CENTER FOR
PARALLEL OPTIMIZATION

THE EFFICIENT PARALLEL SOLUTION J’“‘
OF GENERALIZED NETWORK FLOW PROBLEMS

by

Robert Hartley Clark

Computer Sciences Technical Report #933

May 1990

11

ACKNOWLEDGEMENTS

My sincere thanks go to my thesis advisor Robert Meyer for giving me

support and criticism during the past three years and during the preparation of

this thesis.

[would also like to thank Olvi Mangasarian and Michael Ferris for reading
drafts of the thesis, and I would like to thank Stephen Robinson and Arne Thesen

for being members of my examination committee.

This research was supported in part by The National Science Foundation
under grant CCR-8709952 and by The Air Force Office of Scientific Research
under grants AFOSR-86-0194 and AFOSR-89-0410.

i
THE EFFICIENT PARALLEL SOLUTION

OF
GENERALIZED NETWORK FLOW PROBLEMS

Robert Hartley Clark

Under the supervision of Professor Robert R. Meyer

ABSTRACT

This thesis is principally concerned with the discussion of two efficient par-
allel codes for the generalized network flow problem. Both of the codes are
variants of the primal simplex method for generalized networks, and both were
implemented by the author on a shared memory multiprocessor, the Sequent
Symmetry S81. PGRNET, the first code, exploits parallelism in the pivoting
and the pricing operation. Parallel pivoting is made possible by the disjoint
nature of the basis graphs. Two processors may execute pivots simultaneously if
the pivots involve updating different basis components (quasi-trees), and lock-
ing is used to ensure that processors have exclusive access to quasi-trees during
the execution of a pivot. The second code, TPGRNET, exploits parallelism in
the pricing operation and overlaps pricing and pivoting. Pivots are executed
serially by a host processor, pivot arcs are selected from a collection of shared

candidate lists by a selecting processor, and all remaining processors compute

v
reduced costs in parallel and store pivot-eligible arcs in the shared candidate
lists. TPGRNET is more efficient than PGRNET for problems having only a
few quasi-trees in an optimal basis. Computational results for PGRNET for
transportation problems with 30,000 nodes and over 320,000 arcs are given, and
speedups over GRNET?2, a state-of-the-art serial program range from 3.8 to 11.1
on 19 processors. Results for TPGRNET are given for large scale transporta-
tion and transshipment problems, and speedups over GRNET2 range from 2.6
to 8.8. A hybrid algorithm that can invoke PGRNET or TPGRNET is briefly
described, and results are given, with speedups ranging from 6.1 to 13.2. Two
test problems with more than a million variables were solved by PGRNET with

speedups ranging from 7.0 to 11.0.

This thesis develops a technique for testing the “parallelizability” of a prob-
lem instance to determine a lower bound for the number of disjoint quasi-trees
in any optimai asis of the problem. A technique is also given that can be used
to generate a problem instance that is guaranteed to have a certain minimum

number of quasi-trees in any optimal basis.

CONTENTS

Acknowledgements .
Abstract
Chapter I Introduction
1.1 Generalized Networks
1.2 A History of Codes
1.3 Overview of Dissertation
Chapter II Bounding the Number of Quasi-Trees
2.1 Introduction
2.2 Notation
2.3 The Strategy of Lemma 1
2.4 A Quasi-Tree Lower Bound
2.5 Example 1 (The Application of Lemma 1)
2.6 A Lower Bound For Problems Without Matched Supply
2.7 Example 2 (The Application of Lemma 2)
2.8 Example 3 (A Shortcoming of the MAGEN Strategy)
2.9 Example 4 (Satisfying the Hypotheses of Lemma 3)
2.10 Sufficient Conditions For Root Arcs To Have Flow
2.11 A Guaranteed Generator

Chapter I1I
3.1
3.2
3.3
3.4

Algorithms

Introduction

GRNET2

Parallel Algorithms
PGRNET (Parallel GRNET)

11

111

3.5 TPGRNET (Task Parallel GRNET) 51

3.6 HYGRNET (Hybrid GRNET) Y

3.7 Comparison With Other Work e e e 60
Chapter IV Computational Results 64
4.1 Code Parameters for GRNET2, PGRNET and TPGRNET 64

4.2 MAGEN (Massive Generator) 65

4.3 Definition of Speedup and the Target Computer 67

4.4 Problem Organization and Problem Sizes 67

4.5 MAGEN Test Problems 69
4.6 Results for NETGEN Problems 82

4.7 Results for GNETGEN Problems 89
4.8 Other Measures of Performance 98

4.9 Results for Massive Problems 102
Chapter V. Directions for Future Research O 1§
Appendiceso R 11 13)

A1l Derivation of Dual for GN 105
A2 Proof of Lemma 2 Ce e e . 107
A3 Optimal Objective Values and (Some) Random Seeds . 112
A4 The Management of Candidate Lists 114

References 116

I Introduction

1.1 Generalized Networks

The generalized network model can be used to optimize network problems
found in the areas of investment planning, job scheduling, pure network opti-
mization and others. The applications are characterized by networks for which
each arc gains or loses flow at a fixed rate assigned to that arc. Profit from
interest or dividends can be modeled by a network with gains, and loss from
evaporation or seepage can be modeled by a network with losses. A general-
ized network without gains or losses is a pure network. Further discussion of
applications can be found in [Glover, et al, 78] and [Mulvey and Zenios 85].
Serial and parallel algorithms for the convex generalized network flow problem
are discussed in [Zenios 1986]. The linear generalized network flow problem can
be formulated as follows:

min ¢z

st. Gzx=b (GN)
0<z<u

where the matrix G € R™*"™ is such that each column has

no more than two nonzero-elements.

In order to simplify algorithms for GN, the variables can be scaled and the
corresponding column can be multiplied by -1 (i.e. reflected) as needed so that
columns of G with two non-zero elements are such that one of the elements is

1, and the other non-zero entry is then interpreted as a flow multiplier. If the

O]

Seas

Figure 1.1 A Forest of Quasi-Trees

flow multiplier is -1, then the arc is a pure network arc. In general, the flow
multiplier can be positive or negative and can have magnitude equal to 1, less
than 1, or greater than 1. If the flow multiplier for a column is in the range
(—1,0), the column corresponds to an arc that loses flow. If the flow multiplier is
in the range (—oo, —1) then the column corresponds to an arc that gains flow. A
column that has just one nonzero element corresponds to a root-arc, an arc that
is incident to just one node. A specialization of the primal simplex algorithm for
GN is described in [Jensen and Barnes 80] and [Kennington and Helgason 80].
As with the pure network flow problem, which we designate as PN, the simplex
algorithm for GN can be executed on a graph. One difference between PN and
GN is that the graph of any basis for PN consists of one rooted tree, while the
graph of a basis for GN is a forest of quasi-trees, where a quasi-tree is a tree with
exactly one additional arc (making it either a rooted tree or a tree with exactly

one cycle). Figure 1.1 shows a forest of quasi-trees. Note in particular that

3

any connected component of a graph corresponding to a basis cannot contain
more than 1 root arc, so that the number of roots in the basis yields a lower
bound on the number of quasi-trees in that basis. This observation is significant
with respect to parallel algorithms, since individual quasi-trees may be updated
independently.

1.2 A History of Codes

The following is a summary of the history of generalized network derived
from a paper of J. Kennington and R. Muthukrishnan. The summary appears
also in [Clark, et al, 89].

Glover, Klingman, and Stutz [Glover, et al, 73] developed the first spe-
cialized primal simplex code (NETG) which exploited this graphical structure.
Many theoretical and computational improvements have been made to this sys-
tem over the last fifteen years (see [Glover, et al, 78]) and [Elam, et al, 79]).
A similar implementation was also developed in [Langley 73]. [Adolphson and
Heum 81] presented computational results with their generalized code which
used an extension of the threaded index method of [Glover, et al 74]. Brown
and McBride presented the details of their generalized network code GENNET
in [Brown and McBride 84]. In [Tomlin 84], Tomlin developed the first assem-
bly language code which is part of Ketron’s MPS III system. In [Engquist and
Chang 85] data structures for the solution of GN are discussed that are primarily
based on those of [Adolphson 82] and [Barr, Glover and Klingman 79]. These
data structures were used to implement GRNET [Engquist and Chang 85], a
serial version of the primal simplex algorithm for GN. [Engquist and Chang 85

establishes that on a CYBER 170/750, GRNET is about 50 times faster than

Code Language Authors Year

NETG FORTRAN Glover, F., Klingman, D. 1973
Stutz, J.

FORTRAN Langley, W. 1973

FORTRAN Adolphson, D., Heum, L. 1981
GENNET FORTRAN Brown, G., McBride, R. 1984

GWHIZNET ASSEMBLER Tomlin, J. 1984
GRNET FORTRAN Engquist, M., Chang, M. 1985
LPNETG FORTRAN Mulvey, J., Zenios, S. 1985

FORTRAN Ali, I., Charnes, A. 1986
Song, T.

GRNET-K FORTRAN Chang, M., Engquist, M. 1987
Finkel, R., Meyer, R.

PGRNET FORTRAN Clark, R., Meyer, R. 1987
Chang, M.

GNO/PC C Nulty, W., Trick, M. 1988

GRNET-A ASSEMBLER Chang, M., Chen, M. 1988
Chen, C.

GENFLO FORTRAN Muthukrishnan, R. 1988

GRNET2 FORTRAN Clark, R., Meyer, R. 1989
Chang, M.

TPGRNET FORTRAN Clark, R., Meyer, R. 1989
Chang, M.

