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ABSTRACT

High performance multiprocessor database machines have been made feasible with the
advent of cheap, powerful microprocessors and large main memories. However, exploiting
these platforms to support high speed complex query processing has lagged behind the
hardware technology. The thrust of this dissertation has concentrated on developing strategies
for efficiently processing join queries consisting of on the order of 10 joins in a parallel data-
base machine with hundreds of processors. Although the algorithms were developed with a
shared-nothing architecture in mind, the algorithms can be applied to shared-memory systems
with little modification.

For queries that join only a few relations, we have found that the parallel Hybrid hash-
join algorithm dominates under most circumstances, except when the join attribute values of
the building relation are highly skewed.

For multi-way join queries, a subset of the optimization search space of query plans called
right-deep query plans is identified as being particularly important in this highly-parallel
environment. Several algorithms are proposed for processing right-deep query plans and
results from a simulation model are presented that demonstrate that right-deep plans can
indeed offer significant performance advantages over the more traditional left-deep plans under
many conditions.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Several important events have occurred in the last ten years which have combined to
change the traditional view of database technology. First, microprocessors have become much
faster while simultaneously becoming much cheaper. Next, memory capacities have risen
while the cost of memory has declined. Finally high-speed communication networks have
enabled the efficient interconnection of large numbers of processors. All these technological
changes have combined to make feasible the construction of high performance multiprocessor

database machines.

Of course, as with any new technology, there are many open questions regarding the best
ways to exploit the capabilities of these multiprocessor database machines in order to achieve
the highest possible performance. Because the join operation is the cornerstone of a relational
database management system (RDBMS), we are interested in studying how to process join
queries in order to take advantage of the resources available in these database machines.
Furthermore, as a result of the increased demands being placed on database systems in recent
years, queries have become much more complicated and hence support must be provided for
efficiently executing queries composed of many join operations. The main contribution of this
dissertation is to address the efficient execution of complex join queries, especially queries

involving many relations, on multiprocessor database machines.

1.2. Outline

Chapter 2 surveys the literature related to join query processing. Emphasis is placed on

parallel join algorithms and on strategies for processing multi-way join queries.
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Before addressing the problem of efficiently executing queries composed of many join
operations, we needed to first understand all the problems and tradeoffs of executing queries
consisting of a single join in a multiprocessor database machine environment. This problem
has been studied previously by several researchers including [BARU87, BRAT87, DEWI8S,
DEWIS7. KITS88, LU85]. However, the performance of the more popular parallel join algo-
rithms has not been compared in a common hardware/software environment. In Chapter 3,
we present the results of how a varlety of alternative join algorithms perform when imple-
mented in the shared-nothing multiprocessor database machine Gamma [DEWI86, DEWIS0].
The algorithms studied were parallel versions of sort-merge, GRACE [KITS83], Simple
[DEWI84], and Hybrid [DEWI84]. These algorithms cover the spectrum from hashing, to loop-
ing with hashing, and finally to sorting. The performance analysis of these different algorithms
includes factors such as the effects of different tuple distribution policies, the presence of bit
vector filters, varying amounts of memory available for joining, and non-uniformly distributed
join attribute values. The main result from this analysis is that the Hybrid hash-join algorithm
dominates all the other join algorithms, except when the join attribute values of the inner,

"building" relation are highly skewed.

In Chapter 4, the results of Chapter 3 are extended to encompass the problem of execut-
ing queries composed of many joins in a multiprocessor database machine. In particular, the
ramifications of choosing a particular query plan format in which to optimize a multi-way join
query is addressed. Two restricted query plan formats, left-deep and right-deep, as well as the
fully general bushy-tree format are considered. The tradeoffs that we studied include the
potential for exploiting intra-query parallelism (and its corresponding effect on performance),
resource consumption (primarily memory), support for dataflow query processing, and the cost
of query optimization. From this analysis, several different algorithms are proposed for execut-

ing complex join queries when formatted in each of the alternative query trees.

In Chapter 5, the performance of two of the query processing algorithms for processing
right-deep query plans is studied in depth. A stmulation model of a shared-nothing multipro-

cessor database machine is used to conduct this performance analysis. Additionally, Chapter




6 presents a comparison of the performance of algorithms that employ left-deep query plans

with that of right-deep query plans. Our conclusions and future research directions are

presented in Chapter 7.



CHAPTER 2

SURVEY OF RELATED WORK

Considerable attention has been directed to the efficient processing of join queries since
the formulation of the relational model. Initially, nested loops and sort-merge were the algo-
rithms of choice [BLAS77]. Later, work by [BRAT84, DEWI84, KITS83, SHAP86] demonstrated
the effectiveness of hash-based join methods for centralized relational database systems when

large amounts of memory are available.

Many studies have also addressed parallel implementations of the join operation.
[QADAS8S, VALDS84] compare a variety of multiprocessor join algorithms based on analytical
models, while [DEWI85] used simulation to study hash-based multiprocessor join algorithms.
Several researchers, including [BARU87, BRAT87, DEWI87, DEWI88, KITS88, LU85, SCHN89],
reported measurements taken from implementations of a variety of parallel join algorithms.

However, none of these papers addressed the processing of queries with more than two joins.

[GERBS86] describes many of the issues involved in processing hash-based join operations
in multiprocessor database machines. Both inter-operator and intra-operator CoOncurrency
issues are discussed. In the discussion of inter-operator parallelism, the tradeoffs of left-deep,
right-deep and bushy query tree representations with regard to parallelism, pipelined data
flow, and memory consumption are addressed. However, while the basic issues involved in
processing complex queries in a multiprocessor environment are discussed, the tradeoffs
between the alternative query tree optimization strategies are not studied in depth and no algo-

rithms for processing the different query trees are proposed.

[GRAES87] considers some of the tradeoffs between left-deep and bushy execution trees in

a single-processor environment. Analytic cost functions for hash-join, index join, nested




loops join, and sort-merge join are developed and used to compare the average plan execution
costs for these two different query tree formats. Although optimizing left-deep query trees
requires less resources (both memory and CPU), the execution times of the resulting plans are
very close to those for bushy queries when the queries are of limited complexity. However,
when the queries contain 10 or more joins, plan execution costs for the left-deep trees become

up to an order of magnitude more expensive.

[TAY90] studies the problem of finding the optimal query plan for a multi-way join query
in a single-processor environment. The goal is to describe the conditions under which the best
plan can be found by searching only a subspace of all possible plans (e.g., when a linear stra-
tegy such as a left-deep tree will always represent the best plan). A limiting factor of this work
is the simplistic cost model employed. Costs are determined solely by the number of tuples
generated at the interior levels of the candidate query plans. The use of this cost measure
disregards such effects as using large disk pages, disk page readahead, and most importantly,

the amount of work that can be done concurrently.

[STON88, STON89| describes how the XPRS project plans on utilizing parallelism in a
shared-memory database machine. This research has several points in common with ours.
First, hash joins are used for all equi-join queries. Second, examples of both left-deep and
bushy query trees are provided; however, the paper does not discuss the tradeoffs between
these two strategies or the impact of each on system performance. It is also not clear if XPRS
intends to use right-deep query trees. Optimization during query compilation assumes the
entire buffer pool is available, but in order to simplify runtime optimization, the query tree is
divided into fragments. These fragments correspond to our operator subgraphs described in
Chapter 4. At runtime, the desired amount of parallelism for each fragment is weighed against
the amount of available memory. If insufficient memory is available, three techniques can be
used to reduce memory requirements. First, a fragment can be decomposed into sequential
fragments. This requires the spooling of data to temporary files. If further decomposition is
not possible, the number of batches used for the Hybrid join algorithm [DEWI84] can be

increased. Finally, the level of parallelism applied to the fragment can be reduced. [GRAE90]



also supports each of the three alternative query tree formats in the shared-memory database

machine Volcano, but the tradeoffs between the different formats are not discussed.

In [BABA87] an algorithm is proposed that accepts as input a set of data flow graphs
(optimized query trees), a set of parameters describing the multiprocessor environment (e.g.
disk times, CPU costs, network costs, and number of processors), and a set of parameters
describing the test database. The algorithm, using heuristics, generates an assignment of rela-
tional operators to processors in the system such that overall response time for the collection
of data flow graphs is minimized. As part of the assignment, operators may be replicated
(parallelized) across multiple processors to reduce response time. Our proposed research
differs from theirs in several ways. First, a major objective of our research is to determine how
to structure a query tree for a particular query and the tradeoffs between choosing different
strategies in a multiprocessor system. [BABAS7], however, assumes that their algorithm can
easily decompose all input query trees. We consider this assumption to be very simplistic,
especially because their algorithmn doesn't recognize many of the difficulties involved in syn-
chronizing subtrees in a complex bushy query tree. Also, we are interested in identifying all
the relevant costs associated with parallelizing relational operators, especially joins. Again,
[BABAS7] makes a simplifying assumption that there is NO cost in further replicating an
operator. That is, they ignore the cost of starting, terminating, and otherwise scheduling an
operator. Perhaps most seriously, a naive memory model is employed. It is assumed that all
operators consumne identical amounts of memory and that adding a second occurrence of the
same operator (although potentially from a different query) on the same processor requires no
additional memory. Their algorithm also does not account for operators such as hash joins

that can run significantly faster when given additional memory resources.

[MURP89] proposes to increase performance of general purpose shared-memory database
systems by using intra-query parallelism and minimizing resource requirements. To process a
join operation, it is assumed that a page connectivity graph exists. This graph can be con-
structed from a join index [VALD87] and consists of a node for each page of each relation and

an edge between each pair of pages that have at least one matching attribute. [MURP89]




develops an algorithm for scheduling a join operation across multiple processors given such a
graph. Processors are scheduled according to page joins and disk /0 is modeled at the page
level. In addition, lower bounds are presented for the join execution time as well as the
number of processors required to complete processing in a minimum time. If enough memory
does not exist to hold the entire page connectivity graph, the scheduling algorithm attempts to

minimize the number of pages that must be re-read.



CHAPTER 3

EVALUATION OF SINGLE JOIN QUERIES

3.1. Introduction

In this chapter, we examine the performance of a variety of parallel join algorithms for
processing queries composed of a single join operation. This work is important for two rea-
sons. First, although some researchers, including [BARU87, BRAT87, DEWI87, DEWISS,
KITS88], have previously presented performance measurements for several parallel join algo-
rithms, implementations of the more popular parallel join algorithms have not been compared
in a common hardware/software environment. And second, a comprehensive understanding
of the performance of single-join queries is critical to understanding how to process queries

composed of multiple join operations.

The join algorithms we studied were parallel versions of sort-merge, Grace [KITS83], Sim-
ple [DEWI84], and Hybrid [DEWI84]. These algorithms cover the spectrum from hashing, to
looping with hashing, and finally to sorting. The Gamma database machine [DEWI86,
DEWIQ0] served as the experimental vehicle. We feel that Gamma is a good choice for a com-
parison environment because its shared-nothing architecture is becoming increasingly popular

[COPE88, LORI8S, TERA83, TANDSS].

The experiments were designed to test the performance of each of the join algorithms

under several different conditions. First, we compare the performance of the join algorithms as

the amount of memory for joining is varied.! We then discuss how bit vector filtering

! This set of experiments can also be viewed as predicting the relative performance of the
various algorithms when the size of memory is constant and the algorithms are required to
process relations larger than the size of available memory.




techniques {(BABB79, VALD84] improve performance for each of the parallel join algorithms.
Finally, the join algorithms are analyzed in the presence of non-uniformly distributed join attri-

bute values.

The remainder of this chapter is organized as follows. In Section 3.2, we discuss the
hardware and software platform used as the testbed for the performance analysis. Next, the
four parallel join algorithms that we tested are described in Section 3.3. Section 3.4 contains

the results of the experiments that we conducted and our conclusions appear in Section 3.5.
3.2. Overview of the Gamma Database Machine

3.2.1. Hardware Configuration

Currently, Gamma runs on a 32 processor Intel {PSC/2 hypercube [INTE88]. Each pro-
cessor is configured with an 80386 CPU (4 MIPS), 8 megabytes of memory, and a 330 mega-
byte MAXTOR 4380 (5 1/4") disk drive. Each disk drive has an embedded SCSI controller that

provides a 45 Kbyte RAM buffer that acts as a disk cache on read operations.

The nodes in the hypercube are interconnected to form a hypercube using custom VLSI

routing modules. Each module supports eight? full-duplex, serial, reliable communication
channels operating at 2.8 megabytes/s. Small messages {< 100 bytes) are sent as datagrams.
For large messages, the hardware builds a communications circuit between the two nodes over
which the entire message is transmitted without any software overhead or copying. After the
message has been completely transmitted, the circuit is released. Table 3.1 summarizes the
transmission times from one Gamma process to another (on two different hypercube nodes) for

a variety of message sizes.

In 1989, we conducted similar experiments to those reported in this chapter using a dif-

ferent hardware platform for Gamma [SCHN89]. At that time Gamma was running on 17

20n configurations with a mix of compute and I/0 nodes, one of the eight channels is
dedicated for communication to the I/0 subsystem.
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Packet Size (in bytes) Transmission Time

50 0.74 ms.

500 1.46 ms.

1000 1.57 ms.

4000 2.69 ms.

8000 4.64 ms.

Hypercube Packet Transmission Times
Table 3.1

VAX/750 processors connected via a ring. Only eight of the seventeen processors had an
attached disk. The processors were also much slower (0.5 MIPS) and had only 2 megabytes of
mermory each. Throughout this chapter, we will draw comparisons with the results reported in

[SCHN89] to point out the effects of the underlying hardware.
3.2.2. Software Overview

3.2.2.1. Physical Database Design

In Gamma, all relations are horizontally partitioned [RIES78] across all disk drives in
the system. The key idea behind horizontally partitioning each relation is to enable the data-
base software to exploit all the I/O bandwidth provided by the hardware. By declustering® the
tuples of a relation, the task of parallelizing a selection/scan operator becomes trivial as all

that is required is to start a copy of the operator on each processor.

Three alternative ways of distributing the tuples of a relation are provided: round-robin,
hashed, and range partitioning. As implied by its name, in the first strategy when tuples are
loaded into a relation, they are distributed in a round-robin fashion among all disk drives. If
the hashed strategy is selected, a randomizing function is applied to the "key" attribute of each
tuple to select a storage unit. In the third strategy the user specifies a range of key values for

each site.

8pPeclustering is another term for horizontal partitioning that was coined by the Bubba
project [LIVN87].




11

3.2.2.2. Query Execution

Gamma uses traditional relational techniques for query parsing, optimization [SELI79,
JARKS84], and code generation. Queries are compiled into a tree of operators with predicates
compiled into machine language. After being parsed, optimized, and compiled, the query is
sent by the host software to an idle scheduler process through a dispatcher process. The
scheduler process, in turn, starts operator processes at each processor selected to execute the
operator. The task of assigning operators to processors is performed in part by the optimizer
and in part by the scheduler assigned to control the execution of the query. For example, the
operators at the leaves of a query tree reference only permanent relations. Using the query
and schema information, the optimizer is able to determine the best way of assigning these

operators to processors.

In Gamma, the algorithms for all operators are written as if they were to be run on a sin-
gle processor. The input to an operator process is a stream of tuples and the output is a
stream of tuples that is demultiplexed through a structure we term a split table. Once the
process begins execution, it continuously reads tuples from its input stream, operates on each
tuple, and uses a split table to route the resulting tuple to the process indicated in the split
table. Consider, for example, the case of a selection operation that is producing tuples for use
in a subsequent hash join operation. If the join is being executed by N processes, the split
table of the selection process will contain N entries. For each tuple satisfying the selection
predicate, the selection process will apply a hash function to the join attribute to produce a
value between O and N-1. This value is then used as an index into the split table to obtain the
address (e.g. machine_id, port #) of the join process that should receive the tuple. When the
process detects the end of its input stream, it first closes the output streams and then sends a
control message to its scheduler indicating that it has completed execution. Closing the out-
put streams has the side effect of sending end of stream messages to each of the destination
processes. Except for three control messages, the execution of an operator is completely self-
scheduling. Data flows among the processes executing a query tree in a dataflow fashion. If

the result of a query is a new relation, the operators at the root of the query tree distribute the
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result tuples on a round-robin basis to store operators at each disk site.

3.2.2.3. Operating and Storage System

The NX/2 operating system provided by Intel for the hypercube was modified to better
support database applications. A thread package was added that provides lightweight
processes with shared memory. Messages between two processes on the same processor are

short-circuited by the cornmunications software.

File services in Gamma are based on the Wisconsin Storage System (WiSS) [CHOUS8S].

These services include structured sequential files, B* tree indices, byte-stream files as in UNIX,
long data items, a sort utility, and a scan mechanism. A one page readahead mechanism is

used when scanning a file sequentially.

