ersity of

NAY
Mad

©

(=]

1SOI'}

@

™

%j

THE APPROXIMATION

ORDER OF
BOX SPLINE SPACES

by

A. Ron

and
N. Sivakumar

Computer Sciences Technical Report #944

July 1990




UNIVERSITY OF WISCONSIN-MADISON
COMPUTER SCIENCES DEPARTMENT

The approximation order of box spline spaces

A. Ron* N. Sivakumar |
Computer Sciences Department Department of Mathematics
University of Wisconsin-Madison University of Alberta

Madison, Wisconsin 53706, USA Edmonton, Alberta, Canada T6G 2G1

July 1990

To Professor I.J. Schoenberg, in memoriam.

ABSTRACT

Let M be a box spline associated with an arbitrary set of directions and suppose that S(M) is
the space spanned by the integer translates of M. In this note, the subspace of all polynomials in
S(M) is shown to be the joint kernel of a certain collection of homogeneous differential operators
with constant coefficients. The approximation order from the dilates of S(M) to smooth functions
is thereby characterized. This extends a well-known result of de Boor and Hollig [BH], on box
splines with integral direction sets.

The argument used is based on a new relation, valid for any compactly supported distribution
¢, between the semi-discrete convolution ¢*' and the distributional convolution ¢+.
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The approximation order of box spline spaces
A. Ron & N. Sivakumar

1. Introduction

Let = be a real s x n matrix with non-zero columns. At times we think of = as the collection
of its column vectors, so that £ € = means that £ is a column of = and Y C = means that Y is an
s X k (k < n) submatrix of Z. The box spline Mz associated with = is defined to be the Dirac
distribution in case = is empty (i.e., n = 0), and otherwise by the distributional rule

(1.1) Ma () = / B(E0)dt, Vi € C(R?).

[0,1]"
Its Fourier transform is given by
e — 1 3
(1.2) Mz(w) = H/ et 4t
gez’0

In general M= can be identified with a positive measure supported on a compact polyhedral subset
of the column span of =, and, in case Z is of rank s, Mz : R° — IR, is a compactly supported
piecewise polynomial function. Various specific relevant references on box splines are given in the
sequel. For expository material on box splines, we refer the reader to [C] (and references therein)
as well as to the forthcoming book of de Boor, Héllig and Riemenschneider [BHR].

The main purpose of this note is to characterize the approximation order of box spline spaces.
For any compactly supported distribution ¢, we define S(¢) to be the (infinite) span of the integer
translates of ¢:

(1.3) S(¢) :=span{E%¢: a € 7L°},

with E”, 2 € IR®, the translation operator:

(1.4) E?: f f(-+ ).

A space of the form S(M), for a box spline M, is referred to as a box spline space. To define

the approximation order of S(M), we need a way to refine this space. A refinement S, (¢) (with A
positive and small) of S(¢) can be obtained by scaling S(¢):

(1.5) Su(¢) :={f(-/h): fe 5(¢)}.
The approximation order of 5(¢) (in the co-norm) is then the maximal integer d that satisfies

(1.6) distoo(f, Sn()) = O(h%), Vfe WE,
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where W¢ is the usual Sobolev space. For a function ¢, the study of approximation orders for the
space S(¢) is significantly facilitated by the Strang-Fix Conditions. These conditions focus on
the space II(¢) of all polynomials in S(¢), and assert (cf. [R]) that the approximation order of 5(¢)
is the maximal integer d for which

(1.7) g1 C 1(¢),

provided that 5(0) # 0. (Here and elsewhere II := II(IR°) is the space of all complex valued s-variate
polynomials and Il is the subspace of all polynomials of total degree at most k.) Consequently,
the question of approximation orders is reduced to the identification of the space II(¢).

