5 Ifrelation updates u; and uy occur (Definition A.2) in a certain order, both involving
the same rid r, then the corresponding indez updates H(u1) and t(uz) occur in the same order. ILe.,
if uy occurs before uy, then t(uy) occurs before t(ug) and vice versa.

Using the above lemma and Lemma A.1,it is possible to prove Theorem A.1 for the Index-X-Basic
algorithm. We will outline the key ideas of the proof here. First observe that at time ¢;, the end
of the scan phase (step n, Figure 10), the public index (Indexz[R, A]) contains exactly the same
entries as would be obtained by storing all index updates during the scan phase in a list and then
sorting this list using Sort (Figure 2), as in the List-X-Sort algorithm (Figure 5). The proof for
Index-X-Basic is therefore similar to that for List-X-Sort. The key difference is that the consistency
of the index is proven on a per-rid basis instead of the per-page basis used in proving Theorem A.1.

The proof for the Index-X-Merge algorithm (Figure 11) follows from the proof for the Index-X-
Basic algorithm in the same way that the the List-X-Merge algorithm proof followed from that for
the List-X-Sort algorithm. The first part of the proof for the less restrictive Index-C-Basic algorithm
involves re-proving Lemma A.3 using the proof of the Index-X-Basic algorithm outlined above. The
rest of the proof follows from the proof of Theorem A.2 for the the List-C-Basic algorithm by
observing how the state of the temporary index at the start of the catchup phase (t., step 10 in
Figure 12) is similar to the result produced by storing the updates that occurred in [ts, 1] in a list
and sorting it using NSort (Figure 7). After proving the Index-C-Basic algorithm, the extension to
Index-C-Merge is straightforward, as for the corresponding list algorithms.

A.4 Proofs for Coloring Algorithms

Finally, we briefly touch upon how to prove algorithms which use the coloring strategy described in
Section 8. Here, the updaters know whether or not a particular page has been scanned by a build
process, and they only communicate to the build process those changes that take place after the
page has been scanned. The following lemma can be used along with Lemma A.5 to derive proofs
for this class of algorithms in a manner similar to that described earlier in this section.

Lemma A.6 Only updates to a relation page p that occur after t, (the time when p is scanned)
will be present in either the update-list or the temporary indez.

Proof: This is ensured directly by the coloring scheme outlined in Section 8. O
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