THE K-ARY GCD ALGORITHM*"
by

Jonathan Sorenson

Computer Sciences Technical Report #979

November 1990

The k-ary GCD Algorithm

Jonathan Sorenson*
Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, WI 53706
USA

sorenson@cs.wisc.edu

November 13, 1990

Abstract

In this paper we introduce the new k-ary greatest common divisor (GCD) algorithm, a
generalization of the binary algorithm. Interestingly, this new algorithm has both a sequential
version that is very practical and parallel versions that rival the best previous parallel GCD
algorithms.

We show that for k a prime power, the sequential k-ary GCD algorithm has a ©(n?) worst-
case running time on n-bit inputs. However, in a multiple-precision implementation the k-ary
algorithm outperforms several other GCD algorithms, including the binary algorithm by a
factor of 2, and the Euclidean algorithm by a factor of 12.

Parallel versions of the algorithm include the following for the CRCW PRAM model:
an O(n/logn) time algorithm using O(n'*¢) processors, and for d > 1, an O(log?n) time
algorithm using exp[O(n/log® n)] processors. The first algorithm matches the complexity
of the best previous parallel GCD algorithm using a polynomial number of processors, and
the second algorithm is the first deterministic polylog time GCD algorithm using a subex-
ponential number of processors. We also give EREW and CREW PRAM versions of the
algorithm.

University of Wisconsin-Madison Computer Sciences Technical Report #979
*Supported by NSF grant CCR-8552596

The k-ary GCD Algorithm 1
1 Introduction.

Given two positive integers u and v, the greatest common divisor (GCD) of u and v is the
largest integer that evenly divides both u and v. In this paper, we present the k-ary GCD
algorithm, a generalization of the binary algorithm of Stein. Interestingly, this new algorithm
has both a sequential version that is very practical and parallel versions that rival the best
previous parallel GCD algorithms.

Applications for greatest common divisor algorithms are numerous, including computer
algebra systems, symbolic computation, cryptography, and integer factoring. Perhaps the
most famous and well-studied GCD algorithm is the classical algorithm of Euclid. Others
include the least-remainder Euclidean algorithm, the binary algorithm of Stein (see Brent
[Bre76]), the binary algorithm using left shifts [Bre76], Purdy’s algorithm which exploits
carry-free arithmetic [Pur83], Norton’s shift-remainder algorithm [Nor87], and Schénhage’s
algorithm [Sch71]. In addition, there are variants of many of these algorithms; for instance
Lehmer designed a variant of the Euclidean algorithm for multiple precision inputs [Leh38].
Most of these algorithm have an O(n?) worst-case running time on n-bit inputs. For multiple
precision inputs, many consider the binary and left shift binary algorithms to be the best
in practice. For general references on GCD algorithms, see Knuth [Knu81] and Bach and
Shallit [BS90].

In this paper, we show that the k-ary GCD algorithm also has an O(n?) worst-case
running time when k is a prime power. More importantly, we demonstrate that this new
algorithm is very practical. We implemented a multiple-precision version of the algorithm,
and for k carefully chosen, the k-ary GCD algorithm outperformed several-other algorithms,
including the Euclidean algorithm by a factor of 12, the binary algorithm by a factor of 2,
and the left shift binary algorithm by 35%.

The parallel complexity of computing greatest common divisors is a long-standing open
problem. Deng [Den89] showed that certain GCD related problems are A/C-equivalent to
finding the optimal solution of a two-variable linear program. Although there are several
sublinear time parallel GCD algorithms, no A'C algorithm is known, and computing GCD’s
is not known to be P-complete.

In this paper we discuss parallel algorithms in terms of the parallel random access ma-
chine (PRAM) model. Previous parallel GCD algorithms include those by Kannan, Miller,
and Rudolph [KMR87], who gave the first sublinear time algorithm, Adleman and Kompella
[AK88], who gave a polylog time randomized algorithm using a subexponential but super-
polynomial number of processors, and Chor and Goldreich [CG90], who currently have the
fastest parallel algorithms using only a polynomial number of processors. Chor and Gol-
dreich’s algorithms are based on the linear time algorithm of Brent and Kung [BK83] for
systolic arrays. For a general reference on the PRAM model of computation and parallel
algorithms, see Karp and Ramachandran [KR88].

We give four new parallel algorithms based on the k-ary method:

e An EREW PRAM algorithm with a running time of O(n) using O(n log nloglogn)
Processors.

e A CRCW PRAM algorithm with a running time of O(n/logn) and a CREW PRAM

The k-ary GCD Algorithm 2

algorithm with a running time of O(nloglogn/logn), both using O(n!*¢) processors.
These algorithms match the complexity bounds obtained by Chor and Goldreich.

o A CRCW PRAM algorithm with a running time of O(log® n) using exp[O(n/log?n)]
processors for any d > 1. This is the first deterministic, polylog time parallel GCD
algorithm using a subexponential number of processors. Adleman and Kompella’s algo-
rithm has a running time of O(log? n) using exp[O(+/n log)] processors, but requires
randomness.

Finally, we point out that although the k-ary GCD algorithm is more complicated than, say,
the Euclidean or the binary algorithms, the k-ary algorithm is much easier to parallelize.

The rest of this paper is organized as follows: In the next section, we present the k-ary
GCD algorithm in detail. In section 3, we discuss the sequential version of the algorithm,
proving a quadratic worst-case running time when k is a prime power and presenting the
implementation timing results. In section 4, we discuss the four parallel algorithms. We
conclude with some open problems.

