CENTER FOR
PARALLEL OPTIMIZATION

PARALLEL CONSTRAINT DISTRIBUTION

by

Michael C. Ferris and Olvi L. Mangasarian

Computer Sciences Technical Report #971

October 1990






PARALLEL CONSTRAINT DISTRIBUTION~
MICHAEL C. FERRIS! AND OLVI L. MANGASARIAN'

Abstract. Constraints of a mathematical program are distributed among parallel processors to-
gether with an appropriately constructed augmented Lagrangian for each processor which contains
Lagrangian information on the constraints handled by the other processors. Lagrange multiplier in-
formation is then exchanged between processors. Convergence is established under suitable conditions
for strongly convex quadratic programs and for general convex programs.

Key words. Parallel Optimization, Augmented Lagrangians, Quadratic Programs, Convex Pro-
grams

Abbreviated title. Parallel Constraint Distribution
1. Introduction. We are concerned with the problem

minimize f(z)

(1.1)

subject to  g;(z) <0,...,g9k(z) <0

where f, g1, ..., g: are differentiable convex functions from the n—dimensional real space
IR™ to IR, IR™, ..., IR™* respectively, with f being strongly convex on IR"™. Our principal
aim is to distribute the k£ constraint blocks among k parallel processors together with an
appropriately modified objective function. We then solve each of these k subproblems
independently, share Lagrange multiplier information among the processors and repeat.
Other recently proposed decomposition methods can be found in [20, 7, 5, 19]. The
key to our approach lies in the precise form of the modified objective function to be
optimized by each processor. Considerable experimentation with various Lagrangian
terms [3] highlighted the difference between theoretical convergence and computational
efficiency. We believe that we now have effective modified objectives for each processor
that can best be described as augmented Lagrangian functions [17, 18, 1]. The modified
objectives are made up of the original objective function plus augmented Lagrangian
terms involving the constraints handled by the other processors. Computational expe-
rience on the Sequent Symmetry S-81 shared memory multiprocessor, with constraint
distribution for quadratic programs derived from a least-norm solution of linear pro-
grams, has been encouraging. This is described in Section 4 of the paper. Section 2 is
devoted to the quadratic programming case for which we obtain the strongest conver-
gence results in Theorem 2.4. Thus under the assumption of a strongly convex quadratic
objective and linear independence of each of the distributed constraint blocks, the par-
allel constraint distribution (PCD) algorithm converges from any starting point for a
solvable problem. The key to the convergence proof is to show that in the dual space, the
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proposed parallel constraint distribution algorithm is equivalent to a subsequentially-
convergent iterative method with step-size proposed in [10, Algorithm 2.1] for which
full sequential convergence has just recently been established [8, 4, 16]. In Section 3
we establish a weaker convergence of the PCD algorithm (Theorem 3.2) for the general
convex program (1.1) with strongly convex objective function. The method of proof in
this section is entirely different from that of Section 2, and relies on the Lipschitz con-
tinuity of the solution variables of each subproblem in the fixed Lagrangian multipliers
obtained from the other subproblems (Lemma 3.1). Unfortunately, to establish conver-
gence, we need to assume that the distance between successive values of the multipliers
approaches zero. We believe this assumption can be considerably relaxed and probably
eliminated.

A word about our notation now. For a vector z in the n—dimensional real space IR*,
x4 will denote the vector in IR with components (z);: = max {z;,0},2 =1,...,n. The
standard inner product of IR® will be denoted either by (z,y) or zTy. The Euclidean
or 2-norm (z7z)z, will be denoted by ||-]|. For an m x n real matrix A, signified by
A € R™*» AT will denote the transpose. The identity matrix of any order will be given
by I. The nonnegative orthant in IR® will be denoted by IR}. The term (s)psd will
denote (symmetric) positive semidefinite, while (s)pd will denote (symmetric) positive
definite.

