REMARKS ON THE LINEAR INDEPENDENCE OF INTEGER TRANSLATES OF EXPONENTIAL BOX SPLINES

by

Amos Ron

Computer Sciences Technical Report #943

June 1990

UNIVERSITY OF WISCONSIN-MADISON COMPUTER SCIENCES DEPARTMENT

Remarks on the linear independence of integer translates of exponential box splines

Amos Ron[†]

Computer Sciences Department 1210 W. Dayton St. University of Wisconsin-Madison Madison, WI 53706

June 1990

ABSTRACT

Following [S], we study in this note the problem of the linear independence of the integer translates of an exponential box spline associated with a rational direction set.

AMS (MOS) Subject Classifications: 41A15, 41A63

Key Words and phrases: box splines, exponential box splines, multivariate splines, uniform mesh, regular grids, integer translates, linear independence of integer translates

[†] Supported in part by the United States Army and by the National Science Foundation.

Remarks on

the linear independence of integer translates of exponential box splines

Amos Ron

The following brief note reacts to the recent interesting paper of N. Sivakumar [S], and should be regarded as supplementary to that paper. In particular all numerical references are these of [S] (and numbered as there). We also adhere to the notations used there.

Throughout the discussion, we associate every multiset of n s-dimensional non-trivial real vectors $\Xi = \{\xi_1, ..., \xi_n\}$ with a $s \times n$ matrix whose columns are $\xi_1, ..., \xi_n$, and use the notation Ξ for this associated matrix as well. Given a matrix Ξ and corresponding constants $\lambda := \{\lambda_{\xi}\}_{\xi \in \Xi} \subset \mathbb{C}$, the exponential box spline $B_{\Xi,\lambda}$ is defined, [14], as the distribution whose Fourier transform is

(1)
$$\widehat{B}_{\Xi,\lambda}(x) = \prod_{\xi \in \Xi} \int_0^1 e^{(\lambda_{\xi} - i\xi \cdot x)t} dt.$$

We refer to [S] and the references therein for further discussion of exponential box splines. Here, we are soley interested in dependence relations for the integer translates of $B_{\Xi,\lambda}$. Precisely, defining

(2)
$$K(B_{\Xi,\lambda}) := \{ a : \mathbb{Z}^s \to \mathbb{C} : \sum_{j \in \mathbb{Z}^s} a(j) B_{\Xi,\lambda}(\cdot - j) = 0 \},$$

we wish to know whether $K(B_{\Xi,\lambda})$ is trivial or at least finite dimensional. We note that the sum in (2) is always well defined, since $B_{\Xi,\lambda}$ is compactly supported.

Whenever $K(B_{\Xi,\lambda}) = \{0\}$, the integer translates of $B_{\Xi,\lambda}$ are linearly independent. This question of linear independence received major attention in box spline theory (see the discussion in [S]), with the analysis being focused, however, on the integer case, i.e., when Ξ is an integral matrix. It seems that only [11] and [S] (and also the example in the last section of [CR]) provide results concerning rational matrices Ξ . Furthermore, the examples in [11] indicate that in the rational case there probably exists no satisfactory characterization for the linear independence of the integer translates.

Interesting sufficient conditions for $K(B_{\Xi,\lambda})$ being trivial or finite dimensional have been obtained in [S]. Our aim here is to derive slightly more general results, and with the aid of a different approach: while the proofs in [S] (as well as in [11]; see also the approach in [10]) proceed by an involved induction on s and n, and require as a preparation a certain transformation to be applied to Ξ , we make here use of observations and arguments from the theory of the integer case. In addition, this approach links the two main results of [S].

We start by recalling from [S] the notion of extendibility:

Definition. Let $Y \subset \mathbb{Q}^s$ be a linearly independent set of $1 \leq k \leq s$ vectors. We say that Y is **extendible** (or possesses the proporty E) if there is a matrix $X_{s \times s}$ with an integral inverse whose first k columns constitute Y. Also, for an arbitrary $s \times n$ matrix Ξ , we say that Ξ is **fully extendible** if every linearly independent subset Y of Ξ is extendible.

Note that Ξ is fully extendible if and only if every basis Y to the column span of Ξ is extendible.