2 A Description of the Algorithm.

In this section we describe the k-ary GCD algorithm. Although our point of view is sequential
in nature, the ideas presented here apply to parallel versions of the algorithm as well.

We begin by presenting the binary algorithm. From that we generalize to the k-ary
algorithm, which we describe in detail. We then analyze the number of iterations required
by the algorithm.

2.1 The Binary Algorithm

Since the k-ary GCD algorithm is a generalization of the binary algorithm, we begin with a
review of the latter. Let u and v be the inputs to the algorithm, and assume they are both
odd. Then the binary algorithm consists of the following steps:

while u # 0 and v # 0 do:
if u is even, u := u/2
else if v is even, v := v/2
else
ti=|u—v|/2;
if wu > v then u:=1t else v :=t;
if u =0 then ¢ := v else t := u;
Output(t);

Notice that division by 2 does not affect the gcd(u,v), as u and v are both initially odd.
Since each iteration reduces the product uv by a factor of 2 or more, the number of iterations
of the algorithm is at most log,(uv) + O(1).

The binary algorithm is very practical because a multiple precision division subroutine is
not required. In addition, the divisions by 2 can often be implemented with a shift operation.

The k-ary GCD Algorithm 3

For multiple precision inputs, this makes the binary algorithm significantly faster than the
Euclidean algorithm on many computers.

There is much literature devoted to the analysis of the binary algorithm, and it has many
variations. For more, see Brent [Bre76], Knuth [Knu81], or Bach and Shallit [BS90]. For an
extended version of the binary algorithm, see Norton [Nor85] or Knuth [Knu81].

2.2 The Main Ideas

We now wish to generalize the binary algorithm to use any positive integer k in place of 2.
Let u and v be the inputs to the algorithm, and assume that they are relatively prime to .
Then the main loop of the algorithm is as follows:

while u # 0 and v # 0 do:
if ged(u, k) > 1, v := u/ ged(u, k)
else if ged(v, k) > 1, v := v/ ged(v, k)
else
find nonzero integers a, b satisfying au + bv = 0 (mod k);
t:=|au + bv|/k;
if u> v then u:=telsev:=1t;

Notice that if we set k = 2, a = 1, and b = —1 we have the binary algorithm as a special
case.

We remark that the integer pairs a,b can be precomputed and stored in a table, as can
the gcd(z, k) for 0 < z < k. The tables are then indexed using v mod k and v mod k. We
will postpone the discussion of how these tables are constructed.

If we are to build a GCD algorithm around our main loop, we must address the following
two questions:

1. Can the main loop be modified to correctly compute the gcd(u,v)?
2. How large are the values of a and b, and can they be found efficiently?

In answer to the first question, notice that initially v and v are relatively prime to
k, so divisions by divisors of k will not affect gcd(u,v). However, replacing (u,v) by
(min{u, v}, |au + bv|/k) does not preserve the greatest common divisor of u and v in general.
But we prove the following:

Lemma 1 For u, v, a, and b integers, if g = ged(u,v) and h = gcd(v,au + bv), then g | h
and h/g | a.

Proof: The lemma follows by noticing h = ged(v, au). O

For the k-ary GCD algorithm to work, then, before the main loop we must remove and save
common divisors of u and v that may divide possible values of a and b, and after the main
loop, we must remove the factors introduced by the divisors of a and b. For this to be
practical, we must show that a and b are always small, which leads us to the second question
above and its answer, the following lemma:

The k-ary GCD Algorithm 4

Lemma 2 Let k > 1 be an integer. For every pair of integers (u,v), there exists a pair of
integers (a,b) with 0 < |a| + |b| < 2[V/k] such that au + bv = 0 (mod k).

Proof: = We use a simple pigeon-hole argument. Consider the mapping (a,b) — au +
bv mod k. There can only be k distinct images to this map. If we let a and b range over
1 €a,b< [\/75] + 1, we have more than k pairs in the domain. Thus there must be
two pairs (a1,b1) and (as,b,), with a1 # ag or b # by, that map to the same residue
class modulo k. This means the pair (a; — a2,b; — b;) maps to 0, and further it satisfies
0< l(ll — agl + 'bl - bzl S 2[\/7;] O

Kannan, Miller, and Rudolf [KMR87] prove results similar to Lemmas 1 and 2. Their
algorithm searches in parallel for an integer @ < n such that au — qv = O(u/n), where
g = |au/v].

Lemma 2 implies that for k a prime, uv is reduced by a factor of Q(+/%) each time through
the main loop, which implies only O(n/log k) iterations are needed.

The complete algorithm will consist of four phases:

1. The precomputation phase constructs a table of @ and b values needed in the main
loop and a table containing the ged(z, k) for 0 < z < k.

2. The first trial division phase removes and saves common divisors d of u and v satisfying

d<Vk+1lord]|k
3. The main loop, which is described above.

4. The second trial division phase removes divisors d < vk + 1 introduced by the main
loop and then restores the divisors saved in phase 2.

We give more details in the next subsection. At this point an example is in order.

An Example

Let u = 263, v = 151, and k = 7. We assume the precomputation phase has been performed,
and the first trial division phase finds no common divisors. We proceed to the main loop:

1. We find that u = v = 4(mod7), so we use @ = 1 and b = —1, and calculate |au +
bv|/7 = |263 — 151|/7 = 16 and set u = 16 since u was larger.

2. We have u = 16 = 2 and v = 151 = 4(mod7), so we use a = 2 and b = —1 to give
lau + bv|/T = |32 — 151|/7 = 17, which we assign to v since v was larger.