2. Parallel constraint distribution for quadratic programs. For simplicity
we consider a quadratic program with 3 blocks of inequality constraints. Routine exten-
sion to k blocks can be achieved by appropriate extension and permutation of subscripts.
Equality constraints can also be incorporated in an straightforward manner. Consider
then the problem

e T 1.7
minimize c'r+ Yo
(2.1) 7
subject to Az <ay, [=1,2,3

where ¢ € IR®, Q € R**?, 4; € R™*®, q; € IR™ and @Q is symmetric and positive

definite. At iteration 1 we distribute the constraints of this problem among 3 parallel
processors (I =1,2,3) as follows

(v(Ase1 = a5) + i),

2 N
+ iz

22) mingicfnize Lz + %m,TQxl + 5{7 { Fn
. 3l
subject to Az < oy

where « is a positive number and pj-, and ri, j, [ =1,2,3 are defined below in (2.15) and
(2.16). We note that the pj, play the roles of multipliers and in fact converge to the
optimal multipliers eventually, while r} are substitution operators that replace estimates
of the multipliers by their most recent values obtained from each of the other subprob-
lems. Note also that even though the subproblems (2.2) are motivated by augmented
Lagrangian ideas [17, 18, 1], they are rather different from being precisely an augmented
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Lagrangian. The motivation of this reformulation is that in each subproblem some con-
straints are treated explicitly as constraints while the remaining ones are treated as
augmented Lagrangian terms in the objective function. The updating of the multipliers
is done by solving the subproblems explicitly rather than the traditional, and often slow,
gradient updating scheme in the dual space of the augmented Lagrangian approach [1].
The key to the convergence of our algorithm for the quadratic case is the choice of the
parameters p%; and rf in such a way that the dual problems, associated with (2.2), result
in a convergent iterative matrix—splitting method [10, 8, 13, 16] for a symmetric linear
complementarity problem in the dual variables of the problem. This choice is by no
means unique and we have experimented computationally with a number of choices for
the pj-, and r! which we report on in Section 4. We shall establish convergence of only
one of our choices in this section of the paper, which may not necessarily be the best
computationally. Further experimentation is needed to determine the best splitting.
We now proceed to show how the parameters pj'l and r! are chosen and to justify these
choices from the point of view of a convergent matrix-splitting method.

Let (zit!,5%1) € R™™ [ = 1,2,3, 1 = 1,... satisfy the Karush-Kuhn— Tucker

conditions [9] for subproblems (2.2). We shall signify this by
(z1*1,5+1) € arg KKT(2.2)

Hence (zj*!, 5;*') satisfy the following Karush-Kuhn-Tucker conditions (where we have
used the easﬂy verified equivalence

b=dy < b—-d>0,b7(b—d)=0,b>0
for any two vectors b and d in IR™)
-+ Qa4 Ty AT (2" — a5) 4 ), i+ 4TS =0
i +

) [=1,2,3
§;+1 — ( =141 +7(A1:C1 _ al))+

(2.3)

or equivalently
A = ~Q7H o+ Ty AT 41 4 AT
(2.4) 57 = (57 + (A — a), [=1,2,3, j=1,2,3, j #1
G = (v(A2 - a5) + 9},

Elimination of Zi*! by using the first equation of (2.4) leads (after a bit of algebra) to
the following symmetric linear complementarity problem (LCP) in the variable z'+?

2.5 B—’+1+C'z+ >0, zitHl Bz’“-}-(%z%q =0, “’+1>0
q
where
26) SRS BEEBT 8 B B
7 = (3;’312’Szavtzm’téBatélvtis’t2217tz32)
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and

(2.9)

The matrix C is determined by the choice of pi; and r} in (2.2) or equivalently in
(2.9), and this is precisely where the power (and at the same time the difficulty) of
the proposed method lies. The matrix C has to be chosen so that B 4 C constitutes
a “regular splitting” of some symmetric M, that is M = B + C, with M, B, and C

Ry

Cz' =~

D R R
B=| R, I+D Rf
Ry, Ry I+ D
AQTAT 0
84 0 AzQ—lAg
0 0
[ 0 A1Q AT
Y 0 0
AgQulAgw 0
[ 0 0
Y AzQ_lA{ 0
] 0 AsQ AT
A1Q 7} -
AQ7ry
AsQ7r