3.3. Parallel Join Algorithms

We implemented parallel versions of four join algorithms: sort-merge, Grace [KITS83],
Simple hash [DEWI84], and Hybrid hash-join [DEWI84]. A common feature of the parallel ver-
sions of each of these algorithms is the use of a hash function to partition each relation being
joined into a collection of disjoint subsets that can be processed independently and in parallel.
This partitioning is performed by applying a hash function to the join attribute of each tuple.
The actual join computation depends on the algorithm: building and probing of hash tables is
used for the Simple, Grace, and Hybrid algorithms, whereas sorting and merging is used for
the sort-merge algorithm. As part of the partitioning process, the Grace and Hybrid join algo-
rithms first partition the two relations being joined into additional fragments when the inner
relation is larger than the amount of available main memory. This is referred to as the
bucket-forming phase [KITS83]. More details on each algorithm are presented in the follow-

ing sections.

In the following discussion, R and S refer to the relations being joined. R is the smaller of

the two relations and is always the inner joining relation.
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3.3.1. Sort-Merge

Our parallel version of the sort-merge join algorithm is a straightforward adaptation of the
traditional single processor version of the algorithm and is essentially identical to the algorithm
employed by the Teradata machine [TERA83, DEWI87]. The smaller of the two joining rela-
tions, R, is first partitioned through a split table that contains an entry for each processor with
an attached disk. A hash function is applied to the join attribute of each tuple to determine
the appropriate disk site. As the tuples arrive at a site they are stored in a temporary file.
When the entire R relation has been redistributed, each of the local files is sorted in parallel.
As an example, Figure 3.1 depicts R being partitioned across K disk nodes into relation R’.
Notice that each relation fragment of R on each disk will be passed through the same split
table for redistribution. Relation S is then processed in the same manner. Since the same
hash function is used to redistribute both relations, only tuples within fragments at a particu-
lar site have the possibility of joining [KITS83]. Thus, a local merge join performed in parallel

across the disk sites will fully compute the join.

owa > Dk

split
table

hash

R

Partitioning of relation R across K disk drives for sort-merge.
Figure 3.1
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To increase intra-query parallelism, it would be possible to partition (or sort) both rela-
tions concurrently. However, this could cause performance problems due to disk head and
network interface contention. Another issue is that bit filters must be created from the entire
inner relation before they can be applied to the outer relation; we therefore chose to partition

the relations serially.

3.3.2. Simple Hash-Join

A centralized version of the Simple hash-join [DEWI84] operates as follows. First, the
smaller joining relation, R, is read from disk and staged into an in-memory hash table (which
is formed by hashing on the join attribute of each tuple of R). Next, the larger joining relation,
S, is read from disk and its tuples probe the hash table for matches. When the number of
tuples in R exceeds the size of the hash table, memory overflow occurs. Figure 3.2 depicts the
steps taken in order to handle this overflow. In step 1, relation R is used to build the hash
table. When the hash table space is exceeded, the join operator creates a new file R” and
streams tuples to this file based on a new function, h’, until the tuples in R are distributed
between R° and the hash table (step 2)*. The query scheduler then passes the function h” to
the operator producing the tuples of S, the outer relation. In step 3, tuples from S correspond-
ing to tuples in the overflow partition (R’) are spooled directly to a temporary file, S”. All other
tuples probe the hash table to affect the join. We are now left with the task of joining the
overflow partitions R and S". Since R™ may also exceed the capacity of the hash table, the
same process continues until no new overflow partitions are created, at which time the join will

have been fully computed.

To parallelize this algorithm we inserted a split table in step 1 which routes tuples (via
hashing) to their appropriate joining site. Of course, hash table overflow is now possible at

any (or all) of these join sites. Overflow processing is still done, though, as described in step 2

4An example h” function is: join attribute value > 60,000.
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of the centralized algorithm. In fact, each join site that overflows has its own locally defined h”
and its own associated overflow file R". Although each overflow file is stored entirely on a sin-
gle disk (i.e., not horizontally partitioned) which may or may not be a local disk, different
overflow files are assigned to different disks. Although it would have been possible to horizon-
tally partition eachﬁoverﬂow fle across all nodes with disks, if one assumes that the R tuples
are uniformly distributed across the join nodes, all nodes should overflow to about the same
degree. Hence, the final result will be as if the aggregate overflow partition was horizontally
partitioned across the disk sites. For step 3 of Figure 3.2, the split table used in step 1 to
route tuples to their appropriate joining sites is augmented with the appropriate h’ functions.
When relation S is passed through this split table, tuples will be routed to either one of the

joining sites for immediate joining or directly to the S” overflow files for temporary storage. As
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with the centralized algorithm, the overflow partitions R’ and S are recursively joined until no
overflow occurs on any of the joining sites. Finally, it should be noted that there is no con-
straint that the processors used for executing the join operator must have disks attached to

them.

The Simple hash-join algorithm is also used as the overflow resolution method for our

parallel implementations of the Grace and Hybrid algorithms.

3.3.3. Grace Hash-Join

A centralized Grace join algorithm [KITS83] works in three phases. In the first phase, the
algorithm partitions relation R into N disk buckets by hashing on the join attribute of each
tuple in R. In phase 2, relation S is partitioned into N buckets using the same hash function.

In the final phase, the algorithm joins the respective matching buckets from relations R and S.

The number of buckets, N, is chosen to be very large. This reduces the chance that any
bucket will exceed the memory capacity of the processors used to actually affect the join of two
buckets. If the buckets are much smaller than main memory, several will be combined during
the third phase to form more optimally sized join buckets (referred to as bucket tuning in

[KITS83])).

The Grace algorithm differs fundamentally from the sort-merge and Simple hash-join
algorithms in that data partitioning occurs at two different stages - during bucket-forming
and during bucket-joining. Parallelizing the algorithm thus must address both these data
partitioning stages. To insure maximnuin utilization of available I/O bandwidth during the
bucket-joining stage, each bucket is partitioned across all available disk drives. A partition-
ing split table, as shown in Figure 3.3, is used for this task. When it is time to join the i-th
bucket of R with the i-th bucket of S, the tuples from the i-th bucket in R are distributed to the
available joining processors using a joining split table (which will contain one entry for each
processor used to effect the join). As tuples arrive at a site they are stored in in-memory hash
tables. Tuples from bucket i of relation S are then distributed using the same joining split

table and, as tuples arrive at a processor, used to probe the hash table for matches.
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The bucket-forming phase is completely separated from the bucket-joining phase under
the Grace join algorithm. This separation of phases forces the Grace algorithm to write both

the joining relations back to disk before beginning the join stage of the algorithm.

Currently, our parallel implementation of the Grace join algorithm does not use bucket
tuning. Instead, the number of buckets is determined by the query optimizer, which tries to
ensure that the size of each bucket is just less than the total amount of main-memory of the

joining processors.

3.3.4. Hybrid Hash-Join

A centralized Hybrid hash-join algorithm [DEWI84] also operates in three phases. In the
first phase, the algorithm uses a hash function to partition the inner relation, R, into N buck-

ets. The tuples of the first bucket are used to build an in-memory hash table while the
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remaining N-1 buckets are stored in temporary files. A good hash function produces just
enough buckets to ensure that each bucket of tuples will be small enough to fit entirely in
main memory. During the second phase, relation S is partitioned using the hash function
from step 1. Again, the last N-1 buckets are stored in temporary files while the tuples in the
first bucket are used to immediately probe the in-memory hash table built during the first
phase. During the third phase, the algorithm joins the remaining N-1 buckets from relation R
with their respective buckets from relation S. The join is thus broken up into a series of
smaller joins, each of which hopefully can be computed without experiencing join overflow. As
with the Grace join algorithm, the size of the smaller relation determines the number of buck-

ets: this calculation is independent of the size of the larger relation. Whereas the Grace join
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algorithm uses additional memory during the bucket-forming phase in order to produce extra
buckets, Hybrid exploits this additional memory to immediately begin joining the first two

buckets.

Our parallel version of the Hybrid hash join algorithm is similar to the centralized algo-
rithm described above. A partitioning split table first separates the joining relations into N
logical buckets. The number of buckets is chosen such that the tuples corresponding to each
bucket will fit in the aggregate memory of the joining processors. The N-1 buckets intended
for temporary storage on disk are each partitioned across all available disk sites as with the
Grace algorithm. Likewise, a joining split table will be used to route tuples to their respective
joining processor (these processors do not necessarily have attached disks), thus parallelizing
the joining phase. Furthermore, the partitioning of the inner relation, R, into buckets is over-
lapped with the insertion of tuples from the first bucket of R into memory-resident hash tables
at each of the join nodes. In addition, the partitioning of the outer relation, S, into buckets is
overlapped with the joining of the first bucket of S with the first bucket of R. This requires
that the partitioning split table for R and S be enhanced with the joining split table, as tuples
in the first bucket must be sent to those processors being used to effect the join. Of course,
when the remaining N-1 buckets are joined, only the joining split table will be needed. Figure
3.4 depicts relation R being partitioned into N buckets across k disk sites where the first

bucket is to be joined on m processors.

3.4. Experimental Results

We tested the various parallel algorithms under several conditions. First, the perfor-
mance of the algorithms are studied when the amount of memory available for joining is
varied. Next, we compare the effects of bit vector filtering on the different algorithms. Finally,
the impact of non-uniformly distributed join attribute values on the performance of each of the

algorithms is studied.

The benchmark relations are based on the Wisconsin Benchmark [BITT83]. Each relation

consists of thirteen 4-byte integer values and three 52-byte string attributes. Except where
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noted otherwise, hashing on the uniquel attribute (an integer field) was used to determine
each tuple's destination site during loading of the database. The benchmark join query is
joinABprime, which joins a 1,000,000 tuple relation (approximately 208 megabytes) with a
100,000 tuple relation (approximately 20 megabytes) and produces a 100,000 tuple result rela-
tion (over 40 megabytes). 8 kilobyte disk pages were used in all experiments. The hardware
environment consists of 30 processors with disks, with one additional processor reserved for
query scheduling and global deadlock detection. All relations, including output relations, are

declustered across all 30 processors.

Join performance (for each of these parallel join algorithms) is sensitive to the amount of
available memory relative to the size of the joining relations. In designing the set of experi-
ments described below, the first decision to make was how to capture this aspect of the perfor-
mance of the different algorithms. One approach was to keep the amount of available memory
constant while varying the size of the two relations being joined. The other choice was to keep
the size of the joining relations constant while (artificially) varying the amount of available
memory. We rejected the first choice because increasing the size of the joining relations has

the side-effect of increasing the number of I/O's needed to execute the query.

Our experiments analyze join performance over a wide range of memory availability. All
results are graphed with the x-axis representing the ratio of available memory to the size of the
smaller relation. Note that available memory is the sum of the memory that is available for
computing the join on the joining processors. For the hash-based join algorithms, this
memory is used to construct an in-memory hash table, while with the sort-merge join algo-
rithm, this memory is used for both sorting and merging. In the case of the sort-merge join
algorithm, we simply reduced the amount of sort/merge space and for the Simple-hash join
algorithm we reduced the amount of hash table space, accordingly. For the Grace and Hybrid
algorithms, however, a data point at 0.5 relative memory availability, for instance, equates to a
two-bucket join. Likewise, a data point at 0.20 was computed using 5 buckets. Thus, neither
Grace or Hybrid joins ever experienced hash table overflow. At the end of Section 3.4.1 we

analyze the performance of the Grace and Hybrid join algorithms at data points not
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corresponding to an integral number of buckets.

3.4.1. Parallel Join Algorithm Performance

Figure 3.5 displays the execution times of the joinABprime query as a function of the
amount of memory available relative to the size of the inner relation. Several points should be
made about this graph. First, when the smaller relation fits entirely in memory (at 1.0), the
Hybrid and Simple algorithms have, as expected, identical execution times. One might expect,
however, that at the 50% available memory data point Simple hash would also be equal to
Hybrid hash because their respective 1/0 behavior is identical (both algorithms write approxi-
mately one-half of the joining relations to disk). Simple hash is slower, however, because it
first sends all tuples to the join sites for processing (where it will turn out that 1/2 of the
tuples belong to the overflow partition - see Section 3.3.2) while the Hybrid algorithm writes

the tuples belonging to the second bucket directly to disk.

As expected, Grace joins are relatively insensitive to decreasing the amount of available
memory, but Hybrid is very sensitive, especially when large amounts of memory are available.
This occurs because the Grace algorithm is not using the extra memory for joining and hence
decreasing memory simply increases the number of buckets, each of which incurs a small
scheduling overhead. However, for Hybrid, decreasing the amount of memory available from a
ratio of 1.0 to 0.5 forces the algorithm to stage half of each joining relation back to disk.
Furthermore, note that the response time for the Hybrid algorithm approaches that of the
Grace algorithm as memory is reduced. Hybrid derives its benefits from exploiting extra
memory and, when this memory is reduced, the relative performance of the algorithm

degrades.

The Hybrid algorithm dominates over the entire available memory range. Between the
memory ratios of 0.5 and 1.0, Simple hash outperforms Grace and sort-merge because a
decreasing fraction of the larger joining relation is written back to disk. However, as memory
availability decreases, Simple hash degrades rapidly because it repeatedly reads and writes the

same data. While the performance of the sort-merge algorithm is relatively stable, it is
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dominated by the Hybrid and Grace algorithms over the entire memory range. The upward
steps in the response time curves for sort-merge result from the cost of the additional merging
passes that are required to sort the larger source relation as memory is reduced. However, it
should not be concluded from Figure 3.5 that Simple hash-join will outperform sort-merge join
for all queries and under most situations of limited memory availability. If the curves were
extended to use even less memory, the sort-merge algorithm would maintain near level perfor-

mance while Simple hash-join will continue its rapid performance degradation. Also, if the test

query joined two equi-size relations, the differenices between all the algorithms would diminish.

It is important to point out that the trends observed in these graphs and their general
shape are almost identical to the analytical results reported in [DEWI84] and the experimental

results in [DEWI8S5] for single-processor versions of the same algorithms. There are several
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reasons why we find this similarity encouraging. First, it demonstrates that each of the algo-
rithms parallelizes well. Second, it serves to verify that our parallel implementation of each

algorithm was done in a fair and consistent fashion.

It should also be noted that these results are almost identical to those reported in
[SCHN89] when Gamma was using an older hardware platform (see Section 3.2.1). However,
there are a few important differences. When using the older version of Gamma, it was found
that exploiting knowledge about the manner in which the relations were declustered could
result in a significant performance difference. If the two relations being joined were both
hash-partitioned on their joining attributes, the partitioning phase of each of the parallel algo-
rthms described in the previous section could be eliminated. Rather than special-case this
situation, Gamma relied on the operating system to "short-circuit” packets between two
processes on the same machines and the software was designed to maximize the extent to
which tuples were mapped to hash-join buckets on the same processor. The benefits were
significant in this environment because the time to reliably transmit a 2 Kbyte message
between processes on different processors was 12.4 milliseconds compared to only 4.4 mil-
liseconds for a inessage between processes on the same processor [GERBS86]. In the current
hardware configuration this special case is not significant because message costs are a small
fraction of the total cost of computing the query and because it costs at most an additional mil-

lisecond to send a message to a process on a different processor.

Another difference between the results in Figure 3.5 and those reported in [SCHN89] is a
greater degradation of performance of the sort-merge algorithm with respect to the other algo-
rithms, especially Simple hash-join. Part of this effect is due to the larger relations used in
these current tests, but the most important factor is the hardware cache that is installed on
each of the disk controllers in the current machine. With the addition of the disk cache, scan-
ning a file sequentially became twice as fast (in single-user mode). With the Grace, Hybrid, and
Simple join algorithms, whenever a file is read it is accessed sequentially. However, with sort-
merge join, disk /0O is basically random during both run generation and merging because any

request made to a sector not in the hardware cache invalidates the cache.
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Grace and Hybrid Performance over Intermediate points

As stated in the introduction of this section, we chose to plot response times for the
Hybrid and Grace algorithms when the available memory ratio corresponded to an integral
number of buckets. Thus, instead of the straight lines connecting the plotted points in Figure
3.5, the curves should actually be step functions. Alternatively, we could have chosen to let
the algorithms overflow at non-integral memory availabilities and used the Simple hash-join
algorithm to process the overflow. This decision represents the tradeoff between being pes-
simistic and always electing to run with one additional bucket, or being optimistic and hoping
the overflow mechanism is cheaper than using an extra bucket. Clearly, with the Grace algo-
rithm the pessimistic choice is the best choice since extra buckets are inexpensive. However,

the tradeoffs are not as obvious for the Hybrid algorithm.

Figure 3.6 presents a more detailed examination of the performance of the Hybrid join

algorithm between the memory ratios of 0.5 and 1.0%. Performance is optimal at the memory
ratios of 0.5 and 1.0 because memory is fully utilized and no unnecessary disk 1/0 is per-
formed. The line connecting these points thus represents the optimal achievable performance
if perfect partitioning of the joining relations was possible. The horizontal line reflects the pes-
simistic option of executing with one extra bucket. Explaining the performance of the Hybrid

algorithm with overflow requires more details of how the Simple algorithm processes overflows.