3. Wenow haveu =16 =2 and v = 17=3 = —-4(mod7). Soweuse a = 2 and b = 1
this time and calculate |au + bv|/7 = |32 + 17|/7 = 7 which we assign to v again since
it was larger.

4. Now v is divisible by k = 7, so we divide to get v = 1.

5. We have u = 16 = 2 and v = 1 = 1(mod7), so we use a = 1 and b = —2 to give
lau + bv|/T = |16 — 2|/7 = 2 which we assign to u.

The k-ary GCD Algorithm 5

6. For the last step we have v = 2 and v = 1 so ¢ = 1 and b = —2 again to give
|au + bv|/7 = 0, which we assign to u, and we are done since u is zero.

Since v has no divisors, the final trial division phase has no effect, and we conclude that the
GCD of 263 and 151 is 1, the value of v. As both the inputs are in fact prime, this is correct.

2.3 The Details

Let u and v be the inputs to the k-ary GCD algorithm. We now give a detailed description
of the algorithm by phase.

Phase I: Precomputation

The goal in the precomputation phase is to construct a table A of pairs (a,b) such that,
when given integers u and v, we can quickly look in the table to find @ and b such that
au + bv = 0(mod k) with |a| + |b| minimized. We will also compute a table P of prime
divisors used in the trial division phases, a table G of GCDs, and a table I of inverses
modulo k. All these tables can be implemented using one-dimensional arrays with a total of
O(k) storage locations or O(k log k) bits.

Tables I and G':

We store ged(z, k) in G[z], and if G[z] = 1 we store 1/z mod k in I[z], for 0 < z < k.
Both can be computed using the extended Euclidean algorithm in O(klogk) arithmetic
operations. Alternatively, GCD computations can be avoided as follows: Using the sieve
of Eratosthenes, factor all integers up to k£ and compute the entries for table G from this.
Table I can be computed using the identity z=! = £%*)~! (mod k).

Table A:
Given u and v relatively prime to k, let ¢ = u/v(mod k). Then u — zv = 0(mod k). If
we can find a value of a such that both |a| and |az| are small, we then use b = —az (mod k).

In the main loop we can easily compute £ = u/v using table I described above. So in
table A we store the optimal value of a for each z.

Table A can be constructed using exhaustive search in O(kv/k) arithmetic operations,
since by Lemma 2 the largest value of a we ever need is O(\/E) The table may also be
constructed as follows: (1) Loop over all values of a and b up to vk + 1. (2) For each pair
a,b find all solutions z to the equation b = —az (mod k). Note that not every pair a,b has
a solution z. (3) For every solution z with ged(z, k) = 1, store a in A[z]. This requires only
O(klog k) arithmetic operations using an extended GCD algorithm.

Table P:

The prime divisors needed in phases 2 and 4 are stored in table P. These are just the
primes below vk + 1 and the prime divisors of k. Using trial division and the Sieve of
Eratosthenes, all can be found in O(vklog k) arithmetic operations.

For example, for £ = 7 we have the following tables:

The k-ary GCD Algorithm 6

T 01 2 3 4 5 6
Table I z~ L 1 -3 -2 2 3 -1
Table A a: 1 1 2 2 1 1
Table G ged(z,k): 7 1 1 1 1 1 1
Table P 2 3 7

Suppose u = —3 and v = 2(mod 7). We begin by using table I to find v=! = —3. We then
compute z = u/v = 2. Using table A we find a = 1, and we compute b = —az = —2. Sure
enough, au+bv =1 x (=3) + (-2) x 2 =0(mod 7).

Note that if the k-ary GCD algorithm is to be used more than once, the precomputation

phase need not be repeated, as the tables constructed depend only on %k and not on the
inputs.

Phase II: Trial Division

The purpose of the first trial division phase is to remove all common divisors d of v and v
where d < Vk + 1 or d | k. Possible values of d are listed in table P. We save the common
divisors found in g.

g:=1
for every d in table P do:
while d | v and d | v do:

u:=u/d;v:i=v/d; g :=g X dj

Phase ITI: Main Loop

The main loop of the k-ary GCD algorithm was discussed earlier. Below we show how the
tables are used to compute GCDs and find the a, b pairs:

while v # 0 and v # 0 do:
v’ := u mod k; v' := v mod k;
if G[u'] > 1 then u := u/G[v]
else if G[v'] > 1 then v := v/G[v']
else
z:=u' X I[v'] mod k;
a = Alz]; b:= —a x mod k;
t:= |au + bv|/k;
if w > v then u:=1 else v :=t;

Phase IV: Trial Division

The final trial division phase removes the extraneous divisors introduced during the main
loop, and restores those removed in the first trial division phase.

The k-ary GCD Algorithm 7

if v =0 then {:=u else t := v;

for every d in table P do:
while d | ¢, ¢ := t/d;

g:=txg;

Output(g);

2.4 Counting Iterations

We conclude this section by proving upper and lower bounds on the number of iterations
of the main loop for all values of £ > 1. The difficulty here is to bound the number of
iterations which perform the transformation u := u/gcd(u,k). The idea is to show if we
repeat this transformation twice, the first time we must get a large GCD. We begin with
some definitions.

Let p be a prime, and n a positive integer. We say p° || n if p° | n and p**! [n.

Define Q(n) = min{p® : p° || n, and p is prime }. For example, if n is a prime power,
R@(n) =n. Also Q(40) =5 and Q(20) = 4.

Although not important for our application, note that computing the value of Q(n) is
polynomial-time equivalent to factoring n. We also have Q(n) < /n unless n is a prime
power, (1/2) 3 ,.<, Q(n) ~ z/(2logz), and #{n < z: Q(n) < 23} > z/2 for z sufficiently
large.

