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High-Bandwidth Data Memory Systems for Superscalar Processors

Abstract

This paper considers the design of a memory hierarchy, with a level 1 (L.1) data cache at the top,
to support the data bandwidth demands of a future-generation superscalar processor capable of
issuing about ten instructions per clock cycle. It introduces the notion of cache bandwidth -- the
bandwidth with which a cache can accept requests from the processor, and shows how the
bandwidth of a standard, blocking cache, can degrade greatly because of its inability to overlap
the service of misses. Non-blocking or lockup-free caches are discussed as a way of reducing the
bandwidth degradation due to misses. To improve the data bandwidth to greater than 1 request
per cycle, multi-port, interleaved caches are introduced. Simulation results from a cycle-by-cycle
simulator, using the MIPS R2000 instruction set, suggest that memory hierarchies with standard,
single-ported L1 caches will be unable to support the bandwidth demands of future-generation
superscalar processors. Multi-port, non-blocking (MPNB) L1 caches introduced in this paper for
the top of the data memory hierarchy appear to be capable of supporting the data bandwidth

demands for several generations of superscalar processors.






1. Introduction

As technology advances allow more functionality to be put on a single chip, VLSI processor
designers are looking for ways to exploit the available resources to enhance processor perfor-
mance. One way of enhancing performance is to exploit fine-grain parallelism and issue multiple

instructions in a clock cycle. By the middle of this decade, we expect processors that attempt to

issue about ten instructions in a clock cycle to be within the realm of possibility’.

Figure 1 presents our view of the overall organization of a circa 1993 high-performance
superscalar processor chip that might have a peak instruction issue rate of perhaps ten instructions
per clock cycle and a sustained issue rate of about 3-5 instructions per cycle. The CPU has func-
tional units for computation, an instruction issue mechanism, an instruction cache to supply
instructions to the instruction issue mechanism, a data cache for memory operands, and an inter-
connect that connects together the various components. There could be several functional units
such as floating-point adders, floating-point multipliers, integer multipliers, integer adders, and

adders for address calculation.

At the top level of the memory hierarchy, we expect there to be separate level 1 (LI)
instruction and data caches as shown in Figure 1. These L1 caches are connected to a shared
level 2 (L2) cache, via an LI-L2 bus. The L2 cache is in turn connected to the main memory,
which may be shared by several other processors. It is also possible that, as technology advances,

and multiple CPUs along with their L1 caches can be put on a chip, the L1-L2 bus and the L2

cache (which may be on-chip) may be shared by multiple CPUs?.

To issue multiple instructions per cycle, an appropriate instruction issue mechanism is

needed. Several mechanisms for issuing multiple instructions in a clock cycle have been pub-

! Auempts are already being made at 8 instructions per cycle [2].

*Technology projections have predicted a 100 million transistor processor chip by the end of the decade. Such a processor chip
may have multiple superscalar CPUs, each connected 1o it own L1 cache (of the order of tens of kilobytes), and share a common L2
cache (of the order of a megabyte) [3].
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Figure 1: A Superscalar CPU



lished [1,5,7,8,11-14,18,20,21], and others are being investigated. We will not concern our-
selves wi‘th the instruction issue mechanism of such a superscalar processor in this paper, nor
with the design of the L1 instruction cache that can provide the appropriate instruction
bandwidth. This is because the exact issue mechanism that might be used to issue about ten
instructions in a clock cycle, in a superscalar fashion, and sustain an issue rate of 3-5 instructions
is still the subject of research and debate (1,5,8, 11-14, 18,20]. Furthermore, because of the high
hit ratios achievable for instruction caches [6,9, 15, 16, 19], we feel that a small (few kilobytes)
L1 instruction cache can be designed to support most instruction issue mechanisms, though the

exact design of such a cache will be highly dependent on the instruction issue mechanism used.

Regardless of the instruction issue mechanism chosen, an appropriate memory hierarchy is
needed to support the data bandwidth demands of the instruction issue mechanism. Our focus in
this paper is to see how to provide a data memory system that can support the data bandwidth

demands of a future instruction issue mechanism issuing about ten instructions per cycle.

1.1. The Importance of Data Memory Bandwidth

Why is a high-bandwidth data memory system critical? It is obvious that the bandwidth of
the critical functional unit resource dictates the minimum number of clock cycles that it will take
to execute a given program, regardless of the sophistication of the instruction issue mechanism.
The best-case execution time is one in which the bandwidth demand of the program is equal to

the bandwidth supply of the critical functional unit resource.

The data memory (L1 data cache, L2 cache, and main memory) is perhaps the most heavily

demanded resource (with the possible exception of the adder used for generating memory

addresses) and is likely to be the critical resource’. Accordingly, the peak instruction issue of our

3Even if the memory is not the critical resource and some other computational functional unit is, providing additional computa-
tional functional unit bandwidth is straightforward; all that we have to do is to provide more copies of the computational functional
unit, and an enhanced interconnect.



S instructions per cycle, where BW; is the bandwidth

superscalar processor will be limited to
M

that the data memory can supply, and f is the fraction of all instructions that are loads and
stores. Clearly any improvements in the instruction issue strategy will be worthwhile only if they

are accompanied by a commensurate increase in the data memory bandwidth.