When tuples of R (the inner relation) arrive at a join site they are inserted into a hash
table based on the application of the hash function, and a histogram based on the application
of the hash function to the tuple’s join attribute value is updated. This histogram records the
number of tuples between successive ranges of hash values. When the capacity of the hash
table is exceeded, a procedure is invoked to clear some number of tuples from the hash table

and write them to an overflow file (this is the h” function described earlier). We currently try to

5This snapshot of performance will also show the expected behavior between the other
plotted points on the graphs.
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clear 10% of the hash table memory space when overflow is detected. This is accomplished by
examining the histogram of hash values. For example, the histogram may show us that writ-
ing all tuples with hash values above 90,000 to the overflow file will free up 10% of memory.
Given this knowledge, the tuples in the hash table are examined and all qualifying tuples are
written to the overflow file. As subsequent tuples arrive at the join site, they are first compared
to the present cutoff value. If their hash values are above the cutoff mark they are written
directly to the overflow file; otherwise, they are inserted into the hash table. Notice that the
hash table could again overflow if the heuristic of clearing 10% of memory turns out to be
insufficient. In this case, an additional 10% of the tuples are removed from the hash table.

The 10% heuristic may seem overly optimistic at first but notice that each successive applica-
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tion of the heuristic really increases the percentage of incoming tuples being written to the
overflow file. For example, after the second invocation of the heuristic, incoming tuples will
only have about an 80% chance of even being directed to the hash table; the other 20% are
immediately sent to the overflow file. Thus, more tuples will need to be examined before the
now available 10% of free memory is filled than was required for the previous invocation of the

heuristic.

The shape of the response time curves for the Hybrid algorithm in Figure 3.6 llustrates
how these heuristics impact performance. The overflow curve becomes worse than that of
Hybrid with two buckets because of the CPU overhead required to repeatedly search the hash
table and also because the heuristic forces more than 50% of the tuples to be written to the
overflow file (hence incurring additional disk I/Os). Also, there is the cost of sending tuples to
the join site, finding that they now belong to the overflow partition, and re-sending them to the
process that will write them to disk (even though the transmission of the overflow tuples is
short-circuited, the protocol processing costs are still incurred). These results show that a
tradeoff exists between being pessimistic and increasing the number of buckets versus being

optimistic and counting on Simple hash-join to resolve any memory overflow.

3.4.2. Multiprocessor Bit Vector Filtering

In this next set of experiments we studied the performance of the parallel join algorithms
when bit filters [BABB79, VALD84] were used. The concept of bit filtering is simple. Initially
an array of bits is set to zero. A hashing function is applied to the join attribute of each tuple
processed in the first joining relation and the appropriate bit is set to one. The fully con-
structed bit filter is then passed to the second joining relation. The same hashing function is
applied to the joining attribute of each tuple in the second joining relation and the appropriate
bit in the bit flter is checked. If the bit is zero, there is no possibility that the tuple can parti-

cipate in the join and it can safely be eliminated from further processing.

With our parallel sort-merge join algorithm, a bit filter is built at each disk site as the

inner (smaller) relation is partitioned across the network and stored in temporary files. With
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the hash-based algorithms, a bit filter is built at each of the join sites as tuples from the inner
relation are being inserted into the hash tables. The bit filter is then used to eliminate non-

joining tuples from the outer relation.

In our implementation, bit filtering of tuples is only applied during the joining phase.
With the Simple hash-join algorithm this means that as the number of overflows increases, the
opportunities for filtering out non-joining tuples also increases (because each overflow resolu-
tion is treated as a separate join). With Grace and Hybrid joins, each bucket-join is treated as
a separate join. Thus, a new bit filter will be built as a part of processing each bucket. Since
each join uses the same size bit filter, increasing the number of buckets (or overflows)

increases the effective size of the aggregate bit filter across the entire join operation.
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Because of implementation constraints we did not use the joinABprime query as
described earlier for these tests. Instead, we modified this query to add a selection predicate
on the smaller joining relation which reduced its size to half its previous value. We were forced
into modifying the query, because in the current implementation, only a single 8 Kbyte packet
which is shared among all the joining processors is reserved for bit filtering. With the regular
joinABprime query, each site receives 3,333 building tuples. However, with a total bit filter
size of 8 Kbytes, only 2,184 bits are available for the bit filter at each site. Obviously, the bit
flter would have been useless in this environment because most of the bits would have been
set to one. We would have preferred to use the regular joinABprime query and simply increase

the size of the bit filter, but the required implementation effort was prohibitive.

Figure 3.7 shows the results with bit filtering applied. Notice that the relative positions of
the algorithms have not changed, but the execution times have dropped in comparison to the
results shown in Figure 3.5. The performance improvements from bit filtering for each indivi-

dual algorithm are shown in Figures 3.8 through 3.11.

Figures 3.8 and 3.9 show the effects of using bit filters with the Hybrid and Grace join
algorithms, respectively. The improvement in performance with bit filtering is limited to about
59% for both of these algorithms. This is somewhat disappointing, but it can easily be
explained. First, the bit filters are filled to 77% occupancy and thus not all of the non-joining
tuples are eliminated. And second, by using bit filtering only during bucket-joining, the bit
filters only reduce unnecessary network traffic and CPU cycles for "probing'. With the rela-
tively fast communication provided by the hypercube, these benefits are necessarily limited. If
bit filtering was extended to the bucket-forming stage, the speedups would be much more

impressive because substantial amounts of disk I/O would also be eliminated.

The results for the Simple hash-join algorithm shown in Figure 3.10 support the conclu-
sion that, in the current hardware environment, reducing disk traffic results in significantly
better performance. Since the Simple algorithm “loops" over its joining relations, applying

filtering techniques eliminates the writing and reading of useless tuples potentially many
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times. The performance improvement for this algorithm is approximately 30% whenever
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overflow processing is required. Using a larger bit fAlter would provide even better perfor-

mance.

The performance of the sort-merge join algorithm also benefits significantly from the use
of bit filters, as shown in Figure 3.11. Tuples of the larger relation that are eliminated by the
flter do not need to be written to disk, sorted, and later read during merging. Obviously, using

a larger bit filter would further improve the performance of this algorithm.

These results should also be contrasted with the more optimistic results reported in
[SCHN89] when Gamma was running on a collection of VAX 750's. In this older Gamma
configuration, sending a message from node to node was much more expensive (12.4 ms.
versus 4.6 ms.) and hence reducing network traffic was more beneficial. Also, due to experi-
mental conditions and implementation constraints, the bit filters in the older configuration

were only 66% occupied as opposed to 77% in the current configuration.

3.4.3. Non-Uniform Data Distributions

In this set of experiments we wanted to analyze the performance of the four parallel join
algorithms in the presence of non-uniformly distributed join attribute values. In order to iso-
late the effects of non-uniform data distributions, we varied the distribution of the two join
attribute values independently. Figure 3.12 shows the four possible combinations that
comnprised our experimental design space. The key we are using in this figure is XY, where X
(Y) represents the attribute value distribution of the inner (outer) relation; U = Uniform distri-

bution and N = Non-uniform distribution.

The time to compute the joinABprime query on Gamma was used as the performance
metric for this set of experiments. Recall that this query joins a 1,000,000 tuple relation (208
megabytes) with a 100,000 tuple relation (20 megabytes) to produce a 100,000 tuple output
relation (over 40 megabytes). The 100,000 tuple relation is the inner (building) relation and
the 1,000,000 tuple relation is the outer (probing) relation. For the non-uniform distribution
we chose the normal distribution with a mean of 500,000 and a standard deviation of 8,333.

These parameters resulted in a highly skewed distribution of values over the domain O-
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999,999. In fact, 33,333 tuples had join attribute values between 500,009 and 500,707.
However, no single attribute value occurred in more than 79 tuples. The 100,000 tuple rela-
tion was created by randomly seiecting 100,000 tuples from the 1,000,000 tuple relation.
Thus the 100,000 tuple relation's primary key had values uniformly distributed from O to
999.999. Also, the normally distributed attribute had the same distribution characteristics for

the 100,000 tuple relation as it did for the 1,000,000 tuple relation.

To ensure that each processor did the same amount of work during the initial scan of the
two relations being joined, we distributed each of the relations on their join attribute by using
the round-robin partitioning strategy provided by Gamma. This resulted in an equal number

of tuples on each of the thirty sites.

As in the previous experiments we used the amount of memory relative to the size of the
smaller joining relation as a basis for comparing the join algorithms. Remember, though, that
the amount of memory at each joining processor is enough to hold its share of tuples from the
inner relation only if the tuples are distributed evenly across the joining processors. Thirty

processors with disks were used for these experiments.

Table 3.2 presents the results for each of the parallel join algorithms for the cases of

100% and 17% memory availability. The UU joins produced a result relation of 100,000 tuples
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as did the NU joins. The UN joins produced 99,406 result tuples. Results for the NN joins are
not presented because the query produced over three million tuples. We could find no way of
normalizing these NN results to meaningfully compare them with the results from the other

three join types.

We begin by analyzing the effects of using non-uniformly distributed join attribute values
for the inner (building) relation by comparing the NU results with the UU results. For the
hash-join algorithms two major factors result from "building" with a non-uniformly distributed
attribute. First, tuples will not generally be distributed equally among the physical bucket
fragments. Second, chains of tuples will form in the hash tables due to duplicate attribute
values. The first factor is significant because the aggregate memory allocated for the join was
sufficient to hold the tuples from the building relation only if the tuples were uniformly spread
across the joining processors. With the normally distributed join attribute values used in our
experiments, the hash function could not distribute the relation uniformly and memory
overflow resulted. However, the hash function did not perform that poorly and only one pass
of the overflow mechanism was necessary to resolve the overflow of each join bucket. The
second factor, chains of tuples forming in the hash tables, also materialized with our normally
distributed join attribute values. In fact, chains of 3.3 tuples were found on the averagé, with

a maximum hash chain length of 16.

Algorithm 100% memory 17% memory

Uy UN NU Uu UN NU
Hybrid 26.60 27.55 32.98 77.33 79.88 98.16
Grace 78.73 80.50 81.94 86.03 90.32 91.80

Sort-Merge | 199.50 203.09 185.89 | 249.89 256.73 233.54

Simple 26.59 27.51 33.01 | 188.70 195.96 194.86

Join results with non-uniform join attribute value distributions.
(All response times are in seconds)
Table 3.2
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Table 3.2 shows that NU is indeed slower than UU for the hash-based join algorithms.
Since the philosophy behind the Grace join algorithm is to use many small buckets to prevent
buckets from overflowing, we executed this algorithm using one additional bucket so that
memory overflow would not occur. However, performance is still degraded due to the non-
uniform size of the buckets. At 100% memory availability, the Hybrid algorithm processes the
overflow fairly efficiently. However, as memory is reduced, each bucket-join in the Hybrid algo-
rithm experiences overflow. As shown by the 17% memory availability results, the cost of

overflow resolution becomes more significant when memory is limited.

Why, though, does the sort-merge join algorithm run NU faster than UU and UN? The
hashing function will distribute tuples unevenly across the joining processors exactly as it did
for the hash-join algorithms, thereby requiring a subset of the sites to store to disk, sort, and
subsequently read more tuples than others. One would expect this to have a negative impact
on performance. The explanation has to do with recognizing how the merge phase of the join
works. Since the join attribute of the inner relation is so skewed (the maximum join attribute
value is only 541,641) the merge phase does not need to read all of the outer (1000K) relation.
In this case, the semantic knowledge inherent in the sort-order of the attributes allowed the
merge process to determine the join was fully computed before all the joining tuples were read.
A similar effect occurs for UN, but it is not significant in this case because only part of the
inner (100K) relation can be skipped from reading; all of the 1000K outer relation must still be

read.

The effects of having the outer (probing) relation’s join attribute non-uniformly distributed
can be determined by comparing the UN results with the UU results. Again, having a non-
uniform data distribution for the outer join attribute will result in unequal numbers of tuples
being distributed to the joining processors. At 100% memory availability, the differences are
small. However, the differences increase slightly as memory is reduced. This occurs because
as memory is reduced the joining relations are first divided up into several disjoint buckets.
Because the outer join attribute is non-uniformly distributed the outer relation will not be uni-

formly divided across the buckets. This will result in some of the disk sites requiring
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additional disk 1/0s during bucket forming and during bucket joining. Thus, as the number
of buckets increases the more significant the effects of having non-uniformly distributed join

attribute values become.

We feel these UN results are very encouraging for the Hybrid join algorithm. Omne can
argue that many joins are done to re-establish relationships. These relationships are generally
one-to-many and hence one join attribute will be a key. Since the relation on the "one" side is
probably smaller, it will be the building relation in a hash-join algorithm. Thus, this case will

result in a UN type of join which we have shown can be efficiently processed.

The results from applying bit filtering techniques are very similar to those of the previous
experiments when the join attribute values were uniformly distributed, although the NU joins
experienced slightly better improvements because the normally distributed attribute values
resulted in more collisions in the bit filter. Thus, fewer bits were set in the filter and more

outer (probing) tuples were eliminated.

3.5. Summary of Results

Several conclusions can be drawn from these experiments. First, for uniformly distri-
buted join attribute values the parallel Hybrid algorithm appears to be the algorithm of choice
because it dominates each of the other algorithms at all degrees of memory availability.
Second, bit filtering should be used because it is cheap and can significantly reduce response

tirmes.

However, non-uniformly distributed join attribute values alter the relative performance of
the parallel join algorithms. The performance of the hash-based join algorithms, Hybrid, Grace
and Simple, degrades when the join attribute values of the inner, building relation are non-
uniformly distributed. When the join attribute values of the building relation are highly
skewed and the available memory relative to the size of the smaller relation is limited, a non-
hash-based algorithm such as sort-merge or nested loops should be used. We find it very
encouraging, though, that the Hybrid join algorithm still performs best when the joining attri-

bute of the outer relation is non-uniformly distributed. We expect this type of join to be very




common in the case of re-establishing one-to-many relationships.
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CHAPTER 4

MULTI-WAY JOIN QUERY PROCESSING

4.1. Introduction

In this chapter, we address the problems and tradeoffs of processing multiple-join queries
in a multiprocessor environment. We focus on the use of hash-based join algorithms because

the results from Chapter 3 demonstrate that they dominate under most circumstances.

4.1.1. Degrees of Parallelism

There are three possible ways of utilizing parallelism in a multiprocessor database
machine. First, parallelism can be applied to each operator within a query. For example, ten
processors can work in parallel to compute a single join or select operation. This form of
parallelism is termed intra-operator parallelism and has been studied by previous researchers
and was covered in depth in Chapter 3. Second, inter-operator parallelism can be employed
to execute several operators within the same query concurrently. Finally, inter-query parallel-
ism refers to executing several queries simultaneously. In this chapter, we specifically address
only those issues involved with exploiting inter-operator parallelism for queries composed of

many joins. We defer issues of inter-query parallelism to future work.

4.1.2. Query Tree Representations

Instrumental to understanding how to process complex queries is understanding how
query plans are generated. A query is compiled into a tree of operators and several different
formats exist for structuring this tree of operators. As will be shown, the different formats offer

different tradeoffs, both during query optimization and query execution.
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The different formats that exist for query tree construction range from simple to complex.
A “simple” query tree format is one in which the format of the tree is restricted in some
manner. There are several reasons for wanting to restrict the design of a query tree. For
example, during optimization, the space of alternative query plans is searched to find the
"optimal" query plan. If the format of a query plan is restricted in some manner, this search
space will be reduced and optimization will be less expensive. Of course, there is the danger

that a restricted query plan will not be capable of representing the optimal query plan.

Query tree formats also offer tradeoffs at runtime. For instance, some tree formats facili-
tate the use of dataflow scheduling techniques. This improves performance by simplifying
scheduling and eliminating the need to store temporary results. Also, different formats have

different maximum memory requirements. This is important because the performance of
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hash-based join algorithms depends heavily on the amount of available mermory, as was
demonstrated in Chapter 3. Finally, the format of the query plan is one determinant of the

amount of parallelism that can be applied to the query.

Left-deep trees and right-deep trees represent the two extreme options of restricted format
query trees. These two tree formats are symmetrical and differ only under the assumption that
when a hash-based join algorithm is being used the left operand is used to build the hash
table and the right operand is used to probe the hash table. Bushy trees have no restrictions
placed on their construction. Since they comprise the design space between lefi-deep and
right-deep query trees, they have some of the benefits and drawbacks of both strategies. They
do have their own problems, though. For instance, it is likely to be harder to synchronize the
activity of join operators within an arbitrarily complex bushy tree. We will examine the trade-
offs associated with each of these query tree formats more closely in the following sections.
Refer to Figure 4.1 for examples of left-deep, right-deep, and bushy query trees for the query:

A *B *C *D. (Note that the character * denotes the relational join operator.)

