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Abstract

An interior algorithm is proposed for solving the dual of the least
2-norm formulation of a linear program. This is a convex quadratic
problem with nonnegativity constraints only. Sixty six test problems,
including sixty three Netlib problems were solved very accurately. The
total time speedup of the algorithm for all 66 problems over MINOS
5.3 is 1.67. Linear convergence of the algorithm is also established.

1 Introduction

It is well known [Mangasarian & Meyer, 1979, Mangasarian, 1984] that a

linear program
mincz s.t. Az > b, x>0 (1)
T

is solvable if and only if the quadratic program

. €
min cz + 52T st. Az >b, 2> 0 (2)

is solvable by the same % for all € € (0,€] for some € > 0. If x(¢) solves
the quadratic problem (2), then it is the solution of the linear program (1)
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which is closest to the origin in the 2-norm. The dual of the above quadratic
program [Mangasarian, 1969] is

max —%fm + bu (3)
st. e—Autv—c=0 (4)
x>0 (5)

Elimination of 2 from the dual problem by using the constraint relation

1
z=~(Autv—c
c(Autv—o)
leads to the following exterior penalty function with penalty parameter ¢
associated with the dual of linear program (1)

1 2
min > IlAtu +v— c“ —ebu s.t. (u,v) >0 (6)
The Karush-Kuhn-Tucker optimality conditions for the quadratic problem
(6) can be expressed as a symmetric linear complementarity problem

Mz+q>0, 220, 2(Mz+4q)=0 (7)

upon making the following identifications

AAY A —Ac— eb U
]V[::(At I),q:z( e ),z::(v) (8)

Iterative SOR (successive overrelaxation) methods have been proposed for
solving the symmetric linear complementarity problems [Mangasarian, 1977].
An SOR method which preserves the sparsity structure of the problem has
been implemented to solve very large linear programs [Mangasarian & De
Leone, 1986]. These large linear programs with up to 125,000 constraints
and 500,000 variables are impossible to solve using the direct method such
as the simplex.

Our approach to find the least 2-norm solution of a linear program is to
use an interior penalty function. Since the only constraints present in the
dual problem (6) are nonnegativity constraints, an initial starting point for
the algorithm can be obtained trivially. The interiority of the iterates are
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easy to maintain by taking an appropriate stepsize. These facts constitute
the motivation behind our dual interior penalty method.

We now briefly outline the contents of the paper. In Section 2, we de-
scribe the algorithm and in Section 3 we establish its linear convergence. In
Section 4 we give computational results. In Section 5 we describe a refine-
ment procedure to improve the accuracy of the optimal solutions obtained
by the algorithm and in Section 6 we summarize the paper.

2 Interior Dual Least 2-Norm (IDLN) Algo-
rithm

We consider the linear program given in the following standard form

mince s.t. Az =0, 20 (9)
and its dual
maxbu st. Alut+v=c v>0 (10)

We make the following assumption throughout regarding these linear pro-
grams.

Assumption 1 The dual feasible region is nonempty and bounded. That is,
the set V := {(u,v)|A'u + v = ¢,v > 0} is nonemptly and bounded.

We note immediately that the following is a trivial consequence of the above
assumption.

S = {(u,v)|A'u +v = 0,0 >0,(u,v) #0} =0 (11)

By using a theorem of the alternative [Mangasarian, 1981, Theorem 1], we
have that the following is implied by (11) and hence is a consequence of
Assumption 1.

Lemma 2 Suppose Assumption 1 holds. Then
1. The matriz A has full row rank.

2. The sel X = {z|Az = b,z > 0} # 0.



The primal and dual least 2-norm formulations for the linear program (9)
are

min cz + gmm st. Az =0b,220 (12)
and
Ly, 2
min “A'u +v— c“ —ebu st.v>0 (13)

respectively, for some € > 0.
If 2(e) solves the primal problem (12) and (u(e),v(e)) solves the dual
problem (13), then the following relation holds

z(e) = % (Atu(e) —v(e) — c)

To get the solution of problem (13) by an the interior penalty method,
one minimizes a sequence of the unconstrained subproblems

in - | A ? bu— Y01 14

nl}lun;z“f u-l—v——c” -~eu-7jz—:logv] (14)

where {7'} is a sequence of decreasing positive parameters. However, for the

algorithm that we are proposing here, subproblem (14) is not solved exactly.

For each penalty parameter 4%, one Newton step is taken.
Define the function F'(u,v) as follows

F(u,v) = :1)- “Aiu +v— 6”2 — ebu — 4 anlogvj
2 o

then its gradient and IHessian are

- [ VuF(u,v) \ [ A(A'u4v—c)—eb
VE(u,v) = ( VoI (u,v) ) - ( Atu+v—c—v'V3le

AAt A
2 A ; J— .
AV ] (U.’ U) = ( lt [ z‘/—2 )

where V := diag(v).
The Newton direction can then be obtained by solving the linear system

V2F(“i’vz’) ( U — U,i ) + VF(ui,vi) =0

v—v



for u and v.

Since it is not known a priori, how small € needs be in order that a solution
of (13) yield the least 2-norm solution of the linear program (9), we start the
algorithm with an arbitrary €” > 0 and decrease its value as we iterate. We
now state the complete algorithm.

Algorithm IDLN
¢ Initialization

1. Choose any u® € IR™, v € IR%. Set i =0

2. Choose v° > Ypmin > 0 and €® > €min >0 and 0 < o, p < 1.
(v, p are attenuation factors for  and €)

e Iteration
1. Solve the linear system

U — u
v — v

V2F (u,v') ( ) + VF(u',v) =0 (15)

Let (%, ') be the solution of the above linear system.