Table 1.1 Survey of Generalized Network Codes

MINOS [Murtagh and Saunders 78], a standard LP code, on problems of the

form GN. Mulvey and Zenios, and Ali, Charnes and Song have developed imple-

5

mentations of the generalized network simplex algorithm discussed in [Mulvey
and Zenios 85] and [Ali, et al, 86]. The first C language code is discussed in
[Nulty and Trick 88]. Another assembly language code is discussed in [Chang,
et al, 88]. The serial codes GENFLO and GRNET?2 are discussed in [Muthulkr-
ishnan 88] and [Clark and Meyer 89] respectively. GENFLO is a modification
of GENNET that permits up to two arbitrary non-zero entries in the system
matrix. (GENNET requires that scaling be done to make one entry be equal
to one). Computational results for GENFLO and GRNET2 will be given in
Chapter IV. The first parallel generalized code, GRNET-K, was developed by
Chang, Enquist, Finkel, and Meyer (see [Chang, et al, 87]) for the Wisconsin
CRYSTAL Multicomputer, and the second (see [Clark and Meyer 87}) for the
Sequent 21000, also at the University of Wisconsin. TPGRNET, a parallel al-
gorithm that assigns distinct tasks to different processes is discussed in [Clark
and Meyer 89] and results for this code are given in Chapter IV. A summary of
the available software may be found in Table 1.1.
1.3 Overview of Dissertation

The primary goal of this dissertation is to present efficient parallel algo-
rithms for GN and empirical results. Two algorithms illustrative of different
approaches to parallelism are discussed in Chapter III and computational ex-
perience is given in Chapter IV. Another major goal of this work is to identify
problems that can be solved easily by both serial and parallel methods. Hav-
ing a clear understanding of what makes some instances of GN “easy” to solve
might eventually lead to efficient algorithms for “difficult” instances, or it might

motivate new methods for problem formulation that induce optimal behavior

from existing algorithms. This broad goal is far from reached in this disserta-
tion, but Chapter II contains some theoretical results that can help to classify
problem instances as “easy” or “difficult.” Computational experience has shown
that problems having many quasi-trees in the optimal basis tend to be “easy”
to solve. Lemma 1 gives a lower bound to the number of quasi-trees in any
optimal basis of a bipartite or non-bipartite instance of GN. To give a good
lower bound, it requires a feasible and nearly optimal primal/dual pair, and an
optimal pair will not necessarily yield a good lower bound. Lemma 2 gives a
lower bound for bipartite or non-bipartite problems and can be applied to a
larger class of problems than Lemma 1, but Lemma 2, like Lemma 1, requires
a feasible and nearly optimal primal/dual pair in order that it may be applied.
Lemma 3 applies to a small class of problems, but it does not require a primal or
a dual feasible solution to provide a lower bound to the number of quasi-trees in
the optimal basis. Finally, Theorem 1 gives a method for generating instances
that will have a certain minimum number of quasi-trees in the optimal basis by
describing how to generate an instance that satisfies the hypotheses of Lemma
3. The generator can be used to test existing algorithms and is very similar
to the actual generator discussed in Chapter IV. The lemmas and theorem of
Chapter II make a first step toward revealing what makes instances “easy” or

“difficult” by describing sufficient conditions for a problem to be “easy.”

Chapter III begins with a discussion of a serial algorithm, GRNET2. The
most important parallel algorithms discussed in Chapter III are PGRNET and

TPGRNET, referred to above. PGRNET does pricing and pivoting in parallel,

T
and TPGRNET does pricing in parallel and executes pivots serially. PGRNET
(for Parallel GRNET) gives to each processor a subset of the arcs and puts each
processor in charge of computing the reduced costs of arcs in its set, selecting
pivot arcs from that set, and executing the pivots on the corresponding locked
quasi-trees. All processors execute the same code in PGRNET. The second
algorithm, TPGRNET (for Task Parallel GRNET), is a variant of PGRNET for
large-grained problems, problems that have only a few quasi-trees in the optimal
basis. TPGRNET uses many routines from PGRNET, but different processors
perform different tasks in parallel. Most processors compute reduced costs, one
selects pivot arcs, and one executes pivots without locking quasi-trees. A hybrid
algorithm, called HYGRNET, that begins its execution in a PGRNET phase

and can later change to a TPGRNET phase is discussed in Section 3.6.

In Chapter IV, it is shown that GRNET2 is a state-of-the-art serial program
by comparing it to GENFLO [Muthukrishnan 88], a modification of GENNET
[Brown and McBride 84]. Computational results are also given for PGRNET,
TPGRNET and HYGRNET, a hybrid algorithm incorporating features from
PGRNET and TPGRNET. The computational results of Chapter IV show that
TPGRNET outperforms PGRNET for large-grained problems. All test prob-
lems are generated randomly. The three generators used are 1) MAGEN, the
generator discussed in [Clark and Meyer 89], 2) NETGEN, the pure network
generator discussed in [Klingman, et al, 74], and 3) GNETGEN, a modifica-
tion of NETGEN that produces generalized networks with small numbers of

quasi-trees in the optimal basis. The MAGEN test problems consist of three

8

groups of problems with 10,000 nodes, and one group with 30,000 nodes. The
largest problems contain 30,000 nodes and 300,000 arcs. Results for PGRNET
‘and TPGRNET are given for all four groups. Speedups for PGRNET ranging
from 2.9 to 11.1 (on 19 processors) were obtained with these test problems, and
speedups for TPGRNET range from 3.7 to 6.8. Results for HYGRNET for a
group of the largest problems are given, and speedups range from 6.1 to 13.2.
The NETGEN pure network test problems consist of two groups. The largest
problems have 50,000 nodes and 250,000 arcs. These problems are solved by
TPGRNET, and speedups range from 3.4 to 4.7. The GNETGEN problems
also consist of two groups of problems, the largest of which have 2,000 nodes
and 50,000 arcs. These problems are solved by TPGRNET, and speedups range
from 3.2 to 5.9 on 15 processors. The final group of problems were generated by
MAGEN and have 30,000 nodes and more than a million variables. PGRNET

speedups for these problems range from 7.0 to 11.0.

II Bounding the Number of Quasi-Trees
2.1 Introduction

The number of quasi-trees in the basic feasible solutions of a generalized
network problem plays an important role in both the serial and parallel solution
times required by the network simplex method. In the parallel case, one reason
for this behavior is illustrated by Figure 2.1. The dashed lines (arcs (2,3) and
(6,7)) in the illustration indicate pivot-eligible non-basic arcs, and the large “x”
signs indicate arcs that could leave the basis after pivoting on (2,3) and (6, 7).
An important observation is that pivoting on (2,3) requires updating only the
quasi-trees rooted at 1 and 3, and pivoting on (6, 7) requires updating only the
quasi-trees rooted at 5 and 7. Thus, the two pivots can be executed in parallel
by having one processor pivot on arc (2,3) and having another processor pivot

on arc (6,7).

Figure 2.1 Two Pivot Eligible Arcs Connecting Disjoint Quasi-Trees

10

The parallel generalized network code GRNET-K [Chang, et al, 87] has
been implemented on the CRYSTAL Multi-Computer [DeWitt, et al, 84] at
the University of Wisconsin. The algorithm distributes different quasi-trees to
different processors by way of message passing, and each processor executes
pivots on pivot-eligible arcs that are “local” to its own set of quasi-trees. In
the case of GRNET-K, the allocation of quasi-trees is maintained long enough
to execute all pivots involving “local” pivot-eligible arcs, while in the case of
PGRNET [Clark and Meyer 89], the allocation is constantly evolving, and each
quasi-tree is allocated only long enough to allow the execution of one pivot.
The Chaotic Column Partitioning (CCP) variant of the parallel GENFLO code
is another implementation of the latter strategy. All of these codes can solve
problems that have only one quasi-tree in the optimal basis or any intermediate

basis, but all are most efficient when they are operating on many quasi-trees.

This makes it interesting and useful to develop tests that can be applied to
an instance of GN in order to determine a lower bound for the number of quasi-
trees in any optimal basis. Ideally the tests would consume very little CPU time
and could be used in the construction of test problem generators that would pro-
duce problems with specified numbers of quasi-trees. Lemma 1, below, provides
a test that applies to a certain class of transhipment or bipartite problems that
have root arcs attached to source nodes. A disadvantage of Lemma 1 is that it
requires a feasible primal/dual pair in order to be applied, and computational
experience shows that the primal/dual pair must be nearly optimal in order for

the lemmas to yield a good lower bound. A further disadvantage is that an

11

optimal primal/dual pair might not yield a good approximation for a problem

instance with heavy capacitation.

These two disadvantages can be put in perspective by looking at the struc-
ture of quasi-trees. Each quasi-tree is a tree with exactly one additional arc.
The additional arc creates either a unique cycle or a root. Cycles seem to be
rather rare, at least for bipartite problems, and this means that quasi-trees gen-
erally have root arcs. If a root arc is in the optimal basis or any intermediate
basis, the root arc corresponds to a unique quasi-tree, and counting the number
of root arcs in a basis yields a lower bound for the number of quasi-trees in that
basis. Experimentation with the MAGEN [Clark and Meyer, 89] generator has
shown that large supply at a given node is usually what forces the associated
root arc into the basis, since the root arc acts as a slack variable that absorbs
the excess supply. Example 3 in section 1.8 shows that the MAGEN approach
for assigning supply to supply nodes may not always work. However, Lemma 1
tends to give good appx_‘oxima‘cions to the number of quasi-trees when there 1s
large supply. Example 1 in section 1.5 demonstrates how Lemma 1 can be used

to show that a certain root arc will be in any optimal basis.