A1Q7r — o/
A2Q7Mr — P/
AsQ7Mr — P/
A1Q7rs — pis/y
A2Q7'ry — P /7
AsQ'rh — phy /v

satisfying certain properties such as:

(2.10)

0
0
AnglAgw

AQQ—lA;{

AIQ——IAg

Ai1Q e+ ay
AQ e+ ay
AsQ e+ a3
A1Q e+ ay
AQ7 e+ ay
AsQ e+ a3
Ai1Q7 e+ ay
A Q7 e+ ay

| AsQ7'c+as |

M symmetric, B — 2 pd for some X € (0,1]
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(2.11) M symmetric psd, B — 24 pd for some A € (0,1]

This amounts to the key requirement that M be symmetric or symmetric psd, since B
as defined by (2.7) is easily made pd and A can be chosen sufficiently small to ensure
that B — 2 is pd. Under assumption (2.10), a solution of the LCP:

(2.12) Mz+q¢g2>20, (z,Mz+4q)=0,22>0

is obtained [10] from each accumulation point of the sequence {2'} generated by solving
the LCP (2.5) for z'*! and then determining 2**! by using the step-size ), that is

(2.13) 2 = (1= 22" + Az A € (0,1]

Under assumption (2.11) the whole sequence {z'} generated by (2.5) and (2.13) con-
verges to a solution of (2.12) provided the latter is solvable [8, 4, 16]. The simplest
choice for p;i, and r! we propose for the nonlinear case of Section 3 and for which we
establish convergence under somewhat more stringent assumptions is the following

(2.14) pyu=s, =0 1=123, =123, j#I

Unfortunately this simple choice in the quadratic case leads to a nonsymmetric C
and hence a nonsymmetric M in (2.12). The convergence conditions for splitting non-
symmetric LCP’s are quite stringent [2, Chapter 5] and not useful for our proposed
applications here. We have therefore settled on choices for the parameters pj», and 7!
which are more general than (2.14), and which generate a symmetric psd M. By choos-
ing A sufficiently small, it is easily seen that (2.11) is satisfied, because by (2.7), the
matrix B is positive definite if we assume that each A;, [ = 1,2, 3, has linearly indepen-
dent rows. There are a number of choices of the pj, and r! that generate a symmetric
psd M and hence a convergent scheme. QOur preliminary computational experience
does not provide a clear cut indication which is the best choice for p}l and r} among
the convergent schemes. We believe this requires further theoretical and computational
study. However, for concreteness, we wish to present at least one specific choice of C
that results in the following choices of p%; and ri:

T'i = Ag(sé - tél) + Ag(sé - t§1)
(2.15) ry = Af(si —t3y) + AF (s5 —15,)
ry = A (st —tis) + AL (s} — t53)

Py = thy+ 7A2Q 7N (AT (s} — ti3) + A7 (85 — t51) + AF (55 — 13;))
Py =ty + 7A3Q (AT (5 — t12) + A7 (s5 — t53) + A3 (s5 —151))
(2.16) PZ%2 = t?:l2 + 1A Q7 (AT (sf — t?z) + A7 (sh — ths) + A3 (3§ - t?:n))
Py = thy+7AsQ (AT (s — ti5) + A7 (5 — t51) + A3 (s5 — t33))
Pia = tis+ TALIQ™H (AT (85 — t53) + AF (55 — thy) + AT (s5 — t3))
Pos = toa+7A:Q7 (AT (5] — 15,) + A7 (s5 — t53) + AT (s — i)
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We note that the r} play the role of a substitution operator in the sense that they sub-
stitute the latest Lagrange multiplier value s} obtained from each subproblem solution
for t%), both of which eventually converge to an optimal Lagrange multiplier value. The
pjl terms are essentially multiplier value estimates given by t}; plus additional terms
that converge to zero. The additional terms are added in order to produce a symmetric
C and hence a symmetric M. These above choices of p§, and r¢ lead to the following
matrix C defined through the relations (2.9) and (2.6),

R+ R, —RT —RT
(2.17) C= -Ry —-I+R+R —R
—R, —-R,y —I 4+ Ry + Ky

with R; and R, defined in (2.8). Addition of the matrices B and C gives the symmetric
block—diagonal matrix M

H 0 0
(2.18) M=| 0 H 0
0 0 H
where
Ay
(2.19) H:=D+R +Ry=| A, c}*[ AT AT AT ]
AS

Note that if our original quadratic program (2.1) is feasible, then it it solvable. Hence
its Wolfe dual is solvable, which is equivalent to the solvability of the LCP (2.12) with
M as defined in (2.18) and g as in (2.9). In fact the LCP (2.12) constitutes a replication
of the Wolfe dual 3 times.