As in [11] and [S], we follow [15] and introduce, for a compactly supported distribution ψ , the set

(3)
$$N(\psi) = \{ \theta \in \mathbb{C}^s : \ \widehat{\psi}(\theta + 2\pi\alpha) = 0, \ \forall \alpha \in \mathbb{Z}^s \}.$$

- (4) Theorem [Sivakumar, S]. Let $B_{\Xi,\lambda}$ be an exponential box spline with a rational set of directions. Then the integer translates of $B_{\Xi,\lambda}$ are linearly independent if the following two conditions hold:
- (a) Ξ is fully extendible;
- (b) $\widehat{B}_{\Xi,\lambda}$ vanishes nowhere on the set $-i\Theta_{\lambda}(\Xi)$, with

(5)
$$\Theta_{\lambda}(\Xi) := \{ \phi \in \mathbb{C}^s : \operatorname{span}\{ \xi \in \Xi : \xi \cdot \phi = \lambda_{\xi} \} = \operatorname{span}\Xi \}.$$

Proof: By [15;Thm. 1.1], $K(B_{\Xi,\lambda}) = \{0\}$ if and only if $N(B_{\Xi,\lambda}) = \emptyset$. Assume that $\theta \in \mathbb{C}^s$. To show that $\theta \notin N(B_{\Xi,\lambda})$, we need to find $\alpha \in \mathbb{Z}^s$ such that $\widehat{B}_{\Xi,\lambda}(\theta + 2\pi\alpha) \neq 0$. The argument for that follows closely the proof of Theorem 1.4 in [15].

For each $\xi \in \Xi$ we set

(6)
$$\nu_{\xi} := \frac{i\lambda_{\xi} + \theta \cdot \xi}{2\pi}.$$

In view of (1), the desired $\alpha \in \mathbb{Z}^s$ should satisfy

(7)
$$\nu_{\xi} + \alpha \cdot \xi \notin \mathbb{Z} \setminus 0, \ \forall \xi \in \Xi.$$

Let Y be a maximally linearly independent subset of $\{\xi \in \Xi : \nu_{\xi} \in \mathbb{Z}\}$ (the possibility $Y = \emptyset$ is not excluded). By condition (a), Y is extendible to a matrix with integral inverse, and therefore the system

$$\nu_{\varepsilon} + ? \cdot y = 0, \ y \in Y,$$

admits an integral solution $? = \alpha_1$. We now replace each ν_{ξ} ($\xi \in \Xi$) by $\nu_{\xi}^1 := \nu_{\xi} + \alpha_1 \cdot \xi$. Note that $\nu_y^1 = 0$ for every $y \in Y$. We need to overcome the difficulty occurring when some of the ν_{ξ}^1 's are non-zero integers. We first show that this is impossible for $\xi \in \operatorname{span} Y$.

Let $\xi \in (\operatorname{span} Y) \cap \Xi$, $\xi = \sum_{y \in Y} \beta_y y$. Choose $\phi \in \Theta_{\lambda}(\Xi)$ such that $\lambda_y - \phi \cdot y = 0$ for every $y \in Y$. Denoting $\theta' := \theta + 2\pi\alpha_1$, we have, $2\pi\nu_{\xi}^1 = i\lambda_{\xi} + \theta' \cdot \xi$ for every $\xi \in \Xi$, hence, for every $y \in Y$, $\theta' \cdot y = -i\lambda_y$ (since $\nu_y^1 = 0$); therefore

(8)
$$\nu_{\xi}^{1} = \frac{i\lambda_{\xi} + \theta' \cdot \sum_{y \in Y} \beta_{y} y}{2\pi} \\
= \frac{i\lambda_{\xi} + \sum_{y \in Y} \beta_{y} \theta' \cdot y}{2\pi} \\
= \frac{i\lambda_{\xi} - i \sum_{y \in Y} \beta_{y} \lambda_{y}}{2\pi} \\
= \frac{i\lambda_{\xi} - i \sum_{y \in Y} \beta_{y} \phi \cdot y}{2\pi} \\
= \frac{i(\lambda_{\xi} - \phi \cdot \xi)}{2\pi} \not\in \mathbb{Z} \setminus \{0\},$$

where in the last step we have used condition (b) (if $\frac{i(\lambda_{\xi}-\phi\cdot\xi)}{2\pi}\in\mathbb{Z}\setminus\{0\}$, then, by (1), $\widehat{B}_{\xi,\lambda_{\xi}}(-i\phi)=0$, a fortior $\widehat{B}_{\Xi,\lambda}(-i\phi)=0$).