Lemma 2 of Section 2.6 is a generalization of Lemma 1 that can be applied
to problems with relatively less supply at the supply nodes. The restriction of
Lemma 1 that the supply at some of the supply nodes be equal to the capacities of
the arcs emanating from those nodes is relaxed in Lemma 2. Lemma 3 of Section
2.10 uses Lemma 2 to show that problems with special loops will always have as

many root arcs in the basis as special loops. Lemma 3 assumes that the problem

12
under consideration has a very special form, but it does not need a feasible
primal/dual pair in order to be applied. Example 4 of Section 2.9 illustrates
an instance of GN that satisfies the hypotheses of Lemma 3. Finally, Theorem
1 of Section 2.11 builds upon the preceding lemma to validate a technique for
generating problems that are guaranteed to have a certain number of quasi-trees

in the optimal basis.
2.2 Notation

Throughout this work it will be assumed that there is an implied direction
associated with each of the arcs, so that (¢,7), for instance, has a “from” node
of 7 and a “to” node of j. Arc (¢,5) is different from arc (j,¢). Source nodes
may or may not have a root arc, and all attached non-root arcs lead away
from source nodes. The constraint corresponding to a source node could be:
b; = c;ifis + 2 jCijfij- It will also be assumed that arc coefficients have been
scaled in such a way that the “from” node i of arc (7,;) has a multiplier of 1
associated with it and the “to” node j has a multiplier of m,; associated with
it. Let CijrUsj be defined as the cost and the upper bound on arc (¢,5). A “root
node” is any node that has an attached root arc. All of the theoretical results in
this chapter apply only to a certain class, GN/, of problems in GN. In this class
of problems, root arcs are uncapacitated. Root nodes have exactly one attached
root arc, and the set of all root nodes in a given problem instance is R. Using

the following definitions,

¢~ = ~min[z,0], zT :=max[z,0]

13

the primal and a dual formulation of GN’ are given by:

PRIMAL DUAL
min ¢z —
Nl e~ ulp _0)
0<z.; <uj:i Vidj p; unres. LE
0<a; VieR i Sep ViIER

where p is the vector of arc costs corresponding to arcs that have finite capacities
(the arcs with different “from” and “to” nodes), and G is the corresponding
submatrix of G. Since the root arcs are unbounded, there are constraints on the
dual variables corresponding to root nodes. A derivation of this dual objective

function is given in Appendix 1.
2.3 The Strategy of Lemma 1

Lemma 1 uses a feasible primal/dual pair to get a lower bound for the
number of quasi trees in the optimal solution of a problem P in GN/. It gets
the lower bound by showing that certain root arcs of P have flow in any optimal
solution. These root arcs are assumed to be attached to source nodes that
have divergences equal to the sum of the capacities of the outgoing non-root
arcs attached to that node. The lemma is based on the idea that if a root
arc were removed (creating a perturbed problem P'), the dual variable at the
corresponding node could be increased without destroying dual feasibility. It
increasing this dual forces the value of the dual objective function for P! to be
greater than the value of the primal objective function for a particular feasible
solution of P, then this would indicate that removing the root arc had increased
the optimal value of the primal objective function for P. This could only happen

if every optimal primal solution for P had some flow on the root arc.

14

In more detail, the lemma utilizes a closed expression for the duality gap
(referred to here as DG(f,w)) between the primal and dual objective values.
Next, the lemma identifies a sum associated with a source node k for which
b = Z] U The sum can be thought of as the amount by which the dual
objective value for P could be increased when P is modified (by removing (k, k))
to create P/. Every root arc (k, k) for which this sum exceeds DG(f, 7) will have
non-zero flow in every optimal solution of P. The number of root arcs having
non-zero flow is a lower bound for the number of quasi-trees in the optimal basis.
(The root arcs typically represent slack variables and therefore usually have zero

cost. The lemma, however, does not require that the root arcs have zero cost.)

2.4 A Quasi-Tree Lower Bound

For notational convenience, Lemma 1 requires that there is no more than
one arc between any pair of distinct nodes (¢,7). The results of Lemmas 1 and
2 remain valid when this restriction is removed. The proof of Lemma 3 requires

the removal of this restriction.
Lemma 1:

Let P € GN’ be a transportation or transshipment problem. Let f and 7
be respectively primal and dual feasible solutions for P with the property that

for all : € R, either m; = ¢;;, or f;; = 0. Let

DG(fvr)...Lf”(cZ] T = mgimi) +L ~ fislegy —my —myjmj)™
]

15

Let by, = E] U for some source node k € R, and let DI(k,x) > DG(f,)

where

DI(k,7) = Z uk](ck] i m;cjﬂ']‘)’k.
J#k

Then (k, k) will have non-zero flow in any optimal solution of P.

Proof:

Throughout this proof, it will be assumed that z # j, unless stated other-
wise. Assume that P is perturbed to create P/ by removing the root arc (k, k),
where k € R is some node for which b = Z(k,j) U Since k is no longer a
rooted node, the associated dual is unrestricted (for P'). Let "/i =m; ¥V i#k,

and let wlk = max; (ck] —ME;iTj). The dual objective function can be expressed

as follows:
br! —u(p—7'G)” = Zbiﬂ"i - Zu”(c - W/G)i_j
! —
= b= Y wijlej = m - mim))
i (i)l
- Z uk](ck] - 7r/;C - mkj”j)_

J#k
where I = {(:,7)[¢ # k,1 # j}. The value of W/k is large enough so that
(ck]- - ”/k —mkj7rj) <0V j. So,
br! —u(p—7'G)” = Zbi”r/i - Z ugjeg; —m — mi]'n'j)“
z (¢e,j)€I

+ Z uk](ck] - 7rlk, - Tnk.jﬂj).
J#k

16

The last sum involves all (k, 7). Since TFIk = (7r’k — ML) + Ty

br! — u(p — 7)) = zbi”i + bk(wlk —T)
?

= D ugjleij —m = mijm)”

(4.5)€l
/
+Zukj(7rk -7)+ Zuk](ck] . mkjvrj)
J J

Since bk(wlk —T) = Z] uk]-(ﬂ'/k — 7}.), the dual variable 7r/k can be eliminated
from the expression for the dual objective function.
bﬂ’/-u(p-—ﬂ’/g)“ = Zbiﬂi — Z uz](c” -7, -—mijﬂ'j)“
7 el

+Zuk](ck‘] - T = mkj’fr])
J

The last sum involves all (k,7). The next expression splits this last sum by
separating the positive and negative terms.
/ ! ~\— —
br' —u(p—-nG)” = Zbiﬂ"im Z uZ](cZ] = T =My
? (n.y)el

_Zuk](ck] — 7Tk' —mkjﬂj)"
J

+Zuk](ckj — 7rk — kaTr])+

J
= Zbi’lrz‘ - ZUZJ(CZ] - —mym)T + DI(k,m).
i ij

The remaining steps of the proof relate the dual objective function to the primal
objective function (evaluated at f). The identity
L { fer + Et] frj + th m;¢fj¢, if node t has an attached root arc, or
2ty fij + 2jemjifjy, otherwise

17
is used eliminate the right hand side vector b.
n —u(p—7'G)" = Z f”WZJr—ZfZ]wz -l-ZmL]fZ]]
t€ER

_ Z uZ](cZ] T —mijﬂ‘j) + DI(k,m)
(4,

= Zfzzwz'*'zfm] wa(czy '"‘mz'jwj)

1€R

—Zuw(cz] ;- mij7rj) + DI(k,7).
i

By splitting the sum }:w fzy(cz] — m; —myj7;) into its negative and positive
terms, the dual objective becomes:
/ 'ay— : ot
br' —u(p—7nG) = Z fiims + Zf”cz] wa cij =~ m”ﬂ])
1€R
_Z Ujj = fZ] Cj — T -7ni]’7rj) + DI(k,n)
= ZfZZWZ+ZfZ]cZ] DG(f,m) + DI(k,).
1ER
By assumption, either m; = ¢;;, or f;; =0 V ¢ € R. So,
> fimi=) fiicii
1€R ER
Making this final substitution relates the value of the dual objective function to
the value of the primal objective function, given by >, p fiic;; + Zij fij Cij

b —u(p—7'G)T = > fi ”+wa ij = DG(f, ™) + DI(k,m)
1€R 29

2 Cf* - DG(f»ﬂ-) +Dl(ka’7)’
where f* is an optimal primal solution. Since —DG(f,n) + DI(k,7) > 0, the

dual objective value of P! is strictly greater than the the optimal objective

18

value of P. This means that arc (k, k) must have a non-zero flow in any optimal
basis of P, because the above analysis shows that removing the arc perturbs the
optimal primal objective value of P. If arc (k, k) had zero flow in some optimal

solution, then removing it would have no effect on the primal objective value.

QED.

It’s important to point out that if either 7, = ¢;;, or f;; =0 V 7 € R, as
assumed in Lemma 1, then DG(f, 7) is precisely equal to the duality gap between
the primal and dual objective functions evaluated at f and « respectively. This
is because the proof of the lemma establishes both be! — u(p - ©G)” = br —
u(p —7G)~ + DI(k,7) and br’ — u(p — 7'G)” = YieR Fricii + Xij fijeij -
DG(f,n) + DI(k,n). (It is also easy to derive this directly without reference
to the perturbed problem.) Also notice that the proof of Lemma 1 establishes
that no feasible solution satisfies fi,, = 0, DI(k,7) > DG(f,), and the other
hypotheses, since such a solution would be feasible for P! but would have an
objective value dominated by the objective value of the perturbed dual solution.
However, Example 1, on the following pages, gives a problem with a root node
k for which the hypotheses of Lemma 1 are satisfied, but for which another
feasible solution exists with f;z = 0 V ¢. This establishes that the class of
problems addressed by Lemma 1 does not consist merely of problems for which

fr.3 > 0 for root nodes k in every feasible solution.

19

2.5 Example1l (The Application of Lemma 1)

Figure 2.3 is the graph of a generalized network flow problem. The node
divergences are indicated next to the nodes. The cost, the multiplier and the
capacity for each of the arcs are indicated in brackets next to each arc. Lemma

1 can be used to show that arc (1,1) will be in any optimal basis of the network.

1M [Co_st,mult,cap] M 1,
{16} {20} {10}
(3
[4’_ 1/276]

[8,-1/4,8]

[2,-1/2,8] [2,-1/2,8]

[4,-1/2,10]

6,-1/2,10
{-8) }[: {-4}

2

Figure 2.3 Example for Lemma 1

Let the primal feasible solution f be given (see Fig. 2.4)by faq = 12, f12 =
8, fsg = 8, f39 = 8, f11 = 8, fs5 = 2, and flows of 0 for all remaining arcs. Let
the dual feasible solution be given by 71 = 0,73 = 0,75 = 0,79 = —6,714 =
—2,mg = —12.

For this problem DI(1,7) is easy to compute because the corresponding

sum has just one non-zero term:
> upjlerj —mp —myjmy)T =uiglerq — v - migmy)
(L.j)
=8(8 ~ 0~ (—1/4)(-2))

=60.