1.2. Paper Objective and Outline

The goal of this paper is to consider the design of a data memory system (0 support the

bandwidth demands of a future superscalar CPU capable of issuing possibly tens of instructions

per clock cycle. Clearly this will require a data memory bandwidth of several requests per cycle*.
We would ideally like to achieve this high bandwidth with the freedom and the flexibility that we
have on the processor chip, i.e., with minimal additional demands on the off-chip components of
the system, such as the L2 cache and the main memory. Accordingly, we will concentrate mainly
on the top of the data memory hierarchy, i.e., the L1 data cache and the L1-L2 bus, though the
results of our paper could easily be applied to the L2 cache and the L2-memory interface. There-
fore, unless stated otherwise, all references to cache shall imply the L1 data cache. Furthermore,
we shall also assume that all data references go through the L1 cache, i.e., the L1 cache can’t be

2

bypassed. Our results are easily extended if the L1 cache can be selectively bypassed.

In section 2, we consider the issue of cache bandwidth, and cache designs that can provide a
high bandwidth. In section 3, we present simulation results, using a current instruction issue stra-
tegy, to illustrate how low-bandwidth cache designs can be a bottleneck to performance of future

instruction issuing strategies, and we conclude in section 4.

A1l future references to bandwidth shall be 1o the average bandwidth measured in requests per clock cycle.




2. Cache Bandwidth and High-Bandwidth Cache Designs

Most of the literature on cache memories [17] has concentrated on the latency with which
memory requests can be serviced with a cache memory, and rarely has there been a discussion of
the bandwidth of a cache. The possible exception to this is the literature on caches in shared-
memory multiprocessors, starting with [4], that deal with how a cache can be used to reduce
cache-memory bandwidth, but not specifically with how much bandwidth a cache can provide to
the CPU. The reason for this, we believe, is that the bandwidth of caches is rarely a major con-
cern for processors that issue a single instruction per cycle since such processors do not have a
very high bandwidth demand (compared to superscalar processors). For example, to support a
peak issue rate of a single instruction per cycle, a data cache with a bandwidth of fj, is sufficient
(typically fy is in the range of 0.25-0.4 for a RISC processor such as the MIPS R2000) and, as we
shall see, such a low average bandwidth could be squeezed out quite easily with most standard
cache designs. For processors capable of issuing multiple instructions per cycle, however, the
data bandwidth demands are naturally much higher (at least the same number of references are
made in fewer clock cycles) and therefore, the first step in designing an L1 data cache should be

to evaluate the bandwidth that it can provide.

Without any loss of generality, we assume that the L1 cache is a writeback cache in this
paper. A processor request to the L1 cache can either hit or miss. If the request hits, it is serviced
by the L1 cache, without causing any actions on the L1-L2 bus. If it misses, the L1 cache creates

a miss request, as well as a writeback request (if the replaced block is dirty) on the 1.1-L2 bus.

2.1. Blocking Caches

The most commonly used and studied caches are blocking caches. In such caches, the CPU

can continue to issue instructions as long as the memory references it makes hit in the cache.

However, when a miss occurs, the CPU stalls instruction issue® until the miss request has been



completed and the block has been fetched from the L2 cache to the L1 cache. Therefore, with a
blocking cache, the CPU can have at most one miss request pending and, while a miss is pending,

it can accept no other requests from the CPU, even though they might be hits.

The design of blocking caches is well-understood [16, 17]; almost all computers built today
have them. With a blocking cache, the L1-L2 bus interface is straightforward. Since there is
only one request from the L1 cache to the L2 cache at any time, the L1-L2 bus can be held, in a
circuit-switched fashion, until the entire transaction has been carried out®. Finally, since the 1.2

cache has to handle only a single load request, its design is also straightforward7.

The disadvantage of a blocking cache is the bandwidth degradation that can result because
misses must be handled serially. Let us see how much bandwidth a standard single-ported,
blocking L1 cache can supply and how much of a degradation in bandwidth can result because of

the requirement of handling misses serially.

Suppose that a program makes H+M memory requests, where H is the number of requests
that hit in the L1 cache, and M is the number of misses. If there is a single cache port, the time
taken to service H hits is H cycles. The L1 cache and the L1-L2 bus are busy for (T, +B) and
[T,, +B(1+d)] cycles, respectively, for each miss that is serviced, where T, is the miss time, i.e.,
the time taken by the L2 cache to respond with the first word of the block after the miss request is
issued, d is the probability that the replaced block is dirty, and B is the number of cycles taken to

transfer a block on the L1-L2 bus. Since the service of hits and misses can’t be overlapped in a

5If hardware interlocks are used to enforce dependencies, the CPU can continue to execute instructions that have register-only
operands, and does not have to stall instruction issue until the next load/store instruction is encountered. Our experience has shown lit-
tle difference in performance if the CPU stails instruction issue when the miss occurs or if it proceeds with instruction issue until the
next load/store instruction. Therefore, we assume the standard practice of stalling instruction issue when the miss is encountered. In
either case, instructions that are already in execution are not stalled.

With a blocking cache, we have two choices of how to handle the writeback request. In either case, for getting a smaller miss
latency, the miss request would be submitted to the L2 cache before the writeback request. The first alternative for handling the write-
back request is to wait until the miss request has completed and then carry out the writeback request. The second alternative, which re-
quires a more complicated L1-L2 bus design, is to release the L1-L.2 bus after the miss request has been submitted, carry out the write-
back request, and then grab the L1-L2 bus again to receive the response to the miss request. Since the former approach is the more
commonly-used one, we shall assume it to be the way of handling writeback requests.