We are now ready to define the PCD algorithm for the quadratic program (2.1).

2.1. PCD algorithm for quadratic programming.

1. Start with any 80,19, 1=1,2,3,7=1,2,3, ] # L.

2. Compute r{, p%, 1=1,2,3, = 1,2,3, j # from (2.15) and (2.16).

3. Having sj, ¢4, [ =1,2,3, j = 1,2, 3,]#lcompute
(a) (z}, z+1) € arg KKT(Z 2),1=1,2,3
(b) Tt = ((A4+-ﬂﬂ+%0 l=123j=123j#l
(e) (s 65") = (1= A)(si, Jz)-¥ AT, 1=1,2,3,5 = 1,2,3, 5 #

with A € (0, 1] satisfying (2.25) below.

2.2. Remark. We note that the subproblems (2.2) of the PCD Algorithm 2.1
split the constraints of the original quadratic program (2.1) between them in the form of
split explicit constraints as well as augmented Lagrangian terms involving the other con-
straints. The principal objective that has been achieved is that the explicit constraints
of each of the subproblems are a subset of the constraints of the original problem.
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2.3. Remark: Monotone LCP as dual of nonsmooth convex quadratic
program. It is interesting to note that the PCD algorithm is a matrix-splitting itera-
tive method for a monotone LCP that can be associated with a dual formulation of a
nonsmooth convex program. Thus consider such a nonsmooth program:

(2.20) minimize 'z + 327Qz + 3 “(Hm - h)+||2
- subject to Bz <b

where @ is spsd. The necessary and sufficient Karush-Kuhn-Tucker conditions for this
problem are

c+Qz+HY (Hz —h), +BTs=0

2.21
(221) s=(s+ Bz —b),

Defining a new variable ¢ as

(2.22) t=(Hz—h),

and solving the first Karush-Kuhn-Tucker condition for z gives
(2.23) z=—-Q ' (H t+ B's +¢)

Substituting for z in the second equation of (2.21) and in (2.22) gives the following
monotone linear complementarity problem in the variables (s, )
v BQ-'BT  BQ-'HT
w HQ BT I+ HQ'HT

v 8
=0, >0
w t

We then have the following duality relation between the nonsmooth convex program
(2.20) and the monotone LCP (2.24). For each solution (s,t) of (2.24), = defined by
(2.23) is the unique solution of (2.20). Conversely, for each Karush-Kuhn-Tucker point
(z,s) of (2.20), the point (s,t), with ¢ defined by (2.22), solves (2.24). Note that the
symmetric LCP (2.24) is equivalent to the following quadratic program in (s,1):

S

-] b
BQ e+ > 0
HQ 'c+h

1
(2.24)

C

S

t

BQ lc+b
HQ 'c+h

BQ'BT  BQ'HT
HQ™'BT I+ HQ'HT

minimize 1(s7,¢T)
(s,2)20

} + (ST, tT)

We are now ready to establish convergence of the PCD Algorithm 2.1
THEOREM 2.4 (PCD CONVERGENCE FOR QUADRATIC PROGRAMS). Let (2.1)
be feasible and let Q) be spd and let each of A;, | = 1,2,3, have linearly independent
7



rows. Then the sequence {sf,tj-,}, 1=1,2,3,3=1,2,3,7#1[,:=0,1,..., generated
by the PCD Algorithm 2.1 converges to (3,,%;), 1 =1,2,3, 7 =1,2,3, j # 1 and each of
the sequences {zt}, | = 1,2,3, converges to the unique solution Z of (2.1). Furthermore,
each (z,3) and each (z,%;), | = 1,2,3, 7 = 1,2,3, 7 # | is a Karush-Kuhn-Tucker
point of (2.1), and p; =t;, { =1,2,3, 7 =1,2,3, j #1