A characterization of II(Mz) is well known in case Z is an integral matrix (i.e., all entries in
= are integers). To describe it, we associate with each column £ of = the polynomial

peio € g,

and define

(1.8) pr:=][p, VYCE
113

Thus, py (D) is the product of the directional derivatives p¢(D) (in any order). With
(1.9) K(Z):={Y Cc Z: rank(E\Y) < s},

it is known that

(1.10) N(Mz)=D(E):={¢qell: py(D)g=0, VY € K(2)}.

Since II(Mz) is obtained in (1.10) as the intersection (in II, but as a matter of fact even in the dis-
tribution space D'(IR®)), of kernels of homogeneous differential operators with constant coefficients,
it follows that

(1.11) Oy CI(Mz) < (#Y 2d, VY € K(T)),

where #Y is the number of columns in the matrix Y, i.e., the cardinality of the multiset Y.
Consequently, the approximation order of S(Mz) is the number

(1.12) dz = min{#Y : Y € K(2)},

i.e., the lowest degree of the differential operators involved in the definition of D(Z). These results
were first established by de Boor and Héllig in [BH], and were also proved (with the aid of different
arguments and in a slightly more general setting) by Dahmen and Micchelli in [DM].

As emphasized earlier, this characterization of the approximation order for S(Mz) is valid
only when the underlying matrix = is integral. For a general Z, it is still true, [BH], that Mz is
piecewise in D(E), so that II(Mz) C D(Z) and the number d= given in (1.12) provides an upper
bound for the approximation order of §(Mz). Yet, simple examples show that in general this bound
is not attained .and may be far from the actual approximation order. In this note we show that,
surprisingly, II(Mz) is always realizable as the common null-space of certain differential operators
of the form py (D), Y C Z. We thereby extend the aforementioned results of [BH] and [DM] to
non-integral matrices.



Our argument is based on the interplay between the convolution operator Mz+ and related
differential and difference operators, [BH]. To make this interplay effective in the setting here, we
invoke, in section 2, the Poisson summation formula in a way that reduces the characterization
of II(¢) (for a compactly supported distribution ¢), to the study of the action of the convolution
operator ¢* on the exponential spaces e, I, a € 2r7Z° (henceforth, e,(-) = €'*). This avoids the
standard conversion of the problem into the Fourier transform domain. The main result is stated
and proved in section 3, and is followed by some discussion and examples.

2. Semi-discrete convolution

Throughout this paper ¢ is assumed to be a compactly supported distribution (in s dimensions).
We reserve the notation ¢* for the standard distributional convolution operator (defined on D'),
and, following [B], use the notation ¢+’ for the semi-discrete convolution operator which is defined
as

(2.1) ¢’ s g’ fi= D f(a)ET¢ € S(9),

a€Zl?

with f being any function defined (at least) on ZZ°.
The following result is useful in the study of II(¢). For a function ¢ it can be found in [B].

Proposition 2.2. Assume that ¢x is 1-1 on II (equivalently, 5(0) #0). Then
(23) M(¢) = {p T+ ¢+'p € M} = H+'TI().

Proof: Since II(¢) is translation invariant, [B], it is an invariant space of ¢*; hence, the injectivity

of ¢ on II implies that ¢=II(¢) = II(¢). Set

Q:={pell: ¢«'pe}.
By [BR1], ¢+'Q = II(¢), while, by [BR2],

(2.4) d¥'pell < ¢+'p = dxp, pell
Thus ¢+ = II(¢). Since we have also shown that ¢*II(¢) = II(¢), it follows that @ = TI(¢), and
the proof is complete. [ )

The discussion presented above suggests the study of the map ¢+';; as a means of identifying
the space II(¢). It is therefore rather annoying to realize that, in contrast with the standard con-
volution operator ¢*, ¢+’ does not commute with non-integral translations, hence fails to commute
with differentiation. This obstacle is being circumvented here with the aid of the identity