7As pointed out in [9], if its access latency is sufficiently high, it may have to be pipelined sufficiently to handle multiple write-
back requests.




blocking L1 cache, the time taken by the L1 cache and the L1-L2 bus to service H-+M requests is
(H+M|[T,,+B]) and M[T,+B(1+d)] cycles, respectively. The upper-bound on the average
bandwidth of the data memory system, assuming all data references go through the L1 cache, is

simply the lower of the bandwidths of the L1 cache and the L1-L2 bus, i.e.,

Min H+M H+M -
H + MX[T,+B] MX[T,+(1+d)xB]

Min 1 1 1
14 mX[T+B—=1]" mx[T+(1+d)xB] M

where m = is the miss ratio.

M

H+M

Figure 2 plots the bandwidth (requests per cycle) provided by a memory system with a stan-
dard, single-ported blocking L1 cache (with a maximum bandwidth of 1 request per cycle),
obtained from equation (1), versus the miss ratio m, for some values of T, B, and 4. As we can
see from the figure, the bandwidth drops significantly as the miss ratio increases. For example, a
cache with the optimistic parameters of m=0.05, T,=10, B=1, and d=0, can achieve a
bandwidth of only 0.67 requests per cycle. If we assume fy=0.4, this implies that our super-
scalar processor with the above L1 data cache will be able to achieve a sustained issue rate of
only 1.67 instructions per cycle, regardless of how many resources (other than those to improve

memory bandwidth) we throw at it! It is clear that we must improve the bandwidth of the cache

if we hope to achieve a superscalar execution of more than a few instructions per clock cycle.

Before proceeding further, from equation (1) we can also see why cache bandwidth has not
been of much concem thus far. With a peak instruction issue rate of 1 per clock cycle, and with
fiu<0.4, we require a bandwidth of less than 0.4 requests per cycle, and this can easily be

achieved with m<0.1, if T,,=10 and 1<B<4.

To improve bandwidth, we have two options: i) provide multiple ports to service hits or ii)

reduce the bandwidth degradation due to misses. From equation (1), we can see that even if we
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Figure 2: Data Bandwidth provided by a Blocking L1 Data Cache

provide an infinite bandwidth for cache hits, the bandwidth of a blocking cache can be improved

to only mxT.. +lB 1+’ a value that is dictated by the bandwidth with which misses can be

serviced on the L1-L2 bus. If the bandwidth degradation due to misses is significant, as is likely
to be the case unless both m and T, are very small and B =1, it is of primary importance to con-

sider ways of decreasing it first before considering ways to improve the cache bandwidth for hits.

2.2. Reducing Bandwidth Degradation Due to Misses: Non-Blocking Caches

To reduce the bandwidth degradation due to misses, we must decrease the total time spent

in servicing the misses. An obvious way to reduce the time spent in servicing misses is to




decrease m, T, OF both. However, as we mentioned earlier, both m and Ty, would have to
decrease (so that their product is very small) for the bandwidth degradation to be inconsequential.

This is counter to the current trend of increases in T, because of increases in the processor clock
speed.

From equation (1) we see that a major reduction in the degradation due to misses, and con-
sequently a major improvement in bandwidth, can be made if we eliminate T, from the equation
entirely. This can be done if we allow the service of multiple miss requests to be overlapped, in a

pipelined fashion. In the best case, if all M miss requests can be overlapped perfectly, the time

taken to service the misses can be reduced to® M(1+d)B and the bandwidth of a single-ported

cache can be improved to:

, 1
Mln[l, -;Im} )

The first term in the above equation corresponds to the bandwidth with which requests can be
submitted to the cache, and the second term to the bandwidth with which the misses can be ser-

viced on the L1-L2 bus.

2.2.1. Basic Non-Blocking Cache

To overlap miss requests, we consider a non-blocking or lockup-free cache organization first
proposed by Kroft [10]. In Kroft’s suggested implementation, registers called MSHRs (miss
information/status holding registers) are used to hold the status information of the outstanding
misses. One MSHR is associated with each outstanding miss. If there are N MSHRs, we have a
non-blocking(N) cache. Therefore, in a non-blocking(N) cache, there can be up to N misses being

serviced concurrently, and the service of hits can be overlapped with the service of misses.

8If the servicing of all misses is overlapped completely, in a pipelined fashion with a single port on the L.1-L2 bus, the time tak-
en to service M misses is M(1 +d)B +T,,, which can be approximated by M(1 +d)B.



The MSHRs have two major functions: (i) determining whether a secondary miss has
occurred (a secondary miss is a miss to a block on which there is already a miss request pending)
and (ii) routing the data supplied by the memory to the correct cache block and CPU register. For
hits, a non-blocking cache is no different from a blocking cache. When a miss occurs, the
MSHRs are checked (associatively) to see whether there is a pending miss to the cache block, i.e.,
whether the current miss is a secondary miss. If there is no pending miss to the same cache
block, i.e., the current miss is a primary miss, a free MSHR is obtained (the cache stalls the pro-
cessor if all MSHRs are being used). Information relevant to the servicing of the current miss,
such as the cache block number and the CPU register to which the accessed data word must be
routed, are entered in the MSHR and the miss request is submitted to memory. When the block is
returned from memory, information in the appropriate MSHR is used (we will see how to access
the "appropriate” MSHR shortly) to route the data both to the cache for further use, as well as to
the CPU register. If a secondary miss occurs, the processor can continue, without a very complex

MSHR design [10], unless the miss is to the same word to which there is a previous miss out-

standing. Readers interested in more details of a single-ported, MSHR-based® non-blocking

cache are referred to [10].