Proof. Let a"cf'“, [ =1,2,3, be the unique solution of the subproblems (2.2). Hence
zi*t! and some 3t! € IR™ satisfy the Karush-Kuhn-Tucker conditions (2.3), or equiv-
alently, (zj*!,5i*!) and some f;}"l, 1=1,2,8, 5 =1,2,3, j # [ satisfy (2.4). This in
turn is equivalent to z'*!, as defined by (2.6), satisfying the LCP (2.5). By the choice
of rf, py, 1 = 1,2,3, = 1,2,3, j # [ of (2.15) and (2.16) we have that the matrix C,
as defined in (2.17), and hence also the matrix M = B+ C, given by (2.18) and (2.19),
are symmetric and psd with B pd by the linear independence assumption. Thus if A is
chosen sufficiently small, and specifically such that

(2.25) 0 < A < min{1,2(min eigenvalue(B) / max eigenvalue(M))}

it follows that (2.10) above (which is condition (6) of [10]) and (2.11) above (which is
condition (4.1) of [8]) are satisfied. Hence, since the LCP (2.12) is solvable, the sequence
{2'} converges 8, Theorem 2 and Example 3] to a solution of the LCP (2.12), and by
2+ = (1 — M)z 4+ A"+ so does the sequence {z'}. It follows by (2.3), (2.4), (2.15)
and (2.16) that in the limit we have
c+ Qz; + Z?_;% Alty+7+ Al =0
§I=(§I+V(Aljl_al))+ 12172337j:1)2’3’j7£l
ti = (v(A;Z — a;) + Bir)

However, from (2.15) it follows that

= 2:31;} Af(3—1tp) 1=1,2,3
1
and hence that

c -+ Qfl + Z?=1 A?"gj =0
5 = (& +v(Aiz — ar)),

(2.26) 1=1,2,3

It is now clear form the nonsingularity of ¢) that

fl = .’732 = 573 =z
Conditions (2.26) become then the necessary and sufficient conditions for Z to be the
unique solution of (2.1) with multipliers as indicated in the statement of the theorem.
Furthermore, since Z = (31, 89, 33, f12, f23, 31, £13, 21, L32) solves the 3-block LCP (2.12)
with identical M and g sub-blocks as defined by (2.18) and (2.9) respectively, it follows
that each of (31, 89, 33), (f12,f23, t31) and (f13,%21,{32) solve any one of the 3 sub-blocks
8




of LCP (2.12) and hence [12, Corollary 2] their differences lie in the nullspace of H.
Thus

§1 tlz .§1 7?13
(227) H Sy | — {23 =0and H o | — t—‘ll =0
33 {31 83 7?32 .

Relations (2.27), and relations (2.16) in the limit, imply that p;; = tj, { = 1,2,3,
j=1,23j#10 0O
3. Parallel constraint distribution for convex programs. We extend our

ideas now to general convex programs with strongly convex objective functions. For
simplicity of notation we consider the 2-block problem

minimize x
51) f(=z)
subject to  g;(z) <0, g2(z) <0

where f:IR®™ — IR, g;: IR® — IR™, go: R® — IR™2 are differentiable convex functions
on IR®, with f strongly convex with modulus &, and ¢;, g2 Lipschitz continuous with
constant K on IR". We begin with the following straightforward Lipschitz continuity
result.