Figure 2.4 Primal and Dual Feasible Solutions

The duality gap, DG(f,), can be computed as follows:
Zfij(cij T Z [ugj — fijl(csj — 5 —mygmi) ™
1) t]
= f3a(c32 — 73 — mgama) — [uge — f36](c36 — 73 — M3676)
= 8(4—0—(~1/2)(—6)) = [6 — 0](4 — 0 — (~1/2)(~12))
= 20.
Since 60 > 20, lemma 1 shows that arc (1,1) will be in any optimal basis. The

particular primal solution chosen here is optimal. The primal objective value is

Yo cifit+ Y cijfij =38

The dual feasible solution used to verify the conditions of the lemma is not

given by:

optimal. The optimal dual solution also satisfles the conditions and can be
computed by using the set of arcs (1,1),(1,2),(3,2),(3,4),(5,5),(5,6) as a basis,
and the dual variables corresponding to this basis can be computed by starting

at the roots and moving down the quasi-trees: 71 =0, 7o = (2—71)/(=1/2) =

21

~4, 13 = 4— (=1/2)mg =2, mq = (2~ 73)/(=1) = 0,75 = O,mg = (2 —
75)/(—1/2) = —4. These dual variables are indicated in Figure 2.5.

Figure 2.5 Optimal Primal and Dual Solutions

The dual objective value is:

br —u(p — 7G)~ = 88.

Since the value of the primal objective function equals the value of the dual ob-
jective function, the primal solution is optimal. (Note that the value of DI(1,)
for this solution is 64.) Notice that arc (1,1) is in the optimal basis. This is
consistent with the result of Lemma 1. However, the root arcs of this prob-
lem are not forced into the basis simply to achieve feasibility, since the solution

indicated in Figure 2.6 is primal feasible and has no flow on the root arcs.

AV}
SV

Figure 2.6 Feasible Flow Involving No Root Arcs

2.6 A Lower Bound For Problems Without Matched Supply

The MAGEN generator is discussed in detail in Section IV. It generates
bipartite problems in GN/ that have a collection of root nodes with their supply
equal to the sum of the capacities of the outgoing arcs. Computational expe-
rience with modified versions of MAGEN has shown that the supply at a root
node (i.e. a node with an attached root arc) does not have to equal the sum
of the capacities of the outgoing arcs in order to force the attached root arc
into the basis. Most of the test problems in groups 1 through 4 (Chapter IV)
have the same number of quasi-trees if the supply at the root nodes is set at
3/4 the usual value. Hence, we develop a generalization of Lemma 1 that does
not require a match of supply and capacity of outgoing arcs at the root nodes.

Lemma 2 gives the generalization.

Lemma 2:

Let P € GN’ be either a transportation or transshipment problem. Let
f and 7 be respectively primal and dual feasible solutions for P, such that
for all i € R, either m; = ¢;;, or f;; = 0. Let DG(-,-) be defined as above,
let k& be a source node with attached root arc, and let 7/ be chosen such that
‘R'Ik. > 7, and s =75 Vs # k. Let F be defined as the set of arcs (z,)
for which (¢ — ’H'G)Z'j < 0. Let F}, be defined as the set of arcs (k,j) for which

(¢ — ’ﬂ'G)kj > 0 and (¢ — ’/T/G)kj < 0. Let

ST upilegj - T —mp)+ =) b= Y ugj) > DG(fm).
(kg)EFY (k.j)eFUF},
Then (k, k) will have non-zero flow in any optimal solution of P.

Proof:

See Appendix 2.

2.7 Example 2 (The Application of Lemma 2)

Figure 2.7 is the graph of a generalized network flow problem. The node
divergences are indicated by the nodes. The cost, the multiplier and the capacity
for each of the arcs are indicated in brackets next to each arc. Lemma 2 can be
used to show that arc (1,1) will be in any optimal basis of the network, even
though the divergence at node 1 is exceeded by the sum of the capacities of the

adjacent non-root arcs.

[cost,mult,cap]

[0,1,M] {divergence}

{10}

[0,1,M] [0,1,M]
{20} {10}

[8,-1/4,8] [4,-1/2,6]

[2,-1/2,8]

L [2,-1/2,10] [6,-1/4,10]

(-4}

{-12} (-4}

Figure 2.7 Generalized Network With Moderate Supply

A feasible primal/dual pair is given by: f34 = 12, fsg = 8, f32 = 8,f11 =
10, fsgs = 2,1 =73 = 715 = 0,my = —4,my = 2,75 = —4. The resulting

graph is shown in Figure 2.8.

Figure 2.8 Primal and Dual Feasible Solutions

Satisfying the hypotheses of Lemma 2 requires identifying a value, ! 1 which
will make the the final hypothesis of Lemma 2 hold. The set F'y is the set of all
arcs that are not in F but have a non-positive reduced cost when 77 is replaced

by Tl’/]_. The simplest way to chose 7/ 1 is to make it as large as possible without

25

forcing by — Z(l,j)EFU-F-—l uy; < 0. (The value of 7r/1 found in this way will
not necessarily yield a maximum value for the left hand side of the inequality
of Lemma 2). If 7’y = 2, then F{ = {(1,2)}, and the left hand side of the
inequality of Lemma 2 can be computed as follows:
Z ulj(clj -7 - mljﬁj)+(7r/1 - 7r1)(b1 - Z ulj)
(1,j)eFy (1,§)€FUF,
=8(4 -0~ (-1/2)(—4))+ (2 - 0)(10 - 8)

= 20.

Computing DG(f,n) in the usual way yields DG(f,n) = 14. Since 20 > 14,
Lemma 2 shows that arc (1,1) will be in any optimal basis. In this example,
as in example 1, the primal feasible solution f is optimal. The primal objective
value is given by:
Y cifi+ Y cijfij =56
1€{1,3,5} (1,7)
The graph of Figure 2.8 can have arc (3, 3) added to it with a flow of 0 to make

the total graph consist of 3 rooted trees. The dual variables corresponding,

this primal solution can be computed by back substitution: 71 = 0, 73 =
0, mg = (2 —w3)/(—1/2) = -4, 74 = (2 —-73)/(=1) = =2, 75 =0, 75 =
(2 — m5)/(~1/2) = —4. These dual variables are the same as the duals in
Figure 2.8. The dual objective value is: br — u(p — 7G)~ = 56. Since the

primal objective function equals the dual objective function, the primal solution
is optimal. Notice that arc (1,1) is in the optimé,l basis. As with example 1,
a primal feasible flow does not have to put flow on the root arcs. The solution

indicated in Figure 2.9 is primal feasible and has no flow on the root arcs.

Figure 2.9 Feasible Flow Involving No Root Arcs

2.8 Example3 (A Shortcoming of the MAGEN Strategy)

Many of the results discussed in Chapter IV are results for bipartite prob-
lems generated by MAGEN [Clark and Meyer 89]. This generator employs a
simple technique in attempting to force root arcs into the optimal basis. In
practice, this has the effect of creating problems with many or few quasi-trees in
the basis at optimality, depending on the number of root arcs that were forced
into the basis. For the purposes of this discussion, the generator can be described

as follows:

The MAGEN Generator

Let RG1(r) denote the following random generator:

Start with a prespecified number of source and sink nodes. Let SRCS be the
set of all sources, and let SNK S be the set of all sinks. (The number of source

nodes must be greater than or equal to r). Initially, set b, = bj = 0 for all

[cost,mult,cap] [0,1,inf]
{75} {20}

[10,-1,30] QSD

[0,-1,60]),-1,20]

{60}

[0,-1/10,60]

[O"l 960]

[0,-1/10,60]
{-33)}

Figure 2.10 Gen. Net. Consistent With MAGEN Generation Technique

i € SRCS and j € SNKS. Let 0 < o < 1. For each source node, do the

following:

1 Generate a non-negative random integer between some bounds to indicate
the number of arcs that will emanate from this node.

2 For each arc (7,) that must be generated, generate its “to” node randomly,
generate its non-negative cost randomly within some bounds, generate its
multiplier within some bounds, and generate its non-negative upperbound
(capacity) randomly within some bounds. The lower bound on all of these

arcs is zero. Set b, :=b; + au; g, and set bj = bj +augmy ;.

Now chose r source nodes. For each source node k, do the following:
3 Increase b; so that it equals the sum of the capacities of the outgoing arcs
generated so far.
4 Add the arc (k, k) with arbitrary non-negative cost and positive multiplier
to the set of arcs. Arc (k, k) has no upper bound, and has a lower bound

of zero.

28

The generalized network in Figure 2.10 demonstrates that the MAGEN
technique is not guaranteed to force a quasi-tree into the basis. The node diver-
gences are indicated within the nodes, and all problem data for this example is

consistent with the MAGEN technique. The optimal solution is given in Figure

2.11. The flows on the arcs have been rounded to one decimal place.

[cost,mult,cap]

0.0/

Figure 2.11 Optimal Flow (Rounded) With Zero Flow On Root

The divergence at node 5 is equal to the sum of the capacities of the outgoing
arcs, but arc (5,5) is not in the optimal basis. This shows that the technique
used in MAGEN to create quasi trees is not guaranteed to work, despite the fact
that the technique generally works in practice. Theorem 1 below will describe
a very similar generator, RG2(r), that uses a technique that is guaranteed to
force root arcs into the basis. The technique is very similar to steps 3 and 4 of

RG1(.) above, but it involves adding two more arcs to the instance of GN/.

2.9 Example 4 (Satisfying the Hypotheses of Lemma 3)

Lemma 3 below gives sufficient conditions for an instance of GN’ to have
at least a certain number of quasi-trees in the optimal solution. It shows that
under some simple assumptions, the hypotheses of Lemma 1 can be satisfied.
The lemma assumes that the instance under consideration has two “paired” or
“parallel” arcs associated with all root nodes. The arcs are “parallel” in the
sense that they emanate from the same node and lead to the same node. The
arcs have a large enough capacity so that either one of them can satisfy the
demand of the “to” node, and one of the arcs has a large enough cost (and an
appropriate multiplier) so that it will have a strictly positive reduced cost in
any optimal solution. This, together with a large supply at the “from” node,
makes it possible to show that all of the hypotheses of Lemma 2 are satisfied by
any optimal solution, and therefore all root arcs will have non-zero flow in any

optimal basis.

The following instance of GN/ satisfies the hypotheses of Lemma 3. The
cost, multiplier, and capacity for each of the arcs are given in brackets next
to the arc. The brackets for the “parallel” arcs have been designated by the
superscripts 1 and 2.