2.2.2. Additional Requirements of a Non-Blocking Cache

Let us consider what the additional requirements introduced by a non-blocking cache are
with respect to a blocking cache. First, when a miss occurs, N MSHRs have 1o be searched asso-
ciatively to determine whether the miss is a secondary miss or a primary miss, whereas no such
associative search is needed in a blocking cache. Although it may be possible to design a non-
blocking cache without penalizing the hit time, a wide associative search is still time-consuming

in most cases, and every attempt should be made to keep the associative search confined to as few

9t is possible to have alternate designs that accomplish the same task as Kroft's design without limiting the number of MSHRS.
The exact mechanisms that allow maultiple outstanding misses to be handled is, in our opinion, highly dependent upon the particular si-
tuation, and is still an open question.

10




MSHRs as possible. Second, to allow the servicing of more than one miss to be overlapped, the
L1-L2 interface must be pipelined, or packet-switched, whereas a circuit-switched L1-L.2 bus is
sufficient for a blocking cache. Third, if the L2 cache is handling more than one request con-
currently, not only must it be pipelined to provide the bandwidth necessary to handle the requests,
there must also be a way of routing return requests to the "appropriate” MSHR and from there to

the requester in the CPU and to the correct cache block.

To match L2 cache responses with the appropriate L1 cache requester, we have two main
options, both of which make demands of the L2 cache that are not made by a blocking L1 cache.
The first option is to tag the miss request submitted to the L2 cache with the number of the
MSHR of the L1 cache. When the L2 cache responds, it returns the tag along with the response,
and the tag is used to access the correct MSHR and route the data. This option requires both the
L1-L2 bus and the L2 cache to have special lines dedicated to the tags (bidirectional address lines
could also be used as tags). The second option is for the L2 cache to retumn responses in the same
order that it received the requests. In this case, the MSHRs can be managed as a queue, without
the need for tags, and no additional lines are required on the L1-L2 bus. However, the burden is

on the L2 cache to return the responses in the order that they were received.

2.3. Improving Bandwidth of Hits: More L1 Cache Ports

Having reduced the bandwidth degradation due to misses with a non-blocking cache, let us
now consider how to improve the bandwidth to greater than 1 request per cycle by providing mul-
tiple ports to service hits. If we provide multiple ports for the L1 cache to service multiple hits

simultaneously, with a single L1-L2 port, the bandwidth of the cache can be improved to:

. 1
MH{P;,, m(1+d~)E;i (3)

where P}, is the number of ports from the CPU to the L1 cache. Let us now consider how we can

provide multiple ports.

11



2.3.1. Duplicate Cache Banks

A straightforward way to implement multiple read ports is to provide multiple copies of the
cache. For example, to provide 4 read ports for a 16Kbyte cache, we can have four 16Kbyte
caches that have identical contents. We feel that this approach has a significant overhead in the
amount of memory used, especially when considering an on-chip cache. Moreover, identical
multiple copies allow only a single write port. Therefore, we do not consider a straightforward
duplication of cache banks to be an adequate solution, if we need multiple read ports without a

significant memory overhead and/or need multiple write ports.

2.3.2. Interleaved Banks

A better way to provide multiple cache ports is to interleave the cache blocks amongst mul-
tiple cache banks, much in the same way as an interleaved memory. Figure 3 shows how an
interleaved L1 cache could be placed in the CPU and Figure 4 shows how the bits of a 32-bit
address of a byte-addressable machine could be used to access a cache interleaved on the low-
order index bits!®, If there are M banks, and the cache stalls the processor on a miss, we have a
multi-port, blocking, or MPB(M) cache, which can service up to M hits simultaneously (one to

each bank), but only one miss at any time.

2.3.3. Multi-Port, Non-Blocking (MPNB) Caches

If each bank of a multi-port interleaved cache is a non-blocking(N) cache, i.e., has its own
set of N MSHRs, with M banks we have an MPNB(N, M) cache that can collectively service up
to M requests (each bank has a single read/write port) in a single clock cycle, as well as allow up
to NxM misses to be overlapped simultaneously (with only N-way associative searchs) to reduce

the bandwidth degradation due to misses.

19sing the low-order bits of the set to interleave the banks is analogous to the standard low-order interleaving used in memory
systems. Other interleaving schemes could be used, and need further study.

12
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Figure 3: A Multi-Port Cache with Interleaved Banks
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a — cache tag

b — set within a cache bank
¢ — cache bank

d — word within cache block
e — byte within word

Figure 4: Addressing a Multi-Port, Interleaved Cache

One potential drawback of an MPNB(N,M) cache design is the additional complexity and
delay introduced by the crossbar from the instruction issue mechanism to the multiple cache
banks (see Figure 3). Passing through this interconnect to get to the cache can potentially
degrade the latency of cache hits. However, if we are to provide a bandwidth of greater than 1
request per cycle, we have no option but to provide such an interconnect between the instruction
issue mechanism and the L1 cache. Moreover, the increase in the complexity of the interconnect
may not be as bad as it sounds since we already have a PX(F +1) crossbar between the instruction
issue mechanism and the functional units, where P is the peak number of instructions that can be
issued per cycle and F is the number of computational functional units, and with M cache banks,
the complexity is increased to Px(F +M). We can perhaps pipeline it so that passage through the
interconnect is just an extra stage in the execution of an instruction. This potential latency loss

for cache hits, in favor of increased bandwidth, needs further study.