2. Update
7= —1— (Atui + 7 — c) (16)
. 61-
Wt = 7
3. Compute stepsize A
1 if 7>0
= min;eg <-1;,£_%5r) otherwise (17)
2 J

where J 1= {]}v; - ‘17; > 0}

4. Update . . , ,
o't = v' 4 0.98) (7 ~ o)



e Termination
If (2!, u'*,»'*1) is feasible to the primal programs (9) and its dual
and |cx*t! — butt?| is sufficiently small, then stop
Else

1. Set 7 : =241
2. if 'yh" > Ymin then 7’“ = afyi
if ¢ > €pin then ¢t = pe’

3. Go to Iteration

Remark 3 Choosing an interior point to start this algorithm is trivial, since
the dual problem (13) has only nonnegativity constraints. This is the main
advantage of this algorithm over the primal algorithm implemented by Gill
et al [1986], the dual affine algorithm implemented by Monma and Morton
[1987] or the primal-dual affine algorithm implemented by McShane et al
[1988] and Lustig [1988] where a Phase I is needed to start the algorithms.

Remark 4 The solution of the m+n linear system (15) in the m-+n variables
(u,v) can be achieved by first solving the m linear equations in m unknowns

A [] - (I + 7(‘/i)_2) _1] Al (u - ui) =
A(1+5(V)?) 7 VP (!, v) - VL F (o) (18)

for w and then compuling
v—vt=— (I + 7(1/1')'“2)“1 (VvF(ui,vi) + A (u - u’))

The Yale Sparse Matriz Package [S. C. Eisenstat et al, 1977 & 1982] was
used to solve the system of linear equations (18) for all the numerical results
reported in this paper.

Remark 5 By using (W,7) as opposed to (ut!, v*1) in computing 2+, we
y using (T, 7') as opy , puting z*t1,
guarantee that the sequence {a'} is such that Ax® = b, except for possibly z°.



3 Convergence of IDLN

The logarithmic penalty minimization problem associated with the dual prob-
lem (13) with penalty parameters ¢ > 0 and 4* > 0 that we are considering
is

”Atu +v - c”2 — ébu — 4 ilog v; (19)

) 1
nz},l?}lF(u,v) =5

Note that ¢ is an exterior penalty parameter for the dual linear program
(10) and «' is an interior penalty parameter for (10). However, we note that
¢! need not go to zero [Mangasarian & Meyer, 1979].

The optimality condition for the above unconstrained problem is

A(Au +v—¢)—eb = 0 (20)
ye—-V(Au+v—-c) = 0 (21)

where V := diag(v). The Newton direction can then be obtained by solving
linear system

AAL A ut —eb — Ac 0 n
At T ot )t —c AV e
AA! A u —
( At T 4 44(VH)? ) ( v — vt ) = (22)

A(Au+v—¢)—€b = 0 (23)
Autv—c—~7 (V) e+ 4 (V) v —-2") = 0 (24)

or equivalently

where u' € IR™ and v* € R% ..
We denote the solution of the above system of linear equation by (u't?, v**1).
Define the descent directions
e

zz — ,U2+1__v1

and let



Premultiplying equation (24) by V* gives

ViAW 4ot — o) = F (V) - o)

e
v (e —d') (25)

Premultiplying the Newton equation (22) by the diagonal matrix

I 0
0 Vi
gives the following equation
I 0 A(A + vt —¢) — €b +
0 Vv Atut 4 vt —c—y(V) e

I 0 AA! A utl — o
0 v At T 4(V)2 vt
which is equivalent to
A(At + vt —¢) — €'b + AA AV? y' (26)
Vi(Alui + vt — ¢) — v'e ViAL i+ (V)2 d
Define the matrix M®

i AA? AV?
M* = ( Vi At ,Yi]+ (Vi)Z ) (27)

and the residual vector (p',r")
P\ [ €b— A(AW +0' —¢)
( 7.i ) T ( ,Yie - Vi(Atui +- ’Ui _ C) (28)
Premultiplying equation (26) by (y*,d*) gives

() (- () () o

The basic idea for the proof is as follows. Suppose that the residual vectors
p* and ' are bounded at iteration 7, then the Newton solution (u**!,v**) and
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the vector x'*! ;= L(A'w*! +v't! —¢) are shown to be primal-dual feasible.
Moreover, by careful updating of the parameters € and -y, the boundedness
of the residual vectors p'*! and r'*! are guaranteed. This proof is based
on the convergence proof given by [Tseng, 1989] for the solution of a con-
vex quadratic problem using the logarithmic penalty method. The linear
convergence of the algorithm is also established using results given in [Man-
gasarian & DelLeone, 1988]. We note that Tseng has also established the
linear convergence for this algorithm [Tseng, 1990].
We begin by stating the following lemmas regarding matrix M.

Lemma 6 Lel M be a symmetric real n X n matriz such that for all z € R",
(z, M) > v||z||> for some v > 0, then {z, M~'z) < %||:c||2 for all z € R™.

A B
Bt C
and (C — B'A™'B)~! eaist, then

N-1._ [ AT HATB(C — B'ATIB) B'AT —ATB(C -~ B*ATIB)™
o —(C — B'A7'B)"'B'A™! (C — B*A-'B)~!

Lemma 7 Let N = ) be a symmetric invertible matriz. If A™!

Lemma 8 Let

uoo [ AAL AV
=l var qI+v?

where A is an m x n real matriz with independent rows, V is an n X n positive
diagonal matriz and v > 0, then for all (u,v) € R™"

! <<Z>,M<Z>>Z’YHU”2 (30)

L @)
Proof

1.

() (5 ) (3)) -

[t ol £ 1ol 2 ol



2. By Lemima 7 we have that

((0)a(3))= o)

N = (yI 4V~ VA(AA)AV) T

where
or
N =~l+V (I - A(AAY)A)V
Define P := (I — AY(AAY)1A), then P = P? and we have the following
(v, No) =y |[ol* + |PVol* > |lo]f*
Hence from Lemma 6 it follows that (v, N7'v) < % lv])?. 0

In a similar fashion to [Kojima et al, 1989] we define the error function

E,:IR" xR, — IR as
E (u,v) := nye — V(A + v~ c)ll (32)

to measure the error in satislying the optimality condition (21) by the solution

of the Newton Equation (22). It is clear that Ei(u*!,v"*!) = 0 and ¢'b —

A (At 40— ¢) = 0 if and only if (u'*?,v**1) solves problem (19).
The next lemma gives bound to the error function E. at (u't!,vt?).