If the root arc (5,5) is removed from the graph and the resulting problem
is solved, the flows (rounded to one decimal place) are: f19 = 60.6, f14 =
89.3, fao, = 57.3, fa4 = 22.6, f3g = 0.0, fsq = 10.0, i = 29.7, f2; = 0.2. The
optimal value of the objective function for this perturbed problem is 913.1. If

arc (5,5) is not removed from the graph the optimal flows are: f19 = 60.6, f14 =

30

[cost,mult,cap]
div = 150 [5,-2,100] div =-150
1 /@
[1,-(1/2),100]
[1"(1/2)9100]

div = 80 [5,-2,50]

div =-110
[5,-2,10]
div = 40 | [10.-2,10]
— (101,30
[Oslolnﬂ [9 _10—213'2—” diV - "‘32

Figure 2.12 Generalized Network Satisfying the Hypotheses of Lemma 3

89.3, fgg = 57.3, f34 = 22.6, f3g = 0.0, fa4 = 10.0,]"%6 = O.O,f§6 = 3.2, f55 =
26.8, and the optimal value of the objective function is 642.1. Since (5,5) is
uncapacitated and has non-zero flow in this optimal solution, (5,5) is in the
optimal basis. Lemma 3 shows that (5,5) must have non-zero flow in any optimal

solution.

Note that a problem with parallel arcs can be transformed into a problem
without parallel arcs by adding additional intermediate nodes, but this would

complicate the proof of Lemma 3.

31

2.10 Sufficient Conditions For Root Arcs To Have Flow

Lemma 3:

Let P be a transportation or transshipment instance of GN’. Let P have s
source nodes, and let r of them have an attached uncapacitated root arc. Each
root node k, is assumed to have two “parallel” arcs. For root node k, the common
“to” node is node j. The superscripts 1 and 2 will be used to distinguish the
data associated with these arcs. Let m;; <0 V (i,7) with 7 # j, including
the paired arcs. Let C%cj > c%j > CLks m%j > m%j, and let u%cj > u%j > 0. Let
ZJ]- UMy > bj > u%jm%j, where Jj is the set of all arcs incident to node
7 other than the paired arcs. Let by = uij + ZJ]C ULj where J}. is the set of

all arcs from k except the paired arcs. If P has an optimal solution, then the

optimal solution will have at least r quasi-trees in the basis.

Proof:

As in the proof of Lemma 1, 7 # j throughout this proof, unless stated

otherwise.

We will show that the hypotheses of Lemma 2 (as extended to allow parallel
arcs) are satisfied. Let f and 7 be an optimal primal/dual pair. Since f and =
are optimal, complementary slackness requires that for all z € R, either f;; =0

or else m; = c;;. This satisfies one of the hypotheses of Lemma 2.

Since u%]m%j < bj, ffj must be such that f%] < u%], otherwise the constraint

f%]mi] +f%]-m%j +Ei€Jj UMy = bj will force some arcs to have a negative

32
flow. Since f%} < u%j and f is optimal, the reduced cost on this arc must be

non-negative. So,

c%] — T — m%jﬂ'j > 0. (1)

Since Zie Jj Uj My > bj, primal feasibility requires that either fl%j > 0 or
f%] > 0 or both. The next step in this proof involves showing that f%] >
0. To do this, assume that fl%j = 0. Then fl%j > 0, and this implies that
(’}b] o mijﬂfj < 0. Since cllcj > cpp,, and since the dual feasibility of =

requires that ¢y > 7, cllc] — . > 0. So,

1 1
0<ckj——7rk Smkjﬂ’j,

and thus,

7rj<0.

The negativity of mj then leads to the following contradiction:

Tk = Mhj
1 . 2 .
—mkjvr] > mkjﬂ‘]

1 . 2 2 .
Ck’] —’/Tk - kaﬂ'J > Ck] — Tl'k M??ijﬂ"]

1 1 - 2 2
0>ckj i T >ckj = T = My T; > 0.

The conclusion is that fl%] > 0 in any optimal solution f. Since 0 < f]%] < “%j’

the reduced cost on this arc must be 0, 1.e.,

33

Thus the second paired arc is in the set F'. Since Czkj > CLp = T}, equation (2)
: 2 . . : 1 2 ol o 2 .
yields Mg 2 0,0rm; < 0. Since My > mi . We have M > M

1 1 . 2 2
and thus ckj -7, —mkjw] > ij T mkjﬂ-] = 0.

Now to use Lemma 2, set
/ 1 1
™ k = Ck] — mk]ﬂ']

With this choice of W,k, the set Fk contains the first paired arc, and ”/k >
71, which satisfies another of the hypotheses of Lemma 2. Putting everything

together satisfies the inequality of Lemma 2.

1,1 1 . 2 .1 1
uk]-(ck]- — ’ﬂ'k - mk‘]"f{]) > uk](ckj — 7Tk — mk]"/r])
2 /1
= uk](w E—Tk)
2 1 vt
= (ukj +ul€j +- Zukj — bk)(Tr E— TI'k)
Tk
>(D, Uk b g =)
(k,J)EFUF,
The last step is valid because U >0V (k,j) and because F'U ?k is a subset
of the set of all arcs (other than the paired arcs) that emanate from node k.

Finally,
“ij(cij T~ mijﬂ'j) + (b, — Z ukj)(w’k — 1) > 0= DG(f,).
(k,j)EFU_Fk
This satisfies the last of the hypotheses of Lemma 2. Since k is an arbitrary

root node, the above discussion must apply to all root nodes, and this means

34

that the root arc associated with each root node will have positive flow in any

optimal basis. Q.E.D.

From the proof of Lemma 3, the optimal flow on the first paired arc is 0,
so this arc could be deleted from the network without changing the optimal
solution. However, deleting it would produce a network in which the total
capacity of the outgoing non-root arcs at k was less than by, and the goal of our

approach is to avoid this trivial case.
2.11 A Guaranteed Generator

In this section, a random generator for generalized network problems will
be described. Theorem 1 will prove that the random generator will generate

problems with at least r (a prespecified number) quasi-trees.

The Generator

Let RG2(r) denote the following random generator:

Start with a prespecified number of source and sink nodes. Let SRCS be the
set of all sources, and let SNK S be the set of all sinks. (The number of source
and sink nodes must both be greater than or equal to r). Start with b; = b; =0
forall: € SRCS and j € SNKS. Let 0 < a < 1. For each source node, do the

following:

1 Generate a non-negative random integer between some bounds to indicate
the number of arcs that will emanate from this node.
2 For each arc (7, 7) that is generated, generate its “to” node randomly within

bounds, generate its non-negative cost randomly within some bounds, gen-

35

erate its negative multiplier within some bounds, and generate its non-
negative upperbound (capacity) randomly within some bounds. Set b; :=

b; + o, and set bj = bj + oy my g

Now choose r source nodes. The set R for this problem instance will consist
only of these r nodes, since all root arcs will be generated explicitly. For each

source node k selected, do the following:

3 Increase by, so that it equals the sum of the capacities of the outgoing arcs
generated so far.

4 Select a “to” node j that has not previously been selected (so that no
demand node has more than one incident set of paired arcs). Increase
the demand at node j by setting bj < Z]j CTUCTE Randomly select the
negative arc multiplier m%] within some bounds. Set m]]::] < m%]

5 Chose a capacity u%) with u?];] > b]/m%J Set uij > u%j. Randomly
chose the non-negative costs c]];n] and c%] with cl{] > c%]

6 Set by, := b + ui]

7 Add the arc (k, k) with ¢ < C%j’ mpt = 1 and upj = oo to the set of

arcs.

36

Theorem 1:

The generation procedure RG2(r) will generate a problem having at least

r quasi-trees in the optimal basis.
Proof:

All costs are assumed to be non-negative, and since all variables have non-
negative flow, the problem is not unbounded. The problem is feasible because
a feasible solution can be found as follows:

a For each of the arcs generated in step 2 above, set f; j = Quy;
b For each root node k, set fl%j =0, fzjj = (bj “ZiGJj fijmij)/m%j. (This

will not violate the capacity of this arc, because u%j > b]/m%J)

¢ For each of the root arcs generated in step 7, set f;; = b; — Z]fZ] - fgp,

where p is the “to” node of the paired arc incident to node z.
Since the problem is feasible and is not unbounded, an optimal solution exists.

All of remaining hypotheses of Lemma 3 are explicitly satisfied during the gener-
ation procedure, so the r selected root arcs will have positive flow in any optimal

solution. Q.E.D.

37
III Algorithms

3.1 Introduction

In this chapter, serial and parallel algorithms for GN are discussed. Section
3.2 gives a description of GRNET?2, a modification of the serial generalized net-
work code GRNET of Chang and Engquist. The principal algorithmic difference
between these codes is that GRNET2 uses a gradual penalty method [Grigoriadis
84] rather than the big M method. There are also differences in the treatment
of candidate lists. Section 3.4 gives a description of PGRNET, a “parallel piv-
oting” version of the GRNET? algorithm that uses the parallelization technique
discussed in Section 2.1. Section 3.5 discusses TPGRNET, a “parallel pricing
overlapped with pivoting” algorithm that was developed to solve large-grained
problems not handled well by PGRNET. It will be shown in Chapter IV that the
two algorithms PGRNET and TPGRNET are complementary in the sense that
PGRNET solves small-grained problems (problems with many small quasi-trees
in an optimal basis) more efficiently than TPGRNET and TPGRNET solves
large grained problems more efficiently than PGRNET. Section 3.6 describes a
hybrid algorithm, HYGRNET, that combines PGRNET and TPGRNET and
generally yields results that are better than either of the two algorithms alone.

Section 3.7 discusses some of the other codes in the literature.

3.2 GRNET2

Figure 3.1 gives a flow chart for GRNET2. In the figure, “l.t.” designates

list _threshold, a candidate list parameter. The following is a summary of the

38

Cstart >

NO
gelr\xf lr)ty increase penalty
YES
make cand list
list > 1.t. ?
NO
pivot while

pivot until optimal list > 1.t.

Figure 3.1 Flow Chart For Serial Algorithm GRNET2

serial algorithm GRNET2.

The (serial) GRNET algorithm is:

INITIALIZATION
Set initial flows and penalty on the artificial arcs. Partition the set of arcs

into roughly equal sized segments for pricing during the next stage.