2.4. Further Reduction in Bandwidth Degradation Due to Misses: More L1-L2 Ports

The techniques that we have considered so far for the L1 cache use mostly the on-chip
hardware, and pose relatively few demands on the off-chip hardware (we only required the L1-L2
bus to be pipelined, the L2 cache to accept requests at a peak rate of 1 per cycle, and possibly
return requests in order). We can reduce the bandwidth degradation due to misses even further by

providing multiple ports on the L1-L2 bus. If we provide P, poris on the L1-L.2 bus, the

14




M(1+d)B
P

m

minimum time required to service M misses can be further reduced to , and the peak

bandwidth be improved to:

Min {P,,, -——f”l——} @)
m(1+d)B

A multi-port L2 cache can be designed in ways similar to the ways proposed for a multi-

port, non-blocking L1 cache. In fact, all of the design options for L1-1.2 cache interactions could
be applied to L2-memory interactions. Before going to multiple L1-L2 ports, however, we
should first use the pin resources in the L1-L2 interface to maximize the bandwidth of the single
port rather than to increase the number of ports. That is, we might use the additional pins to have
larger block sizes that lower m, keeping B=1. If m for an L1 cache can be made reasonably
small (say 0.05-0.1), and the small m can be achieved with a small B (say 1), we can achieve a
data bandwidth sufficient to support the issue of perhaps ten instructions per cycle with only a
single L1-L2 port and an appropriate MPNB L1 cache, and therefore we do not expect multiple
L1-L2 ports to be needed, at least for the next several generations of superscalar processors

(though we would perhaps need a single, wider port so that B =1).

3. Simulation Studies

In this section, we present some simulation studies to evaluate the potential and utility of
MPNB caches. The simulation results are not meant to be exhaustive. Rather, they are intended
to verify the observations of section 2 that blocking caches will be unable to support the data
bandwidth requirements of future-generation superscalar processors, and that multi-ported, non-

blocking caches are better able to do so.

3.1. Evaluation Environment

All our experiments are carried out with a detailed, cycle-by-cycle simulator that we have

developed. The instruction set architecture for the simulator is that of the MIPS R2000; the simu-

15



lator accepts a.out files compiled for a DECstation 3100, and simulates their execution. Most
aspects of the CPU and the memory system are modeled in detail (at the clock cycle level) by the
simulator. The simulator is also detailed enough to handle the system calls (with traps to the OS)
made by most programs. This allows benchmarks with file I/O, such as the SPEC benchmarks, to
be simulated. By varying the parameters of the instruction issue mechanism, the memory system,
and the resource architecture, we can simulate in detail the execution of an arbitrary program,

along with its file I/O.

Because of the detail at which the simulation is carried out, and because the entire memory
system is modeled, the simulator is slow. Depending upon the complexity of the instruction issue
strategy, the resource architecture, and the memory system, we can simulate roughly 2,000-5,000
MIPS R2000 instructions per second on a DecStation 3100 hardware platform. This speed res-
tricts our ability to explore the design space in great detail using substantial runs of large bench-

mark programs.

3.2. Baseline System

Our baseline system has a CPU with the instruction set architecture of a MIPS R2000, a
16Kbyte, direct-mapped L1 instruction cache and an L1-L2 bus that has separate address and data
buses, each of which is 32 bits wide. With the above L1 instruction cache, we rarely encounter
instruction cache misses for our benchmarks, and L1 instruction cache misses account for negligi-

ble traffic on the L.1-L2 bus.

Since we are mainly interested in the L1 cache, we assume that all L1 misses hit in the L2
cache. The L2 cache is organized as a single-ported, interleaved memory, with 32 banks and a
bank busy time of 4 clock cycles. Thus data can be transferred between the L1 and L2 cache ata
peak rate of 4bytes per clock cycle, regardless of the latency of the L2 cache, if no L2 cache bank

conflicts occur.

16




The baseline L1 data cache is 8Kbytes, direct mapped, virtually addressed, and has a hit
time of 1 clock cycle. The blocking version is an 8-way interleaved (MPB(8)) cache, and the
non-blocking version is an 8-way interleaved cache, with 4 MSHRs in each cache bank, i.e., an
MPNB(4,8) cache (To have a uniform basis for comparison, we use the same basic organization

throughout.)

3.3. Instruction Issue Strategy

For our simulations, ideally we would like to use instruction issue strategies that can issue
about ten instructions per clock cycle, and perhaps sustain an issue rate of 3-5 instructions per
cycle. Unfortunately, we are unaware of any known strategy that fits this model (though we are
aware of several research efforts, including our own). Therefore, we will use a published instruc-
tion issue strategy, which can sustain a much smaller issue rate than what we expect to see in the

future, and try to extrapolate the results.

The issue strategy that we use is the one implemented in the SIMP processor [12]. It uses
dynamic dependency resolution and can issue up to 4 instructions per clock cycle. However, we
do not do any branch prediction and speculative execution, i.e., we do not go beyond basic blocks
to enhance instruction-level parallelism. Furthermore, we consider only a single floating point
co-processor. Experiments with branch prediction and multiple floating point co-procerssors are

the subject of our future studies.

3.4. Benchmarks and Miss Ratios

We use 4 benchmarks for our experiments: doduc, eqntott, matrix300 and tom-
catv, all taken from the SPEC benchmark suite. The benchmarks are long programs, and take
several minutes to run in their entirety on a DECstation 3100 hardware platform. Since the entire
execution of the benchmarks for all the different configurations will take several months to simu-

late on our simulator, we simulate the execution of only the first 5 million instructions that
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occur for each benchmark (this perhaps captures only the initialization phases in most cases, but
that is not important since we use the same portion of code for all the different cases and the trace
is long enough for the cache size considered). We also carried out simulations for 100 million
instructions and observed that the results are not significantly different from those with 5 million
instructions. These results are presented in the appendix as Tables A.1 — A.4 and Figures A.5 —
A.6, analogous to Tables 1 — 4 and Figures 5 — 6 presented in this section for 5 million instruc-

tions.