4.2. Tradeoffs of Alternative Query Tree Representation Strategies

In this section we discuss how each of the alternative query tree formats affects memory
consumption, dataflow scheduling, and the ability to exploit parallelism in a multi-way join
query. The discussion includes processing queries in the best case (unlimited memory

resources) to more realistic situations where memory is limited.

A good way of comparing the tradeoffs between the alternative query tree formats is
through the construction of operator dependency graphs for each optimization strategy. In
the dependency graph for a particular query tree, a subgraph of nodes enclosed by a dashed
line represent operators that should be scheduled together for efficient pipelining. The
directed lines within these subgraphs indicate the producer/consumer relationship between
the operators. The bold directed arcs between subgraphs show which sets of operators must
be executed before others, thereby determining the maximum level of parallelism and resource

requirements (e.g. memory) for the query. Either not scheduling the set of operators enclosed




39

in the subgraphs together or failing to schedule sets of operators according to the dependen-

cies will result in having to spool tuples from the intermediate relations to disk.

The operator dependency graphs presented in this section are based on the use of a
hash-join algorithm as the join method. In this chapter, we consider two different parallel
hash-join methods, Simple hash-join and Hybrid hash-join. Recall from the discussion in
Chapter 3 that with hash-join algorithms, the computation of the join operation can be viewed
as consisting of two phases. First, a hash table is constructed from tuples produced from the
left input stream. In the second phase, tuples from the right input stream probe the hash
table for matches to compute the join. Since the first operation must completely precede the
second, the join operator can be viewed as consisting of two separate operators, a build opera-
tor and a probe operator. The dependency graphs model this two phase computation for
hash-joins by representing Join! as consisting of the operators B! and P'. The base relations to
be joined are represented in the operator dependency graphs as S', signifying the scan of rela-
tion i

The reader should keep in mind that intra-operator parallelism issues are being ignored
in this chapter. That is, when we discuss executing two operators concurrently, we have
assumed implicitly that each operator will be computed using multiple processors as described

in Chapter 3.

4.3. Left-Deep Query Trees

Figure 4.2 shows a generic N-join query represented as a left-deep query tree and its
associated operator dependency graph. From the dependency graph it is obvious that no scan
operators can be executed concurrently. It also follows that the dependencies force the follow-

ing unique query execution plan:
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1) Scan S! - Build J!

9) Scan S? - Probe J! - Build J?

3) Scan 82 - Probe J? - Build J3

[ ]

-]

N) Scan SV - Probe J¥"! - Build JV
N+1) Scan SM*! - Probe JV

I

Left-Deep Query Tree and Dependency Graph
Figure 4.2

The above schedule demonstrates that at most one scan and two join operators can be
active at any point in time. Consider Step N in the above schedule. Prior to the initiation of
Scan SN, a hash table was constructed from the output of Join™™'. When the Scan SV is
started, tuples produced from the scan will immediately probe this hash table to produce join
output tuples for Join™. These output tuples will be immediately streamed into a hash table
constructed for Join". The hash table space for JoinV~! can only be reclaimed after all the

tuples from scan SY have probed the hash table, Join¥ has been computed, and the join
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computation has been stored in a new hash table. Thus, the maximum memory requirements
of the query at any point in its execution consist of the space needed for the hash tables of any

two adjacent join operators.

Although left-deep query trees require that only the hash tables corresponding to two
adjacent join operators be memory resident at any point during the execution of any complex
query, the relations staged into the hash tables are the result of intermediate join computa-
tions, and hence it is difficult to predict their size. Furthermore, even if the size of the inter-
mediate relations can be accurately predicted, in a multi-user environment it can not be
expected that the optimizer will know the exact amount of memory that will be available when
the query is executed. If memory is extremely scarce, enough memory may not exist to hold
even one of these hash tables. Thus, even though only two join operators are active at any

point in time, many issues must be addressed in order to achieve optimal performance.

[GRAES9] proposes a solution to this general problem by having the optimizer generate
multiple query plans and then having the runtime system choose the plan most appropriate to
the current system environment. A similar mechanism was proposed for Starburst [HAAS89].
One problem with this strategy is that the number of feasible plans may be quite large for the
complex join queries we envision. Besides having to generate plans that incorporate the
memory requirements of each individual join operator, an optimizer must recognize the conse-
quences of intra-query parallelism. For example, if a join operator is optimized to use most of
the memory in the system, the next higher join operator in the query tree will be starved for

memory. If it is not possible to modify the query plan at runtime, performance will suffer.

A simpler strategy may be to have the runtime query scheduler adjust the number of
buckets for the Hybrid join algorithm in order to react to changes in memory availability. An
enhancement to this strategy would be to keep statistics on the size of the intermediate join
computations as they are computed and use this information to adjust the number of buckets
for join operators higher in the query tree. Finally, if significantly more memory is available at

runtime than expected, it may be beneficial to transform the query tree to more effectively
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exploit these resources. For example, the entire query tree, or perhaps just parts of it, could

be transformed to the right-deep query tree format.

Bit Filtering

It is simple to extend the bit filtering techniques described in Chapter 3 to apply to multi-
way join queries. Conceptually, a distinct bit filter is maintained for each join operator in the
query tree. As described before, each bit filter is constructed as tuples are “built” into the
respective hash tables. Whenever a scan that produces probing tuples is about to be started,
the bit filter associated with that join operation is used to eliminate non-joining tuples. For
example, in Figure 4.2, the scan 52 would use the filter that was produced from the join of S!?
and S2.

The benefit of bit filtering for left-deep trees is that probing tuples that cannot possibly
produce output tuples for a join are eliminated as soon as possible, thus saving the overhead
of sending them over the network to participate in the join. Note that it is not necessary to
reserve memory for bit filters for all N joins. As was shown above in the schedule for executing
left-deep trees, only two join operators are active at any point in time. Thus, only two bit filters

need to be maintained at any time.

4.4. Right-Deep Query Trees

Figure 4.3 shows a generic right-deep query tree for an N-join query and its associated
dependency graph. From the dependency graph it can easily be determined which operators
can be executed concurrently and the following execution plan can be devised to exploit the

highest possible levels of concurrency:

1) Scan S2-Build J!, Scan S3-Build J?, ...,Scan SN+ _Build JV
2) Scan S!-Probe J'-Probe J2-...-Probe JV

From this schedule it is obvious that all the scan operators but S!, and all the build
operators can be processed in parallel. After this phase has been completed, the scan St is

started and the resulting tuples will probe the first hash table. All output tuples will then per-
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Right-Deep Query Tree and Dependency Graph
Figure 4.3

colate up the tree. As demonstrated, very high levels of parallelism are possible with this stra-
tegy (especially since every operator will also generally have intra-operator parallelism applied
to it). However, the query will require enough memory to hold the hash tables of all N join
operators throughout the duration of the query. Executing a right-deep query plan in this

manner is termed optimistic right-deep scheduling.

There are two obvious questions concerning the optimistic right-deep scheduling algo-
rithm as just described. First, can all the parallelism specified by the algorithm be effectively
utilized? And second, what happens when memory is limited and all N hash tables cannot

reside in memory simultaneously? Both of these questions are addressed below.

According to Step 1 in the execution plan, the scans S? through SV*! should be per-
formed concurrently to achieve maximum parallelism. The performance implications of this

policy should be considered, though. If these scan operators access relations that are
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declustered over the identical set of storage sites, starting all the scans concurrently may be
detrimental because of increased contention at each disk [GHAN89]. However, in a large data-
base machine, it is not likely that relations will be declustered over all available storage sites.
Further declustering eventually becomes detrimental to performance because the costs of con-
trolling the execution of a query eventually outweigh the benefits of adding additional disk
resources [GERB87, COPE88, DEWI88]. In Chapter 5 we present experimental results that
illustrate the performance implications of the data declustering strategy for right-deep query

plans.

Dealing with limited memory for joining is expected to be a bigger problem with right-deep
trees than with left-deep trees because more hash tables must co-reside in memory. Also,
there is little opportunity for runtime query modifications since once the scan on S! is started
the data flows through the query tree to completion. However, more accurate estimates of
memory requirements can be obtained for a right-deep query tree since the left children (the
building relations) will always be base relations (or the result of applying selection predicates to
a base relation), while with a left-deep tree the building input to each join is always the result
of the preceding join operations. In the following sections, we propose several alternative algo-
rithms for exploiting the potential performance advantages of right-deep query trees when

memory is limited.

4.4.1. Static Right-Deep Scheduling

One strategy for dealing with limited memory (similar to that proposed in [STONE89])
involves having the optimizer or runtime scheduler break the query tree into disjoint pieces
such that the sum of the hash tables for all the joins within each piece are expected to fit into
memory. This splitting of the query tree will, of course, require that temporary results be
spooled to disk. When the join has been computed up to the boundary between the two
pieces, the hash table space currently in use can be reclaimed. The query can then continue
execution, this time taking its right-child input from the temporary relation. This scheduling

strategy is termed static right-deep scheduling. This scheduling strategy is equivalent to the
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optimistic right-deep scheduling strategy when the query tree does not need to be divided.

Bit filtering techniques can also be applied to right-deep query trees as well as left-deep
query trees. With static right-deep scheduling, filtering can be performed in two different
situations. First, as each building relation is read into memory, a separate bit filter is con-
structed. This filter is subsequently used to eliminate probing tuples. However, the presence
of break points in the query tree provides another opportunity to exploit filtering. As each
intermediate relation is being written to disk, a bit filter is constructed. This filter is then used
to eliminate "building” tuples from the lowermost building relation when query processing con-
tinues. Thus, a form of double-filtering can be applied at each break point in the query tree.
This is significant because filters applied to a building relation eliminate unnecessary memory

consumption as well as unnecessary network traffic.

4.4.2. Dynamic Bottom-Up Scheduling

A more dynamic way of dealing with limited memory, called dynamic bottom-up
scheduling, schedules the scans S? to S¥*' (see Figure 4.3) in a strictly bottom-up manner.
The scan S? is first started and the resulting tuples are used to build a hash table for the join

operator J!. After this scan completes the memory manager is queried to check if enough

/Result Result
Join Join
12 / \ / \12
Jom D D Join
11 / \ / \Il
Join  © C  Ioin
A B B A
Left-Deep Query Tree Right-Deep Query Tree

Figure 4.4
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memory exists to stage the tuples expected as a result of the scan S3. If sufficient space
exists, scan S° is started. This same procedure is followed for all scans in the query tree until
memory is exhausted. If all the scans have been processed, all that remains is for the scan S!
to be initiated to start the process of probing the hash tables. However, when only the scans
through S' can be processed in this first pass, the scan S! is started but now the results of the
join computation through join J-1 are stored into a temporary file S'” (i.e., the query tree is
broken). Further processing of the query tree proceeds in an identical manner, only the first
scan to be scheduled is S*!'. Also, the scan to start the generation of the probing tuples is

started from the temporary file S'".

Dynamic bottom-up scheduling differs from static right-deep scheduling in the policy
used for processing the "building" relations. With static right-deep scheduling, a set of build-
ing relations is read concurrently based on an estimate of the amount of available memory and
selectivity estimates of the building relations. This is contrasted with the dynamic bottom-up
strategy which reads building relations one at a time until available memory is exhausted.
However, if only enough memory exists to hold a single building relation at a time, the two

algorithms become identical.

Dynamic bottom-up scheduling is more robust to errors in selectivity estimation because
it processes building relations in a purely sequential manner. If size estimates are grossly in
error, only one relation will experience overflow as opposed to a set of relations for the static
right-deep scheduling algorithm. However, by processing the building relations in a sequential
order the dynamic bottom-up strategy sacrifices parallelism in scanning the building relations.
As a compromise, it would be simple to block several relations together and treat each group
as a single schedulable unit. This would result in an algorithm more optimistic than dynamic

bottomn-up scheduling while still more pessimistic than static right-deep scheduling.

The dynamic bottom-up scheduling algorithm has some very important properties when
bit filtering techniques are applied [GERB90]. Consider, for example, the right-deep query tree

shown in Figure 4.4. When relation B is staged into memory, a bit filter will be constructed on
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its joining attribute. Now, as relation C is being read into memory, the bit filter from relation B
can be used to eliminate tuples from relation C (assuming there is a join clause between the
two relations). A bit filter would likewise be formed from the tuples in C which survived the
filtering process. This filter would then be applied to relation D. Since building tuples are
being eliminated, the resulting bit filters are more restrictive than was the case with the static
right-deep scheduling algorithm. Thus, when the bit filters are applied to the probing tuples,
more tuples will be eliminated. In summary, bit filtering provides even more significant perfor-
mance gains than seen with the optimistic and static right-deep scheduling algorithms
because more non-joining building and probing tuples are eliminated. If the join selectivity is

low, these savings could be substantial.

4.4.3. Right-Deep Hybrid Scheduling

Both the static right-deep and dynamic bottom-up scheduling strategies deal with limited
memory by "breaking” the query tree at one or more points. Breaking the query tree has a
significant impact on performance because the benefits of data flow processing are lost when
the results of the temporary join computation must be spooled to disk. Also, these algorithms
require that enough memory is available to hold at least each relation individually and, hope-
fully, several relations simultaneously. This may not always be the case. An alternative
approach is to preprocess the input relations to \reduce memory requirements. This is what
the Hybrid join algorithm attempts to do when it partitions its input relations into multiple
buckets. When this technique is applied to complex right-deep query trees, several interesting

results arise. We refer to the resulting algorithm as right-deep hybrid scheduling (RDHS).

The right-deep hybrid scheduling algorithm is shown in Figure 4.5. It takes as input a
generic N-join right deep query tree as shown in Figure 4.3. Recall from Figure 4.3, that St
represents the scan of the i base relation and J' represents the i** join operation. Addition-
ally, each join operation is computed using NB(JY) buckets. The k™ bucket of the i join is
designated J'g. LC(JY) and RC(JY) return the operators that are the left child and right child

inputs, respectively, of the i*" join operator. Finally, the function JOIN(x,y) specifies the join of
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two sets of tuples, x and y.

The RDHS algorithm is very simple. In the first four steps, each of the building relations
is physically partitioned into buckets. The first bucket for each relation maps tuples to a
memory resident hash table, while the remaining buckets map tuples to temporary files on
disk. The intermediate relations that result from each join operation are also partitioned into
buckets. This is a logical partitioning since at this point none of the intermediate relations
have been materialized. The first bucket of each intermediate relation maps tuples to probe
the hash table of the parent join operator while the remaining buckets map tuples to disk. The

partitioning of the building and intermediate relations can be done in parallel.

In step 5, the probing base relation, S!, is partitioned into buckets. Tuples that map to
the first bucket are sent to probe the hash table built from the tuples in the first bucket of S2.
Output tuples will likewise flow up the tree. Tuples not mapping to the first bucket are staged

to disk in the appropriate disk bucket.

In steps 6-10, the entire query tree is traversed from the bottom up, and the correspond-

ing buckets for each join operator are joined.

By adjusting the number of buckets used for each join in a query tree, the RDHS algo-
rthm can tune the amount of memory that it consumes. Assume that |Sq| is the number of
pages in relation i. The percentage of memory consumed relative to the amount of memory
needed for the best case scenario (all joins use one bucket) is computed by the following for-

mula.

t

M = x 100%

N
> ILCWY|
i=1
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As an example of the RDHS algorithm, assume that each join in the right-deep query tree
shown in Figure 4.4 will be divided into two buckets, with the first being staged immediately
into memory. The first bucket of A (denoted Ap,) will join with the first bucket of B to compute

the first half of A*B. Since this is a right-deep tree the first inclination would be to probe the
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Input:
a "generic" N-join right-deep query tree (see Figure 4.3)

Algorithm:
1) fori=1toN
2)  phys_part ( S*!, NB(J')) (* partition building relations *)
3)  logic_part (J*, NB(J')) (* partition intermediate relations *)
4) end

(* partition probing base relation *)
5) phys_part (S}, NB(J' ) (* JOIN (S%5,, S'51) *)

6) forj=1toN (* for all joins in query *)
7)  for k=2 to NB(J) (* for each bucket in join j *)

8) JOIN ( LC(H) gk, RC(JH) g ) (* join pair of buckets *)
9) end
10} end

Right-Deep Hybrid Scheduling Algorithm
Figure 4.5

hash table for C (actually Cp;) with all these output tuples. However, this cannot be done
immediately because the join attribute may be different between C and B, in which case the
output tuples corresponding to A*B (I1) must be rehashed before they can join with the first
bucket of C. Since Il must use the same hash function as C, Il must be composed of two
buckets (one of which will directly map to memory as a probing segment). Thus, the tuples
corresponding to By *Ap; will be rehashed to I'ly; and I1ly,, with the tuples corresponding to
the first bucket (about half the A*B tuples, assuming uniformity) immediately probing the hash
table built from C,,. Again, the output tuples of this first portion of A*B*C will be written to
the buckets I2;; and [2,,. Output tuples will thus keep percolating up the tree, but their
number will be reduced at each succeeding level based on the number of buckets used by the
respective building relation. Query execution will then continue with the join Bpg*Apy. After
all the respective buckets for A*B have been joined, the remaining buckets for C*I1 will be

joined. Processing of the entire query tree will proceed in this manner.
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Wwith RDHS, some tuples can be delivered to the host as a result of joining the first buck-
ets of the two relations at the lowest level of the query tree. This is not possible with an analo-
gous left-deep or bushy query tree. If a user is submitting the query, the quicker feedback will
result in a faster initial response time (even though the time to compute the entire result may
be identical). And, when an application program is submitting the query, it may be very
beneficial to provide the result data sooner and in a more "even" stream, as opposed to produc-
ing the entire result in one step, because the computation of the application can be overlapped

with the processing of the join query.