Interestingly, the number of iterations of the main loop of the k-ary GCD algorithm
depends on Q(k).

Theorem 3 Ifk > 1, k = o(log’(uv)), and ¢ = Q(k), then on positive integers u and v as
input, the k-ary GCD algorithm computes g = ged(u,v), and in the worst case the number
of iterations is O(log(uv)/ logq).

We prove this using the following lemmas:

Lemma 4 Let u and k be positive integers, p a prime, and e > 0 such that p° || k. Also let
g = ged(u, k) and h = ged(uw/g,k). If p| h then p° | g.

Proof: Suppose p | A and p’ || g with f < e. Since & | u/g, gh | w and p*' | u. But
p/*1 | k as well, implying pf*! | ¢ since g = ged(u, k), a contradiction. O

Lemma 5 Ifk > 1 and q = Q(k) then the number of iterations of the main loop of the the
k-ary GCD algorithm is O(log(uv)/log q).

Proof: Consider any two consecutive iterations of the main loop of the algorithm. It suffices
to show that the product uv decreases by a factor d with logd = Q(log ¢q).

Case 1:
Suppose one of these two iterations performs the transformation

(u,v) — (min{u, v}, |au + bv|/k).

The k-ary GCD Algorithm 8

By Lemma 2, this reduces the product uv by a factor of d > k/(2[v'k]) > Vk/2—1/2. This
gives logd = Q(log k), and k > gq.

We assumed that Vk/2 —1/2 > 1, or k > 9. However, one can show only O(log(uv))
iterations are needed for all values of k£ from 2 to 9; simply construct the tables of ¢ and b
values to see that the product uv decreases by a factor larger than 1 at each iteration.
Case 2:

Alternatively, suppose both iterations perform divisions by gcd(u, k) or ged(v, k). Since
one of u and v must be relatively prime to k at each iteration, without loss of generality we
assume gcd(v, k) = 1. Let g = gecd(u, k), the divisor used for the first of the two iterations,
and h = gcd(u/g, k), the second divisor used. Let p be a prime divisor of h; p must exist,
for g,h > 1. By Lemma 4, p° | g, where p° || k, and so d = gh > p**! > ¢ = Q(k). Thus
logd > log q, as desired. O

Lemma 6 Let k > 1 and ¢ = Q(k). There exist infinitely many inputs u, v such that the
number of iterations of the main loop of the k-ary GCD algorithm is Q(log(uv)/ logq).

Proof: Let f be a positive integer, let I be the product of all primes below vk + 1, and let
u=q'kl+ 1 and v = 1. If f is sufficiently large, we may assume k = o(log?(uv)). By the
prime number theorem (see Hardy and Wright [HW79]), log! ~ vk = o(log(uv)). Since f
is at least (1/log ¢)(log u —log!—log k — 1), this means f = Q(log(uv)/logq). We will show
that the algorithm requires at least f iterations.

As u and v are both relatively prime to k and all primes below vk, the trial division
phase does not alter u or v. The first iteration of the main loop will assign ¢ = 1 and b = —1,
changing u to |u—v|/k = ¢fl. The next f iterations will each remove a factor ¢ from u, plus
common divisors of £ and [if there are any. A full f iterations are needed because the GCD

computations cannot remove a divisor of ¢° larger than ¢ at each iteration as ¢ = Q(k) || %.
D

Proof of Theorem 3: Lemma 5 implies the algorithm halts, and so correctness follows
from Lemma 1. The number of iterations follows from Lemmas 5 and 6. That completes the
proof. O

We also give a brief heuristic average case analysis of the k-ary GCD algorithm. Let
B(k) denote the average number of bits removed from the product uv during each iteration
of the main loop of the algorithm. If we assume that the residues of u and v modulo % are
evenly distributed over the interval 0...%k — 1 at each iteration, noticing that only one of
u or v changes at each iteration, and if we further assume the values of @ and b are evenly
distributed, we reach the estimate

B(k) =+ (¢(k) log,(2v/E) + 3= 6(k/d) log, d) .

dlk

This implies that the average number of iterations is log,(uv)/B(k). However, when com-
pared with the implementation results in the next section, we find this consistently overes-
timates by roughly 25%, yet it preserves the relative ordering between different values of k.

The k-ary GCD Algorithm 9

We believe this is due to an uneven distribution in the values of a and b used from table
A; smaller values of a occur more frequently than larger ones in practice. Clearly a more
detailed average case analysis is called for.

3 A Sequential Version.

In this section we look at a sequential version of the k-ary GCD algorithm. We start by
proving that, on n-bit inputs u and v, the algorithm has an O(n? log k/log Q(k)) worst-case
running time according to the naive bit complexity model. If k is a prime power, this gives
a quadratic running time. We next derive a heuristic estimate for the optimal value of k
to use in the k-ary GCD algorithm as a function of the input size. Finally, we examine the
results of a multiple-precision implementation that compares the k-ary GCD algorithm with
several others, including the Euclidean and binary algorithms.

3.1 Complexity Results

Naive bit complexity assigns costs for basic arithmetic operations in terms of bit operations
as follows:

e Addition/subtraction: To calculate ¢ +y or z —y takes O(log z +log y) bit operations.

e Multiplication/division: To calculate zy, z/y, or mod y takes O((logz)(logy)) bit
operations.

e Comparison: To test if = is less than, equal to, or greater than y takes O(log z +logy)
bit operations.