Table 1 presents the number of memory references (in millions) in the simulated portion of
each benchmark, and the execution times (in millions of clock cycles) with a perfect memory sys-
tem, i.e., a memory system in which all memory references are serviced in a single cycle, and the
corresponding average data memory bandwidth demanded (BWp). The data memory bandwidth

demanded is simply the total number of data references divided by the execution time.

From Table 1 we can see that the issue strategy that we have considered is not aggressive
enough since the average number of instructions executed per clock cycle ranges only from 1.15
for matrix300 to 1.95 for eqntott, even assuming a perfect memory system. Moreover,
the issue strategy does not make a very heavy demand on the data memory bandwidth (0.375-

0.637 requests per cycle). As issue strategies become more sophisticated, and try to sustain an

Table 1: Benchmark Data

Memor)f References Performance with Perfect Memory
(millions)
Benchmark el Tosue
ycles ssu

Loads Stores (millions) Rate BWp
doduc 1.350 0.538 4.04 1.24 0.468
eqntott 0.936 0.361 2.56 1.95 0.507
matrix300 0.726 0.904 4.35 1.15 0.375
tomcatv 1.718 0.660 3.73 1.30 0.637
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execution rate of 3-5 instructions per cycle, the demand for data bandwidth will increase because:
i) fewer clock cycles are taken to execute the program and service the same number of "useful"
data references and ii) additional data references may be generated that are not "useful”, i.e., do

not influence computation, because of speculative execution beyond a basic block.

In Table 2, we present the miss ratios obtained from simulation for various block sizes, and
the corresponding bandwidth that a single-ported blocking L1 cache can supply (computed from
equation (1)), assuming T,,= 12 and an L1-L2 bus width of 4 bytes. We will discuss the data of

Table 2 shortly.
3.5. Experimental Results

3.5.1. Execution Times and Speedups

In Figure 5 we present the execution and processor cache stall times for nine memory
configurations for each of the benchmarks, as obtained from our simulator. The execution time is
the actual number of clock cycles taken to execute the first 5 million instructions, with the partic-
ular cache organization. The first set of 4 bars for each benchmark are for an 8Kbytes direct
mapped MPB(8) cache, and the second set of 4 bars are for an 8Kbytes direct mapped MPNB(8)

cache. The 4 bars of each set are for block sizes of 4, 8, 16, and 32 bytes, respectively. The last

Table 2: Miss Ratios and Bandwidth Supply with a Blocking Cache; T,, = 12

Block Size (Bytes)
Benchmark 4 8 16 32
m%) | BWs | m(%) | BWs | m(%) | BWs | m(%) | BWs
doduc 12.88 | 0.393 6.81 | 0.530 505 | 0.569 4.80 0.523
eqntott 18.52 | 0.310 | 11.14 | 0.408 722 | 0.480 5.21 0.502
matrix300 62.04 | 0.115 | 31.08 | 0.198 | 15.76 | 0.297 8.12 0.393
tomcatv 3090 | 0.212 | 1547 | 0332 | 10.18 | 0.396 7.84 0.401
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Fig. 5: Execution Times and Processor Cache Stall Times for Different Memory Configurations.
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(dark shaded) bar for each benchmark is for a perfect memory system. The height of each bar is
the total execution time, and the blank portion of the bar is the processor cache stall time, for that
particular memory configuration. The processor cache stall time is the amount of time that the
processor is blocked because the L1 cache cannot accept a request from it. The L1 cache will not
accept processor requests when the limits of its abilities are reached with the miss requests that it
is already servicing. The processor cache stall that occurs for a cache organization, therefore pro-

vides one lower bound on the execution time of the program with that cache organization.

Figure 6 explicitly shows the speedups obtained for each of the 4 block sizes for each
benchmark, by presenting the percentage improvement in execution time while going from an

MPB(4,8) cache to an MPNB(4,8) cache.

The first thing to notice from Figures 5 and 6 is that the execution time with an MPNB(4,8)
cache is lower than that with an MPB(8) cache, even for the cases where an MPB(8) cache can
provide sufficient bandwidth. For example, the best MPNB(4,8) configuration can improve the
execution time by 27.3%, 20.1% and 25.5% for doduc, eqntott and matrix300, respec-
tively. This is despite the fact that an MPB(8) cache provide adequate average bandwidth for our
issue strategy (see Tables 1 and 2) in these cases. The execution time improves because,
although an MPB(8) cache can meet the average bandwidth demand, it is unable to meet the peak
miss bandwidth demand that arises when several misses occur close to each other, whereas an
MPNB(4,8) cache can easily meet this demand. In other words, because of its higher "peak"
bandwidth, an MPNB(4,8) cache allows some memory requests to be serviced earlier than they
would with an MPB(8) cache, thereby allowing other instructions to be issued earlier, and conse-

quently the total execution time to be reduced.

In cases where the peak bandwidth of an MPB(8) cache is not sufficient to meet even the
average bandwidth demands of our issue strategy, significant improvements in execution time

result, in going from an MPB(8) cache to an MPNB(8) cache. For example, for tomcatwv, an
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Fig. 6: Percentage Improvement in Execution Time with an MPNB(4,8) Cache over an MPB(8) Cache.
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MPNB(4,8) cache is able to achieve an 80.1% performance improvement over the best MPB(8).
For a blo;:k size of 4 bytes, where an MPB(8) cache does not have sufficient bandwidth to support
the demands of the issue strategy for any of the benchmarks, execution time is improved by 57%,
412%, 177.6% and 193.5% for doduc, egntott, matrix300, and tomcatv, respec-
tively. Another point to note from Figure 5 is that in most cases, performance with an
MPNB(4,8) cache is close to the performance with a perfect memory system for the issue strategy
considered, indicating little room for further improvement in the memory system for the issue

strategy.