Several questions arise regarding how to best allocate memory for right-deep query trees
with the RDHS join algorithm. For correctness it is necessary that the first bucket of EACH of
the building relations be resident in memory. However, it is NOT a requirement that all rela-
tions be distributed into the same number of buckets. For example, if relations B and D are
large but relation C is small, it would be possible to use only one bucket for relation C while
using additional buckets for relations B and D. Hence, the intermediate relation I1 would
never be staged to disk in any form; rather, it would exist solely as a stream of tuples to the

next level in the query tree.

As can be seen, RDHS provides an alternative to the static and dynamic bottom-up
scheduling algorithms described above. Whereas these algorithms assumed that enough
memory was available to hold at least each relation individually and hopefully several relations
simultaneously, the use of the RDHS algorithm potentially reduces the memory requirements
while still retaining some dataflow throughout the entire query tree. If RDHS can use a single
bucket for every relation, it becomes equivalent to the static right-deep scheduling algorithimn.
In Chapter 5, we explore under which conditions a particular scheduling strategy for a right-

deep query tree will perform the best.

The technique of bit filtering can also be applied to the RDHS algorithm. When the build-
ing relations are being partitioned into buckets, a bit filter should be constructed for every

bucket of every relation. These bit filters can then be applied to eliminate non-joining tuples
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as the probing tuples from the corresponding buckets are read from disk. Furthermore, the
technique of double-filtering can be applied to each of the disk buckets. As tuples are written
to the disk buckets of the intermediate relations, bit filters should again be constructed for
each bucket. These filters can then be applied to eliminate non-joining tuples as the building
tuples from the corresponding buckets are read from disk and staged into memory. In this

instance, filtering saves both network traffic and hash table memory consumption.

4.4.4. A Taxonomy of Right-Deep Scheduling Algorithms

A simple taxonomy can be developed to classify the alternative algorithms for evaluating
complex right-deep query trees based on how the algorithms deal with limited memory. Break-
ing a query tree between successive join operations can be viewed as horizontally partitioning
the query. Conversely, dividing individual join operations into multiple buckets while still
allowing data to flow throughout the query tree can be viewed as vertically partitioning the
query. Using this taxonomy, statié right-deep scheduling and dynamic right-deep scheduling
are horizontal query partitioning algorithms. Right-deep hybrid scheduling is a vertical query

partitioning algorithm.
4.4.5. The Case for Right-Deep Query Trees

(1) Right-deep query trees provide the best potential for exploiting parallelism.

(2) In the best case, intermediate join results exist only as a stream of tuples flowing

through the query tree.

(3)  The size of the "building" relations can be more accurately predicted since the cardinal-
ity estimates are based on predicates applied to a base relation as opposed to estimates

of the size of intermediate join computations.

(4) Even though bushy trees can potentially re-arrange joins to minimize the size of inter-
mediate relations, a best-case right-deep tree will never store its larger intermediate

relations on disk.
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(5) Several strategies exist to deal with limited memory situations. "Breaking" the query
tree represents a static approach, while the dynamic bottom-up scheduling algorithm is
more responsive to the amount of merory available at run-time. The RDHS strategy
can potentially deliver tuples sooner and in a more constant stream to the

user/application than a similar left-deep query tree can.

(6) Right-deep trees are generally assumed to be the most memory intensive query tree for-
mat but this is not always the case. Consider the join of relations A, B, C, and D as
shown in Figure 4.4 for both a left-deep and a right-deep query tree format. Assume
that the size of each relation is 10 pages. Furthermore, assume that the size of A*B is
20 pages and the size of A*B*C is 40 pages. At some point during the execution of the
left-deep query tree, the results of A*B and A*B*C will simultaneously reside in
memory. Thus, 60 pages of memory will be required in order to execute this query.
With a right-deep query tree, however, relations B, C and D must reside in mermory,

but these relations will only consume 30 pages of memory.

(7)  The size of intermediate relations may grow with left-deep trees in the case where attri-
butes are added as the result of each additional join. Since the intermediates are
stored in memory hash tables, memory requirements will increase. Note that although
the width of tuples in the intermediate relations will also increase with right-deep trees,
these tuples are only used to probe the hash tables and hence they don't consume

memory for the duration of the join.

4.5. Bushy Query Trees

With more complex query tree representations, such as the bushy query tree for the
eight-way join shown in Figure 4.6, several different schedules can be devised to execute the
query. A useful way of clarifying the possibilities is again through the construction of an
operator dependency graph. Figure 4.7 contains the dependency graph corresponding to the
join query shown in Figure 4.6. By following the directed arcs it can be shown that the longest

path through the graph is comprised of the subgraphs containing the scan operators st, s2,
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S* and S8. Since the subgraphs containing these operators must be executed serially in order
to maximize dataflow processing (i.e., to prevent writing tuples to temporary storage), it follows

that every execution plan must consist of at least four steps. One possible schedule is:

1) Scan S!-Build J!, Scan §°-Build J?, Scan S5-Build J3,
Scan S7-Build J*.

2) Scan S2%-Probe J!-Build J°, Scan S8-Probe J3-Build J°.

3) Scan S*-Probe J2?-Probe J®-Build J”.

4) Scan S®-Probe J*-Probe J®-Probe J”.

However, notice that non-critical-path operations like Scan S7 and Build J* could be
delayed until Step 3 without violating the dependency requirements. The existence of schedul-
ing options such as the above demonstrates that runtime scheduling is more complicated for
bushy trees than for the other two tree formats. As was the case with the other query tree
designs, if the order in which operators are scheduled does not obey the dependency con-
straints, tuples from intermediate relations must be spooled to disk and re-read at the

appropriate time.

By intelligently scheduling operators it is possible to reduce the memory demands of a
query optimized as a bushy tree. Consider again the previous schedule for executing the 7 join
query. After the execution of Step 1, four hash tables will be resident in memory. After Step 2
completes, memory can be reclaimed from the hash tables corresponding to join operators J !
and J%, but new hash tables for join operators J° and J® will have been constructed. Only
after the execution of Step 3 can the memory requirements be reduced to three hash tables
(J7, J®, and J%). However, it may be possible to reduce the memory consumption of the query
by constructing a different schedule. Consider the following execution schedule in which we

have noted when hash table space can be reclaimed:

1) Scan S!-Build J'.

2) Scan S2-Probe J!-Build J°-Release J', Scan S3.Build J2.
3) Scan S*-Probe J2-Probe J°-Build J7 -Release J? and J°.

4) Scan S®-Build J°.

5) Scan S°-Probe J2-Build J-Release J°, Scan S7-Build J*.
6) Scan S8-Probe J*-Probe J®-Probe J’-Release J4, J% and J7.

Although this execution plan requires six steps instead of four, the maximum memory require-
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Bushy Query Tree
Figure 4.6

Dependency Graph for a Bushy Query Tree
Figure 4.7

ments have been reduced throughout the execution of the query from a maximum of 4 hash
tables to a maximum of 3 hash tables. If these types of execution plan modifications are
insufficient in reducing memory demands, the techniques described in the previous two sub-

sections for left-deep and right-deep query trees can also be employed.

The optimization search space for bushy trees is also much larger than that of left-deep or

2Nt
N1

right-deep trees. For an N-join query, the number of possible join orderings is

for bushy

trees as opposed to (N+1)! for either left-deep or right-deep trees [SWAMS8S8]. However, by
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examining the larger search space, it is possible that the resulting query plan will process

fewer tuples.

Bit filtering techniques are incorporated into bushy trees in exactly the same manner as
described previously. As tuples are inserted into a hash table during the build phase of each
join operator the filter is updated. When all the input tuples have been consumed, the filter is
passed to the right child of the join operator, where the filter is used to eliminate non-joining

tuples. As stated before, each join operator requires space for one bit filter.

4.6. Issues When Using the Sort-Merge Join Algorithm

If the sort-merge join algorithm is used instead of a hash-based join algorithm, the
preceding discussion of the impact of the alternative query tree formats does not apply. For
example, reconsider the left-deep query tree and its associated operator dependency graph in
Figure 4.2. With the sort-merge algorithm as the join method, the scan S! does not neces-
sarily have to precede the scan S2. For example, the scan and sort of S' could be scheduled
in parallel with the scan and sort of S?. The final merge phase of the join can proceed only
when the slower of these two operations is completed. This is in contrast to the strictly serial
execution of the two scans in order for a hash join algorithm to work properly. One possible

schedule for executing the query shown in Figure 4.2 is:

1) Sort S!, S?, ..., S¥*! (if not already sorted on the join attribute)
2) Merge-join J! (sort output if necessary)

3) Merge-join J? (sort output if necessary)

[

L]

[ ]

N+1) Merge-join JV
Modifying the operator dependency graphs to support the sort-merge join method is sim-
ple. First, assume that join nodes in the graph represent only the final merge-join operation
(designated MJY, that is, join operation i will not consist of the two suboperators B' and P'. All

dependencies will be implicitly assumed by the normal flow of data up the query tree. The

algorithm for creating the entire graph is as follows.
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1) Add a Scan MJ' node after each MJ' node in the query tree. Create scan nodes as
before.
2) If a base relation needs sorting, replace Scan S* with Sort St —> Scan SY
3) If the output from MJ' needs sorting, replace Scan MJ* with Sort MJ! —> Scan MJ*

4) Group each MJ' operator with its inmediate descendants as a subgraph of operators.

To illustrate this algorithm, consider the query that joins relations S, $*, §° and S*,
where S! and S® and the output of MJ! must be sorted. The operator dependency graph
resulting from this query is shown in Figure 4.8. It should be noted that the addition of scan
nodes does not necessarily imply additional disk 1/0. If the result of a sort or a merge-join

operation can be stored in memory buffers, the scan operation need never access the disk.

One interesting point to note about using the sort-merge join algorithm is that the left-
deep and right-deep query tree optimization alternatives become equivalent because all the
base relations (S! through SM*!) can be scanned/sorted concurrently in either strategy,
whereas with the hash-join algorithm there is an ordering dependency that specifies that the

left-child input must be completely consurned before the right-child input can be started.

Previous discussions of bit filtering were also influenced by the hash-based join methods.
Since all hash-join algorithms require that the entire left input be consumed before the opera-
tor producing the right input can be started, bit filtering works well with this family of join
algorithms. However, for the sort-merge join method, the potential improvement in perfor-
mance that can be obtained from bit filtering must be weighed against the potential loss in per-
formance that occurs from imposing a strict ordering on the processing of the two input rela-
tions. If the relations to be joined are distributed over different subsets of storage sites, the
best performance may be achieved by scanning and sorting the relations concurrently and

foregoing the use of bit filters.
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CHAPTER 5

EVALUATION OF RIGHT-DEEP SCHEDULING STRATEGIES

In this chapter, we analyze the performance of the right-deep hybrid scheduling (RDHS)
algorithm and the static right-deep (staticRD) scheduling algorithm for processing multi-way
join queries. These algorithms were chosen because they present the two extremes among the
algorithms for processing right-deep query trees when memory is limited. We first present a
comparison based on a simplified analytical model. This comparison is followed by a more

detailed simulation study.

5.1. Analytical Comparison of RDHS and StaticRD

In this section, we present a simple analytical model for comparing the RDHS and sta-
ticRD algorithms. The cost measure that will be used is the number of relation I/0O’s. That is,
the number of times a base relation (BR) or intermediate relation (IR) is read or written. For
simplicity, it is assumed that all relations are the same size and a fixed selectivity factor is
applied to all relations (both base relations and intermediate relations). The parameters for the

comparison are:

N : number of joins in the query (N+1 joining relations)
M : available memory (fraction of each building relation,

e.g. 0.5 = 1/2 of each relation will fit in memory)
sf selectivity factor (e.g. 0.90 = 90% of tuples qualify)

The cost formula for the RDHS algorithm is:

RDHSp = [((N+1) + 2*sf*(1-M)*(N+1))] +
[(2*sf*(1-M)*(N-1))]
The total 1/0 cost for the RDHS algorithm is broken into two components. The first com-

ponent is the number of times the base relations are read or written and the second
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component is the number of times the intermediate relations are read or written. The N+1
term in the base relation cost formula reflects the cost to read all the base relations. The
2+*sf*(1-M)*(N+1) term reflects the cost to partition the base relations into buckets and to later
read the buckets from disk. This term is broken down as follows. The N+1 cost component is
the number of base relations to be joined. A selectivity factor, sf, reduces the number of quali-
fying tuples from each of the base relations. The RDHS algorithm is very sensitive to the
amount of available memory because it uses the Hybrid hash-join algorithm for each individual
join operation. Recall that the Hybrid join algorithm tries to stage as much of the building
relation into memory as possible. Thus, the fraction of each of the relations written to disk is
1-M. Finally, the factor of 2 reflects the fact that the tuples written to disk must be read when
the disk buckets are subsequently joined. The IR cost component, 2*sf*(1-M)*(N~-1), reflects
the cost of partitioning the intermediate relations into buckets and their subsequent read
accesses. It is very similar to the second half of the BR cost component, with the exception

that there are only N-1 intermediate relations.

The cost formula for the staticRD algorithim is:

staticRDy; = (N+1) + (2*sf*k) where k= {WIY—NJ—] -1

The cost formula for staticRD is also broken into two components, base relation I/0 and
intermediate relation 1/0O. The first component, (N+1), reflects the cost to read all the base
relations. The second component reflects the fact that two intermediate relation I/O’s are
required each time the query tree is broken, one to write the intermediate relation to disk and
a second to read it back. The number of times the query tree is broken, k, is computed under
the constraint that the tree can only be broken an integral number of times, and only between

adjacent join operations. Thus, for an N-join query, k must be between O and N-1.

The derivation of the formula for k is as follows. There are N building relations. M is the
fraction of each building relation that fits into memory and thus M*N is the number of building
relations that fit into memory. Since the staticRD algorithm cannot deal with fractional

numbers of relations, the term is truncated to yield |[M*N|. But, we want to compute the
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number of times to "break” the query tree. If we have N building relations and [M*N] fit into
memory simultaneously, then -[Mlgl—\f]- is the number of subtrees that the query tree needs to be

broken into to adhere to the memory requirements. Again, this must be an integral value, so

However, this computes the number of

the ceiling function must be applied, yielding {—Lﬁl\*’“]\ﬂu .

subtrees in the query, not the number of breaks. The number of breaks, k, is one less than

the number of subtrees.

These cost functions can be used to explore the expected performance of the staticRD and
RDHS query processing strategies. Table 5.1 presents results for various memory availabilities
for queries with 3, 4, and 8 joins, each having a selectivity factor of 50%. There are several

observations to be drawn from this table. As expected, at 100% memory availability (M = 1.00)

RDHS STATICRD

N M BR IR TOTALI/O BR IR k TOTALI/O
3 1.00 4.00 0.00 4.00 400 000 O 4.00
3 | 0.90 4.40 0.20 4.60 4.00 1.00 1 5.00
3 | 0.67 532 0.66 5.98 4.00 1.00 1 5.00
3 | 0.50 6.00 1.00 7.00 4.00 2.00 2 6.00
3| 0.34 6.64 1.32 7.96 4.00 2.00 2 6.00
3| 0.25 7.00 1.50 8.50 - - - -

4 1.00 500 0.00 5.00 500 000 O 5.00
4 | 0.90 550 0.30 5.80 5.00 1.00 1 6.00
4 | 0.75 6.25 0.75 7.00 5.00 1.00 1 6.00
4 1 0.67 6.65 0.99 7.64 5.00 1.60 1 6.00
4 | 0.50 7.50 1.50 9.00 5.00 1.00 1 6.00
4 | 0.49 7.55 1.53 9.08 500 3.00 3 8.00
4 | 0.33 835 2.01 10.36 5,00 3.00 3 8.00
4 | 0.25 875 225 11.00 500 3.00 3 8.00
4 | 0.20 9.00 2.40 11.40 - - - -

8 1.00 9.00 0.00 9.00 9.00 000 O 9.00
8 | 0.90 9.90 0.70 10.60 9.00 1.00 1 10.00
8 | 0.75 | 11.25 1.75 13.00 9.00 1.00 1 10.00
8 | 0.50 | 13.50 3.50 17.00 9.00 1.00 1 10.00
8 | 0.40 | 14.40 4.20 18.60 9.00 200 2 11.00
8 | 0.25 | 156.75 5.25 21.00 9.00 300 3 12.00
8 | 0.24 | 15.84 5.32 21.16 9.00 7.00 7 16.00
8 | 0.20 | 16.20 5.60 21.80 9.00 7.00 7 16.00
8 | 0.10 | 17.10 6.30 23.40 - - - -

Table 5.1
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the two algorithms perform the same’. For the staticRD algorithm, as memory is reduced, the
total 1/0 cost is always a step function. This occurs because the tree can only be broken hor-
izontally in an integral number of places. If hash table overflow was allowed, the results would
follow the curves presented in Chapter 3. The missing entries in Table 5.1 for the staticRD
algorithm reflect the limitation of only allowing horizontal memory partitioning. Regardless of
the number of times a query tree is broken, at least enough memory must exist to stage a sin-

gle building relation into memory. This is not a constraint with the RDHS algorithm.