(2.5) $'f= Y ¢xeaf),

1P Ly/Ad
which is valid under various conditions on the pair (¢, f). It is obtained by a (straightforward)
application of Poisson’s summation formula, {SW], as in [SF], [DM], [B] and [BR2], but, unlike
these cited references, is not restricted to a polynomial or an exponential f. More importantly,
it does not convert the problem into the Fourier transform domain, thus allowing us to exploit
efficiently the favourable properties of the convolution operator ¢x.
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Theorem 2.6. Let ¢ be a distribution and f a continuous function such that (for some ordering
of 72°) the series ¢+'f and 3 cq,zs O*(eaf) converge in D'. Then (2.5) is valid if for some
approximate identity {on}r>0, each function [(op*¢)(z — )| f, z € R®, h > 0, is in Ly and satisfies
Poisson’s summation formula.

Proof: Fix € IR® and h > 0, and set ¢ := [(op*d)(z — )] f(-). By assumption, 3 . P(a) =
Y ac2rze ¥(a). Now, on the one hand 3, cz. ¥(@) = [(on*d)¥ f](z), while on the other hand,
since ¥ € Ly,

Bo)= [ et ()(onsd)(a = 1) di = (orr)x(e—s (o).

Consequently,

(2.7) (onxd)¥'f = Y (onxd)*(eaf), Yh > 0.

a€2nl?

Since both ¢+'f and ) conzs P*(€af) converge, it follows from (2.7) that

ont(¢¥' f) = onx( Y ¢x(eaf)), YR >0,
a€2nl®
and the desired result is obtained by letting h — 0. ()
In the case of interest here, ¢ is compactly supported, hence ¢+’ f always converges regardless
of the growth rate of f at co. Furthermore, for a compactly supported ¢, op*¢ € D, so the function
[(or*d)(z — -)]f(-) satisfies Poisson’s summation formula if f is smooth enough. In particular, we
obtain the following corollary.

Corollary 2.8. If ¢ € D' is compactly supported and f € C*, then (2.5) holds provided that
Y wcanzs Pr(eaf) converges (in D').

Our subsequent application concerns the very special case when ¢ is compactly supported and
f is a polynomial. That (2.5) is always valid in this case is asserted by the following result.

Theorem 2.9. Let ¢ be a compactly supported distribution, and p a polynomial. Then

(2.10) ¢p¥'p=Y_ ¢r(eap).

ae€2nll?

Proof: In view of Corollary 2.8, we need only to show that the sum 37 c,,z. ¢*(eap) converges
in D'. To see this, note that ¢ (as well as any of its derivatives) is an entire function of exponential
type with polynomial growth on IR°, and therefore the distribution A, := (¢*(eqp)) is of the form

daifre Y cp(@)(Df)(a),

|81<deg p

with coeflicients {cg(a)}q of polynomial growth in . This implies that 35, o, 7. (é*(eap))” con-
verges in §', hence so does 3 o,z *(€ap); a fortiori this latter sum converges in D’. [}
Theorem 2.9 leads to the following corollary, the first part of which was established in [BR2].
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Corollary 2.11. For a compactly supported ¢ and a polynomial p,
pe'pell = ¥'p=osp <= éx(eqp) =0, Ya € 207ZZ°\0.

Proof: By Theorem 2.9, ¢*'p — ¢*p has its Fourier transform supported on 277Z°\0, hence can
never be a non-trivial polynomial, while obviously, ¢+p is always a polynomial, whence the first
equivalence. As to the second, Theorem 2.9 clearly implies that ¢+'p = ¢xp iff 37 ez°\o px(eqp) =
0, yet this latter sum can vanish only if each of its summands vanishes, e.g., since the supports of
the Fourier transforms of these summands are pairwise disjoint. [ Y

The following is a typical application of Corollary 2.11. Given a matrix Ky, we employ the
notation

(2.12) vE=T] vé:=J[a-E9,

£EK £EK
and record the following straightforward fact for use here and later.
Lemma 2.13. Let £ € R®, a € C° and g € 1. If V¥(e,) = 0 (equivalently, if eq(£) = 1), then
Vé(exq) = exVEeq. Otherwise, V¥ is injective on e,II. Consequently, for every translation invariant
space @ C 1II,

eaVQ C Vé(exQ).