LeEMMA 3.1. Let f, g1, g2 be differentiable convezr functions on R™ with f strongly
conver with modulus k and let g; be Lipschitz continuous with constant K on IR™. Let
g2 satisfy a constraint qualification on the nonempty set {z | g2(z) < 0}. Then

ofun)i= argmin{ 1) + - {[oane) + . [} n00) < 0

is Lipschitz continuous on IR} with Lipschitz constant %%(l + /14 4k/vK?).
Proof. Let uy, @ € RY! and z:= z(uy) and #:= z(%;). By the Karush-Kuhn-
Tucker conditions, there exist vy, U, € IR™2 such that

V(@) + (r9u(2) + )T Var(e) + oF V() = 0
gz(:l,‘) < 03 <U2192(‘7:)) = 07 ve 2> 0

and

VF(Z) + (19:1() + @)} Va1(2) + 8] Vga(2) = 0
92(2) <0, (02,02(%)) =0, 5, 2 0

By the strong convexity of f we have that

k||z — || < (VF(z) - Vf(2))(E - z)
9



This together with the Karush-Kuhn-Tucker conditions gives

where the last inequality above follows from the following inequality
(w — @, h(z) — h(7)) < (W Vh(z) - @7 VR(Z))(z — Z)

for a convex differentiable h:IR® — IR¥ and w, w € IR%. The Karush-Kuhn-Tucker
conditions allow us to drop nonpositive term (v — 0z, g2(Z) — g2(z)) thus giving us

Elz — 2l < {(y1(2) + )y — (101(2) + 1), 01(3) — 01(2))

From the fundamental properties of the projection operator (), , we have for y, z € R™

<y - % (y)+ - (z)+> >0

so that
- 9 1 ~ B B
bl =2l < (@) + )y - (0@ + ), u - )
1 o )
< |(rg1(2) + 1), — (101(@) + ) | llux —
1 = o —
< p lvgi(z) + ur — vg1(Z) — @] ||ua — @l
: 1 B
< Kz -z lur — @l + S Jug — @)
Defining d: = ||Z — z|| and e: = ||u; — @;]| we obtain the quadratic inequality in d

kd® — Ked — :)1762 <0

and hence d must lie between the roots

Ke % /K?e? + dke?/y
d= 2k

Thus

K -
d< ﬁ[l + /1 +4k/vK?e

which gives the required Lipschitz continuity. 0O
We are now able to state a parallel constraint distribution algorithm for the convex

program (3.1) and establish its convergence.
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THEOREM 3.2 (PCD ALGORITHM AND CONVERGENCE FOR CONVEX PRO-
GRAMS). Let f:IR® — R, g;:IR® — IR™, go: R® — IR™ be continuously differen-
tiable convez functions on IR™ with f strongly convez and g1, g2 Lipschitz continu-

n g1(z) . . .
ous on R™. Let g(z):= and let g1 and g, satisfy some constraint qualifi-
g2(2)
cation on the nonempty sets {z| g1(z) <0} and {z| g2(z) <0} respectively. Define
. st , .
shi= ! J € R™+m2 gnd start with s = 0, s§ = 0. Gliven s* determine s as
S5
follows:

2

(21, s1*) € arg KKT(min {f(x) + 51; (ve2(x) +53) | | &a(x) < o})

. . 1 . 2
(z3t!, s5tY) € arg KKT(min {f(x) + o™ (7g1(x) + s‘1>+ | g2(x) <0 })

Assume that {s"t! — s'} — 0, then for each accumulation point 5 such that {s"} — 3,
{a:zl’} and {:v';} converge to arg min {f(z)| g(z) < 0}.

Proof. By Lemma 3.1, zi*': = z,(s") z5™: = z4(s*) are continuous. Let {s%} — 3.
Hence {s%*'} — 35, {z;’} — Z; and {x;’} — Zy. Invoking the continuity of the
Karush-Kuhn-Tucker conditions we have at these limits

V(@) + (192(21) + 52); Viga(21) + 5T Vg1 (31) = 0
51 = (791(Z1) + 1),

and
V£(&2) + (v91(F2) + 51); Vg1(Z2) + 57 Vga(32) = 0
32 = (792(Z2) + 52),

Hence

V(Z1) + (v92(Z1) + 52)1 Vo (1) + (791(Z1) + §l)£ Vai(z1) =0
and

V(&) + (191(32) + 1)} Vr(72) + (192(32) + 52); Viga(32) = 0
Thus

. 1 o2
Ty = T = arg min{f(z) + 5 ”(7g(w) + s)+H }
because the objective of the last minimization problem is strongly convex. Hence (Z1, 3)
and (Z,, 3) satisfy the Karush-Kuhn-Tucker conditions of min{f(z)|g(z) <0} and
thus Z; = Z, = argmin {f(z)| g(z) <0}. O
11