The results for the staticRD algorithm may seem strange because the number of breaks in
the query tree, k, does not always increase by one. For example, with the 4-join query, at 50%
memory availability only one break is needed, while at 49% memory availability three breaks
are required. At 50% memory availability, the query tree is broken between the second and
third joins. This reduces the query tree to two, 2-join sub-queries, each of which requires 50%
memory availability. However, if the query tree is broken in two places, three sub-queries will
be formed. And regardless of where the two breaks are taken, two of the sub-queries will each
be composed of only one join and the remaining sub-query will consist of two joins. Hence, the
more complex sub-query will require 50% memory availability while each of the other two sub-
queries will only need 25% memory availability. But, if 50% memory availability is required for
one of the sub-queries a smart query optimizer would recognize that memory would be used
more efficiently by breaking the tree only after the second join, thus producing two sub-queries

each of which requires 50% memory availability.

The most important conclusion to draw from Table 5.1 is that the staticRD algorithm
requires less total disk I/0O than the RDHS algorithm for all degrees of query complexity except
when very large amounts of memory are available (M > 90%). And, as the complexity of the

query increases (N gets larger), the difference in total I/O between the two algorithms grows.

1At 100% memory availability, the staticRD and RDHS algorithms are identical to each
other and also to the optimistic right-deep scheduling algorithm.
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Thus, based on an 1/0O cost metric, the staticRD algorithm should almost always outperform
the RDHS algorithm. However, there are three observations that should temper this conclu-
sion. First, a cost metric of total I/0 does not take into account the effects of parallelism. This
is a crucial aspect of the RDHS algorithm. For instance, when a base relation is being parti-
tioned into buckets the disk buckets are being written as the relation is being read. If this
operation can be done efficiently the resulting cost will be less than that implied by the total
I/0 cost metric. Second, the RDHS algorithm generally performs less intermediate relation 1/0
than the staticRD algorithm. If the size of intermediate relations dominates the size of the rela-
tions to be joined, the RDHS algorithm will do better. And finally, the cost formulas have no
way of estimating initial response time (the time to produce the first output tuple). As was dis-

cussed in Chapter 4, this may be an important performance criteria.

Sensitivity to Selectivity Factor

The selectivity factor also has a significant impact on the difference between the two algo-
rithms. Table 5.2 presents results for different selectivity factors applied to the base relations
of the 4-join query (N=4). Note that a new column has been added which shows the ratio of
total 1/0 required for the RDHS algorithm to that required for the staticRD algorithm. The
main conclusion to draw is that as the selectivity factor decreases (more tuples eliminated), the

difference in total I/0O between the two algorithms diminishes.

5.2. Simulation Comparison of RDHS and StaticRD

As mentioned above, the analytical model had serious shortcomings in that it could not
encompass the effects of parallelism and could not produce response times or resource utiliza-
tions for the query processing algorithms. To address these deficiencies, we faced either imple-
menting the algorithms on a multiprocessor database machine or in a simulator. We chose to
build a simulation model for two main reasons. First, we felt it would be simpler and faster to
write new scheduling algorithms in a simulator than in an actual system. And second, a simu-

lation model provides more flexibility in that the alternative algorithms can be studied in




RDHS STATICRD
SF M BR IR TOTALJ/O BR IR TOTALI/O | DIFF
75%
0.90 575 0.45 6.20 5.00 1.50 6.50 0.95
0.75 6.88 1.12 8.00 5.00 1.50 6.50 1.23
0.67 7.47 1.48 8.96 5.00 1.50 6.50 1.38
0.50 875 2.25 11.00 5.00 1.50 6.50 1.69
0.49 8.82 2.29 11.12 500 4.50 9.50 1.17
0.33 | 10.02 3.01 13.04 5.00 4.50 9.50 1.37
0.25 | 10.63 3.38 14.00 5.00 4.50 9.50 1.47
50%
0.90 550 0.30 5.80 5.00 1.00 6.00 0.97
0.75 6.256 0.75 7.00 5.00 1.00 6.00 1.17
0.66 6.70 1.02 7.72 5.00 1.00 6.00 1.29
0.50 7.50 1.50 9.00 5.00 1.00 6.00 1.50
0.49 7.55 1.53 9.08 5.00 3.00 8.00 1.14
0.33 835 2.01 10.36 5.00 3.00 8.00 1.30
0.25 875 2.25 11.00 5.00 3.00 8.00 1.38
10%
0.90 5.10 0.06 5.16 500 0.20 5.20 0.99
0.75 525 0.15 5.40 5.00 0.20 5.20 1.04
0.66 534 0.20 5.54 500 0.20 5.20 1.07
0.50 550 0.30 5.80 500 0.20 5.20 1.12
0.49 551 031 5.82 500 0.60 5.60 1.04
0.33 5.67 0.40 6.07 500 0.60 5.60 1.08
0.25 5.75 0.45 6.20 5.00 0.60 5.60 1.11

Effect of Selectivity Factor - N=4
Table 5.2

hardware configurations different from that of the chosen database machine.

As the basis for our simulation model we chose the shared-nothing database machine
Gamma (see Chapter 3). Gamma currently runs on a 32 processor iPSC/2 Intel hypercube
[INTES8] with one 330 megabyte MAXTOR 4380 (5 1/4") disk directly attached to each Intel
80386 processor. One deficiency of the iPSC/2’s I/O system is that it does not provide DMA
support for disk transfers. Instead, disk blocks are transferred by the disk controller into a
FIFO buffer, from which the CPU must copy the block into memory.? A high-speed hypercube

connected network topology using specially designed hardware routers is used for

2Intel was forced to use such a design because the I/0 system was added after the system
had been completed, and the only way of doing I/0O was by using an empty socket on the board
which did not have DMA access to memory.
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comimunication between processors.

5.2.1. Simulation Model

The simulation model of Gamna is organized as follows. Each node in the multiprocessor
is composed of a Disk manager, a CPU manager, an Operator manager, and a Network Inter-
face manager. Additionally, five stand-alone modules are provided: a Network manager, a
Query Compiler, a Terminal module, a Query Scheduler and the System Catalog manager. See
Figure 5.1 for a picture of the entire simulator. The DeNet simulation language [LIVN88] was

used to construct the simulator.

The Disk Manager schedules disk requests to an attached disk according to the elevator
algorithm [TEOR72]. In order to accurately reflect the hardware currently being used by
Gamma, the disk manager interrupts the CPU when there are bytes to be transferred from the
I/0 channel’s FIFO buffer to memory or vice versa. The CPU module enforces a FCFS non-
preemptive scheduling paradigm on all requests, except for byte transfers to/from the disk’s
FIFO buffer. An Operator manager is responsible for modeling the relational operators, e.g.,
select and join. This manager repeatedly make requests to the CPU, Disk and Network inter-
face managers to perform its particular operation. The Network Interface manager enforces a
FCFS protocol for access to the global communications network. The Network module
currently models a fuliy connected network and the Terminal module provides the entry point
for new queries. The Query Compiler takes a description of a multiple-relation join query and
produces a query plan in one of the alternative query plan formats. The Query Scheduler
implements the algorithms for processing queries optimized in the alternative query plan for-
mats. Finally, the System Catalog manager keeps track of how many files are defined, what
disks each file is declustered over, and the number of pages of each file on each disk. For each
file, a mapping from logical page numbers to physical disk address is also maintained. This
physical assignment of file pages allows for more accurate modeling of sequential as well as

random disk accesses.
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As a check of the accuracy of the multiprocessor database machine simulator, we vali-

dated the simulator against results produced by Gamma. For the validation procedure, the

system was configured to use 18 Kbyte disk pages and 8 Kbyte network pages. The costs
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associated with basic operations on this machine and relevant system parameters are sum-
marized in Table 5.3. The values for the disk settle time, latency, and transfer rate were taken
frorn MAXTOR disk specifications. The disk seek time is computed by multiplying the seek
factor by the square root of the number of tracks to seek [BITT88]. The cost to transmit vari-
ous size packets were taken from measurements of Gamma. In general, control packets are

100 bytes and data packets are 8,192 bytes.

The costs of various CPU operations were taken via measurement and also estirnated by
code inspection. Approximately 400 instructions are required to extract a single tuple off of a
disk page and apply any local predicates. An additional 150 instructions are needed to place
the tuple into a hash table; 200 instructions to probe a hash table. Finally, about 750

instructions are required to write a tuple to a disk or network page.

To validate the simulation model we present the performance of both a 10% selection
query and a join query in a system with 1-30 processors with disks. Expanded versions of the

Wisconsin Benchmark relations [BITT83] serve as the test database. The selection query

Disk Parameters
Average Settle Time 2 msec
Average Latency 0-16.67 msec (Unif)
Transfer Rate 1.8 MBytes/sec
Seek Factor 0.78 msec
Disk Page Size 18 Kbytes
Xfer Disk Page from SCSI to mem 9000 instructions

Network Parameters

Maximum Packet Size 8 Kbytes
Send 100 bytes 0.6 msec
Send 8192 bytes 5.6 msec

Cpu Parameters
Instructions/Second 4,000,000
Read 18K Disk Page 32,800 instructions
Write 18K Disk Page 61,500 instructions

Miscellaneous

Tuple Size 208 bytes
Tuples/Network Packet 36
Tuples/Disk Page 82
Number of Sites 1-30

Simulation Parameters for Model Validation

Table 5.3
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retrieves 100,000 tuples from a 1,000,000 tuple relation via a sequential scan and stores the
resulting tuples back into the database across all available processors. Figure 5.2 shows that
the results from the simulation model and Gamma are very close for this query. However, the
actual error is greater than implied because Gamma uses a one page readahead mechanism
when reading pages from a file sequentially and this functionality is not modeled by the simu-

lator. The performance implications of this mechanism are discussed in more detail below.

In order to validate join performance in the model, we joined a 1,000,000 tuple relation
(208 megabytes) with a 100,000 tuple relation (20 megabytes) to produce a 100,000 tuple
result relation (40 megabytes). As illustrated by Figure 5.3, the simulation model overesti-
mates the response time for this query by a factor of about 20% over the range of 5 to 30 pro-
cessors with disks. Most of this inaccuracy is related to Gamma’s use of a one page readahead

mechanism when scanning a file sequentially. Since join queries are very CPU intensive

ELAPSED TIME (SECS) ELAPSED TIME (SECS)
5001 2001
4301 10% Selection 1801 JoinABprime
400 160
350 140
300 120
2501 1001
2001 801
150 601

1001 401

Gamma
501 201
0 —— 0 ——
0 5 10 15 20 25 30 0 5 10 15 20 25 30
PROCESSORS WITH DISK PROCESSORS WITH DISK

Validation of Selection and Join Performance
Figures 5.2 and 5.3
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operations, Gamma can effectively overlap most of the CPU costs of constructing and probing
the hash table with the disk I/O necessary for reading the joining relations. This should not
imply, though, that the model is overpredicting performance by 20% for the selection query
presented in Figure 5.2. The CPU requirements of this query are much lower and thus the
extent of the overlap of CPU and disk processing is much more limited. This claim is further
supported by simulation results that accurately predict execution times for selection queries
that use a non-clustered B*-tree access method [HSIA90]. These queries generate a series of

random disk requests and hence readahead is not employed.

5.2.3. Experimental Design

The experiments in this chapter were designed to analyze the performance differences
between the staticRD and RDHS algorithms for processing right-deep query plans. We
specifically address how several factors affect the comparison, including the effect of the data
declustering strategy, sensitivity to selectivity factors and query complexity, and sensitivity to

system parameters such as CPU speed and the size of network packets.

For the experiments conducted, the query suite consisted primarily of queries composed
of four joins, although queries of other complexity are presented as well. In order to simplify
the analysis, the queries were highly constrained. For example, the queries were designed
such that the size of the result relation is constant regardless of the number of joins in the
query tree. This was accomplished by making all relations the same size and by setting the
join "probe-ability" factor to 1 for every join in the query tree. That is, each probing tuple joins

with exactly one building tuple.

The database was composed of nine 1,000,000 tuple relations, and each relation has a
selection predicate applied to it that reduces the output cardinality to 500,000 tuples. Each
intermediate relation also consists of 500,000 tuples. Tuples are 208 bytes wide and attri-
butes are not added with each successive join, so the result cardinality of ALL the joins was
500,000 tuples, each 208 bytes wide. All result relations were written back into the database.

In order to more accurately predict performance for “typical” database machines, a 25% buffer
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pool hit ratio was specified in order to model a disk prefetch mechanism. In the following
results, both initial response time and elapsed time are reported for each algorithm. Recall
that initial response time is the time to produce the first output tuple, while elapsed time is the

time to compute the entire query result.

The performance of each of the algorithms is computed as a function of available memory.
That is, the x-axis represents the fraction of the total memory in the database machine for join-
ing to the amount of memory required to hold all of the building relations (after any selectivity
factors have been applied). Thus, at the x-axis value of 1.0, all of the building relations can be
staged into memory concurrently without any memory overflow (assuming uniformity). At a

value of 0.5, only half of the building relations can reside in memory concurrently.

We were especially interested in how effectively each algorithm could exploit the resources
found in a parallel database machine. As such, each experiment was conducted under two dif-
ferent data declustering strategies. The first configuration models a database machine with a
modest number of processors. In such an environment it is likely that large relations will be
declustered over all the available nodes. Thus, executing multiple scan and join operators
concurrently will result in a high degree of resource contention. For this particular environ-
ment, the system was configured such that each relation was declustered over the same 50
nodes. Each join in the query tree was also processed on all 50 nodes. Since all processors
are used for each relational operator, this configuration will be referred to as the full declus-

tering configuration.

The second configuration was designed to model a database machine where relations are
declustered over a subset of nodes. This scenario is likely to be true in a database machine
with many processors and is referred to as partial declustering. The effect of having partial
declustering is that resource contention is reduced when executing several operators con-
currently. For this environment the system was configured as follows. Each of the relations to
be joined was declustered over 10 distinct, non-overlapping nodes. Each join was also pro-

cessed on the 10 processors on which its "building" relation was declustered. Each temporary
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relation, as well as the output relation, was declustered across all available processors.
5.2.4. Experimental Results

5.2.4.1. Sensitivity to Resource Availability

Figures 5.4 and 5.5 present the results for executing the 4-join query in a system with full
relation declustering and partial relation declustering, respectively. The results for the full
declustering experiment verify the analytical results presented above®. That is, the staticRD

algorithm outperforms the RDHS algorithm in almost all cases when elapsed time is the cost

metric. The difference is lessened when initial response time is the cost metric.
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3The difference in I/O between the algorithms in the simulator matches that predicted by
the analytical model.
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However, a change in data placement can significantly alter the performance comparison
as the partial declustering results in Figure 5.5 show. Here, the RDHS algorithm outperforms
the staticRD algorithm over much of the range of memory availability using both the elapsed
time and initial response time cost metrics. This demonstrates that when the appropriate
resources are available, the parallelism inherent in the RDHS algorithm can overcome the
expense of the additional disk I/O. The difference in the two algorithms with respect to initial

response time is particularly striking.

5.2.4.2. Sensitivity to Selectivity Factor

Figures 5.6 and 5.7 show the results of modifying the 4-join query to use a selectivity fac-
tor of 10% for each joining relation as opposed to 50% as was shown in Figures 5.4 and 5.5.
The reduction in selectivity factor reduced the size of the intermediate relations from 50,000

tuples to 10,000 tuples. As predicted by the analytical model in section 5.1, the difference in
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the number 1/Os performed by each algorithm decreased as the selectivity factor decreased
(more tuples eliminated), reducing the difference between the two algorithms. The difference
between the elapsed time and the initial response time for each algorithm also diminishes as
the selectivity factor is reduced. This occurs because the temporary join results are smaller
due to the lower selectivity factor, and these tuples cannot propagate up the entire query tree
as fast as before because of network packet buffering. This is explained in more detail in the

section on the sensitivity to network packet size.