Corollary 2.14. Let ¢ be a compactly supported distribution. Then for any matrix Kyyxy,
(v¥¢) c T(¢).

Proof: Set 1 := V¥¢. By [BRI1], there exists a translation invariant Q C IT such that ¥+'Q =
(). Since ¥+'Q C II, we may invoke Corollary 2.11 to obtain

(2.15) p(VE(eaQ)) = Px(eaQ) =0, Vo € 27Z°\0.

But @ is translation invariant, and therefore, by Lemma 2.13, ¢+(e, VEQ) C ¢+(V¥(eoQ)). Thus,
¢+(eaVEQ) =0,  Va €2772°\0,

which, together with Corollary 2.11, implies that

' VEQ = gxVEQ = (VE9)+Q = y+Q = v+'Q = (9).
Hence II(9) C II(#) as claimed. [

Remark 2.16. In case the matrix K is integral, the preceding corollary becomes trivial, since
then S(VE@) = S(¢), hence also (V) = T(¢). However, the situation for a general K is
subtle, since the space S(V¥¢) might be very different from S(¢). In particular, taking ¢ to be the
characteristic function of the interval [0, 1), we check that II(¢) = IIy(IR) while II((1— E-%)¢) = {0},
so that the inclusion in the corollary might be proper. Further, choosing ¢ to be the characteristic
function of the interval [0,.5), we get II(¢) = {0}, while II((1 + E~®)¢) = Ip(IR), showing thereby
that the corollary above does not extend to arbitrary difference operators (Lemma 2.13 does not
carry over). Finally, note that no regularity assumption on ¢ has been made here, namely, the
possibility (2;(0) = 0 has not been excluded.



3. Box splines

We say that ¢ provides a partition of unity if 1 € 5(¢), i.e., if II(¢) contains IIy. Since
Iy C N(¢) <= 1 € T(¢), it follows from Proposition 2.2 and (2.4) that whenever ¢(0) # 0, ¢
provides a partition of unity if and only if

(3.1) ¢*'1 = const.
Suppose now that = is an s X n matrix, and define

Ky(E) := { YCE : ME\Y does not provide a partition of unity } .
We shall see later that the set IK7(Z) can be determined directly from = without any direct recourse

to box splines.

Theorem 3.2. For a matrix Zy«n,
(3.3) I(Mz) = Nyeky () kerpy (D) =: Dy(E).

We note that the theorem is trivial if Mz does not provide a partition of unity (since then
(M=) = {0} = Dy(E)). We may therefore assume that IIy C II(Mz); in particular, Z is of rank
s. Also, if Z is an integral matrix and V C E, then My provides a partition of unity if and only if
rank V = s, [BH]. Thus Theorem 3.2 extends the result quoted in (1.10).

Roughly speaking, there are two different approaches towards the proof of the integral case of
Theorem 3.2. One method, [DM], is based on a clever calculation of the derivatives of the Fourier
transform Mz on the lattice 2rZZ° (cf. Lemma 3.1, Theorem 3.1, and Proposition 3.2 of [DM]).
The other method [BH], [BAR], is based on the identity, [BH],

(34) PK(D)ME = VKM_':.:\Kv

which is valid for every K C =. Both approaches extend to the non-integral case. Here we exploit
the latter method as a demonstration of the utility of Theorem 2.9 and Corollary 2.14. In the
proof, we make use of the following simple lemmata.

