CENTER FOR
PARALLEL OPTIMIZATION

OPTIMAL RESOURCE ALLOCATION AND
BINDING OF NON-PIPELINED DESIGNS

by

Renato De Leone and Rajiv Jain

Computer Sciences Technical Report #972

October 1990

Optimal Resource Allocation and Binding of
Non-Pipelined Designs

Renato De Leone
Department of Computer Sciences
1210 W. Dayton Street
University of Wisconsin
Madison, WI 53706
(608)262-5083
deleone@cs.wisc.edu

Rajiv Jain
Department of Electrical and Computer Engineering
1415 Johnson Drive
University of Wisconsin
Madison, WI 53706
(608)262-3610

rajiv@ece.wisc.edu

Optimal Resource Allocation and Binding of
Non-Pipelined Designs

Abstract

In this paper we give an integer linear program (ILP) formulation of the resource
allocation and binding problem of high-level synthesis. Given a behavioral specifica-
tion and a time-step schedule for operations, the formulation minimizes the number
of wiring nets and multiplexers used in the design. This is the first time that an ILP
model for minimizing multiplexers and wiring nets has been mathematically formu-
lated and optimally solved. The model handles chaining, multi-cycle operations and
tradeoffs chip area between wiring and resources.

1 Introduction

Automatic generation of RTL (register-transfer level) designs ! from a behavioral
description is known as high-level synthesis. Data path synthesis produces an RTL
data path which meets the specified constraints and achieves a design goal. To syn-
thesize a desired RTL design several conflicting and interacting sub-problems have to
be solved. These sub-problems are scheduling, module allocation, module selection,
module binding, and multiplexer and register allocation. In order to synthesize an
optimal design (optimality is defined in terms of area, delay or other such measure) all
these sub-problems have to be solved concurrently. Some of these sub-problems, such
as scheduling, are known to be NP-complete, and the combined problem of solving
all sub-problems concurrently is thought to be at least NP-hard. Furthermore, the
design constraints imposed by the designer, such as area, power, and speed, makes
the synthesis problem even more difficult.

In this paper we outline a new and novel procedure for performing module binding and
register and multiplexer allocation and binding with an objective of minimizing the
number of nets required for interconnecting the design. We assume that scheduling
and module allocation have been performed a priori. The inputs to the system we
propose are the data flow graph, the design library, the scheduling information (i.e.
the mapping of operations to time steps in which they are executed) and the number
of modules of each operation type (such as number of adders and multipliers) to be
used in the design %. Any standard scheduling program such as MAHA [16], HAL
[17], SLICER [14], ISYN [13] and ALPS [10] produces this required scheduling and

module allocation information.

1.1 Problem Statement and Previous Work

Module binding is the task of assigning modules to data flow operation nodes. In
executing two addition operations in the same time step using two adders, the decision
as to which addition operation is performed in which adder module is module binding.
The task of optimal module binding is dependent upon scheduling, module allocation,
interconnect costs and delays.

1An RTL design consists of a data path (modules and registers interconnected via multiplexers,
busses and wires) and a controller (PLA, microprogramined or hardwired) which provides the control
signals for sequencing of events in the data path.

2Information on resource count need not be specified, as we will see later in the paper.

The task of register and multiplezer allocation and binding is to assign data values to
(from) registers and route them through multiplexers or busses from (to) the modules.
Several programs which perform module binding and register and multiplexer allo-
cation with different allocation philosophies exist [1] [9] [11] [15] [19]. Most of theses
systems try to minimize the number of registers and multiplexers, with the exception
of [15] which tries to minimize wiring. Furthermore, these systems employ heuristics
to solve the proposed problem. There are several drawbacks of this approach. The
quality of the designs produced by these systems cannot be determined as there is no
way of comparing against a known absolute minimum. The state-of-the-art synthesis
systems are compared by example (such as: For a fized behavioral description, system
X produces a design with one multiplezer more than system Y).

While working on the WISRD (WIsconsin Synthesis Research and Development)
project we were faced the issue of selecting a synthesis package which performed
module, register and multiplexer allocation and binding. Naturally we wanted to
have the best possible program which could perform this function. Unfortunately,
on examining several existing packages we realized that selecting the best technique
was not easy since comparisons between different programs were not possible owing
to lack of a standard measure. So we thought of developing the package proposed
here which is guaranteed to provide optimal results against which other systems
can be evaluated. Another motivation for solving the problem as proposed here is
the following presumption. For the purposes of design space exploration, designers
like tools which give good results quickly. However, once the search space has been
narrowed the designer is willing to accept a (slightly) larger design time with the
guarantee of getting optimal results. Thus, existing synthesis heuristics can be used
to get a first-cut solution and after the design measures (such as area and performance)
have been determined the proposed method can be used for the final optimal RTL
design.