39

STAGE 1 (serial pivoting with candidate lists)
Develop a separate candidate list for each segment of the arc list. If the
number of arcs stored in a candidate list is greater than some number list.
threshold, select the “best” pivot-eligible arc (if any) from this list, execute
the pivot and go to the next candidate list. If the number of arcs is less than
or equal to list_threshold, scan the corresponding segment of the arc list to
make a new candidate list. If it is not possible to make a candidate list from
that segment with more than list_threshold entries and the penalty on the
artificial arcs has reached its maximum value go to STAGE 2. Otherwise
increase the penalty on the artificial arcs, recompute duals, create new

candidate lists and continue STAGE 1.

STAGE 2 (verification of optimality)
Scan the whole arc list for pivot-eligible arcs. If a pivot-eligible arc is found,
then the pivot is immediately executed (no candidate list is constructed).
If a complete sweep through the entire arc list can be made without finding

any pivot-eligible arcs, then optimality has been reached.

GRNET in its original form uses an all artificial starting basis discussed in
[Glover, et al, 74]. An artificial (root) arc with big M penalty is attached to
each node, providing an initial basis of m quasi-trees with just one node and one
arc per quasi-tree. Each artificial arc is given a flow that satisfies the constraint
corresponding to the node. GRNET?2 uses a starting procedure motivated by

the gradual penalty method (GPM) discussed in [Grigoriadis 1984]. Again, a

40

root arc with an appropriate flow is attached to each node, but the gradual
penalty method gives a moderate initial penalty to the artificial arcs and then
gradually increases the penalty. (As discussed below, this results in a dramatic
improvement in performance in certain problem classes.) GRNET uses one
candidate list and searches the entire arc list when refreshing the candidate
list. GRNET?2 uses a candidate list strategy similar to that of GRNET, but
GRNET?2 partitions the arc set into segments, and a separate candidate list is
maintained for each segment of the arc list. Successive pivot arcs are selected
from successive candidate lists (which correspond to distinct segments in the
partition). To do a pivot, GRNET? selects a candidate list as the source of the
next pivot-eligible arc. A pivot arc is selected from that candidate list if the
number of arcs remaining in the candidate list is greater than list_threshold. If
the number of arcs in the list is less than or equal to list_threshold, the list is
purged and pricing is done in the corresponding segment until a new candidate
list is filled. If a sweep through the segment yields list_threshold or fewer pivot-
eligible arcs, the penalty is increased by popping a new value off of a stack,
dual variables are recomputed, and pivots are executed until there are again list
_threshold or fewer pivot-eligible arcs in some segment. This gradual penalty

method is continued until the penalty has reached its maximum (big M) value.

The strategy of maintaining multiple candidate lists was motivated by re-
search with parallel algorithms. The parallel code PGRNET, which maintains
a separate candidate list for each processor, yielded super linear speedup over

an older version of GRNET2 having just one candidate list. The current version

41

of GRNET2 (with multiple candidate lists) is up to 45% faster than the old

version, for large-scale problems having more than 300,000 arcs.

The usual motivation for using gradual penalty method is that the proce-
dure can utilize original costs more effectively than the big M method. In the
case of generalized network flow problems, the gradual penalty method has the
added advantage that pivot arcs are initially less likely to be chosen in such a
way that the outgoing arc will be an artificial arc. Under the big M method,
the initial penalty on the artificial arcs is so large that pivots tend to be chosen
essentially to reduce the flow on the artificial arcs, and therefore pivots tend to
cause artificial arcs (which are root arcs) to leave the basis quickly. This tends to
reduce rapidly the number of quasi-trees in the basis. Under the gradual penalty
method, the penalty on the artificial arcs is more moderate, and artificial arcs
are less likely to leave the basis immediately. This has the result that root-arcs
remain in the basis for a longer time, and quasi-trees are more numerous and
smaller than they would be under the big M method. Since quasi-trees are
smaller, there is less work involved in executing pivots. Moreover, since quasi-
trees are more numerous, algorithms like PGRNET that rely on the disjoint
nature of the basis for parallelism can run more efficiently. Finally, since pivots
are not chosen merely to achieve feasibility, more pivots result in advancement
toward optimality, and the overall number of pivots is significantly reduced. The
computational experience described in [Grigoriadis 1984] shows that the gradual
penalty method can give a 15% improvement in CPU time for pure network flow

problems. Our computational experience shows that our version of the gradual

42
penalty method reduces CPU time by a factor of 13 to 29 (not 13% to 29%)
for generalized network flow problems with heavy capacitation. The reduction
in computing time decreases as the number of quasi-trees in the optimal basis

is increased, but almost all problems can be solved more quickly by the gradual

penalty method.
3.3 Parallel Algorithms

In developing distributed versions of GRNET2, a number of different strate-
gies were tried. Strategy 1, a tree allocation strategy, involves partitioning the
set of quasi-trees, and executing pivots on local arcs in parallel. A local arc is an
arc that is incident to two nodes belonging to the same subset of the partition.
This scheme was used on the University of Wisconsin CRYSTAL multicomputer,
and is discussed in [Chang, et al, 1987]. It eliminates the need for locking quasi-
trees and is suited to distributed memory environments. While this approach
succeeds for certain classes of generalized networks, it has some shortcomings.
In particular, the set of local arcs may be a very small fraction of the whole
arc set. This means that the set of potential pivot arcs is a small fraction of
the whole arc set. The scheme does not scale well because the set of local arcs
diminishes as the number of subsets increases, but the greatest disadvantage to
the scheme is that the set of quasi-trees must be periodically repartitioned so
that pivot- eligible cross arcs become local arcs. This is a time consuming task,
and it is difficult to quickly partition the quasi-trees in such a way that each
subset contains roughly the same number of nodes and each subset contains

a substantial number of pivot-eligible local arcs. Strategy 2, an arc allocation

43

strategy, partitions the set of arcs, rather than the nodes corresponding to quasi-
trees. Pivot arcs are selected from different segments of the partition in parallel,
and all arcs (not just “local” arcs) are potential pivot arcs. To execute pivots
correctly in parallel, no more than one processor may update the data structures
of a quasi-tree at any given time. To facilitate this exclusive access to quasi-
trees, quasi-trees are locked with hardware locks immediately before executing a
pivot involving the quasi-trees, and they are unlocked immediately after. From
a locking standpoint, the quasi-tree allocation strategy of [Chang, et al, 87] is
analogous to assigning long-term locks (thereby reducing communication costs
in a loosely-coupled system) on node subsets to processors, whereas the arc al-
location strategy utilizes short-term locks (in effect only for the time required to
perform a single pivot) on the appropriate nodes corresponding to the quasi-trees
incident to the selected pivot arc. Strategy 3, another arc-allocation strategy,
allows parallel pricing of the arc subsets, but does pivoting serial (avoiding the
need for any locking) and concurrently with pricing. Since the values of all duals
must be available to all processors in order to permit the parallel pricing of all
arcs (not just local arcs), the shared memory multiprocessor is an ideal if not a

necessary architecture for the implementation of arc allocation algorithms.

Section 2.4 contains a brief summary of PGRNET, an implementation of
Strategy 2 that works nicely when there are many quasi-trees in the optimal
basis. PGRNET does parallel pricing to find pivot arcs, locks the quasi-trees at
the ends of the pivot arcs to ensure exclusive access to quasi-trees, and executes

pivots in parallel. The greatest disadvantage to PGRNET is that processors

44

must temporarily lock one or two quasi-trees before executing a pivot involving
those quasi-trees. If there are only a few quasi-trees in the basis, this means that
only a few pivots can be executed in parallel. PGRNET rejects pivot-eligible
arcs that are found to connect quasi-trees that are locked (i.e. currently in the
process of being modified), so the work invested in finding these arcs is wasted.
Quasi-trees are more likely to be locked if there are just a few of them. Pricing
can always be done in parallel, regardless of the number of quasi-trees in a given
basis, but pricing is more likely to be done with old dual values if there are few
quasi-trees and they are changing in parallel. The use of stale dual information
and the frequent loss of good pivot- eligible arcs can greatly reduce the efficiency

of PGRNET if the optimal basis has only a few quasi-trees.

TPGRNET, an implementation of Strategy 3, will be described in more de-
tail in Section 3.5, and results for implementations of PGRNET and TPGRNET

on the Sequent Symmetry S81 will be compared in Chapter IV.

45

3.4 PGRNET (Parallel GRNET)

The flow chart for PGRNET in Figure 3.2 is very similar to the flow chart
of Figure 3.1, because PGRNET is based on GRNET2. PGRNET, however, has
parallel portions of code that are emphasized by parallel arrows. As in Figure

3.1, “l.t.” designates list_threshold, a candidate list parameter.

Cstart >

— M o increase penalty

ves F /\L

make cand list

///\\
ist> 1.2 >
NO YES
price, lock and price, lock and
pivot until optimal pivot while e

list > l.t.

Figure 3.2 Flow Chart For Parallel Algorithm PGRNET
The (parallel) PGRNET algorithm can be summarized:

INITIALIZATION

In parallel, generate the initial flows on the artificial arcs. Divide the prob-

lem arcs into roughly equal-sized segments for pricing in the next stage.

46

STAGE 1 (parallel pivoting with candidate lists)
Asynchronously and in parallel scan the segments of the arc set to develop
multiple candidate lists. Pivot arcs are chosen from the candidate lists,
and quasi-trees are locked before pivots are made. When, for a particular
segment of the arc set, it is not possible to develop a candidate list with
more than list_threshold entries, check the penalty on the artificial arcs.
If this penalty has reached its maximum value go to STAGE 2. Otherwise
assign a new value to the penalty of the artificial arcs, and update the duals

in parallel and continue asynchronous pivoting.

STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot-eligible arcs.
If a pivot-eligible arc is found, lock the associated quasi-trees, and execute
the pivot (if the quasi-trees were successfully locked). If an entire sweep
through the segments can be made without finding any pivot-eligible arcs,

optimality has been reached.