Lemma 3.5. For every K € Ky (2),
H(ME\K) = {O}

Proof: This follows directly from the definition of IKy(Z), the fact that II(¢) is always translation
invariant, [B], and the fact that every non-trivial translation invariant polynomial space contains
II,. , '



Lemma 3.6. Let £ € = and a € C®. Then

Mexey =0 <= (Vée, =0 and pg(D)eq # 0).
Proof: The proof follows from the facts that

pe(D)ea #0 = pe(a) # 0,

T eal=O -1
== M, P S Ty
Mﬁ*ea 0 < 5(&) —ipg(a) )
and the fact that the univariate function e — 1 has only simple zeros. o
Proof of Theorem 3.2. We first prove that

(3.7) (M=) C Dy(E).
Since M\E(O) = 1, it suffices to show, in view of Proposition 2.2, that
Mz=+'TI(Mz) C Dy(%).
Let p € II(Mz) and K € IKy(Z). By Proposition 2.2, M=+'p € I and by (3.4),
115 px(D)(Mzx'p) = (V¥ Mg\ )¥'p € S(VF M) 1)
Hence, by Corollary 2.14 and Lemma 3.5,
px(D)(Mz+'p) € (M) ) = {0}.

Thus, M=+'p € Nkex, (=) ker pr (D) = Dy(E), as desired.
Next we prove that

(3.8) (M=) D> Dy(E).

Let ¢ € Dy(Z). In view of Proposition 2.2 and Corollary 2.11, it suffices to show that Mz*(e,q) = 0
for all o € 2rZZ°\0. To that end, fix a € 2rZ°\0, and set

K:={6€Z: Mgre, =0} ={£ € E: Mc(a)=0}.

We shall show that Mg *(e,q) = 0, which would imply that M=zx(e,q) = 0, since Mz = ME\K*MK‘
We first observe that (3.4) (with = there replaced by K) implies that for any f € D'(IR®),

(3.9) VEf = Mg+pk(D)f.
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Next we observe that Mg(a) # 0for £ € E\K, so ME\K*ea = eaM\E\K(a) # 0. By Corollary 2.11,
A/IE\K*’l ¢ 1,i.e., K € IKy(E). Consequently, px(D)g = 0, whence by (3.9),

(3.10) VEq = Mg+px(D)q = 0.

As M¢xey = 0 for every £ € K, Lemma 3.6 allows us to deduce that Vée, = 0. Hence, by Lemma
2.13 and (3.10), VX (eoq) = e, V¥q = 0. Appealing to (3.9) once again, we obtain

(3'11) pK(D)(MK*(eaQ)) = VK(eoz(I) =0.

Finally, for every € € K, p¢(D)ey # 0 by Lemma 2.13. This means that each ps(D), £ € K, is 1-1
on e,ll, hence so is px (D). Thus, since Mi*(exq) € e,11, (3.11) can hold only if Mg+*(enq) = 0.
This finishes the proof. [

Theorem 3.2 reduces the computation of the approximation order of §(Mz) to the identification
of those subsets Y C E for which 1 € II(My). For an integral =, we have already mentioned a
simple criterion for this to hold, viz., 1 € II(My) if and only if Y is of rank s. However, for a
general = the situation appears to be much more involved. We know of such a condition only when
s =1 (1 € II(Mz) if and only if one of the entries of = is integral). The following example, whose
computational details are omitted, indicates some of the difficulties that occur even in the bivariate
setting. In what follows, we define

yE)i={Y eKyE) : Y\( ¢ Ky(Z)forany £ €Y },

and note that
Dy(Z) = Nyexy, (=) ker py (D).

Example 3.12. Let s = 2, n = 8 and

_(1/2 0 1/2 1 1/2 1/2 1/2 1
‘(0 1/2 1/2 1/2 1 1 -1/2 0)'

{1}

Using the fact that for any £ € Z and a € Z°, M\g(era) = 0 if and only if £ - a € Z\{0}, it can
be verified that for Y C =, My provides a partition of unity if and only if Y contains one of the
following matrices

(12 0 1/2 1 1/2 1)2
Yl“‘(o ‘1/2 1/2 1/2 1 —1/2)’

o (1/2 1
we (1)
It follows that the (six) elements of IKy;(Z) are all 2 x 2, so Theorem 3.2 guarantees that II[(Mz) =