In this paper we outline a method for solving the module binding and register and
multiplexer allocation and binding tasks concurrently. First, we formulate the prob-
lem as a zero-one integer linear programming (ILP) problem and then use existing ILP
solution techniques to solve the formulation. The ILP, however, is an NP-complete
problem, implying that (in the worst case) the number of computations to be per-
formed to get an optimal solution doubles with the addition of each decision variable.
In 1983 Crowder et. al [4] demonstrated that optimal solutions to certain problems
with 2750 binary variables can be obtained in less than an hour of IBM 370/168 CPU
time. Their solution technique was a mixture of branch and bound and the cutting
plane algorithm. Their results show that reasonable sized module binding and reg-
ister and multiplexer allocation and binding problems can be quickly and optimally

solved. ILP techniques have been successfully used by Lee et. al [10] to model and
solve the scheduling and module allocation problem with better computer runtime
than several other state-of-the-art scheduling and module allocation systems.

The synthesis problem has been formulated as an ILP problem by Hafer and Parker in
[5]. Hafer’s formulation, however, does not minimize number of wiring nets or multi-
plexers used in the design with the result that the final design may actually require a
large multiplexer and wiring area. Furthermore, this procedure entails enormous run-
time and is not practical. By decomposing synthesis into two sub-problems, namely,
(i) scheduling and module allocation, and (ii) module binding and register and multi-
plexer allocation and binding, we can approach each part independently and quickly
solve them optimally. Solving each individual problem independently, however, does
not necessarily lead to a globally optimal solution. The assumption of breaking syn-
thesis into these two sub-problems has been used by almost all synthesis systems
found in the literature, for example, [6], [8], [12], [14], [17], [18]. The notable excep-
tions are [5] in which all sub-components are solved concurrently, and [3] in which the
synthesis problem is solved by partitioning it into two sub-problems different from
the above breakdown, namely the scheduling, module allocation and module binding
problem and, the register and multiplexer allocation. We believe the formulation
presented in this paper to be the first attempt at solving the resource allocation and
binding problem with the objective of minimizing wiring and multiplexer area.

There are several advantages to using the ILP approach. If the formulation is run
to completion the results produced are optimal. During the process of finding the
optimal solution the computer can print out the current best solution and inform the
designer approximately how far is the solution from the optimal. Thus, if the designer
should exhaust allocated run time for solving the problem and terminate the solution
process before it runs to completion, the current best solution and the information as
to how far it from the optimal is known. This information can be used by the designer
to budget the design time versus the quality of designs produced. Furthermore, to
reduce the solution time the designer can force the solution package to find a solution
which is guaranteed to be within an € percentage of the optimal solution. Thus, if
the user is using the synthesis tools for budgeting, a quick and guaranteed estimate
of the final design can be easily obtained.

Another advantage of the proposed technique is the ease of performing area tradeoffs
between modules, registers and interconnect. In most of the other synthesis programs
optimizing criteria are hardwired into the module binding and register and multiplexer
allocation and binding programs. For example, [9] and [17] minimize register and
multiplexer costs alone. Using the ILP formulation it is easy to modify the objective

function to the desired optimizing parameter without altering the underlying problem.

The paper is organized as follows. The basic model is developed in Section 2. In
Section 3 we give an example with constraints. Some experimental results are also
presented in this section. The area tradeoff model is presented in Section 4, and the
paper concludes with comments on research directions.

2 Problem Formulation

In this section we outline the basic ILP model for resource allocation and binding.
Our long-term objective is to employ heuristics such as relaxed Lagrangian method
to get near-optimal solutions quickly. The model allows multi-cycle operations and
chaining. Only the non-pipelined design-style model is presented in this paper. Future
work includes extending the model to allows conditional branching and pipelined data
paths.