Other operations such as flow of control, array indexing, and so on are assigned O(1) cost.
For more on naive bit comiplexity, see Bach and Shallit [BS90].

Theorem 7 Let u and v be the inputs to the k-ary GCD algorithm, let ¢ = Q(k), and let
n = log,(uv). If k = O((n/logn)?), then the algorithm takes at most O(n®logk/logq) bit
operations.

Proof: We calculate the complexity of the algorithm by phase:
1. Precomputation. This phase can be done using O(klog” k) bit operations.
2. Trial Division. The two trial division phases have roughly the same cost. By the
prime number theorem, there are at most O(v/k/logk) divisions that give a non-
zero remainder, one for each value of d, for a cost of O(nvk). The total cost for

d1v1s10ns with a remainder of zero is O(n?), for if d ...d, are the associated divisors,
_,logd; < n. So the cost for both trial division phases is O(n? 4+ n\/k).

3. Main Loop. Each iteration costs at most O(nlogk), and by Theorem 3, there are
O(n/ log q) iterations, giving a cost of O(n?log k/ log q).
Thus the total cost is O(n?log k/ log q + klog? k + nvk) = O(n?logk/log q). O

So for k a prime power, since we have Q(k) = k, the algorithm has a quadratic running time.

The k-ary GCD Algorithm 10
3.2 Optimal £

Next, we address the question of what to choose for k.

Under the naive bit complexity model, we proved in Theorem 7 that if k is a prime power
and not too large, the k-ary GCD algorithm has a quadratic running time independent of the
precise value of k. However in practice the value of k is indeed important; we must balance
the cost of precomputation and trial division when k is large with the gain in the number of
iterations of the main loop. So we will discard the naive bit complexity model for now and
view the complexity of the k-ary GCD algorithm from how it might behave in practice.

On an actual computer, all arithmetic operations on single-precision integers (ones that
fit in one machine word) take O(1) time, more or less independent of their size. This implies
the cost of multiplying or dividing a multiple-precision integer z by a single-precision integer
y takes O(log z) time. Let n = log(uv), where u and v are the inputs to the algorithm as
before. Then if k is single-precision, the “actual” complexity of the k-ary algorithm is:

1. O(klog k).for precomputation,

2. O(nVk/log k + n?/log k) for trial division, assuming a list of primes is precomputed,
and

3. O(n?*/log k) for the main loop (on the average).

This gives a total running time of
T(n, k) = O(klogk + (Vk/log k)n + n?/ log k).

To minimize T', we differentiate with respect to k and then set T’ to zero giving the root
ko = O((n/logn)?). This is the only positive zero of T, and is easily seen to be a relative
minimum.
We call the k-ary GCD algorithm that uses k = |c¢-(n/logn)?]| for some positive constant

c the adaptive k-ary GCD algorithm. Obviously, the best choice for ¢ will depend on the
relative costs of the various arithmetic operations for both single- and multiple-precision
integers.

~ Finally, we remark that if ¥ divides the multiple-precision base used, then calculating
v mod k and v mod k become constant time operations, a desirable improvement.

3.3 Implementation Results

We will now discuss the results from a multiple-precision implementation of several GCD
algorithms. In the following discussion, we will present four tables of timing results.

All four tables have the same format: The leftmost column gives the names of the
algorithms. Across the top are the input sizes, which range from 10 to 1000 decimal digits
in length. Each algorithm was run on 5 pseudo-random pairs of integers of each size. In the
box indexed by the algorithm name and input size are two numbers. The top number gives
the average time spent by that algorithm on inputs of that size in CPU seconds. The times

The k-ary GCD Algorithm 11

for the k-ary algorithms include precomputation on every input. The bottom number is the
average number of iterations of the main loop for that algorithm.

All the algorithms used the same library of multiple-precision arithmetic routines, written
in Pascal, and run on a DECstation 3100 using the Ultrix operating system. The base used
for multiple-precision integers was 32768.

Below are the results of timing trials for several previous GCD algorithms.

Decimal Digits
Algorithm 10 | 25 | 50 | 100] 250 [500 | 1000
Euclidean 0.005 | 0.019 | 0.049 | 0.178 | 1.070 | 4.972 | 25.948
Algorithm 18 49 90 195 | 480 | 967 | 1929
Least-Remainder || 0.004 | 0.015 | 0.039 | 0.135 | 0.791 | 3.591 | 18.488
Euclidean Alg. 13 34 65 136 | 338 | 673 1340
Purdy’s 0.005 | 0.016 | 0.044 | 0.130 | 0.652 | 2.389 | 9.156
Algorithm 88 225 | 477 | 938 | 2385 | 4824 | 9650
Binary 0.003 | 0.009 | 0.024 | 0.066 | 0.313 | 1.121 | 4.264
Algorithm 44 116 | 239 | 469 | 1167 | 2342 | 4709
Left-Shift 0.004 | 0.011 | 0.025 | 0.069 | 0.280 | 0.916 | 3.316
Binary Algorithm || 22 55 105 | 223 | 551 | 1087 | 2196

If u > v, the left shift binary algorithm used here computes an integer e at each iteration
such that 2°v < u < 2°t'y and then assigns to u the smaller of u — 2°v and 2°t'v — u.

We now illustrate how the best value for k increases with the input size. In the table
below we have results for the k-ary algorithm using the 10th, 25th, 50th, 100th, 250th, and
500th primes.