Lemma 9 Define the residual vectors p' and r*
poi= €b— A(AW o' —¢)
roi= yle = Vi(Alui 4 v' —¢)
and the matrices
P = I-A(AAY) A
£ = (I + (AANYTTAVI(Y'T + Y/iPVi)—lviAt) (AAH!
Fioi= —(AAYTTAVI('T + VPV

10



and the variable '

i

|+ 2| 7| e

nt = l E r’" (33)

Let (ui*t, v'*Y) be the solution of the Newton Equation (22), then
-1 .
]-'/«y'( z-l-l zH) < n __|_< (,7 I+ Vzpvz) ,rz>
Proof
Recall that
R
= o' + Vid

Since Vit = diag(v't?), then V* = Vi 4 ViD'.
We have the following

Ei(u't, vith)

_ Yo — VIHL (A 1yt () lz
= e — V(AR 4 0 — &) — DIV AR 4 v+ c) ”2
ve—ye+y'd - Di(ve— 7idi)| , (ByEqn. (25))

7 D',

o Didil

]
( ) M*('l >> (by Lemma 8)
( ) (M) ()> (By Eqn. (29))

Y+ 2(p, Fot) + (v (YT + VPV T'rt) (By Lemma 7)
+< (T + VPV (35)

oo

IA

(34)

i

IA

fl

Il

(-
<
(.0

IN

11



This completes the proof. 0
For the next iteration, define the penalty parameter
7 = ay (36)

where

03154+
T 05+vn

We are now ready to state the following important lemma.

Lemma 10 Lel v't! be defined as in (36) and V' := diag(v') where v* €
IR, . Define the matriz M*** and the vector r**! as follows

; AA AVt
M ia = ( Vi-{—lAt ,Yi+11+ (Vi+1)2 ) (37)

Pl i g (Al L it )
where (w1, v+ is the solution of the Newton equation (22). Suppose that
<7--*‘, (v1+vipvi)™ rf> < 0.25 (38)
and that ' as defined in (33) satisfies the following
ni < 0.125’)/i (39)
then

1. The poinl (u'tl,v'*) is feasible for the dual problem ( 13) and
gttt = L(AWT o't — ¢) is feasible for the primal problem (12)
with ¢ = ¢ and the following holds

cattloit <4 Vji=1,2,...n (40)

2. The vector r**! is bounded as follows

<7‘i+1, (y*'1 + vi~'~11—7vz‘+1)”1 ri+1> < 0.25¢"!



Proof

1. Let
y' = u't -l and

di — (Vi>—1(,vi+1_vi)

We will first show that under the above conditions ||d'|]| < 1. By lines
(34) and (35) of proof of Lemma 9 we have

“diuz < %(771' n <Ti7 (7i1+ Vipvi)_l Tz>>

< 1

The fact that ||d’]| < 1 and v* > 0 imply that v**! > 0, hence the dual
feasibility of (u't!,v*t1).
From ecuation (25) and the definition of 2**! we have
ettt = Al 4ottt —¢
FV) e —d) > 0
The equality constraint Az*t! = b follows from the definition of z**!

and the Newton equation (23). To establish relation (40), note that
from equation (25), we have

61$1+]

= SV e - )

= SVEYD (e - &)
= (V) - Did)

< vy

¢ z+1 ’H—l <

Upon plcmultlplylng the last relation by Vi*' we get €'z v;

v V5 =1,2,

2. Now the proof of the second part of the lemma

1
1 : . . , -1 2
Liﬂ <Tz+]’ (71’“] t VzHPVHl) 1T1+1>}

13



(2w ()

< ?lﬁ— ’ 7"””1H (By Lemma 8)

_ (_}7_2 = V(AR 4o o) “ (Definition of v*1)

< ;{7 (B (™, 0™) + (1 = )y fel])

< a%_i <77i n <7,i’ <,)/i] n Vipvi>“1 ,r,z>) + 1 ;a lell (ByLemma 9)

1

< = (01254025 + vn) — Vi
a:

< 05

and hence the proof of the lemma. 0.

The next 2 lemmas establish the boundedness of ut!, v"*! and z*t! un-

der Assumptions 1. We will show that if the conditions (38) and (39) of
Lemma 10 are satisfied, then 2**! is bounded. The proof is similar that
of [Polyak, 1987] for the gradient projection algorithm. The boundedness
of z**! together with the assumption that the dual feasible set is bounded
establish the boundedness of (u'*!,v*+1).

Lemma 11 Suppose that the conditions (38) and (39) of Lemma 10 are
satisfied by (u',v') € R™ x RY,. Let (uit, v**+1) be the solution of the
Newton equation (22) and let a* be a solution of the linear program (9). If
the parameters v* and ¢ are such that v* < Ve, then

. 2
o = o <ot o) (41)

where o1 = & (Al + vt — ¢).

Proof

From the Newton equation (23) we have
A(AWTH 4 0™ —¢) = €D

14



which gives

u'tt = (AAH! (eil) — A(v! — c))

hence

o= (1 AYAAYA) (é(v”l — o)) + A4

= Py <%L:(vi+l - c)> (42)

where Pg(x) is the projection of = onto the set @ := {z|Az = b}. By the
Minimum Principle applied to the above projection problem (42),

| . )
0 > <___(vz+1 . C) . (L‘H-l,.’l,'* . ‘,Ez+1> (43)

o
or equivalently
0 > <v1+1 —c— et a* — :v’+1>
= - <c, ¥ — mz+1> + <v’+1, :1:*> - <v1+1, :c’+1> —¢ <:1:”'1, 5 — m’+1>
. . ) ’Yi
> ¢ <~—.1:"+1, ¥ — rcz+1> —n

= 3¢ (I +]

2 * 112 ’71
~ o)) (4)
The second inequality follows from the fact that cz* < ez, (vitl,z*) > 0
and cia:}"*’l'vf” < 4" Vj = 1,2,...n. Rearranging the terms in (44) and
multiplying by 2/¢" gives

*

g

" 2 : 2
'3:"“ —a¥| < ML + llz*]|* — ’mz“”
(61)2
< 2+ |2
Hence the proof is complete. O

In the next lemma, we establish the boundedness of (u+!,v*1).