The model assumes that scheduling has been completed a priori and the time-step
information for every operation, the number of module of each type and the number
of registers is predetermined. Tradeoffs between operator and register area and in-
terconnect area will be done as part of future work. Before we develop the model for
non-pipelined design we define some terms. We assume,

. ny modules of type T : My,..., M,,,
ny modules of type Ty : My 41,..., My, 4n,,

‘e
ny modules of type Tk : My fnyttnp_y 415+« s Mg fngtobngs

with n =ny +n2 + ...+ ni and ng = 0;

e m registers are required for the data path. Let the registers be labeled as

Ry, Re,y..., Ry

o T is the number of time steps the input specification is partitioned into, and
t=1,...,T;

l; operations OPl(t), OPz(t), ey OP,(t) must be executed at time t;

t
ry values Vl(t), z(t), ..+, V4 are available in registers in time step t.

4

Register Allocation and Binding: Let y;;: = 1 if value Vi is stored in register
j in time step t and zero otherwise. The register allocation and binding is modeled
by the set of following constraints. Let m be the total number of registers required
for an RTL design. Every value produced in a time step and used in subsequent time
steps must be stored in exactly one register. Thus, for value ¢ = 1,...,r; and time
stept=1,...T,

m
Yovige = 1 (2.1)

j=1

A register cannot hold more than one value across different time steps. For every
register y = 1,...,m and every timestep t =1,...T

Tt
Zyi,j,t <1 (2.2)

1:=1

Module Allocation and Binding: Let z;;; = 1 if operation OP® is executed
on module j in time step ¢ and zero otherwise. The module allocation and binding
problem can be formulated as follows. Every operation must be executed on a module
which can perform the operation. Suppose operation OP,-(t) is of type s, then

s

Yoo oz =1 (2.3)

j=ns-1+1

Each module cannot execute more than one operation in any time step. Thus, for
every module j =1,...,n and in every timestep t = 1,...,T,

Ie
Z:l);,j,t _<_ 1 (2.4)

i=1

Before we develop the interconnect model we will explain the overall objective of the
formulation.

Objective function: The objective of the problem is to perform register and mod-
ule allocation and binding such that the overall cost (area) of the RTL design is
minimized. That is

k

minimize (ma, + Y _(ni X a;) + muz area + wiring area)
=1

where, a, is the register area and a; is the area of the module implementing operation
7.

The number of of modules of each type and registers to be used in the implementation
are determined by the max-cut of the input description and scheduling of the input
description respectively. Thus, ma, + 35, (n; X a;) is fixed a priori and the only
quantity we can minimize is wiring and multiplexer area. Given that the number of
modules is fixed, we assume that wiring area is directly proportional to the number
of nets in the design [7]. The number of nets in an RTL design consists of the
connections between modules and registers. Large number of connections between
resources (register and modules) require large number of multiplexers at the input of
each resource resulting in large quantities of multiplexers and large number of wiring
nets. By minimizing the number of nets, we can reduce the number of multiplexers
required in the design. Hence for the purposes of area minimization we concentrate on
the reduction of the number of nets required in the design. Thus, we model register
and module allocation and binding with the aim of “minimizing nets”. A similar
objective has been adopted in [15].

Let 2;;: = 1 if the result of operation OP,-(t) is sent to module M; (if § < m) or
stored in register R;_,, (if j > n) at time t. The output of a module must to go
to a register or another module. Thus, for every operation ¢ = 1,...,; (I; is the
number of operations which are to be performed in time step t) and in every time
stept=1,...,T,

n+m

Z Z,"J"t = 1 (25)
=1

I

If at time ¢ operation OP,-(t) produces a value V;, which is to be used in some successive
time step t’ then the value must be stored in a register. The operation which needs
this value V;; in a subsequent time step must retrieve the value from the register the
value is stored in. This is modeled as,

Zimtit = Yiz, gt V] = 13 e, M (26)

If at time ¢ operation O.Pi(t) is executed and a value V;, is produced and is needed at
some successive time ¢’ > ¢ + 1, then the value V;, must be stored in a register over
several time steps.
I
Z{7n+j,t+zzq,n+j,tgl, Vj=1,...,m, Vt:t+1,...,t, (27)

g=1

Equation 2.7 ensures that register j is not used to store any other value in time steps
t through #'. Multi-cycle operations can be similarly handled.

Define w; ;; = 1 if there exists a transfer of value from resource 7 to resource j in
time step ¢. If OP,-(t) (executed at time t) requires a value V;-St) then there must be a

net from the register storing the value V}Et) and the resource executing Oﬂ(t). This is
modeled as,

Wigt 2 Tigt + Yirjont— 1, Vg=n+1,...,nandj=1,...,n+m (2.8)

Constraints for every value required by an operation OP,-(t) can be similarly written.