4. Computational experience. We have tested out the algorithms of the previ-
ous sections on some linear programming problems. The standard form linear program

minimize Lz
. x = b
subject to
z >0
has the dual problem
maximize by

(4.1)
subject to ATy < ¢

and these problems are in precisely the form of our preceding discussion except the
objective is not strongly convex. In order to strongly convexify the objective we have
used the least two-norm formulation [14, 11], where for € € (0, € for some & > 0, the
solution of
(4.2) minimize —bTy + %yTy

- subject to ATy < ¢

is the least two—norm solution of (4.1). For the purpose of our computation, a value of
€ = 10% was used.

We have split up the problems as follows: firstly the user has specified the number
of processors available and the problem has been split into that many blocks. If the
number of constraints in each block is not the same we have added combinations of
constraints form other blocks to make the number of constraints in each block equal
with the aim of balancing the load in each processor.

The PCD Algorithm 3.2 of Section 3 was implemented on the Sequent Symmetry S-
81 shared memory multiprocessor. The subproblems were solved on each processor using
MINOS 5.3 a more recent version of [15]. The explicit constraints in each subproblem
remained fixed throughout the computation but the blocks were not chosen to satisfy
the linear independence assumption.

We have used the following scheme to update the augmented Lagrangian parameter,
~. Initially it is set at 10 and is increased by a factor of 4 only when the norm of the
violation of the constraints increases.

The step-length X in the method (which is needed in the convergence proof) was
chosen by several techniques. One technique was to choose a fixed positive step-length
A < 1. With a step-length of 1 we found that the algorithm did fail to converge in several
instances as the theory would suggest (see Table 2). Another heuristic technique was
to choose the step-length between 0.4 and 1.0 to minimize the augmented Lagrangian.
This has proven to be robust and results in a good saving in iterations.

The algorithin was terminated whenever the difference in the primal objective value
of (4.1) and its dual objective value normalized by their sum differed by less than 1075,
The constraint violation was also required to be less than this tolerance.
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Problem | Variables | Constraints Blocks
3161918
Ex6 3 5 10 | 10
Ex9 5 11 10 | 12
Ex10 6 14 11 (12|13
AFIRO 27 51 16 | 16 | 16 | 16
ADLittle 56 138 14 127119 | 27
TABLE 1
Numerical results with fired A = 0.7
Problem | Variables | Constraints Blocks
3 16 (918
Ex6 3 5 2 ]2
Ex9 5 11 4 | *
Ex10 6 14 4 | 4 |4
AFIRO 27 51 20 | 14 | * | *
ADLittle 56 138 L B B
TABLE 2
Numerical results with fized A = 1.0
Problem | Variables | Constraints Blocks
3161918
Ex6 3 5 212
Ex9 5 11 415
Ex10 6 14 4 | 4| 4
AFIRO 27 51 1311515 14
ADLittle 56 138 12114 |14 | 15
TABLE 3

Numerical results with variable A
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Tables 1, 2 and 3 summarize preliminary numerical results for the PCD Algo-
rithm 3.2 on the Sequent Symmetry S-81 for 5 small linear programs reformulated as
in (4.2). The first three are homemade test problems, while the last two, AFIRO and
ADLittle, are from the NETLIB collection [6]. In the tables, an empty column entry
signifies that we did not perform the computation. The character * signifies that the
algorithm did not terminate. Note that for the algorithm does fail when a full step is
taken (see Table 2) as may be expected from Theorem 2.4 where the step-size A must
satisfy (2.25). The heuristic step-size outlined above performs the best (see Table 3).

The key observation to make is that the total number of iterations required for
accurate solutions (tolerance < 10~5) can be achieved with a small number of iterations
(2-13 iterations for 3 blocks and 14-15 iterations for 18 blocks). The fact that the
number of iterations remains essentially constant for increasing number of blocks is
encouraging and leads us to believe that the PCD is worthy of additional theoretical
and computational study.
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