Lemma 12 Suppose that the point (u',v') € R™ x IR}, satisfies the condi-
tions (88) and (39) of Lemma 10. Let (u'*!,v'*1) be the solution of the New-
ton equation (22). Purthermore, suppose that the set Vi= {(u,v)|Au + v =

15



c,v > 0} is bounded. Then there exists a constant 7 < co depending only on
the matriz A and the vectors b and ¢ of the linear program (9) such that

|

ui+1’vi+1 H <7 (45)

Proof
Define the set V? as follows

V= {(u,v)|A% + v = ¢ — ez} (46)

Note that V¢ is nonempty by the construction of *+! = L(Afu"! + vt —¢).
We claim that the set V* is bounded. In the previous lemma it was shown
that 2t! is bounded, hence if the set V* is unbounded, then there exists
(w,?) such that

Au+v = 0

v > 0

(@7) # 0
Then for any point (w,z) € V, we have that (w + A%, z + A\v) € V for any
A > 0, which contradicts the assumption that the set V is bounded. Hence

V* is bounded.
Consider now the following nonconvex problem

(w,v)|| st. Alutov=c+ea™ v>0 (47)

max
[TRY]

This problem has a solution, since we have just shown that its feasible set
is bounded. By the generalized theorem of the existence of basic feasible
solution [Mangasarian & T.H. Shiau, 1987], it follows that there must exist
a basic solution. Let the basis matrix B* denote the n by n nonsingular
submatrix of [A® I] corresponding to the basic solution (f,%) of problem
(47). We have

la,oll = [(B) e+ ™)
< B et o]

Since there are only finite number of basis matrices in [A* I], and since both
¢ and z'*! are bounded, we conclude that there must exist 7 < oo such that

Ilzti+1,vi+]'| <|a, o) <7

16



and this completes the proof. O
From the above lemma, we have that both maxy ||AV|| and maxy ||V A
s.t. v € V' and V := diag(v) are finite, where V' is the set defined by (46).
The next lemma shows that if the attenuation factor p € (0,1) for de-
creasing ¢ is chosen carefully then the assumption (39) of Lemma 10 holds
at iteration ¢ + 1.

Lemma 13 Let (utt v**1) be the solution of the Newton equation (22) and
g = (AN 40 — ). Suppose that (uf,v') € R™ x IR}, satisfy the
conditions (38) and (39) of Lemma 10 and that the sequence {7*} and {e*}
are such that

0 < {7} < Yma (48)
and 0 < {ek} < €maz (49)
Define the constants
K = A4y
K, = nfm,x{m‘;mx ||AV|| , Max “VA‘“} st. Aludv=c+eatv>0

Ci = (Ymas + Ki(IG)P) Kach, 1B /7
Ci = (4/a)emac/n ||b|| K1 K}

where o = (0.375 4+ /n)/(0.5 + /n) and v'*! = ay*. If

e péei
where ) :
1>p' >1-§ (50)
and
0<6< <—-C§ +/(C)? + 0-57“'“‘“10{') /2G4 (51)

then we have
n't1 < 0.1254 1

where

#o= B | 2

Fi+1 “

piH ” I

0 it “

17



!

pitt = €th — A(AWT 40t — )

T'i+1 i ')/H'l@ _ ‘/i—{vl(At-l-lui—}-l + vi—}—l _ C)
Ei+1 e ([ + (AAt)le‘/H-l (,yi—f—l]' + V'i+lpvi+l)—lv'i+lAt) (AAt)——l
Fi+1 - __(AAt)w-lA‘/i-’rl(,yi—i-lj n V’i—*-lpvi-{»-l)—-l

Proof

We will first compute the bounds on the norms of the residual vectors p**+!
and ritt.

1.
p'tl ” = |t — A(AWT 4ot — c)“
= |éfb— A(ARH v — o) b — €D
= (1- el (By Eon.(23))
2.
] = Bie v o)

¥V +
27v'v/n (By Eqn.(40))

< (it it H
<

Next we compute the bounds on the norm of the matrices E*! and F**,

L.
EY = (14 (AAY AV (Y 4 VPV TV AY (447
< (14 U
2.
|| = |-(aan AV (T 4 v Py
< 72.1+1 K K;

18



Hence we have

i+ i1 || ] i1 ]| it || ] i1 || || i1
" e | Canl IR Rl v |
1 ‘ .2 T iV2( i
S SO KGO BI
1 -q iy i i

'{"2";;71\/1]‘\2(1 —p)e bl 2v'vn

S nan (Fmos + K2 (J5)?) K [[BI* (1~ p)° 2
+(4/ @) emas K1 K [|B]] V(1 - p7)

< Gl =p) 4+ C5(1 =)

< Ci(8) +C5(8) (By Eqn.(50)

< 0.125v*Y (By Eqn.(51))

This completes the proof of the lemma. O

By using the results from the Lemmas 10, 11, 12 and 13, we can now
establish the following theorem regarding the IDLN algorithm.

Theorem 14 Let (u',v') € R™ x IRY, be the i—th iterate of the IDLN
Algorithm with parameter e = ¢ and v =+, 7' < Vé such that the following
two conditions are salisfied

<7‘-", (7"] + vi1—>vf)"1 ri> < 0.254°
and

7t < 0.125+

where r* is the residual vector defined by Eqn. (28) and n' is the real number
defined by (33) in Lemma 9. Suppose that (u'*t!,v**1) is the solution of the
Newton equation (22). If we let

. 1 _, .
2 = —;(Atu”r1 + o't —¢)
€
i1
v = a7y
Cz—i—l — pzez

where o = (0.375 + /n)/(0.5 + /n) and p' € (0,1) satisfying the condition
(50) in Lemma 13, then

19



1. The triple (2, w1 v'*1) is bounded and is feasible for the primal-dual
problems (12) and (13) with e = ¢ and the following holds

eimgﬂvj-“ <4 Vi=12,...n
2. The following bounds are satisfied for (u'*t,v*+1).
7]H-l < 0'12571.-*—1
and )
<7~1’+‘, (v + vy ri+1> < 025y
0

The idea for the linear convergence proof of IDLN comes from a proof
given by [Mangasarian & Del.eone, 1988] for the least 2-norm solution of
linear programs, in which they give error bounds for a class of more general
problems. The problem they consider is

mingf(z) s.t.x € §:= {z|lz >0,g(z) <0} (52)
We begin by restating their main result.