If OP,-U) (executed at time t) produces a value V,-Et) which is to be stored in a register or
consumed by another resource, then there must be a net from the resource executing
operation 0P;m and the resource storing (or consuming) V,-St). This is modeled as,

Wojt > Tige+2zije—1, Yg=1,...,nandj=1,...,n4+m (2.9)

Let 0;; = SL | w; ;1 (i, is a dummy variable used for explanation only). o;; gives us
the number of times a value is passed from resource 7 to resource j over all time-steps.
A large o;; implies that in several time-steps resource i passes a value to resource
i, and a small o;; means that the net from resource ¢ to j is sparingly used. To
minimize the net count, our objective is to increase few o;; to large values and to
make as many o;;’s as possible go to zero. Let 'w;'j = 1 if 0;; > 1. Our objective

function then is
m+n m-+tn

minimize »,) c;,jw;,j (2.10)

=1 j=1
where c; ; is a the cost of connecting resource 7 to resource j, and is usually assumed
to be the area of a wire.

The condition 'w;'j =1if ©T_ w;;; > 1 is modeled by the following constraint
wi; 2w, Yt=1,...,7 Vi=1,...,nandj=1,...,n+m (2.11)

From this constraint we observe that the variable w; j; is a dummy variable used for
illustrating the model alone and may be eliminated from the final formulation.

vi
time step %V2
1 v3 lv4
2 I v5 |v6
3 | v7 I v8
v v

Figure 3.1: Example 1

3 An Example and Results

We will use the example in Figure 3.1 to illustrate the constraint equations. We have
successfully experimented with data flow graphs of higher complexity than the one
given in Figure 3.1.

The scheduling information provides us with the following information. k = 1 (that
is there is one type of operation) and number of adders is two (n; = 2). m = 2 and
T = 3. Operations are labeled as follows: +1 is ()Pl(l), +2is OPz(l), +3 is OPI(Z), +4
is OP2(2), +5 is OP1(3), and finally, +6 is OP2(3). Values are labeled as follows: vl is
Vl(l)z ;/2 is V2(1), v3 is Vl(?'), v4 is Vz(z), v is Vl(a), v6 is 1/;(3), vT is V1(4), and finally v8
TR AR

To illustrate the formulation we will write down a subset of constraints for the example
and use the simpler notation of the preceding paragraph in our presentation. Values
vl and v2 are stored in some input registers. By the convention adopted in literature
[9], [15], [17] these input registers are read-only buffers and cannot be reused. 3 Thus,
constraints 2.1 and 2.2 for these two input values are not required. Constraint 2.1 for

3This convention can be easily overruled in our formulation.

value v3 and v4 are:

Yu3sz + Yu3a2 = 1
Yva32 + Yuaa2 = 1
Note that registers are numbered 3 and 4. These equations ensure that values v3 and

v4 are stored in a register. Similar constraint for values v5, v6, v7 and v8 can be
written. Constraint 2.2 for value v3 and v4 are:

Yu332+ Yvaz2 <1
<1

Yv3,4,2 T Yva,4,2
Constraints for registers R1 and R2 for time step 3 can be similarly written. Now to

model module binding. To ensure that operations +1 and +2 are executed in module
1 or 2, we have the constraints (cf. Constraint 2.3),

Tyt T2 = 1
Ty211+ Ty220 = 1
Constraints for operations +3, +4, +5 and +6 can also be written. Furthermore,

modules 1 and 2 may not execute more than one operation each in time step 1 is
given by (cf. Constraint 2.4),

Tpr11+ Ty <1
<

Ty1,21 + To2,21 1

Constraint 2.4 for modules 1 and 2 for time steps 2 and 3 can be written in a similar
fashion.

Finally we write down the constraints for interconnect model. To model a connection
between the module executing operations +1 and +2 and the registers which will
store these values, we have the following constraints (cf. Constraint 2.5),

24131+ 24140 = 1

24231+ 24241 = 1

Constraint 2.6 ensures that if a value stored in (or produced by) resource ¢ is needed
resource module j, then we must connect the two resources. For example, the result
of +1 v3 which is stored in either R1 or R2 is needed by operation +3 in the next
time step. Thus,

Z41,3,1 = Yu3,3,2

Z41,4,1 = Yv3,4,2

9

Since we are not storing any value over more than one time step Constraint 2.7 is not
required.