Let Y_1' be the set of all $\xi \in \Xi$ that satisfy $\nu_{\xi}^1 \in \mathbb{Z} \setminus \{0\}$. If $Y_1' \neq \emptyset$, then, with $\xi \in Y_1'$ chosen arbitrarily, we conclude from the previous argument that $Y_1 := Y \cup \{\xi\}$ is still linearly independent. Replacing Y by Y_1 , we may repeat the previous step: we find $\alpha_2 \in \mathbb{Z}^s$ that satisfies $\nu_y^1 + \alpha_2 \cdot y = 0$ for every $y \in Y_1$, then define $\nu_{\xi}^2 := \nu_{\xi}^1 + \alpha_2 \cdot \xi$ for every $\xi \in \Xi$, and conclude that, if $Y_2' := \{\xi \in \Xi : \nu_{\xi}^2 \in \mathbb{Z} \setminus \{0\}\} \neq \emptyset$, then the set $Y_1 \cup \{\xi\}$ is linearly independent, with $\{\xi\}$ being arbitrarily chosen from Y_2' . After finitely many (say, j) steps we must get $Y_j' = \emptyset$, so that all ν_{ξ}^j are not in $\mathbb{Z} \setminus \{0\}$. Since

$$\nu_{\xi}^{j} = \nu_{\xi} + (\sum_{k=1}^{j} \alpha_{k}) \cdot \xi,$$

we conclude (in view of (7)) that $\alpha := \sum_{k=1}^{j} \alpha_k$ is the required integer.

Next we consider the question of the finite-dimensionality of $K(B_{\Xi,\lambda})$. The results below will show that in essence this question is not harder than the linear independence one. It is the lack of a good characterization of the latter case that prevents us from establishing a good characterization for the finite-dimensionality problem.

We first recall the following fact. The "only if" implication of it follows from [15;Thm. 1.1], while the "if" implication has been proved in [7;Thm. 2.1].

(9) Result. Let ψ be a compactly supported distribution. Then $K(\psi)$ is finite dimensional if and only if $N(\psi)/2\pi \mathbb{Z}^s$ is finite.

The following extends a result which has been (implicitly) proved in [5] for polynomial box splines with integral set of directions. For exponential box splines with an integral set of directions Ξ , a weaker form of this result follows from [6;Thm. 7.2]; see also Lemma 4.2 of [S]. Note that we do not assume Ξ in the theorem to be spanning.

(10) **Theorem.** Let $B_{\Xi,\lambda}$ be an exponential box spline with a rational set of directions. Then $K(B_{\Xi,\lambda})$ is infinite dimensional if and only if $K(B_{Y,\lambda_Y})$ (with $\lambda_Y := \{\lambda_y\}_{y \in Y}$) is non-trivial for some subset $Y \subset \Xi$ of rank < s.

Proof: Suppose first that for some non-spanning $Y \subset \Xi$ and $\theta \in \mathbb{C}^s$, $\theta \in N(B_{Y,\lambda_Y})$. Since $\widehat{B}_{Y,\lambda_Y}$ is constant along directions orthogonal to span Y, it follows that $\theta + x \in N(B_{Y,\lambda_Y})$ for every $x \perp \text{span } Y$, hence $N(B_{Y,\lambda_Y})/2\pi\mathbb{Z}^s$ is infinite, and so is $N(B_{\Xi,\lambda})/2\pi\mathbb{Z}^s$, since $\widehat{B}_{Y,\lambda_Y}$ divides $\widehat{B}_{\Xi,\lambda}$. We conclude from (9)Result that $K(B_{\Xi,\lambda})$ is infinite dimensional.

Conversely, assume that $K(B_{Y,\lambda_Y})$ is trivial for every non-spanning $Y \subset \Xi$. Choose a positive integer m such that $m\xi \in \mathbb{Z}^s$ for every $\xi \in \Xi$. Let $\theta \in N(B_{\Xi,\lambda})$. By our assumption, $K(B_{Y,\lambda_Y}) = \{0\}$ for every non-spanning Y, or equivalently, [15], $N(B_{Y,\lambda_Y}) = \emptyset$ for such Y. Therefore, there must exist s linearly independent elements $X = \{\xi_1, ..., \xi_s\} \subset \Xi$ and corresponding $\{\alpha_1, ..., \alpha_s\} \subset \mathbb{Z}^s$ such that

$$\widehat{B}_{\xi_j,\lambda_{\xi_i}}(\theta + 2\pi\alpha_j) = 0, \ j = 1,...,s,$$

which implies (1), that

$$\lambda_i - i\xi_i \cdot (\theta + 2\pi\alpha_i) \in 2\pi i \mathbb{Z},$$

and hence also, with $y_j := m\xi_j$ and $\mu_j := m\lambda_j$:

(12)
$$\mu_j - iy_j \cdot (\theta + 2\pi\alpha_j) \in 2\pi i \mathbb{Z}.$$

Further, $y_j \cdot \alpha_j \in \mathbb{Z}$, so we finally obtain

(13)
$$\mu_j - iy_j \cdot \theta \in 2\pi i \mathbb{Z}, \ j = 1, ..., s.$$

It is not hard to prove that (13) admits only finitely many solutions mod $2\pi\mathbb{Z}^s$. (In fact, [6;Lemma 6.1] and [1;Lemma 5.1] show that there are exactly $\det(mX)$ solutions mod $2\pi\mathbb{Z}^s$ for (13), regardless of the choice of the μ 's and subjected only to the restriction that $(mX) \subset \mathbb{Z}^s$ is a basis for \mathbb{R}^s .) Thus, since the number of bases for \mathbb{R}^s selected from Ξ is finite, we obtain that necessarily $N(B_{\Xi,\lambda})/2\pi\mathbb{Z}^s$ is finite, and our claim follows from (9)Result.

Note that the argument in the first part of the proof is valid for a more general setting: if $\sigma = \psi * \tau$, all being compactly supported and ψ is a measure supported on a proper linear manifold of \mathbb{R}^s , then $K(\sigma)$ is finite-dimensional only if $K(\psi) = \{0\}$.

Combining (4) Theorem and (10) Theorem, we recover the second main result of [S]:

(14) Corollary [Sivakumar, S]. Let $B_{\Xi,\lambda}$ be an exponential box spline with a rational set of directions Ξ . Then $K(B_{\Xi,\lambda})$ is finite-dimensional if for every non spanning subset $Y \subset \Xi$, the exponential box spline $B_{Y,\lambda Y}$ satisfies conditions (a) and (b) of (4) Theorem.

The proof is now evident: if $Y \subset \Xi$ satisfies conditions (a) and (b), then by (4)Theorem, $K(B_{Y,\lambda_Y}) = \{0\}$. This being true for every non spanning $Y \subset \Xi$, (10)Theorem implies that $K(B_{\Xi,\lambda})$ is finite dimensional.

References

- [CR] C. K. Chui and A. Ron, On the convolution of a box spline with a compactly supported distribution: linear independence for the integer translates, Canadian Journal of Mathematics, to appear.
 - [S] N. Sivakumar, Concerning the linear independence of integer translates of exponential box splines, ms, 1989, J. of Approx. Theory, to appear.

The references of [S]

- [1] A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces, *Trans. Amer. Math. Soc.* **309**(1988), 683-710.
- [2] C. de Boor and R. DeVore, Approximation by smooth multivariate splines, *Trans. Amer. Math. Soc.* 276(1983), 775–788.
- [3] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Analyse Math. 42(1982/83), 99–115.
- [4] W. Dahmen and C.A. Micchelli, Translates of multivariate splines, *Linear Algebra Appl.* **52/53** (1983), 217–234.
- [5] W. Dahmen and C.A. Micchelli, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, *Trans. Amer. Math. Soc.* **292**(1985), 305–320.
- [6] W. Dahmen and C.A. Micchelli, On multivariate E-splines, Adv. in Math. 76(1989), 33-93.
- [7] W. Dahmen, R.Q. Jia, and C.A. Micchelli, On linear dependence relations for integer translates of compactly supported distributions, *Math. Nachr.* (to appear).
- [8] W. Dahmen, R.Q. Jia, and C.A. Micchelli, Linear dependence of cube splines revisited, in "Approximation Theory VI" (C.K. Chui, L.L. Schumaker, and J.D. Ward, Eds.), Academic Press, New York, 1989, 161–164.
- [9] W. Dahmen, R.Q. Jia, and C.A. Micchelli, A note on exponential box splines, (private communication).
- [10] R.Q. Jia, Linear independence of translates of a box spline, J. Approx. Theory 40(1984), 158-160.
- [11] R.Q. Jia and N. Sivakumar, On the linear independence of integer translates of box splines with rational directions, *Linear Algebra Appl.* (to appear).
- [12] M. Lefranc, Analyse spectrale sur \mathbb{Z}_n , C. R. Acad. Sci. Paris Sér. Math. 246(1958), 1951–1953.
- [13] M. Newman, "Integral Matrices", Academic Press, New York, 1972.
- [14] A. Ron, Exponential box splines, Constr. Approx. 4(1988), 357–378.
- [15] A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5(1989), 297-308.
- [16] A. Ron, Linear independence of the integer translates of an exponential box spline, *Rocky Mountain J. Math.* (to appear).