Theorem 15 (Mangasarian & DeLeone, 1988, Theorem 2.2) Let f : IR* —
IR,g: IR* — IR™ be differentiable on IR®, let f be strongly convex on IR™ with
positive constant k, and let g be convex on R™. Let either g be linear and
S £ 0, or let g salisfy the Slater constraint qualification that is,

g(2) <0, >0

for some & € R®. Then for any (z,u) € R™ x R} the distance ||z —Z|| to
the unique solution of (52) is bounded by

B o - 7| <
[V L(z,u) - ug(2) + all(=Vol(m,w)sll, + Blla@) 4l + 7 1 (=2)4 )

where

L(z,u) = f(z)+ug(e)
a = minges (el + V(@) /k)
B = minguyew ||ull,
v o= mangeew ||Vl
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where W C IRP*™ is the nonempty closed convex polyhedral set of optimal
multipliers (u,v) of the convex program (52) associated with the constraints
g(z) <0,z > 0. O

By using the above theorem, we will show that if we impose a stronger
condition on the parameter ¢** then the algorithm IDLN is linearly conver-
gent.

Theorem 16 Let (u'*!, v+ ™) o and p be as in Theorem 14. Suppose
that all the conditions in Theorem 1/ are satisfied and suppose that the
parameter € s decreased as follows

¢t = ”p"iei (53)

where 1 > 7' 1= max{at,p'}, p' as defined by (50) and v is decreased as
follows . ‘
Y =ay' (54)

where o = (0.375 + /n)/(0.5 + \/n), then the sequence {z'} converges to
Z, the unique least 2-norm solution of (9) with the linear root rate [Ortega,
1970]

o+ — 7] < s(ah)™ for iz (59)

for some constant 6 and some integer t.

Proof ‘
Let L(z,u) = cx + Saa — u'(Az — b), then

va(xz+1, ul+1) = c+ CZCIIZ—H — Atu’“ = ’U"*‘l >0

By Theorem 14, we have that

Wit >

2> 0
c"'mj-“v;“ < v Vy=1,2,...n and

Azt = b



Let Z(¢') be the solution of the quadratic problem (12) with € = €'. It follows
from Theorem 15 that

|]$i+1 _ ‘75(62')

|

IA
l —
N /'\: N
\eﬁ-
~
mﬂ
Na—’
N

where 6 = \/n’)fo/(e(’a;'). Now let 7 be the smallest integer such that ¢ < &
where € is that defined below (2). Combining the last result and the fact
that T = Z(¢') for 7 > 7, we have

ot =] < o =]+ e
= I:L"Jrl — F(e')
1.,
—<- 6(01;{)%*‘1
This establishes the linear convergence of the iterates. O

Remark 17 The condition v* < Ve required in Theorem 14 will be satisfied
for all i if we let ® = (¥°)? and if {€'} and {¥'} are decreased according to
Eqns. (53) and (54).

Remark 18 The parameter ¢* in (49) need not go to zero. Let i be the
smallest integer such that ¢ < € where € is defined below expression (2). If
for all k > 7 we fir ¥ =€, then the linear convergence of the algorithm still
holds.

4 Numerical results

The algorithm IDLN was implemented in FORTRAN and run on a DEC-
station 3100 under the Ultrix 2.1 Operating System. The source code was

3]
D



compiled using the “-O” option. All floating point operations are done in
double precision. All times reported here were obtained by calling the system
subroutine etime().

The initial values of € and v are

e =~% =1.0d0
The initial value of the dual variable u is
u’ = 0.0d0
and the initial value of the dual variable v is
v® = 6.0d0

(for problems Pilot.we, Scagr25, Sc205 and Truss3, v° = 6.0d1).
If € > 1.d — 13, then

i+l ¢
¢ T 1040

and if v > 1.d — 18, then

~i/1.2d0 if ||z — &F||* > 1.d05
~/2.0d0 if ||z — 2i]|* > 1.403
¥ = 473040 if ottt — 2i]® > 1.d01
~/3.5d0 if ||t — 2f)® > 1.d — 1
v'/4.0d0 otherwise

Finally, the program is terminated if one of the following conditions is
satisfied

czt — ezt

<5.d—08

crt

and
el — byt

e ERS
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At the termination of the IDLN algorithm, the following iterations are
executed to improve the feasibility of the primal and dual solutions. This
refinement technique is essentially due to Gay [Gay, 1989].

o 1t =0
e while it < itmaz do

o —ifz;>1.d~—08then D;; = z?
else D; = 1.d —12.

— update z = DAY (ADA)~'b
— update u = (ADA")"*ADc

— if [(=2)4]| < o1 and ||Az — b||/ ||b]] < 02 and [|(A'u — ¢)4]| < o3
then stop
else it =2t +1

We tested the algorithm on 66 linear test problems, 63 of which are from
the Netlib collection. The dimension of these 66 problems are given in Tables
1 and 2. In columns 3, 4 and 5 of these tables we list the number of rows
(including the objective row), columns and nonzeros of matrix A of the linear
program in its original MPS format. The next 3 columns show the size of the
linear programs after the data is preprocessed so that these linear programs
can be written in standard format (9).

The algorithm was implemented using FORTRAN 77 and run on a DEC-
station 3100. For comparison purpose, we solved these problems using MI-
NOS 5.3 [B.A. Murtagh & M.A. Saunders, 1983] which is a linear program-
ming package based on the simplex method. MINOS was run using the
default parameter setting. The results that we obtained on the 66 test prob-
lems are listed in Tables 3-6.
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In Tables 3 and 4 we list

Relative Error = @fgi
Primal Infeasibility Mﬁﬂ
Dual Infeastbility |:l((j1:;:]‘- :_)*l"HO
Duality Gap = Zz ; ZZ
Complementarity W

where cz* is the optimal objective value reported by MINOS and X :=
diag(z).

A relative error in the objective value that is less than 1.d-14 is listed as
0.00E+00.