Lets us examine Constraint 2.8 in light of the v3 value transfer. Value v3 can be
stored in resource 3 (R1) or 4 (R2), and operation +3 could be executed in resource 1
(M1) or 2 (M2). Now if v3 is stored in R1 and +3 is executed in M1 then there must
exist a net from R1 to M1. This net is required in time step 2 and the corresponding
constraint is given as,

w31,2 2> T431,2 + Yu332 — 1

Similarly if v3 is stored in R2 and 43 is executed in M1 then we have the following
constraint,

Wq1,2 2 T43,1,2 + Y32 — 1

Similar constraints for other value transfers can be written. To illustrate Constraint
2.9 we consider the value transfer from the module executing operation +1 to the
register storing v3 in time step 1. This is given by the following four constraints.
First constraint ensures a connection between M1 and Rl if +1 is performed in M1
and v3 is stored in R1; second ensures a connection between M1 and R2 if -+1 is
performed in M1 and v3 is stored in R2; third ensures a connection between M2 and
R1 if +1 is performed in M2 and v3 is stored in R1; and finally, fourth constraint
ensures a connection between M2 and R2 if +1 is performed in M2 and v3 is stored
in R2.

w131 2 T4+ 24131 —1
Wig1 =2 T4+ 241,40 — 1
W31 = Ty121+ 24131 — 1
Wo41 =2 Ty121+ 24140 —1

Constraint 2.11 and objective function are easy to write.

To verify the formulation we synthesized several RTL designs. Two of these results
are given in Figures 3.2 and 3.3. The schedule in Figure 3.3 is taken from [10]. The
edges feeding from the input registers have not been shown for clarity. Both problems
were formulated and solved using GAMS [2].

10

o1l 02
(a) Scheduled complex muiltiplication

S P

1,74 +1,+2 *2,*3
Muit. Add Mult.

vi,vd,02 o1 ve,v3

R Reg. Reg.

(b) Synthesized RTL design

Figure 3.2: Example 2: Complex multiplication

11

OO
g
S

02

ol

(a) Scheduled data flow graph

! 'R /R
"2,"4,"6 las I *1,'3,'5 l a1,a2,a3
alu alu mult ad mult
JRSREEE— |
/
' MUX_] 4 !
v2,v5,v8 v1i,v4,v7 01 v3,v6,02
reg. 03 reg. reg. reg.
L1 1 C_

(b) Synthesized RTL design

Figure 3.3: Example 3

12

4 Area Tradeoffs

As we mentioned earlier, the final implementation is not constrained to have the sched-
uler specified quantities of modules and registers. Module and register quantities need
not be specified at the start of the solution. We can perform area tradeoff between
the interconnection, module and register area. The advantages of these tradeoffs are
outlined in [9]. Thus, the input specification to the program consists of scheduling
information and the cost (area) of each module type, register and interconnect.

For tradeoff studies we can assume a large supply of each resource type for binding.
This would, however, result in a large number of binary decision variables, which in
turn would result in large solution time. To compute a more realistic upper-bound
on the resource quantities we first determine the lower-bound number of resources
(modules and registers) from the scheduling information to which we add an increment
based on the area of each resource. This increment is computed as follows. Let a;
be the area of module type ¢ and a,., be the area of a register. We then compute an
upper-bound on the number of resources of each type 1 < j < k as follows:

n; = |@maz/a;] ¢ + lower-bound of module type j

where ez = I?ffk(a,) and ¢ > 0 is an integer user settable parameter. ¢ = 0

forces the program not to make any tradeoffs and to use the lower-bound quantities
as determined by the scheduler for the final RTL design. A large value of ¢ would
indicate a large supply of resources to tradeoff. Practically, the value of ¢ would range
between one and three. Justification for such an estimate stems from the fact that if
a multiplier costs five times as much as an adder, then we should tradeoff five adders
with one multiplier. The upper-bound on register count is computed identically.

Define u; = 1 if resource j is used in any time step and zero otherwise. 1 < j < n
defines a module usage and n+1 < 5 <n+ m deﬁnes a register usage. For every
time step 1 <t < T and for every operation OP executed in time step ¢

;> (4.12)

l]?