Decimal Digits
Algorithm 10 | 25 | 50 | 100] 250 | 500 | 1000

29-ary 0.007 | 0.012 | 0.027 | 0.070 | 0.335 | 1.213 | 4.625
15 38 7 151 378 | 754 | 1515
97-ary 0.014 | 0.018 | 0.030 | 0.066 | 0.285 | 1.008 | 3.827
12 28 59 121 304 | 609 | 1213
229-ary 0.034 | 0.039 | 0.050 | 0.082 | 0.277 | 0.916 | 3.400
10 27 %) 107 | 268 | 530 | 1065
d41-ary 0.079 | 0.083 | 0.092 | 0.122 | 0.296 | 0.888 | 3.139
10 24 438 95 237 | 482 | 967
1583-ary | 0.244 | 0.247 | 0.256 | 0.285 | 0.447 | 0.976 | 2.978
9 21 43 87 217 | 430 | 854
3571-ary || 0.557 | 0.560 | 0.568 | 0.598 | 0.752 | 1.241 | 3.107
8 19 40 81 202 | 398 | 790

From this data, we decide that a reasonable value for k is roughly (1/2) - (n/logn)? where
n is the length of the inputs in base 32768.

Next we investigate whether the running time of the k-ary algorithm is indeed sensative
to the factorization pattern of k£ as Theorem 3 suggests. Below we have results for four values

The k-ary GCD Algorithm 12

of k near 620, each with a different factorization pattern. We also list Q(k) under the name
of each algorithm in the table.

Decimal Digits
Algorithm 10] 25 [50 | 100] 250 | 500 { 1000
619-ary 0.091 | 0.095 | 0.105 | 0.134 | 0.309 | 0.878 | 3.082
Q(619) = 619 10 23 47 92 236 473 945
621-ary 0.071 { 0.075 | 0.085 | 0.115 | 0.298 | 0.894 | 3.189
@(621) = 23 11 28 54 112 279 565 | 1122
624-ary 0.058 | 0.062 | 0.073 | 0.106 | 0.301 | 0.947 | 3.440
Q(624) =3 14 34 71 136 346 687 | 1375
625-ary 0.080 | 0.084 | 0.094 | 0.123 | 0.301 | 0.880 | 3.134
Q(625) = 625 10 25 51 103 264 518 | 1047

For larger inputs, the algorithms’ running times are ordered according to the values of Q(k),
with the exception of 619 beating 625. In fact, this is what we expect; the 625-ary algorithm
often performs divisions by 5.

Finally, we have two adaptive versions of the k-ary algorithm to match against the binary
and left shift binary algorithms.

In light of the sensativity of the k-ary algorithm to the factorization of k, we had our
adaptive algorithm choose k with few small prime divisors where possible. Though this does
not insure (k) is large, it does help.

We also use a base-adaptive algorithm, which is an adaptive algorithm that chooses a
value of k of near-optimal size which also divides the multiple precision base. In this case
this means choosing k a power of 2. The results are below.

Decimal Digits

Algorithm 10 | 25 | 50 | 100 | 250 | 500 | 1000
Binary 0.003 | 0.009 | 0.024 | 0.066 | 0.313 | 1.121 | 4.264
Algorithm 44 116 | 239 | 469 | 1167 | 2342 | 4709
Left-Shift 0.004 | 0.011 | 0.025 | 0.069 | 0.280 | 0.916 | 3.316

Binary Algorithm || 22 595 105 | 223 | 551 | 1087 | 2196

Adaptive k-ary 0.004 | 0.011 | 0.026 | 0.065 | 0.273 | 0.879 | 2.985
25 48 85 132 | 261 463 | 842

k= 5 11 27 61 271 841 | 2641
Base-Adaptive 0.004 | 0.009 | 0.021 | 0.051 | 0.202 | 0.617 | 2.086
k-ary 31 60 104 162 | 334 | 601 | 1045

k= 4 8 16 64 256 | 512 | 2048

Note that the k-ary algorithms in general are faster than previous algorithms, and adapting
k to the multiple precision base is very beneficial.

We also implemented these algorithms on a VAXstation 3200 II running Unix. This
machine has a slower processor with a much larger instruction set, and on this machine the k-
ary algorithm does slightly better compared to previous algorithms than on the DECstation.

The k-ary GCD Algorithm 13

One unusual point is that on the VAX, the binary algorithm consistently outperformed the
left shift binary algorithm.

We would like to mention one important application for GCD algorithms: factoring
integers. Our k-ary GCD algorithm is especially well-suited for factoring algorithms that
use many GCD calculations, for in this case the precomputation step need only be done
once, and in many cases the first trial division phase can be skipped altogether. Examples of
such factoring algorithms include the various cyclotomic methods [BS89, Pol74, Wil82] and
Pollard’s p-method [Pol75]. See also the paper by Montgomery [Mon87].

That concludes our discussion of sequential implementations for the k-ary GCD algo-
rithm.

4 Some Parallel Algorithms.

As we mentioned in the introduction, in this section we give four different PRAM algorithms
based on the k-ary method discussed in section 2. We begin by reviewing the parallel
complexity of the basic arithmetic operations. Let n denote the length of the inputs in bits,
and let M(n) = nlognloglogn.

e On a CRCW PRAM, addition and subtraction take O(1) time using O(n loglogn)
processors. See Chandra, Fortune, and Lipton [CFL85].

e On an EREW PRAM, addition and subtraction take O(logn) time and O(n) proces-

S0rS.

e On an EREW PRAM, multiplication takes O(logn) time and O(M(n)) processors.
See Schénhage and Strassen [SS71].

e On an EREW PRAM, division takes either:
O(log nloglogn) time and O(M(n)) processors (see Reif and Tate [RT89]), or
O(log n) time and n°®) processors (see Beame, Cooke, and Hoover [BCHS6]).