5.2.4.3. Sensitivity to Query Complexity

In this set of experiments, we analyze the effects of query complexity, i.e., the number of
relations to be joined, on the performance of the two right-deep scheduling strategies. Figures
5.8 and 5.9 show the results for executing a 3-join query in a system with full relation declus-

tering and partial relation declustering, respectively. These results should be compared with
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Figures 5.4 and 5.5 where the join query was composed of 4 joins. The change in crossover
points in Figures 5.4 and 5.8 and in Figures 5.5 and 5.9 clearly shows that having a less com-
plex query favors the RDHS algorithm more than the staticRD algorithm. The difference in ini-
tial response time between Figures 5.5 and 5.9 is particularly striking. In this low resource
contention environment, the RDHS algorithm is producing tuples in less than haif the time

required for the staticRD algorithm for most degrees of memory availability.

The results from running an 8-join query confirm the trends shown with the 3-join query.
Figure 5.10 shows the results from running the staticRD and RDHS algorithms on an 8-join
query in a full declustering environment. When compared with Figures 5.4 and 5.8 , it is obvi-
ous that increasing the complexity of the query causes substantial performance problems for
the RDHS algorithm when resource contention is high. These experimental results also sup-

port the analytical results from Section 5.1 that showed that increasing the complexity of the
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query serves to increase the difference in disk I/O requirements between the two right-deep

scheduling algorithms.

5.2.4.4. Sensitivity to CPU Speed

The speed of the CPUs has a significant effect on the performance of both of the algo-
rithms. Figures 5.11 and 5.12 show the performance improvements in elapsed time and initial
response time, respectively, for the 4-join query in the full declustering environment when the
CPU speed is increased from 4 to 16 mips. As shown, both algorithms show substantial
speedup frorn having faster CPUs. The RDHS algorithm receives more benefit, especially as
memory becomes increasingly scarce, because it becomes CPU bound with 4 mip CPUs due to
the cost of writing tuples to disk and later reading them, and also because it sends more net-

work packets. The speedups for the partial declustering environment from having the faster
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CPUs are basically identical to the speedups for full declustering and are thus not presented.

5.2.4.5. Sensitivity to Network Packet Size

The choice of the size of the network packets also has a significant effect on the perfor-
mance of the two algorithms. Each of the previous experiments used a network packet size of
8 Kbytes. Figures 5.13 and 5.14 present the effects on elapsed time and initial response time,
respectively, when the size of the network packets is reduced from 8 Kbytes to 4 Kbytes and 2
Kbytes. Only the results from the full declustering environment are shown because the results

from the partial declustering environment follow the same trends.

Figure 5.13 shows that reducing the network packet size increases the elapsed time for
both algorithms. Two factors led to this degradation in elapsed time. First, there are

economies of scale in the time to transmit packets. For example, instead of taking twice as
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long to send an 8 Kbyte packet as opposed to a 4 Kbyte packet, it only takes 1.5 times as long.
Thus, reducing the size of the network packets increases the time to compute the query
because the cost to transmit each byte is increased. Second, the transmission of a packet
incurs a fixed CPU cost for protocol processing. A third possible factor, although it did not
occur in these experiments, is that as the network packet size is reduced the proportion of
“useful” bytes diminishes because of packet overheads. For example, if 36 tuples can be
stored in an 8 Kbyte network packet, only 17 may fit in a 4 Kbyte network packet. Thus,
decreasing the packet size by a factor of two could possibly cause more than two times as

many packets to be sent.

The effect on initial response time when the network packet size is reduced, as shown in
Figure 5.14, differs dramatically for the two algorithms. With the staticRD algorithm, initial
response time increased when less than 100% memory was available. This occurred because
of the reasons described above. However, the initial response time for the RDHS algorithm
decreased for most memory availabilities with the reduction in the size of the network packets.
This reduction in initial response time occurred, even though the elapsed time increased,
because the first tuples were able to propagate up through the levels of the query tree more
rapidly when the size of the network packets was reduced. This happens because output
tuples are not sent to the next join operation in the query tree until a network buffer is filled.
With smaller network packets, buffers fill much faster, hence the tuples in the probing pipeline
propagate upwards much faster. Another benefit of the smaller network packet sizes is that
the memory required for network buffers is reduced. For systems with large numbers of pro-

cessors, this savings could be substantial.

5.3. Summary

The results from this chapter demonstrate the performance tradeoffs between the sta-
ticRD and RDHS algorithms for processing right-deep query plans. The analytical model
predicted that the RDHS algorithm would be much more disk 1/0 intensive than the staticRD

algorithm except in situations of very high memory availability. Results from the database
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machine simulator verified this aspect of the analytical model.

In a high resource contention environment, the staticRD algorithm outperforms the RDHS
algorithm because it is less resource intensive. However, in a low resource contention environ-
ment, the RDHS generally performs better because it takes advantage of the greater resource
availability. The experimental results also corroborate the prediction from Chapter 4 that the
RDHS algorithm would perform quite well with respect to the initial response time cost metric.
In a low resource contention environment, the difference in response time between the two

algorithms is particularly striking.

The complexity of the query (in terms of the number of relations to join) was also shown
to have a significant effect on the performance comparison. The RDHS algorithm fares much
better when the number of relations to join is relatively small. As the number of joining rela-
tions grows, the resource requirements of the RDHS algorithm rise much faster than those of

the staticRD algorithm and hence performance suffers.

We also saw how several system factors affect the performance of the two right-deep
query processing algorithms. Both algorithms received significant speedups from having faster
CPUs, but the RDHS algorithm received more benefit because it is more resource intensive.
The experimental results also showed that decreasing the size of the network packets
increased the amount of time required to compute the query for each algorithm. However, the
reduction in packet size also had the effect of decreasing the initial response time of the RDHS
algorithm because it allowed result tuples to propagate more quickly through the join tree. If
query response time is important, either smaller network packets should be used or some type

of early flush of network buffers should be implemented.



CHAPTER 6

LEFT-DEEP VERSUS RIGHT-DEEP QUERY PLANS

In this chapter, we explore the performance tradeoffs between left-deep query plans and
right-deep query plans in a multiprocessor database machine. The discussion in Chapter 4
implied that a right-deep plan could potentially offer significant performance advantages over
the same query optimized in a left-deep plan. The goal of this chapter is to ascertain under

what conditions each plan type is advantageous.

In Chapter 5, we explored the performance of two strategies for processing right-deep
query plans, right-deep hybrid scheduling (RDHS) and static right-deep scheduling {staticRD).
This analysis will include both of these algorithms. The algorithm used for processing left-
deep query plans is identical to that presented in Chapter 4. The simulation model described

in Chapter 5 is used for the performance analysis.

Comparing left-deep and right-deep query plans in a fair and consistent manner is
difficult. For the best comparison, a collection of "real" queries would be chosen and the
optimal query plan compared for each of the left-deep and right-deep optimization strategies.
Unfortunately, this type of comparison is not possible for several reasons. First, an optimizer
uses cost functions to compare candidate query plans in its search for the best plan. However,
as was shown in Chapter 5, the right-deep scheduling strategies attempt to increase perfor-
mance through additional intra-query parallelism. If the hardware resources are available to
support the Increased parallelism, these algorithms will benefit considerably. Thus, for an
optimizer to find the best right-deep query plan, it must have cost functions that are able to

model resource contention. The development of these cost functions is an open research prob-

lem.
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Another problem is finding a collection of "real’ queries with which to make the perfor-
mance comparison. Finding real queries, like finding real data, is an elusive task. In addition,
the problem is even more complicated because we must guess what queries will look like as

users’ needs become more complex.

Another difficult task is deciding the proper test environment. It is common when com-
paring the performance of several algorithms to make conclusions like algorithm A runs faster
than algorithm B by some percentage. If one algorithm consumes more resources such as CPU
cycles or disk 1/0, this is usually just mentioned as a side-effect of the algorithm. However,
when comparing left-deep plans to right-deep plans, memory consumption is crucial to the
analysis. If memory consumption is not a constraint, the right-deep plan produced by "mirror-
ing"! the optimal left-deep plan for a particular query will generally be at least as good, and
usually better, than the optimal left-deep plan. By mirroring the optimal left-deep plan, the
resulting right-deep plan will have the same join selectivities and hence will process the same
number of tuples. Without any memory constraints, the total amount of disk 1/0 will be
equivalent for the left-deep and right-deep plans. If the dynamic bottom-up scheduling stra-
tegy processes the right-deep plan, each relation will be read sequentially and performance will
closely match that of the left-deep plan. However, by using the optimistic right-deep schedul-
ing strategy or the blocked version of the dynamic bottom-up strategy, several of the relations
will be read concurrently; if the disks can efficiently support the scanning of multiple relations

concurrently, the resulting performance will be better.

Our solution for comparing the performance of left-deep and right-deep query plans is to
first delimit the performance differences by showing results obtained under extreme condi-
tions. We then analyze how different aspects of the query, for example, the size of the building

relations, the physical placement of the joining relations, the join selectivities, etc., affect the

To mirror a left-deep plan in order to produce a right-deep plan, simply interchange all
the building and probing relations from the left-deep plan.



8C

performance comparison of left-deep and right-deep query plans. Through the combination of
all these tests, the entire scope of performance for the two alternative optimization strategies
will be covered for a single-user environment. Additionally, CPU and disk utilizations are

reported for the algorithms and the ramifications of a multi-user environment are discussed.

6.1, Experimental Design

As was shown in Chapter 5, contention for CPUs and disks and the availability of memory
are prime determinants of performance of the right-deep scheduling algorithms. As such, the

comparison of left-deep plans with right-deep plans has to capture both of these situations.

As an attempt to delimit the range of performance differences, the first set of experiments
compare the performance of left-deep and right-deep scheduling strategies under both high
and low degrees of resource contention, but where memory is unlimited. The second set of

experiments relaxes the unlimited memory assumption.

One potential problem with right-deep plans occurs with queries that have several large
building relations, low join selectivities, and no highly restrictive selection predicates. With
such queries, the memory requirements of a right-deep plan will be dramatically higher than
those of a left-deep plan. Given a limited memory environment where the right-deep plan can
only consume as much memory as a left-deep plan, the performance of the right-deep plan is
likely to suffer. The third set of experiments demonstrate the performance implications of this

type of query.

The remaining experiments show the performance of left-deep query plans and right-deep

query plans for queries with high join selectivities and for different data placement strategies.

6.2. Experiment 1: Unlimited Memory

This first set of experiments is designed to present the range of performance differences
between left-deep and right-deep query plans when the amount of memory for joining is unlim-
ited. The database is identical to that reported in Chapter 5, i.e., each relation contains

1,000,000 tuples and each tuple is 208 bytes long. The queries are also similar to those
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described in Chapter 5, with the exception that the queries are composed of 1, 2, 4 and 8
joins. Other system parameters are identical to those outlined in Table 5.3. As in Chapter 5,
we consider two database machine environments: a full declustering/high resource conten-
tion environment and a partial declustering/low resource contention environment. Recall
from Chapter 4 that in an unlimited memory environment, the RDHS, staticRD and optimistic

right-deep scheduling algorithms are identical.

6.2.1. High Resource Contention Environment

As described in Chapter 5, in the full declustering environment each joining relation is
declustered over the same set of disk sites and each join is computed using all available pro-

cessors. 50 processors with disks are used in this environment.
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The elapsed time results for the full declustering experiments are shown in Figure 6.1 as
the number of joins in the query is increased from one to eight. The graphs also indicate disk
and CPU utilizations, respectively, at each of the data points. These resource utilizations

reflect the average utilization over all the respective resources in the system.

For each different complexity of the join query, the performance of the right-deep query
plan is approximately 15-20% faster than its analogous left-deep query plan (of course, left-
deep and right-deep query plans are identical for single join queries). This performance
improvement occurs because the disks and CPUs are not fully utilized and executing the scans
in parallel for the right-deep plans provides some performance tmprovement. However, if a
single scan of a declustered relation fully utilizes each of its associated disks or CPUs, a right-
deep query plan will not demonstrate a performance advantage under these experimental con-
ditions. Note that the maximum memory requirements for the left-deep and right-deep query
plans are identical for queries with 1 and 2 joins, but are twice as high for right-deep plans
with 4 joins and four times as high with 8 joins. These results are discouraging for right-deep
plans with many joins because the speedup gained from using two and four times as much
memory is limited to less than 20%. Also, the disk and CPU utilizations for the right-deep
algorithm are significantly higher than the left-deep algori};hrn. Thus, if multiple queries were

run concurrently, the throughput would be higher for the left-deep algorithm.

6.2.2. Low Resource Contention Environment

In this next set of experiments we wanted to demonstrate the performance tradeoffs
between the two query optimization strategies in a database machine with more processors.
The system was configured in the following manner (as in Chapter 5). Each of the nine
1,000,000 tuple relations was declustered over 10 distinct, non-overlapping nodes. Each join
was also processed at 10 nodes. The processors used to execute each join operator were
assigned such that they were identical to the processors over which each "building” relation
was declustered. Given these conditions, the number of processors actively participating in

each query during the scanning of relations and the building/probing of hash tables increased
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as the number of joins in the query increased. For example, in a 2-join query 30 nodes were
used, and in an 8-join query 90 nodes were used. Regardless of the number of joins in the

query, each result relation was declustered over all 90 nodes.

As {llustrated by the elapsed times in Figure 6.2, left-deep query plans are unable to take
advantage of the hardware resources that become available as additional joins are added to the
query. This is to be expected because relations are scanned one at a time when a left-deep
query plan is employed. However, for right-deep query plans, a nearly constant response time
is maintained as the number of joins is increased from one to eight. Given the experimental
parameters, this result was expected. Consider the first step in executing the query - scanning
the building relations and constructing the corresponding hash tables. Since all relations are
the same size and have the same selectivity factor applied, and since all the relations are
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declustered over distinct nodes and the join nodes correspond to the base relation declustering
nodes, each of the scans and hash table builds can be executed completely in parallel and
without interference. Thus, the cost of this operation is constant regardless of the number of
joins (disregarding the small overhead necessary for starting the operators). The second phase
(the probing phase) scales with the number of joins due to pipelining. As tuples are produced
from a lower join they are immediately sent across the network to participate in the next level
of the join. Thus, processing of tuples in the upper and lower levels of the tree are overlapped
with each other. Viewed another way, the throughput of the pipeline is constant regardless of
the depth of the join tree, and the difference in elapsed time as the number of join levels is
increased is due to the increased latency to initiate and terminate the pipeline. In Figure 6.2,

we see that this overhead is negligible for up to 8 joins.

The results contained in Figure 6.2 represent best-case performance improvements of
right-deep versus left-deep query plans. All experimental parameters were set to allow the
parallelism potential of the right-deep strategy to be exploited to its fullest. Under more realis-
tic conditions, the performance improvements of right-deep query plans will fall between the
extremes presented in Figures 6.1 and 6.2. Also, it should be noted that the right-deep query
plan with eight joins required four times more memory than any of the left-deep join plans.
However, the results do demonstrate the extremely high performance benefits that can be
obtained by using a right-deep query optimization strategy under conditions of low resource
contention. In addition, the throughput of the two strategies should be comparable in this

environment.

6.3. Experiment 2: Limited Memory

In this set of experiments we relax the assumption that an unlimited amount of memory
exists for joining. All query and model parameters are identical to those reported in the previ-
ous experiment with the exception that for this analysis we concentrate on the query consist-
ing of 8 joins. High resource and low resource contention (full declustering and disjoint

declustering) experiments are again conducted.
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In order to model a limited memory environment, we modified the aggregate amount of
memory available for joining relative to the memory required to stage all eight building rela-
tions into memory simultaneously. Elapsed time is plotted for the left-deep and right-deep
strategies for x-axis values ranging from 0.25, where only 2 of the 8 building relations can co-
reside in memory, to 1.00, where all 8 building relations can fit in memory simultaneously.
X-axis values less than 0.25 would have required resolution of memory overflow for left-deep
query plans and are not reported. The graphs also indicate disk and CPU utilizations, respec-

tively, as well as the total number of disk 1/O’s performed at selected data points.

For the static right-deep scheduling algorithm it was assumed that the optimizer could
perfectly predict the scan selectivities and thus could always choose the optimal place(s) to
"break" the query tree. For RDHS, each of the building relations was split into the same
number of buckets at each of the different memory availabilities. Thus, at 0.33, each of the
building relations was partitioned into 3 buckets; at 0.5, each relation was partitioned into 2
buckets. All temporary files for the right-deep scheduling strategies were declustered across

all available disks.