Similarly for registers we have that for every time step 1 < ¢ < T and for every value
V,-(t) stored in time step ¢

Untj 2 Yig (4.13)
The objective function then becomes:

m+n m4n ng n+m
minimize », Y c,',w” +Za3(> Uj) + Y Greg; (4.14)

=1 j=1 a=1 j=ns+1 j=n4l

13

5 Conclusion

In this paper we have formulated the resource allocation and binding problem for
non-pipelined designs. The formulation handles chaining, multi-cycle operations and
makes tradeoffs between wiring area and module and register area. Currently we are
working on adding conditional branching capability, optimization with commutative
operations, and pipelined designs. We are also in the process of automating generation
of constraints from scheduler information. The above formulation has large number
of binary variables and may entail enormous computer runtime for optimal solution.
Formulation of the problem is only the first step towards our goal. The next step is
to develop heuristics (using methods such as Lagrangian relaxation) which will give
near-optimal solutions quickly (in order of seconds for reasonable sized problems).

References

[1] F. Brewer and D. Gajski. Chippe: A System for Constraint Driven Behavioral
Synthesis. IEEE Transactions on Computer-Aided-Design, 9(7), July 1990.

[2] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User Guide. The Scientific
Press, Redwood City, CA, 1988.

[3] R. Cloutier and D. Thomas. The Combination of Scheduling, Allocation and
Mapping in a Single Algorithm. In Proceedings of the 27th Design Automation
Conference. ACM/IEEE, June 1990.

[4] H. Crowder, E. L. Johnson, and M. Padberg. Solving Large-Scale Zero-One
Linear Programming Problems. Operations Research, 31(5), September-October
1983.

[5] L. Hafer and A. Parker. A Formal Method for the Specification, Analysis, and De-
sign of Register-Transfer Level Digital Logic. IFEE Transactions on Computer-
Aided-Design, 2(1), January 1983.

[6] B.S. Haroun and M. I. Elmasry. Automatic Synthesis for DSP Silicon Compilers.
IEEE Transactions on Computer-Aided-Design, 8(4), April 1989.

[7] W. R. Heller, C. G. Hsi, and W. F. Mikhail. Wireability - Designing Wiring
Space for Chips and Chip Packages. IEEE Design and Test, 1(3), August 1984.

14

[8] R. Jain, K. Kucukcakar, M. J. Mlinar, and A. C. Parker. Experience with
the ADAM Synthesis System. In Proceedings of the 26th Design Automation
Conference. ACM/IEEE, June 1989.

[9] K. Kucukcakar and A. C. Parker. Data Path Tradeoffs Using MABAL. In
Proceedings of the 27th Design Automation Conference. ACM/IEEE, June 1990.

[10] J-H. Lee, Y-C. Hsu, and Y-L. Lin. A New Integer Linear Programming For-
mulation for the Scheduling Problem in Data Path Synthesis. In Proceedings of
the International Conference on Computer-Aided-Design. ACM/IEEE, Novem-
ber 1989.

[11] M. C. McFarland. Allocating Registers, Processors, and Connections. Techni-
cal report, Department of Electrical Engineering, Carnegie-Mellon University,
August 1981.

[12] M. C. McFarland, A. C. Parker, and R. Camposano. The High-Level Synthesis
of Digital Systems. Proceedings of the IEEE, 78(2), February 1990.

[13] J. A. Nestor and D. E. Thomas. Behavioral Synthesis with Interfaces. In Proceed-
ings of the International Conference on Computer-Aided-Design. IEEE/ACM,
November 1986.

[14] B. M. Pangrle and D. D. Gajski. Design Tools for Intelligent Silicon Compilation.
IEEE Transactions on Computer-Aided-Design, 6(6), November 1987.

[15] N. Park and F. J. Kurdahi. Module Assignment and Interconnect Sharing in
Register-Transfer Synthesis of Pipelined Designs. In Proceedings of the Interna-
tional Conference on Computer-Aided-Design. ACM/IEEE, November 1989.

[16] A.C. Parker, J. Pizarro, and M. J. Mlinar. MAHA: A Program for Datapath Syn-
thesis. In Proceedings of the 23rd Design Automation Conference. ACM/IEEE,

June 1986.

[17] P. G. Paulin and J. P. Knight. Force-Directed Scheduling for the Behavioral
Synthesis of ASIC’s. IEEE Transactions on Computer-Aided-Design, 8(6), June
1989.

(18] D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan, J. A. Nestor, and
R. L. Blackburn. The System Architect’s Workbench. In Proceedings of the 25th
Design Automation Conference. ACM/IEEE, June 1988.

[19] C. J. Tseng and D. P. Siewiorek. Automated Synthesis of Data Paths in Digital
Systems. IEEE Transactions on Computer-Aided-Design, 5(3), July 1986.

15