II;. The matrix = is irredundant in the sense that removal of any column from Z leads to a box
spline M with II(M) # II;, yet one can remove five (!) columns from = to get

E,:(l{Z 1{2 (1))



whose corresponding II( Mz ) is of dimension 2 = dim II(Mz) — 1. This is in stark contrast with the
integral case, where removal of any direction from Z results in a corresponding polynomial space
which is (strictly) smaller. &

However, the approximation order of S(Mz), for a general =, can be computed as follows.
First, for every a € C?, let
Ko (B):={(€Z: £ - aeZ\0}.
Then we have

Theorem 3.13. Let M=z be a box spline, and let {K,(E) : a € C°} be as above. Then the
approximation order from the space S(Mz) is the number

(3.14) min{#K,(Z): a € 7ZZ°\0}.
Proof: From (1.2) it follows that
M(21a) =0 <= €€ Kq(2),
hence also
Mexeyrq =0 <= £ € K ().
Therefore, for every «, ME\K,,(E)*e?m # 0, which implies, by Theorem 2.9, that K,(Z) € Ky(Z)

for every @ € 7ZZ°\0. Furthermore, if K € IKy(ZE), then 1 ¢ II(ME\K), hence, by Theorem 2.9,

there exists an @ € Z2°\0 such that ME\K *€ara # 0, which implies that K,(Z) C K. We conclude
that

v(E)C{ Kua(B) : @€ Z°\0} Cc Ky(2),
hence
Du(E) = naEZ’\O keera(E)(D).

The required result now follows from Theorem 3.2 and the Strang-Fix Conditions. h
4. Approximation order from submodule-translates

The determination of the appoximation order of the box spline space S(Mz) admits an equiv-
alent fomulation, which, as a matter of fact, initiated our study here. This brief section is devoted
to its discussion.

Let = be an s X n integral matrix and A a submodule of the ZZ-module ZZ°. Suppose that
A = A77°, where A is an s x s invertible integral matrix, and define

S4(Mz) :=span {EPMz : B e A}

Proceeding as we did in the introductory section, we may define the approximation order of the
space S4(Mz) in an entirely analogous fashion. Owing to the relation, [BH],

Mz = Idet AI MA_:‘_ o A,

the approximation order of S4(Mz) is seen to be precisely that of the spline space S(M4-12).
Therefore, Theorem 3.13 readily yields



Theorem 4.1. Let = be a s x n integral matrix, A a s X s integral matrix of rank s, and A := AZL°.
Then the approximation order from S s(Mz) is the number

min{#K,(A™'E): o € Z°\0} = min{#K () : a € (A~"1)T7Z°\0}.
Example 4.2. Let
- _f(1 ... 10 ...0 1 ... 10 1 ... 1
=7\0 ... 01 ... 11 ...1 -1 ... =1)"

where the vectors &; := (1,0), & = (0,1), & := (1,1), and & := (1,~1) occur with multiplicities
ni, N2, N3, and ng, respectively. Let

A= (} _11> and A:= A7ZZ?,
80 that
(A™NTZ? = {a = (a1,02) € (1/2)Z% : (o1 + @) € Z}.

Suppose that a € (A~1)T7Z*\0. Then o -&; € 7, j = 3,4, so #K(Z) > na + ny unless one of
a &3 or - &y is zero; in which case #K4(E) > min{ng,n4}. In fact, choosing a = (1/2,£1/2), we
see that min{#K,(Z): a € (A~1)TZ*\0} = min{ns,n4}. As a result, Theorem 4.1 implies that
the approximation order of S4(Mz) is min {ns,ns}. We thus recover [JR; Theorem 3]. It is not
without interest to note, that in view of (1.12), the approximation order of S(Mz) (as opposed to
Sa(Mz))is min {—n; + St ;ne: §=1,2,3,4.}.
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