We note that for most problems IDLN solutions have better primal fea-
sibility than the solutions obtained by IPP Algorithm described in [Setiono,
1990]. In the primal algorithm, a Newton direction is computed in the primal
space, i.e. the descent direction p is such that Ap = 0 and the primal variable
is updated z'*t! = 2’ + ap. As i increases, the error ||Aa® — b|| accumulates
and this will lead to a deterioration in the feasibility of the primal solution. In
contrast, by taking the Newton step in the dual space, the primal feasibility
Az’ = b depends only on the accuracy of the current Newton step.

On these 66 linear programs, we obtained the following results. On 10
problems the relative error of the objective value is greater than 5.d-10, on 4
problems the relative primal feasibility is greater that 5.d-10. On 19 problems
the relative dual feasibility is greater that 5.d-10 and on 6 problems the the
duality gap is greater than 5.d-10. On all problems the complementarity is
less than 5.d-10. IDLN solved 28 of the 66 problems faster than MINOS
5.3. The violation in the nonnegativity constraint of the primal variable,
l(=2)+|l, is less than 5.d-8 for all problems, except for one (Bnl2). The
total time taken by IDLN to solve all the problems is 7391 seconds, while
the total time for MINOS 5.3 to solve these problems is 12324 seconds. This
gives a total time speedup of 1.67 in favor of IDLN.
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5 Summary

We have described and implemented a linearly convergent algorithm for find-
ing the least 2-norm solution of a linear program. A logarithmic penalty
approach is applied to the dual reformulation of the problem to find this
solution. This dual reformulation of the problem allows us to start the algo-
rithm without a Phase I and generates primal solutions with better primal
feasibility than primal interior methods.




Pr. | Problem Original Adjusted

No.| Name |rows [ columns | nonzeros | rows | columns | nonzeros
1| 25fv47 822 1571 11127 | 820 1876 10705
2 | Adlittle 57 97 465 56 138 424
3 | Afiro 28 32 88 27 51 102
4 | Agg 489 163 2541 | 488 615 2862
5| Agg?2 517 302 4515 | 516 758 4750
6 | Agg3 517 302 4531 516 758 4756
7 | Bandm 306 472 2659 | 305 472 2494
8 | Beaconfd 174 262 3476 173 295 3408
9 | Blend 75 83 521 74 114 522
10 | Bull 644 1175 6129 | 642 1586 5532
11 | Bnl2 2325 3489 16124 | 2324 4486 14996
12 | Bore3d 234 315 1525 | 246 346 1473
13 | Brandy 221 249 2150 | 193 303 2202
14 | Capri 272 353 1786 | 446 641 2230
15 | Cre-a 3517 4067 19054 | 3428 7248 18168
16 | Cre-c 3069 3678 16922 | 2986 6411 15977
17 | Czprob 930 3523 14173 | 1158 3562 10937
18 | D2¢06¢c 2172 5167 35674 | 2171 5831 33081
19 | Degen?2 445 534 4449 | 444 757 4201
20 | Degen3 1504 1818 26230 | 1503 2604 25432
21 | 226 224 282 2767 | 223 472 2768
22 | FfI800 525 854 6235 | 524 1028 6401
23 | Finnis 498 614 2714} 619 1141 2959
24 | Gfrd-pnc 617 1092 3467 | 876 1420 2965
25 | Growl) 301 645 5665 | 900 1245 6820
26 | Grow22 441 946 8318 | 1320 1826 10012
27 | Grow7 141 301 2633 | 420 581 3172
28 | Israel 175 142 2358 174 316 2443
29 | Kb2 44 41 291 52 7 331
30 | Lotfi 154 308 1086 153 366 1136
31 | Pilot.we 723 2789 9218 | 1256 3384 10255
32 | Rabo 391 576 5510 | 317 560 5201
33 | Recipe 92 180 752 | 211 300 903

Table 1: LP dimensions
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Pr. | Problem Original Adjusted
No.| Name |[rows | columns | nonzeros | rows | columns | nonzeros
34 | Scl105 106 103 281 105 163 340
35 | Sc205 206 203 552 205 317 665
36 | Schla 51 48 131 50 78 160
37 | Sch0b 51 48 119 50 78 148
38 | Scagr2h 472 500 2029 471 671 1725
39 | Scagr7 130 140 553 129 185 465
40 | Scfxml 331 457 2612 330 600 2732
41 | Scfxm?2 661 914 5229 660 1200 5469
42 | Scfxm3 991 1371 7846 990 1800 8206
43 | Scorpion 389 358 1708 388 466 1534
44 | ScrsS 491 1169 4029 490 1275 3288
45 | Scsdl 78 760 3148 77 760 2388
46 | Scsd6 148 1350 5666 147 1350 4316
47 1 Scsd8 398 2750 11334 397 2750 8584
48 | Sctapl 301 480 2052 300 660 1872
49 | Sctap2 1091 1880 8124 | 1090 2500 7334
50 | Sctap3 1481 2480 10734 | 1480 3340 9734
51 | Sharelb 118 225 1182 117 253 1179
52 | Share2b 97 79 730 96 162 777
53 | Ship04l 403 2118 8450 360 2166 6380
54 | Ship04s 403 1458 5810 360 1506 4400
55 | Ship08l1 779 4283 17085 712 4363 12882
56 | Ship08s 779 2387 9501 712 2467 7194
57 | Shipl2l 1152 5427 21597 | 1042 5533 16276
58 | Shipl2s 1152 2763 10941 | 1042 2869 8284
59 | Stocforl 118 111 474 117 165 501
60 | Stoclor2 2158 2031 9492 | 2157 3045 9357
61 | Trussl 201 1602 6586 200 1602 4984
62 | Truss?2 501 4312 17896 500 4312 13584
63 | Truss3 1001 3806 36642 | 1000 8806 27836
64 | Vip.base 199 203 914 347 477 1331
65 | Woodlp 245 2594 70216 244 2595 70216
66 | Woodw 1099 8405 37478 | 1098 8418 37487