The division algorithm of Beame, Cooke, and Hoover, when realized as a bounded fan-in
boolean circuit, is not known to be logspace uniform. For a general reference, see Karp and
Ramachandran [KR88].

We now prove two lemmas concerning the parallel complexity of the precomputation and
trial division phases, and then give our PRAM algorithm results.

Lemma 8 The preprocessing phase takes O(log k) time on an EREW PRAM and
O(loglog klogloglog k) time on a CRCW PRAM, both using O(k*M(logk)) processors.

Proof: Begin by finding all the primes up to k using a parallel sieve. Next completely
factor all the integers up to k in parallel. From this information tables G and P are easily
computed. Table I is computed by multiplying together all pairs of integers up to k to see
if the result is 1 mod k. Finally, table A is computed using exhaustive search. O

The k-ary GCD Algorithm 14
Lemma 9 On an EREW PRAM, the trial division phases of the k-ary GCD algorithm take

either
o O(Vklog®n) time and O(M(n)) processors, or

o O(logn) time and (nk)°™") processors.

Proof: For the first one, we sequentially test each of the O(v/k) divisors d by performing
a binary search to compute the largest e such that d® | v or d° | v. Each binary search will
require O(log n) iterations, constructing d* will take O(log?n) time, and the division takes
O(log nloglogn) time, all using at most O(M(n)) processors. That proves the first half of
the lemma.

For the second one, we simply test all powers of all possible prime divisors in parallel
using Beame, Cooke, and Hoover’s division algorithm. We then in parallel find the largest
power of each divisor that divided both v and v. These powers of divisors are then multiplied
together using the iterated product A'C' reduction to division, and this product is divided
out of both u and v. O

Theorem 10 Let € > 0. If k = 2" with r = Q(logn) and r < (1/2 — €)logn, then the
k-ary GCD algorithm has a running time of O(n) using O(M(n)) processors on an EREW
PRAM.

Proof: By Theorem 3 there are O(n/logn) iterations of the main loop. Division by k takes
O(1) time and O(n) processors, since integers are represented in binary. Thus each iteration
of the main loop requires only O(logn) time and O(M(n)) processors. The main loop then
takes O(n) time and O(M(n)) processors, and so the result follows from Lemma 8 and the
first part of Lemma 9. O

The author is unaware of any other EREW PRAM algorithm to compute GCDs in linear
time using only O(M(n)) processors.

Theorem 11 Let € > 0. If k = 2" with r = |elogn]| + O(1) such that r is even, then the
k-ary GCD algorithm has running times of O(n/logn) and O(nloglogn/logn) on CRCW
and CREW PRAMs respectively, using O(n'*¢) processors.

Proof: By Theorem 3 there are O(n/logn) iterations of the main loop. We will show
how each iteration takes O(1) time on a CRCW PRAM. We use many ideas from Chor and
Goldreich [CG90].

As in Theorem 10, division by & takes O(1) time and O(n) processors since integers are
represented in binary. We also precompute a table of O(k) entries to contain the products
of all integers < O(V/k), allowing the product of integers with O(log k) bits to be computed
in O(1) time using a table lookup. This additional precomputation time is O(log log k)
using O(kM (log k)) processors, easily within our claimed bound. We now can compute each
iteration in O(1) time and O(M(n)) processors aside from computing the products au and
bv. For this we use the following idea in Chor and Goldreich.

The k-ary GCD Algorithm 15

To compute au, do the following. First write u in base vk = 27/? as u = 3!_o ui(VE)'
where [is roughly 2logu/log k. Note that since r is even, the u; can be computed in O(1)
time. Second, compute z and y such that u = z + y where z is the sum of the odd terms in
the above expansion for u, and y is the sum of the even terms. For example, if vk = 10 (for
human readability) and u = 123456, then z = 103050 and y = 020406. The products az and
ay can then be computed in O(1) time with table lookups using O((n/ log V’k)- k) processors,
since there are no carries. We then compute au = az + ay. Following our example, if a = 5
then az = 515250 and ay = 102030, giving eu = 617280. By our choice of %, this uses
O(n'*€) processors. We compute bv the same way.

Since k = O(n¢), the theorem now follows from Lemma 8 and the first part of Lemma 9
for the CRCW case.

The CREW PRAM algorithm is much the same, however a multiplicative factor of
O(loglogk) = O(loglogn) time is needed for table lookups, and the additions must be
pipelined. O

The results of this last theorem match those by Chor and Goldreich [CG90]. Note that they
use a restricced CRCW PRAM; it allows concurrent writes only if the same value is being
written. Theorem 11 can be easily modified to use the same restricted CRCW PRAM model.

Corollary 12 Letd > 1. Ifk = 2" forr = |n/log® n|, then the k-ary GCD algorithm takes
O(log®n) time and exp[O(n/log® n)] processors on a CRCW PRAM.

Proof: Follows from the proof Theorem 11, only use the second part of Lemma 9. O

The probabilistic CRCW PRAM algorithm of Adleman and Kompella [AK88] runs in time
O(log® n) using exp[O(y/nlogn)] processors. Our algorithm runs faster (choose d < 2) but
with far more processors; we can achieve the same processor bound at the cost of giving up
the polylog running time. Also note that, unlike Adleman and Kompella’s algorithm, ours
uses no randomness.