6.3.1. Limited Memory - High Resource Contention

In Figure 6.3, the performance of the left-deep, staticRD, and RDHS scheduling algo-
rithms is shown as the amount of available memory is varied in an environment where all base
relations are declustered across all 50 sites. Several observations should be noted from this
figure. First, it is obvious that the left-deep scheduling algorithm is not able to take advantage
of memory as it is added. Once enough memory is available to hold any two adjacent join
operators, performance will be constant regardless of the presence of any additional memory.
In contrast, staticRD does demonstrate some significant performance improvements by using
any additional memory for joining. Next, the cross-over point between the staticRD and left-
deep scheduling algorithms demonstrates that "breaking” the query tree into too many pieces
can be detrimental to the performance of staticRD. For example, at the x-axis value 0.25, the

tree had to be broken into three pieces to insure that the right-deep strategy did not experience
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memory overflow, requiring the writing and subsequent reading of temporary join computa-

tions to and from the disk at three points during query execution. The flatness of staticRD

from 0.5 to just before 1.0 occurs because the query tree had to be broken into only two

pieces. Since the joins in the queries tested produced intermediate relations of a constant size

regardless of the number of joins in the query, the placement of the "break” has no effect on

performance because the same number of tuples are temporarily staged to disk. Under more

likely conditions of growing or diminishing temporary join size results, the selection of the
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break points for a query will almost certainly have some effect on the execution time of the

query. This factor is shown in Experiment 3.

The performance of the RDHS algorithm can be easily explained by examining the total
number of disk 1/0s needed to compute the query. As Figure 6.3 shows, RDHS is performing
substantially more disk /0 than the other two algorithms. Both staticRD and RDHS reduce
their number of disk 1/0’s as the amount of memory for joining is increased. The disk 1/O
metric for the left-deep algorithm remains constant over the range of memory plotted because

it is not using any of the extra joining memory.

For this join query and test environment, the left-deep algorithm is still outperforming the
right-deep algorithms when memory consumption for joining is identical (at x-axis value 0.25).
Additionally, the left-deep algorithm has lower CPU and disk utilizations and hence will allow

higher throughput when executed concurrently with other queries.

6.3.2. Limited Memory - Low Resource Contention

In Figure 6.4, we present the execution times, resource utilizations, and disk I/O counts
of the left-deep and right-deep scheduling strategies for the 8-join query when the relations to
be joined are declustered over mutually disjoint processors with disks (as in the low resource

contention environment of Experiment 1).

The results are very similar to those shown in Figure 6.3, i.e., the shape of the curves is
identical. It is obvious though, that the low resource contention environment offers significant
performance advantages for right-deep scheduling strategies even when memory is limited.
This is encouraging because, as stated earlier, it is likely that relations will be partially
declustered in database machines with large numbers of processors/disks. All the data points

for RDHS are not included because of memory lirnitations when running the simulations.

The disk and CPU utilizations in Figure 6.4 show the tradeoff that exists between elapsed
time and throughput for the staticRD and left-deep algorithms. At the x-axis value of 0.25

(equivalent memory consumption), the response time is lower for staticRD but more left-deep
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plans can be run concurrently because of the lower resource utilizations. At 1.00, the
throughput will be comparable between the alternative algorithms but the right-deep algo-

rithms will consume four times more memory.

6.4. Experiment 3: Large Building Relations

In this set of experiments, we wanted to analyze performance when the complex join

query consists of several large relations without highly restrictive selection predicates and
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when join selectivities are low. This type of query is expected to be especially disadvantageous

to right-deep plans when memory consumption is limited.

As the test query we chose a query that joins 5 relations. The relation cardinalities and
selectivity factors are: 1,000,000 with 50% selectivity, 1,000,000 with 50% selectivity,
1,000,000 with 20% selectivity, 500,000 with 10% selectivity, and 200,000 with 25% selec-
tivity. The join selectivities were designed such that the size of the intermediate relations was
50,000, 50,000, 100,000 and 100,000 tuples, and the size of the output relation was 100,000
tuples.

SECONDS
180 -

Full Declustering

(15%, 79%)
57,370

162 4

144 -

Left Deep
& |
(36%, 52%)
35,210 StatRD (49%, 64%)

18 4 35,000

36 -

0

100 200 300 400 500 600 700 800
MEMORY (Thousands of Tuples)

Large Building Relations - Full Declustering
Figure 6.5
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Two environments, high and low resource contention, are again considered. The data-
base machine consisted of 50 processors for each environment but, in the low resource con-
tention environment each relation and join was declustered over 10 disjoint processors while
in the high resource contention environment each relation and join was declustered across all
50 processors. The graphs plot elapsed time versus the amount of memory that is available for
joining (shown as thousands of tuples). Additionally, disk and CPU utilizations, respectively,

as well as the total number of disk 1/0’s performed are shown at selected data points.
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The results for the high resource contention environment shown in Figure 6.5 are partic-
ularly revealing. It took 41 seconds to compute the query using a left-deep query plan. The
RDHS algorithm processing a right-deep plan and consuming the same amount of memory as
the left-deep plan took 171 seconds to compute. The staticRD algorithm fared better by exe-
cuting the query in only 39 seconds but it used 2.5 times as much memory as the left-deep
plan. Given the constraints of the staticRD algorithm, we were unable to reduce memory con-
sumption to be equal to that of the left-deep plan. If the relations were even larger, the join
selectivities further reduced, the selection predicates less restrictive, or more relations were to
be joined the difference between the left-deep plans and the right-deep plans would continue to

grow.

The results from running the same query in the low resource contention environment
present a much different picture of performance, though. With this environment (see Figure
6.6), the right-deep algorithms perform significantly better as memory for joining is added.
However, it should be noted that the left-deep algorithm is still outperforming the right-deep
algorithms when memory consumption for joining is identical (at 200,000 tuples). Of course,
even in a low resource contention environment such as here, if the relations were even larger,
the selection predicates less restrictive, the join selectivities lower, or more relations were to be
joined the performance of the algorithms for processing right-deep plans would further suffer

when compared to the left-deep scheduling algorithm.

6.5. Experiment 4: Sensitivity to Data Placement

In the previous experiments, we have considered two extreme data placement alterna-
tives: either all joining relations are declustered over the same set of disks or all relations are
declustered over disjoint sets of disks. For this next experiment, we explore the performance
ramifications for left-deep and right-deep plans at more intermediate degrees of data placement

overlap, i.e., when only a subset of the joining relations are declustered over the same disks.

All query and system parameters are equivalent to the partial declustering case outlined

in Experiment 3, with the exception that instead of declustering the three, 1,000,000 tuple
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relations over separate disk sites they are declustered over the same set of 10 disk sites.

As expected, the left-deep scheduling algorithm is unaffected by the change in placement
of the joining relations. Again, this is because the joining relations are scanned one at a time.
However, RDHS suffered a performance loss of about 6% due to the change in data placement
causing increased contention for the CPUs and disks during the building phase. The degrada-
tion would have been worse except for the fact that one of the million tuple relations was used
as the probing relation and hence its placement had no effect on the response time of the
building phase. The staticRD algorithm was unaffected by the change in data placement for
this experiment because the placement of the breaks in the query plan were such that the
overlapping building relations were in different sub-joins and thus did not compete for
resources. Of course, if two overlapping building relations had been in the same sub-join, the

degradation in performance would have been similar to that of RDHS.

For the next intermediate declustering experiment, we further modified the data place-
ment strategy. Instead of storing the million tuple relations on the same set of ten disk sites,
we placed the relations such that they only overlapped at two disk sites. The results from run-
ning the identical query in this new intermediate declustering environment are identical to the
previous results. This is expected for the left-deep scheduling algorithm and the staticRD algo-
rithm because they were unaffected by the previous change in the data placement strategy.
However, RDHS was unaffected by this change in data placement because the speed of the
entire building phase is determined by the slowest site. In the case of this partial overlap
environment, the load on the two sites that contained the overlapping building relations was
significantly higher than that of the other sites. Since the building phase cannot conclude

until these two overloaded sites finish, these sites determined the overall response time.

These intermediate declustering results show that an optimizer that produces right-deep
query plans must be aware of where (relative to one another) the building relations of a join
query are declustered in the database machine, while an optimizer for left-deep plans need not

be concerned with this factor. This overlap factor is more important for RDHS than staticRD
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because all the building relations must be considered while with staticRD only those relations
within the same "break” of the query plan compete for resources. These results also provide
further evidence that optimizing fully-general bushy plans will likely be very difficult; besides
the normal problems of synchronizing sub-joins, the resource contention of the various sub-

joins being executed concurrently must be accounted for.

6.6. Experiment 5: High Join Selectivities

In this experiment, we explore the effect of changing the join selectivities on the perfor-
mance of the left-deep and right-deep query processing algorithms. The basic query from
Experiment 3 is again used, although the join selectivities are modified to generate a much
larger output relation and intermediate relations. The output relation consists of 500,000
tuples and, because of the larger intermediate relations, the minimal memory requirements for
the left-deep plan to avoid hash table overflow is 600,000 tuples (temporary join results of
200,000 and 400,000 tuples). The right-deep plan for the RDHS algorithm required that two
buckets be used for the 1,000,000 tuple relation with the 50% scan selectivity. One bucket
was used for the other three building relations, giving a memory requirement of 550,000

tuples.

In comparison to the full declustering results from Experiment 3 (see Figures 6.5 and
6.7), RDHS is now only a factor of 1.4 slower than the left-deep algorithm as opposed to a fac-
tor of 4.2 slower when memory consumption is equivalent. The change in join selectivities also
allowed staticRD to achieve the same degree of memory consumption as the left-deep algo-
rithm, although performance still lags. In the partial declustering case, RDHS went from being

10% slower to 21% faster (see Figures 6.6 and 6.8).

The right-deep scheduling algorithms benefited more from the larger join selectivities in
both environments because the size of the intermediate relations determines the amount of
memory consumption for the left-deep scheduling algorithm. When the size of these temporary
results is increased, RDHS can increase the amount of each building relation that is staged in

memory. That is, the number of buckets used to compute each join can be reduced. This has



94

SECONDS Full Declustering SECONDS Partial Declustering
80 1804  (12%, 22%) (10%, 16%)
49,100 Left Deep 20100
162 - = ®
7 (35%, 81%)
49,700
64 4 144 4
RDHS
56 1 StatRD 126 A (16%, 36%)
49,700
s “4ds 5% 108 -
& &
40 (38%,63%) LeftDeep N\ 90, (16%, 30%)
40,100 39,500
(45%, 80%)
324 39,500 72
24 1 54 4
16 4 36 4
8 184
0 v ' . ] 0 r v r !
400 500 600 700 800 400 500 600 700 800
MEMORY (Thousands of Tuples) MEMORY (Thousands of Tuples)

High Join Selectivities - Full and Disjoint Declustering
Figures 6.7 and 6.8

the effect of reducing the fraction of each building relation that needs to be written to disk and
later read. The staticRD algorithm also benefitted (relative to left-deep scheduling) from having
a query with higher join selectivities because the number of times the query plan needed to be
broken was reduced. For this particular query the query plan needed to be broken into two
pieces. This reduced the minimal memory requirement to 500,000 tuples (less than that for
the RDHS and left-deep scheduling algorithms). In the full declustering environment, staticRD
outperformed RDHS by about 10%. This is to be expected because the results from Chapter 5
showed that staticRD performed better than RDHS when resource contention was high. How-
ever, the left-deep scheduling algorithm still outperformed staticRD by about 10%. In the par-
tial declustering environment, staticRD took about the same amount of time as the left-deep

scheduling algorithm when memory consumption was equivalent, and hence was slower than

RDHS.
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6.7. Summary

The éxperimental results in this chapter support the conclusion that left-deep plans are a
more resource conservative optimization strategy while right-deep plans are more resource
intensive. Under conditions of ample resources (CPU, disk I/0, and memory), the algorithms

for processing right-deep plans generally outperform the left-deep scheduling strategy.

However, the experiments have shown that the right-deep plans are not the best choice
under several different conditions. First, the performance of the right-deep processing algo-
rithms is dependent on the physical placement of the relations to be joined. If several of the
relations are declustered over the same set of disks, performance will suffer due to increased
CPU and disk contention. Also, in an environment where memory is limited, right-deep plans
should be avoided for queries with low join selectivities and several large relations without res-
trictive selection predicates. Left-deep plans are much better suited for this type of query.
However, it is important to note that staticRD and RDHS benefit from having extra memory for
joining. As long as the left-deep scheduling algorithm has enough memory to hold the results
of any two adjacent join operators, its performance will not improve with additional memory.
And finally, in general, a response time versus throughput tradeoff exists between the left-deep
and right-deep algorithms. In general, the right-deep algorithms gain a response time perfor-

mance advantage at the expense of potential throughput (based on CPU and disk utilizations).

These results also indirectly support the conclusion that optimizing and processing fully
general bushy-plans in a multi-processor database machine is likely to be difficult. Because
several sub-joins in a bushy-plan could be executing in parallel, the negative effects of data
placement (where relations that are scanned concurrently share some disk sites) that afflicted
the right-deep plans would affect the processing of bushy-plans. These data contention issues
would make the synchronization of multiple sub-trees in a bushy-plan even more difficult to

achieve during query processing.



CHAPTER 7

SUMMARY

7.1. Conclusions

In this dissertation, we have studied the problem of how to process large, ad-hoc join
queries in a multiprocessor database machine environment. For queries that join only a few
relations, we have found that the parallel Hybrid hash-join algorithm dominates under most
circumstances, except when the join attribute values of the building relation are highly

skewed.

We then extended the scope of the research problem to include queries that join on the
order of 10 relations. Efficiently answering these more complex queries is becoming increas-
ingly important as the demands of database users increase. Given such a complex query, the
manner in which the resulting query plan is formatted has significant performance implica-
tions. In Chapter 4, we studied the tradeoffs between left-deep, right-deep, and bushy query
plans. Through this analysis, we identified right-deep query plans as having the most poten-
tial to achieve high performance in a highly parallel environment. We proposed several algo-

rithms for processing queries optimized into right-deep query plans.

In Chapter 5, we used both an analytical model and a simulation model to compare the
performance of two of the right-deep query processing algorithms. We found that the staticRD
algorithm outperformed the RDHS algorithm in a high resource contention environment and
when the complexity of the query is relatively high. The RDHS algorithm performed well in a
low resource contention environment and has the potential to deliver output tuples to the

user/application much earlier and in a more constant stream than the staticRD algorithm.
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Finally, we compared the performance of the two right-deep query processing algorithms
with an algorithm that processes left-deep query plans. When ample resources were available
(CPU, disk, and memory), the right-deep algorithms outperformed the left-deep algorithm.
However, the right-deep algorithms were shown to be inferior under several different condi-
tions. They are generally more resource intensive and when resource contention is high, per-
formance suffers. Performance also suffers dramatically for queries that have several large
relations, no highly restrictive selection predicates, and low join selectivities. Additionally, per-
formance is more sensitive to the physical placement of the relations to be joined because of
increased resource contention when the right-deep query algorithms attempt to use additional
parallelism. As such, an optimizer for a highly parallel database machine should be capable of
producing either a left-deep or a right-deep query plan depending on the query and the

resource capabilities of the system.

7.2. Future Research Directions

Using the multiprocessor database machine simulator that we developed, we intend to
explore a variety of issues. As left-deep query plans and right-deep query plans each have
their strengths, we plan to develop and analyze a new subclass of query plans called plecewise
linear plans. These plans are formed by "grafting” together pieces of left-deep plans and
right-deep plans. Through this combination, piecewise linear plans will retain many of the
advantages of right-deep plans while lessening the extent of some of the disadvantages. Addi-
tionally, by restricting the query plan format to a combination of linear strategies, simple and
effective scheduling algorithms should be easily implementable; thereby eliminating the com-

plexities of scheduling fully general bushy-trees.

Single-user performance evaluations are important because they delimit many of the per-
formance differences between alternative algorithms and because many database systems are
still used for batch-style processing. However, the trend is for more systems to be used in a
multi-user environment. Although we did make throughput predictions based on CPU and

disk utilizations, a thorough multi-user analysis should be conducted.
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We also intend to analyze more closely the modification of query plans during execution.
By making changes at runtime, more information will be available on system resources like
disk, CPU and memory utilizations. Also, better knowledge will be available on query sizes and

selectivities.

The performance analysis assumed that perfect information was available for all scan and
join selectivities. In general, estimating join selectivities is hard, especially when the complex-
ity of the query increases. We intend to explore how sampling techniques such as Adaptive
Sampling [LIPT90a, LIPT90b] can be incorporated into both the right-deep and left-deep query
processing algorithms. We are also interested in applying Adaptive Sampling to help tackle the

problem of data skew.
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