Arcs are divided evenly between segments. If there are n arcs and P
segments, then segment 1 has arcs (1) through (n/P), processor 2 gets arcs
(n/P + 1) through (2n/P) and so forth. (A more sophisticated allocation of
the non-artificial arcs might try to guess the topology of the optimal solution,
and thereby assign arcs to specific partitions. If the optimal topology is known,
lock contention can be reduced significantly by collecting in the same subset of

the partition, all of the arcs that connect nodes in a given quasi-tree or group

47
of quasi-trees. This idea could be used to solve perturbed problems efficiently.
Given the optimal quasi-tree structure of some solved problem, subsets of the
arc set could contain arcs that are local to certain collections of the optimal
quasi-trees. A small perturbation of the data would hopefully change the opti-
mal topology by very little, and therefore the initial arc allocation might improve
the solution time significantly.) The dual variables of all the nodes, the prede-
cessor threads, the successor threads and all other tree functions required by the
generalized network simplex method are assumed to be stored in shared memory
and are available to all processors. It is important to emphasize that only the
acquisition of problem data (i.e. generating data or reading data) is done serial,
and the solution process is entirely parallel. The number of partitions is equal
to the number of processors, and all processors execute the same set of tasks.
Each processor refreshes its own candidate list, selects pivot arcs from the list,
locks quasi-trees to prevent corruption of tree structures, and executes pivots.
We say that PGRNET is an example of “uniform parallelism” for this reason.
The results below show that uniform parallelism is the best solution strategy for
generalized network flow problems, as long as the number of quasi-trees in the

optimal solution is not too small.

The program that each processor executes is almost identical to GRNET2.
During a parallel pivoting stage, Stage 1, each processor makes its own candidate
list of pivot- eligible arcs. The candidate lists are made in the same way that
candidate lists are made in GRNET2. Each processor p choses its next pivot

arc from its candidate list by selecting the pivot-eligible arc with the greatest

48

reduced cost in absolute value. If the quasi-trees at the ends of the arc have not
been locked by another processor, p locks the quasi-trees to keep other processors
from interfering with the tree update, performs the pivot and removes the arc
from the candidate list. If the quasi-trees are already locked, processor p removes
the arc from the candidate list and chooses another arc. The dual update part of
the pivot operation has also been parallelized and this parallelization is described
below. When the candidate list belonging to p has not more than list_threshold
arcs, p develops a new candidate list. If the new candidate list also has not
more than list_threshold entries, processor p sets a flag in shared memory to
indicate that it is having difficulty finding pivot-eligible arcs. This flag is checked
frequently by all processors, and when it is set, processor 1 checks to see if the
penalty on the artificial arcs is big M. If the penalty is big M, all processors enter
Stage 2. If the penalty is smaller, then the processors increment the penalty on
the artificial arcs and cooperate in recomputing the dual variables. Then all

processors develop new candidate lists.

Stage 2 of PGRNET corresponds to the verification of optimality stage in
GRNET?2. The verification of optimality is done in parallel, and all processors
execute the same tasks. Optimality is achieved by performing any remaining
pivots. Processors sweep through their segments looking for pivot-eligible arcs,
but no candidate lists are developed. If processor p finds a pivot-eligible arc, it
locks the quasi-trees at either end of the arc, executes the pivot, and indicates
to the other processors that they must restart their sweep (by setting flags in

a shared array). This restart mechanism is needed because a pivot executed by

49
processor p might cause an arc owned by another processor to become pivot-
eligible. If processor p finds that one of the trees at the ends of a pivot-eligible arc
is locked, it sets the other processors restart flags and restarts its own sweep.
Each processor checks its restart flag frequently during Stage 2, and when a
processor finds that its flag has been set, it marks the arc in its segment that
was last priced out, and continues pricing. If the processor prices out all of its
arcs up to the marked arc without finding any to be pivot-eligible and without
finding its restart flag to be set, that processor informs the others that none
of its arcs are pivot-eligible. Optimality is reached when all processors make
a sweep through their arcs without finding their restart flags set, and without

finding any arcs that are pivot-eligible.

The dual update is performed recursively and in parallel. A processor p
that is updating the dual variables in a subtree S inspects a tree function #(-)
that specifies how many nodes are in the subtree. It then sets a shared variable
size_lim so that size_lim = t(root)/nproc where nproc is the number of proces-
sors and root is the root node of S. (The root node of S is the usual root node if
S is a rooted tree. If S is not a rooted tree, then S has a unique cycle, and root
will be one of the nodes in the cycle.) Next, processor p traverses S and updates
the dual variables in all subtrees of S that have fewer than some small number
tree _threshold of nodes. The root nodes of the larger subtrees are put onto a
shared queue. All processors that are computing reduced costs check frequently
to see if there are any nodes on this queue. When a node appears on the queue,

some processor ¢ takes it off and checks to see if the associated subtree is smaller

50

than size_lim. If so, then ¢ updates all of the dual variables in that subtree.
If not, then ¢ traverses the subtree (without recomputing size_lim) and puts
the root nodes of subtrees with tree_threshold or more nodes on the queue. The
efficiency of this scheme relies on the subtrees of S being broad rather than deep.
Ideally, p will chop S into nproc pieces, all having fewer than size_lim nodes. If
this happens, then all processors will work in parallel updating the duals, and
little CPU time will be spent putting root nodes onto the queue. If, however, the
original subtree is badly skewed, then subtrees that are put on the queue may
have to be chopped up by other processors. Despite some potentially inefficient
aspects of the parallel dual update, computational experience has shown that it
improves the overall efficiency of PGRNET by about 15% for certain problem
classes. The parallel dual update is also used by TPGRNET, and the effects

there are much more significant.

o1

3.5 TPGRNET (Task-Parallel GRNET)

In this section, a class of problems is discussed that PGRNET handles
poorly, and an algorithm, TPGRNET, is described that solves these problems
more efficiently. The most significant factor in the efficiency of PGRNET is the
number of quasi-trees in the optimal basis. If this number is small, the problem
is large-grained (because quasi-trees tend to be large), and if this number is
large, the problem is small-grained (because quasi-trees tend to be small). If a
problem being solved by PGRNET has 1arg¢ granularity, it is more likely that
a processor p will find the quasi-trees at the ends of a pivot arc to be locked. If
they are locked, p must reject the arc and look for another in its candidate list.
By the time the quasi-trees are freed, often all of the best arcs from the candidate
list have been rejected and a pivot is executed on an arc with a relatively small
reduced cost. This tends to increase the total number of pivots required to reach
optimality. Candidate lists are exhausted quickly because many arcs that are
chosen turn out to connect locked quasi-trees. This increases the total amount
of time that is spent developing candidate lists. For these reasons, large-grained
problems are solved inefficiently by PGRNET. (The performance of PGRNET
is also degraded when nodes are distributed unevenly between the quasi-trees.
A problem can be small-grained in the sense that it involves a large number of
quasi-trees, but if most of the nodes belong to just one quasi-tree, that quasi-
tree will be locked most of the time. In this case, the processors may compete
for access to this one quasi-tree. Candidate lists are exhausted quickly because

most pivot-eligible arcs have an end in this quasi-tree.)

52

Some alternatives to rejecting arcs with an end in a locked quasi-tree are to
store them in a temporary stack, or simply to wait until the quasi-tree becomes
available. Computational experience indicates that these alternatives are less

efficient than the algorithm used by PGRNET, which simply discards these

arcs.

A better approach to solving large-grained problems is to eliminate the
need for the locking operation by parallelizing candidate list development and
prioritization, but doing pivots serial (and concurrently with the development of
candidate lists). Since different processors perform different tasks and execute
different code, we say that TPGRNET is an example of “specialized parallelism.”
The algorithm is divided into two main stages. During Stage 1, the tasks are
distributed as described above, and Stage 2 is exactly the same as Stage 2 of
PGRNET. Figure 3.3 illustrates the flow of information during Stage 1, and
figure 3.4 gives a flow chart for TPGRNET. (In both of these figures, dotted

arrows indicate the direction of the flow of information.)

The (parallel) TPGRNET algorithm is:

INITIALIZATION
In parallel, generate the initial flows on the artificial arcs. Divide the prob-

lem arcs into roughly equal-sized segments for pricing during the next stage.

(Same as the INITIALIZATION stage of PGRNET)

53

ricin selecting i
P procg proc !
> @ i X
pricing ,]
proc 5 7 best
" / candidate lists ! \’ cand
4 A (of arcs) \,/ :,!"
pricing /
proc pivoting

shared memory

V%@&%éﬁé

Figure 3.3 Flow of Information in TPGRNET, Stage 1

T
start\
increase penalty I I
N

candidate list
| development
and prioritization

S

execute pivot |

price, lock and

pivot until optimal

Figure 3.4 Flow Chart for Parallel Algorithm TPGRNET

54

STAGE 1

(parallel candidate list development overlapped with serial pivoting)

A set of candidate lists is developed and prioritized in parallel. This process
is continued during the pivot, which concurrently modifies some of the duals
being used in candidate list development. When the pivot is completed,
the next arc to enter the basis is selected by using the “best” arc from
the candidate list (if this arc has a sufficiently good reduced cost) or a
different arc if this is not possible. The latter case occurs very infrequently,
and under conditions to be described below, may trigger an increase in the

penalty cost or an exit to stage 2.

STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot-eligible arcs.
If a pivot-eligible arc is found, lock the associated quasi-trees, and execute
the pivot (if the quasi-trees were successfully locked). If an entire sweep

through the segments can be made without finding any pivot-eligible arcs,

optimality has been reached. (Same as STAGE 2 of PGRNET)

The remainder of this section will give a detailed description of the tasks
performed by the individual processors during Stage 1 of TPGRNET. The pric-
ing processors have the task of computing reduced costs and storing pivot-eligible
arcs (in candidate lists of length 10 stored in the shared memory). When pro-
cessor p finds a pivot-eligible arc, it recomputes the reduced cost of the first

element in its candidate list to see if the new arc has a larger reduced cost in

55
absolute value. If it does, the new arc number gets stored in the first element
of the array, and the previous entry is overwritten. Experience has shown that
saving the previous entry yields no improvement in efficiency. If the new arc has
a smaller reduced cost than the first arc in the candidate list, the new arc gets
stored at a random location in the list. The pricing processors stay in a loop
that includes three operations. First, there is the pricing operation. This uses
most of the processor’s CPU time. Second, there is a check to see if the pivoting
processor has put a subtree on the dual-update queue (because of space limits
this is not shown in the figures). Third, there is a check to see if Stage 1 of the

algorithm has finished.