5 Conclusion.

We have show that the k-ary GCD algorithm gives both practical sequential algorithms and
several interesting parallel algorithms. We close with some unresolved questions:

e We proved that the number of iterations of the main loop is ©(n/log Q(k)), and we
gave a heuristic estimate for the average case. Is it possible to show the average case

is O(n/log k)?

e Computing inverses looks difficult and inefficient using the k-ary GCD algorithm; the
straightforward approach gives a cubic time sequential extended k-ary GCD algorithm.
Is it possible to do better? Is there an efficient parallel version?

e In the worst case, the second trial division phase might involve the complete factoriza-
tion of an integer with Q(log(uv)) bits. Is this indeed true? Is this the average case,
or can one show this integer is small on the average? If this number is large on the

The k-ary GCD Algorithm 16

average, it may be that periodic trial division steps within the main loop to remove
the extraneous divisors accumulated so far will speed the algorithm.

e Does anything interesting result if k£ is varied within the algorithm? If & is chosen a
power of two, but allowed to vary, and if a = 1 is always used, the resulting algorithm
resembles Norton’s shift-remainder GCD algorithm [Nor87].

e The algorithm calculates the a,b pairs using precomputation. Is it possible to find
optimal pairs efficiently without any precomputation? If so, it may be possible to
design better parallel algorithms.

e D. H. Lehmer gave a multiple precision variant of the Euclidean algorithm [Leh38],
and Knuth mentions a similar variant for the binary algorithm due to R. W. Gosper
(see Knuth [Knu81]). Is such a variant possible for the k-ary algorithm?

Acknowledgements

[want to thank Eric Bach not only for his advice, encouragement, and support as my Ph. D.
advisor, but also for his proof of Lemma 2. My thanks also go to Joao Meidanis for his
assistance on a point regarding the preprocessing phase of the algorithm, and to Kevin
McCurley and Carl Pomerance for their comments on an earlier draft of this paper. Finally
I want to thank Jeff Shallit, who introduced me to the world of GCD algorithms through
the course he taught with energy and enthusiasm on Number Theoretic Algorithms while
visiting Wisconsin in the Fall of 1989, and whose suggestion to implement some of those
algorithms led to this paper.

References

[AK88] L. M. Adleman and K. Kompella. Using smoothness to achieve parallelism. In 20th
Annual ACM Symposium on Theory of Computing, pages 528-538, 1988.

[BCH86] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related
problems. SIAM J. Comput., 15:994-1003, 1986.

[BK83] R. P. Brent and H. T. Kung. Systolic VLSI arrays for linear-time GCD computation.
In F. Anceau and E. J. Aas, editors, Proceedings of VLSI ‘83, pages 145-154. Elsevier,
1983.

[Bre76] R. P. Brent. Analysis of the binary Fuclidean algorithm. In J. F. Traub, editor, Algo-
rithms and Complezity, pages 321-355. Academic Press, 1976.

[BS89] E. Bach and J. Shallit. Factoring with cyclotomic polynomials. Math. Comp.,
52(185):201-219, 1989.

[BS90] E. Bach and J. Shallit. Algorithmic number theory. In preparation, 1990.

[CFL85] A. K. Chandra, S. Fortune, and R Lipton. Unbounded fan-in circuits and associative
functions. Journal of Computer and System Sciences, 30, 1985.

The k-ary GCD Algorithm 17

[CG90]
[Den89)]
[HW79]
[KMR87]
[Knu81]

[KR88]

[Leh38]
[Mon87]

[Nor85]

[Nor87]

[Pol74]

[Pol75]
[Pur83]

[RT89]
[Sch71]
[SS71]

[Wils2]

B. Chor and O. Goldreich. An improved parallel algorithm for integer GCD. Algorith-
mica, 5:1-10, 1990.

X. Deng. On the parallel complexity of integer programming. In 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 110-116, 1989.

G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 5th edition, 1979.

R. Kannan, G. Miller, and L. Rudolph. Sublinear parallel algorithm for computing the
greatest common divisor of two integers. SIAM J. Comput., 16(1):7-16, 1987.

D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley, Reading, Mass., 2nd edition, 1981.

R. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory
machines. Technical Report UCB/CSD 88/408, Computer Science Division, University
of California, 1988. To appear in Handbook of Theoretical Computer Science, North-
Holland.

D. H. Lehmer. Euclid’s algorithm for large numbers. Amer. Math. Monthly, 45:227-233,
1938.

P. L. Montgomery. Speeding the Pollard methods of factorization. Math. Comp.,
48(177):243-264, 1987.

G. Norton. Extending the binary GCD algorithm. In J. Calmet, editor, Proceedings of
the 3rd International Conference on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pages 363-372. Springer-Verlag, 1985. LNCS 229.

G. Norton. A shift-remainder GCD algorithm. In L. Huguet and A. Poli, editors,
Proceedings of the 5th International Conference on Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, pages 350-356. Springer-Verlag, 1987. LNCS 356.

J. M. Pollard. Theorems on factorization and primality testing. Proc. Camb. Phil. Soc.,
76:521-528, 1974.

J. M. Pollard. A Monte Carlo algorithm for factorization. BIT, 15:331-334, 1975.

G. B. Purdy. A carry-free algorithm for finding the greatest common divisor of two
integers. Comp. & Maths. with Appls., 9(2):311-316, 1983.

J. H. Reif and S. R. Tate. Optimal size integer division circuits. In 21st Annual ACM
Symposium on Theory of Computing, pages 264-273, 1989.

A. Schénhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica,
1:139-144, 1971.

A. Schénhage and V. Strassen. Schnelle Multiplikation grofier Zahlen. Computing, 7:281~
292, 1971.

H. C. Williams. A p + 1 method of factoring. Math. Comp., 39(159):225-234, 1982.