Table 2: LP dimensions (continued)
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Pr. | Problem Rel. Primal Dual Duality | Comple-
No. | Name Error | Infeasibility | Infeasibility Gap mentarity
1| 25fv47 1.83E-14 1.32E-10 7.39E-11 | 2.69E-10 1.46E-13
2 | Adlittle 2.39E-12 1.57E-16 3.73E-12 | 1.22E-09 5.46E-11
3 | Afiro 0.00E+00 5.09E-17 6.12E-17 | 6.12E-17 1.52E-17
4 | Agg 2.77E-14 4.68E-17 2.78E-14 | 1.49E-14 5.35E-19
5| Agg2 0.00E+00 1.25E-16 1.15E-15 | 2.25E-14 | 5.21E-17
6 | Agg3 1.71E-11 1.65E-14 3.73E-09 | 2.31E-14 2.98E-14
7 | BandM 0.00E+00 3.50E-15 6.64E-16 | 1.39E-12 2.83E-18
8 | Beaconfd | 0.00554+00 1.36E-14 2.13E-15 1 1.65E-14 5.29E-21
9 | Blend 1.46I5-12 1.69E-12 1.25E-11 | 5.49E-14 2.69E-14
10 | Bnll 1.40E-07 3.33E-12 7.48E-07 | 1.02E-09 4.68F-15
11 | Bnl2 5.12E-10 4.15E-11 6.23E-07 | 5.65E-16 2.34E-18
12 | Bore3d 0.00E+00 5.97E-14 3.50E-14 | 2.05E-14 1.06E-22
13 | BrandY 0.00E+00 2.04E-14 4.48E-15 | 7.49E-17 1.16E-24
14 | Capri 0.00E+00 1.74E-16 8.02E-14 | 7.25E-13 2.61E-22
15 | Cre-a 1.80E-07 4.24E-12 4.16E-09 | 3.34E-13 4.71E-18
16 | Cre-c 0.00E+00 1.43E-13 2.09E-10 | 1.35E-14 2.24F-18
17 { CzProb 0.00E+00 1.50E-14 8.17E-11 1.41E-14 3.19E-19
18 | D2q06¢ 2.10E-07 1.39E-10 3.60E-10 | 5.60E-08 9.25E-18
19 | Degen?2 3.99E-11 3.09E-14 8.85E-12 | 2.95E-13 1.03E-17
20 | Degen3 9.78E-08 1.25E-09 1.28E-11 1.65E-11 5.94E-18
21 | E226 0.00E+00 3.77E-13 5.84E-16 | 3.97E-13 5.31E-23
22 | FHIS00 7.76E-09 2.04E-16 2.45E-13 | 2.10E-16 3.60E-25
23 | Finnis 5.79E-07 6.40E-14 4.61E-06 | 2.17E-11 1.83E-13
24 | Gfrd-Pnc | 0.00E4-00 1.72E-14 1.33E-10 | 4.72E-15 9.73E-22
25 | Growlh 0.00E+00 1.08E-16 1.89E-15 | 0.00E+00 1.25E-18
26 | Grow22 0.00E+00 1.20E-16 1.89E-15 | 9.26E-17 1.03E-18
27 | Grow?7 2.10E-14 1.12E-16 1.37E-15 | 2.34E-16 2.80E-18
28 | Israel 4.69E-09 2.27E-16 3.12E-07 | 3.34E-09 1.37E-10
29 | Kb2 0.00E+00 1.17E-10 1.20E-13 | 1.44E-13 1.37E-17
30 | Lothi 0.00E+00 3.99E-14 4.03E-15 | 2.45E-14 7.38E-20
31 | Pilot.we 1.41E-06 8.37E-10 4.43F-14 | 9.48E-08 1.92E-16
32 | Rabo 4,14E-09 3.89E-15 2.77E-06 | 8.39E-13 1.31E-14
33 | Recipe 0.00E+00 8.85E-18 1.45E-16 | 5.13E-11 3.36E-20

Table 3: IDLN:Interior Dual Least 2-Norm Results




Pr. | Problem Rel. Primal Dual Duality | Comple-
No.| Name Error | Infeasibility | Infeasibility Gap mentarity
34 | Scl05 0.00E+00 3.27E-14 1.61E-17 | 9.53E-16 1.11E-22
35 | Sc205 0.00E+00 8.72E-14 4.07E-17 | 2.21E-14 5.80E-24
36 | Sch0a 1.54E-14 4.55E-15 3.44E-17 | 4.62E-15 9.53E-23
37 | Sc50b 0.00E-+00 1.43E-15 7.34F-17 | 4.06E-16 2.96E-23
38 | Scagr2b 6.77E-14 5.52E-13 1.14E-13 | 8.11E-13 1.63E-14
39 | Scagr7 3.09E-08 1.66E-13 3.66E-13 | 9.98E-12 2.71E-13
40 | Scfxml 0.00E+00 8.83E-12 1.15E-09 | 1.89E-12 2.32E-18
41 | Scfxm?2 2.714E-14 3.95E-12 6.99E-09 | 3.36E-11 1.69E-16
42 | Scfxm3 1.82E-14 8.56E-12 2.29E-06 | 1.18E-11 3.69E-17
43 | Scorpion | 0.00E+400 2.90E-12 1.23E-11 | 6.46E-13 1.78E-20
44 | Scrs8 0.00+00 1.50E-12 4.03E-10 | 1.00E-10 2.10E-19
45 | ScSdl 6.61E-12 5.85E-12 5.76E-10 | 2.17TE-12 2.84E-13
46 | ScSd6 2.12-12 1.24E-10 2.27E-08 | 1.20E-11 7.94E-14
47 | ScSd8 2.76E-13 3.76E-13 2.04E-09 | 2.44E-14 2.70E-15
48 | ScTapl 0.00E+00 1.17E-13 1.01E-13 | 6.40E-14 1.07E-18
49 | ScTap2 0.00E+00 1.74E-13 5.41E-14 | 9.89E-15 3.55E-18
50 | ScTap3 0.00E+00 2.42E-13 4.84E-14 | 9.74E-15 3.04E-18
51 | Sharelb 0.00E4-00 9.17E-14 6.48E-16 | 8.93E-14 3.74E-17
52 | Share2b 2.39E-14 1.27E-11 1.35E-13 | 1.33E-12 7.56E-17
53 | Ship04l 0.00E+00 3.54E-12 5.33E-12 | 5.24E-13 8.73E-18
54 | Ship04s 0.00E+00 1.17E-12 9.10E-10 | 2.02E-13 1.87E-18
55 | Ship08l 0.00E+00 1.76E-13 3.77TE-09 | 2.71E-14 2.04E-17
56 | Ship08s 5.20E-14 1.03E-13 9.72E-08 | 4.85E-15 2.41E-15
57 | Shipl2l 0.00I5400 2.11E-10 1.61E-09 | 2.47E-13 3.05E-17
58 | Shipl2s 0.00E-+00 2.62E-13 6.13E-09 | 1.68E-14 3.37E-18
59 | Stocforl | 0.00E-+00 2.95E-12 6.37E-14 | 1.50E-15 2.39E-19
60 | Stocfor2 1.28E-13 2.30E-10 1.28E-10 | 1.03E-09 1.33E-13
61 | Trussl 0.00E+00 2.60E-14 8.85E-14 | 1.59E-16 3.67TE-18
62 | Truss2 1.38E-14 4.21E-14 3.79E-13 | 4.70E-15 1.15E-18
63 | Truss3 0.00E4-00 2.55E-10 2.18K-12 | 4.85E-11 1.48E-18
64 | Vip.base 4.62E-12 5.78E-15 2.98E-08 | 2.28E-12 1.74E-22
65 | Woodlp 0.00I5+00 9.04E-09 5.26E-13 | 5.66E-11 1.80E-17
66 | Woodw 7.6615-14 2.50E-07 3.19E-10 | 3.61E-10 2.64E-18