For studying high-bandwidth caches for future issue strategies, more important than the pro-
gram execution time that occurs with a cache organization and a particular issue strategy is the
processor cache stall time that occurs because of the cache organization, since it presents one
lower bound on performance. As we can see from Figure 5, the processor cache stall is a
significant portion of the execution time with the blocking cache configurations, and is a negligi-
ble part with the non-blocking cache configurations. Therefore, with a blocking cache, we expect
little room for further improvements in the issue strategy, whereas with an MPNB cache, we
expect considerable freedom to support more sophisticated issue strategies. Table 3 reinforces
this expectation by presenting the best-case execution times and instruction issue rates calculated
for 3 cache organizations: i) a single-ported blocking cache, ii) an infinite-ported blocking cache
(with one 32-bit L1-L2 port) and iii) a multi-ported, non-blocking cache (with one 32-bit L1-L2
port). In each case, the cache is 8Kbytes and is direct-mapped. The execution times are calcu-
lated as the minimum time to service the misses on a single, 4byte wide L1-L2 data bus, with the
assumption that all hits can be overlapped perfectly with the service of misses (in the case of an
MPB cache, the service of hits is actually overlapped with the service of the writeback request for
the previous miss). Other relevant parameters are d =0.5 and T,, =12. As we can see by compar-

ing Table 1 and 3, a blocking cache leaves little room for further improvements in the instruction
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Table 3: Best-Case Execution Times and Instruction Issue Rates
8Kbyte, direct-mapped L1 Data Cache with 32-bit wide L1-L2 Data Bus

Single-Ported Infinite-Ported Multi-Ported

Blocking Cache Blocking Cache Non-blocking Cache
Benchmark , " "

Execution | Issue | Execution | Issue | Execution Issue

Time Rate Time Rate Time Rate
doduc 3.32 1.506 1.716 2914 0.365 13.699
eqntott 2.58 1.938 1.621 3.085 0.360 13.889
matrix300 4.14 1.208 3.177 1.574 1.516 3.298
tomcatv 5.92 0.845 4.357 1.148 1.103 4.533

issue strategy (in the case of tomcatwv, it can’t even support the average bandwidth demands of
our issue strategy!), even with infinite hit ports. There is still sufficient room for improvements
in the issue strategy with an MPNB cache and our 8Kbyte, direct-mapped, MPNB(4,8) cache
could possibly support instruction issue rates of 13.699, 13.889, 3.298 and 4.533 instruction per
clock, for dodue, eqntott, matrix300 and tomcatv, respectively, if we had instruc-

tion issue strategies capable of achieving these issue rates.

Table 4 presents the best-case execution times and instruction issue rates for the same

parameters as in Table 3, but with a 128-bit wide L1-L2 bus instead of a 32-bit wide L1-L2 bus.

Table 4: Best-Case Execution Times and Instruction Issue Rates
8Kbyte, direct-mapped L1 Data Cache with 128-bit wide L1-L2 Data Bus

Single-Ported Infinite-Ported Multi-Ported
Blocking Cache Blocking Cache Non-blocking Cache
Benchmark - -
Execution | Issue | Execution | Issue | Execution Issue
Time Rate Time Rate Time Rate
doduc 2.975 1.681 1.359 3.679 0.143 34.965
eqntott 2.175 2.299 1.014 4931 0.140 35.714
matrix300 3217 1.554 1.985 2.519 0.385 12.987
tomcatv 4615 1.083 2.796 1.788 0.363 13.774
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The wider L1-L2 bus has less impact on the peak performance that can be achieved with a
single-ported, blocking cache (11.6%-28.6% improvement), and a somewhat bigger impact on
peak performance with an infinite-ported, blocking cache (26.3%-60% improvement), but a
tremendous impact on peak performance with a multi-ported, non-blocking cache (155%-294%
improvement). In other words (as is also apparent from equations (1) and (3)), multi-ported,
non-blocking caches are better able to make use of the additional pin-bandwidth that we expect to
see in the future. With a single 128-bit wide L.1-L2 port, a multi-ported, non-blocking cache can
support an issue strategy with an issue rate of greater than 10 instructions per cycle for all our

benchmarks.

3.5.2. Tolerance to Miss Ratio

Another point to notice from Figure 5 is that performance with an MPNB cache is not very
sensitive to the miss ratio (the miss ratio varies greatly with the block size as shown in Table 2),
whereas the performance with an MPNB cache is sensitive to the miss ratio. Clearly the total
time taken to service misses is greater if the product of the number of misses (or the miss ratio)
and the miss time is higher. However, unlike a blocking cache, where the time taken to service
misses occurs serially, and is added to the time in which useful computation is carried out, a
non-blocking cache allows the miss service time to be overlapped both with the service of other
misses, as well as with useful computation, and therefore has a less significant impact on the total

execution time.

3.5.3. Tolerance to Miss Time

As a final point, let us consider the ability of an MPNB cache to tolerate a large miss time
for our issue strategy. Figure 7 presents the execution and processor cache stall time for 8Kbyte,
direct mapped MPB(8) and MPNB(4,8) caches, with a block size of 32 bytes, as T), is varied, for
our issue strategy. The first set of four bars for each benchmark are for an MPB(8) cache

(8Kbytes, direct mapped with block size of 32 bytes), for miss times of 10, 15, 20 and 25 clock
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Fig. 7: Execution Times and Processor Cache Stall Times with Different Memory Latencies.

cycles, respectively and the second set of four bars for each benchmark are the same for an
MPNB(4,8) cache (8Kbytes, direct mapped with block size of 32 bytes). From the figure, we can
see that the execution time with an MPNB(4,8) cache is less sensitive to increases in T, than that
with an MPB(8) cache. Furthermore, except in the case of egntott, an MPNB(4,8) cache with

T,,=25 actually allows better performance than an MPB(8) cache with T, = 10!
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4. Conclusions

As the instruction issuing capabilities of processors are improved, allowing the issue of
several instructions per clock cycle, the bandwidth of the data memory system must be improved
commensurately. We have considered ways of providing a high-bandwidth data memory hierar-
chy in this paper, with a level 1 data cache at the top of the hierarchy, using the flexibility in the
use of on-chip real estate that might be provided by a future-generation, single-chip processor,
and without requiring many demands of the off-chip components. To the best of our knowledge,
this is the first paper that considers the bandwidth that a cache-based memory system can provide

to the CPU — a metric that ultimately dictates the performance that the processor can achieve.

We saw that unless both the miss ratio and the miss time for the L1 cache are very low, its
bandwidth can suffer greatly if it is a standard blocking cache because of the serial service of
misses. To reduce this bandwidth degradation, we considered non-blocking caches and saw how
they would impact other components of the system. To further improve the bandwidth of the
memory system to more than one request per cycle, we proposed interleaving the L1 cache to
create a multi-ported cache. Our proposed multi-port, non-blocking (MPNB) cache design allows
multiple memory requests to be serviced in a single cycle, with only a single port to the off-chip

memory.

We also presented results of a detailed cycle-by-cycle simulation for 4 benchmarks, com-
piled for a DecStation 3100. Our simulation results suggest that the proposed MPNB caches are a
good choice for meeting the high data bandwidth demands of future-generation superscalar pro-

CESSOIS.

The work presented in this paper addresses only a few of the multitude of issues in the
design of an adequate-bandwidth data memory system for superscalar processors. We expect that
many of the design tradeoffs that have typically been studied in the context of blocking cache

designs, may not be applicable to MPNB cache designs. For example, we saw that an increase in
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both the miss ratio and the miss time had little impact on the performance with an MPNB cache
for our benchmarks, whereas it had a significant impact on the performance with a multi-port
blocking cache. Much work remains to be done in the area of multi-ported, non-blocking cache
designs — not only on which designs are better than others, but also on metrics to evaluate the
design — and evaluation techniques that are computationally less expensive than a cycle-by-

cycle simulation of the entire system.
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Appendix

The results obtained with 100 million instructions are not significantly different from those
with 5 million instructions. These results, presented below in Tables A.1 — A.4 and Figures A.5
— A.6, correspond to the tables and figures of Section 3.

Table A.1: Benchmark Data

Memory References .
(millions) Performance with Perfect Memory
Benchmark ool =
ycles ssue
Loads Stores (millions) Rate BWp
doduc 28.003 10.106 89.775 1.114 0.424
eqntott 21.702 3.238 55.529 1.801 0.449
matrix300 17.971 9.527 98.945 1.011 0.278
tomcatv 34.755 11.740 68.181 1.467 0.682

Table A.2: Miss Ratios and Bandwidth Supply with a Blocking Cache; T,, = 12

Block Size (Bytes)
Benchmark 4 8 16 32
m(%) | BWg | m(%) | BWs | m(%) | BWs | m(%) | BWs
doduc 13.67 | 0.379 726 | 0514 545 | 0.550 490 | 0.518
eqntott 17.72 | 0.320 | 1050 | 0423 6.81 | 0.495 5.17 | 0.504
matrix300 4443 | 0.158 | 2229 | 0257 | 11.37 | 0370 5.80 | 0472
tomcatv 3939 | 0.175 | 19.78 | 0280 | 13.53 | 0.330 | 11.53 | 0310
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Fig. A.5: Execution Times and Processor Cache Stall Times for Different Memory Configurations.
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Fig. A.6: Percentage Improvement in Execution Time with an MPNB(4,8) Cache over an MPB(8) Cache.
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Table A.3: Best-Case Execution Times and Instruction Issue Rates
8Kbyte, direct-mapped L1 Data Cache with 32-bit wide L1-1.2 Data Bus

Single-Ported Infinite-Ported Mutti-Ported

Blocking Cache Blocking Cache Non-blocking Cache
Benchmark - - -

Execution | Issue | Execution | Issue | Execution Issue

Time Rate Time Rate Time Rate
doduc 69.263 1.444 37.385 2.675 7.814 12.798
eqgntott 49,439 2.023 30.571 3.271 6.629 15.085
matrix300 58.271 1.716 38.871 2.573 18.326 5.457
tomcatv 140.857 0.710 113.234 0.883 27472 3.640

Table A.4: Best-Case Execution Times and Instruction Issue Rates
8Kbyte, direct-mapped L1 Data Cache with 128-bit wide L1-1.2 Data Bus

Single-Ported Infinite-Ported Multi-Ported
Blocking Cache Blocking Cache Non-blocking Cache
Benchmark
Execution | Issue | Execution | Issue | Execution Issue
Time Rate Time Rate Time Rate
doduc 62.384 1.603 28.010 3.570 3.115 32.103
eqntott 41.702 2.398 19.341 5.170 2.548 39.246
matrix300 48.553 2.060 24.294 4116 4.690 21.322
tomecatv 116.186 0.861 80.413 1.244 9.436 10.598
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