Table 4: IDLN:Interior Dual Least 2-Norm Results (continued)
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Pr. | Problem | IDLN | MINOS 5.3 IDLN Minos/IDLN
No.| Name Iter. (seconds) | (seconds) | Time Ratio

1| 25fv47 80 339.47 206.06 1.65
2 | Adlittle 27 0.97 1.26 0.77
3 | Afiro 33 0.31 0.93 0.33
4| Agg 47 4.43 33.78 0.13
5| Agg2 39 7.71 42.80 0.18
6 | Age3 36 7.76 39.73 0.20
7 | BandM 42 9.64 8.72 1.11
8 | Beaconfd 40 3.45 9.18 0.38
9 | Blend 35 1.20 1.96 0.61
10 | Bnll 55 42.18 31.95 1.32
11 | Bnl2 86 609.54 1256.82 0.48
12 | Bore3d 35 3.01 5.21 0.58
13 | BrandY 65 6.43 11.35 0.57
14 | Capri 57 4.46 17.26 0.26
15 | Cre-a 89 592.03 179.97 3.29
16 | Cre-c 63 665.41 123.92 5.37
17 | CzProb 64 75.20 38.11 1.97
18 | D2¢g06¢ 79 6299.60 2018.32 3.12
19 | Degen?2 32 29.19 32.25 0.91
20 | Degen3 55 720.18 996.71 0.72
21 | E226 57 7.59 10.46 0.73
22 | FAII800 61 27.37 65.29 0.42
23 | Finnis 82 10.75 23.12 0.46
24 | Gfrd-Pnc 40 18.17 8.34 2.18
25 | Growlb 41 18.37 23.90 0.77
26 | Grow?22 43 34.51 38.06 0.91
27 | GrowT7 40 4.98 10.44 0.48
28 | Israel 64 4.09 55.34 0.07
29 | Kbh2 31 0.67 1.33 0.50
30 | Loth 56 3.83 4.54 0.84
31 | Pilot.we 103 229.08 120.84 1.90
32 | Rabo 47 16.52 105.24 0.16
33 | Recipe 40 1.04 2.64 0.39

Table 5: Comparison between Minos 5.3 and IDLN (DECstation

3100)
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Pr. | Problem | IDLN | MINOS 5.3 IDLN Minos/IDLN
No. | Name Iter. (seconds) | (seconds) | Time Ratio
34 | Scl105 35 0.88 1.42 0.62
35 | Sc205 45 1.99 2.41 0.83
36 | Schla 33 0.45 1.03 0.44
37 | Sc50b 33 0.43 1.02 0.42
38 | Scagr2h 57 8.49 6.96 1.22
39 | Scagr7 46 1.27 1.91 0.66
40 | Scfxml 51 7.75 10.42 0.74
41 | Scfxm?2 58 22.99 24.83 0.93
42 | Scfxm3 61 45.64 40.70 1.12
43 | Scorpion 31 4.57 3.91 1.17
44 | Scrs8 62 18.71 15.75 1.19
45 | ScSdl 28 4.62 3.73 1.24
46 | ScSd6 33 17.51 7.22 2.43
47 | ScSd8 29 97.11 13.38 7.26
48 | ScTapl 38 4.55 4.97 0.92
49 | ScTap?2 40 32.03 33.46 0.96
50 | ScTap3 42 61.23 45.33 1.35
51 | Sharelb 55 1.64 3.70 0.44
52 | Share2b 30 2.90 1.99 1.46
53 | Ship041 33 12.00 11.70 1.03
54 | Ship04s 32 7.49 8.10 0.92
55 | Ship08l 34 31.08 26.02 1.19
56 | Ship08s 33 16.45 14.42 1.14
57 | Shipl2l 34 67.34 34.45 1.95
58 | Shipl2s 36 31.66 19.04 1.66
59 | Stocforl 30 1.07 1.67 0.64
60 | Stocfor2 41 182.63 51.37 3.56
61 | Trussl 36 23.43 13.80 1.70
62 | Truss2 37 176.07 80.37 2.19
63 | Truss3 47 930.90 253.38 3.67
64 | Vip.base 42 2.25 5.39 0.38
65 | Woodlp 62 165.14 842.80 0.20
66 | Woodw 59 542.64 277.83 1.95
[ - | TOTAL | - 12324.05 | 7390.83 | 1.67 |

Table 6: Comparison between Minos 5.3 and IDLN (DECstation
3100) (continued)
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