The pivot selecting processor has the task of scanning the collection of
candidate lists of the pricing processors to locate the pivot-eligible arc with
the largest reduced cost and storing that arc in a single shared variable called
best_cand. This processor stays in a loop that has three operations. First, the
processor checks to see if best_cand is empty. If so, the processor looks in the
first entry of some candidate list to find an arc to put in best.cand. Second, the
processor traverses the candidate lists to see if there is a pivot-eligible arc that
has a reduced cost larger than the arc in best_cand. Third, there is a check to

see if Stage 1 of the algorithm has finished.

The pivoting processor stays in a loop in which it selects pivot ares for itself
(as described below), executes pivots, and directs the increases in the penalty
on the artificial arcs. Whenever possible, the pivoting processor selects its pivot

arc from best_cand, but before adopting an arc from best_cand, a check is made

56

to see that the arc is pivot-eligible and to see if the reduced cost is sufficiently
large in absolute value. If the arc in best.cand has a small reduced cost, or if
there is no arc in best_cand, the pivoting processor looks at the first entry of
each of the candidate lists to find a pivot-eligible arc. If a pivot-eligible arc is
found, the pivot is executed. If no pivot-eligible arc is found, then either the
penalty on the artificial arcs is increased, or Stage 2 is begun (if the penalty has
reached big M and cannot be increased). The pivoting processor has the task
of directing the parallel update of dual variables during the execution of pivots
and after the penalty on the artificial variables has been increased. During both
of these operations, the pivoting processor can put the root node of subtrees
onto the dual update queue, and the pricing processors will then adopt the task

of updating the duals on those subtrees.

ST
3.6 HYGRNET (Hybrid GRNET)

The hybrid algorithm begins its computation with PGRNET. All processors
execute the same code, and all processors own a segment of the arc list. When
a processor p selects an arc from its candidate list and is unable to lock the
associated quasi-trees, it increments an entry, corresponding to p, of an array,
lost_arcs, in shared memory. It then checks the entries corresponding to the
other processors. If the value of the entry for all processors is 48 or more
then processor p sets a shared flag, indicating that the threshold for quasi-tree
contention has been reached, and the program will convert to TPGRNET after
the next step is made in the gradual penalty method. Each time that a processor

creates a new candidate list, it divides its entry in lost.arcs by 2.

The (parallel) HYGRNET algorithm is:

INITIALIZATION

All processors cooperate in generating the initial flows on the artificial arcs.

Then all processors go to STAGE 1P.

o8

STAGE 1P (parallel pivoting with candidate lists)
Processors scan their segment of the arc list to develop candidate lists.
Pivot arcs are chosen from the candidate lists, and quasi-trees are locked
before pivots are made. When a processor is unable to lock the quasi-trees
associated with a selected arc, it increments its entry in the shared array
lost_arcs. If the entries for all processors in lost_arcs are greater than or
equal to 48, the processors will begin STAGE 1T at the start of the next step
in the GPM. When any processor cannot develop a candidate list with more
than (listsize/2) entries, all processors either cooperate with processor 1 to

increase the penalty on the artificial arcs, or they all proceed to STAGE 2.

STAGE 1T (parallel candidate list development with serial pivoting)
The pricing processors sweep through their lists of arcs and store pivot-
eligible arcs in candidate lists. The pivot selecting processor scans the can-
didate lists of the pricing processors and puts the best pivot-eligible arc in
best_cand. The pivoting processor selects the next pivot arc from the shared
variable best_cand whenever best_cand is not empty and the arc stored in
best_cand is pivot-eligible and has a reduced cost greater than 1.0 in abso-
lute value. Otherwise, the pivoting processor attempts to obtain the next
pivot arc from the first entry of the candidate lists of the pricing proces-
sors. If the pivoting processor cannot find a pivot-eligible arc in best-cand
and cannot find a pivot-eligible arc in the first entry of the candidate lists,
it either oversees the increase in the penalty on the artificial arcs, or else

directs the other processors to go to STAGE 2.

STAGE 2 (parallel verification of optimality)
Processors scan their segment of the arc list simultaneously to locate any
remaining pivot-eligible arcs. If a processor finds a pivot-eligible arc, it locks
the trees involved, performs the pivot and restarts the sweep of the other
processors. If all processors make a sweep through their lists without being
interrupted and without finding any pivot-eligible arcs, optimality has been

reached.

60

3.7 Comparison With Other Work

The first parallel variant of GRNET was developed on the U W. CRYSTAL
Multicomputer. The code is referred to as GRNET-K in [Chang, et al, 87]. This
code is executed on K processors, and uses the “node partitioning” strategy
described above. Processors (1) through (K-1) solve a local problem by pivoting
on pivot-eligible arcs that are incident to local nodes. Processor (K) computes
reduced costs (using possibly old dual variables) on cross arcs and develops a
candidate list. After all of processors (1) through (K-1) have solved their local
problems to optimality, processor (K) directs a redistribution of quasi-trees so
that some of the pivot-eligible cross arcs become local arcs. This approach
yields good results for multi-period problems. Speedups over GRNET reported
in [Chang, et al, 87], range from 8.25 to 14.17 on 13 processors. Speedups for
problems without the block diagonal structure range from 1.52 to 1.57 on 6

Processors.

NETPAR is a parallel network simplex code for the pure network flow
problem discussed in [Peters 1988a]. The code uses a task partitioning algorithm
in which one processor executes all pivots, and all other processors compute
reduced costs and store pivot-eligible arcs in a shared queue. This scheme is
modified in [Peters 1988b] to give to one processor the task of executing pivots,
to another processor the task of selecting arcs, and to all other processors the task
of computing reduced costs. The modified code, PARNET, compares favorably
with NETFLO [Kennington and Helgason, 1980], a standard serial code for the

regular network flow problem. PARNET, when run on three processors, is 10 to

61
20 times faster than NETFLO for the standard collection of problems generated

by NETGEN [Klingman, et al, 74]. PARNET yields linear speedups for a variety

of large scale problems generated by NETGEN.

PARNET and TPGRNET have a similar distribution of tasks. Both pro-
grams have one pivoting processor, one pivot selecting processor, and both pro-
grams give the task of pricing (i.e. computing reduced costs) to the other proces-
sors. However, the two programs have slightly different pivot selection strategies.
Under the PARNET strategy, the pricing processors develop queues of pivot-
eligible arcs. When a pricing processor finds a pivot-eligible arc, it puts it at
the head of the queue. The pivot selecting processor looks at the first three
elements in a queue when selecting an arc for the pivoting processor. Under the
TPGRNET strategy, a pricing processor compares the reduced costs of a newly
found pivot- eligible arc with the reduced cost of the first arc on its candidate
list. If the new arc has a larger reduced cost it is put at the beginning of the list,
and the arc that was previously at the beginning of the list is overwritten. Oth-
erwise, the newly found arc is stored at a random location elsewhere in the list.
This strategy has been found to be somewhat faster, for generalized network

flow problems, than the PARNET strategy.

Since the distribution of tasks is very similar in PARNET and TPGRNET,
and since PARNET yields a linear speedup for almost all test problems, one
would hope that the speedups from TPGRNET would also be linear. The re-
sults given in section 3 show that TPGRNET does not yield linear speedup for

all test problems. The difference in the performance of the two algorithms is

62
possibly due to differences in the nature of the two algorithms. PARNET does
the ratio test and the flow update with integer operations, while TPGRNET
does these operations in double precision. This means that pivots are, on the
average, more expensive for TPGRNET than they are for PARNET. PARNET
computes reduced costs with integer arithmetic while TPGRNET computes re-
duced costs in double precision. Experience has shown that the dual variables in
large grained generalized network problems change rather frequently. A change
in the dual variables after the execution of a pivot can make the arcs stored
in a candidate list no longer pivot-eligible, and the CPU time that was spent
finding the arcs is wasted. It’s possible that TPGRNET spends more time doing
pricing with incorrect duals than PARNET, although further studies are needed

to verify this possibility.

GENFLO [Muthukrishnan 88] is a parallel generalized network program
written for the Sequent Balance 21000 and the Sequent Symmetry S81. GEN-
FLO does not scale to force one element 1 in each column. For pure network
problems, a serial version of GENFLO is competitive with NETFLO [Kenning-
ton and Helgason 80] and GENNET [Brown and McBride 84], and it is com-
petitive with GENNET for generalized network flow problems. The parallel
version of GENFLO is similar to PGRNET in its distribution of tasks. It was
tested using a group of generalized network problems generated by GNETGEN,
a modification of NETGEN [Klingman, et al, 1974]. GENFLO speedups ranged
from about 2 to 3 (on 8 processors on a Sequent Symmetry) for these problems.

A forthcoming joint paper [Clark, et al, 89] will provide a comparison of the

63

performances of these approaches on the GNETGEN test problems as well as

the MAGEN test problems described below.

64

IV Computational Results

4.1 Code Parameters for GRNET2, PGRNET and TPGRNET

GRNET2 and PGRNET generate and maintain candidate lists of pivot-
eligible arcs during Stage 1. Both GRNET2 and PGRNET maintain num -
pricers candidate lists of length listsize = 60. For GRNET2, num._pricers = 19
for transportation problems, and num_pricers = 5 for transshipment problems.
For PGRNET, num _pricers= nproc, the number of processors, regardless of
the nature of the problem being solved. Appendix 4 gives a detailed descrip-
tion of the technique used by GRNET2 and PGRNET to develop and maintain
candidate lists, and it discusses the code parameter list_threshold , a thresh-
old parameter that indicates when a candidate list should be purged. For both
GRNET? and PGRNET, list_threshold= (listsize/2). For TPGRNET, the num-
ber of candidate lists is specified by the algorithm to be nproc—2. The lists have
length 10. Both PGRNET and TPGRNET use the same value for tree_threshold
(used in parallelizing the dual update), namely 5. All three codes increment the
cost on the artificial arcs in the same way. Assuming that the arc costs are in
the range [1,100], the initial penalty on the artificial arcs is set at 20, and the
initial increment between penalties is 5. Later, the increment increases by 10
and then by 20. The last increment between penalties changes the penalty from

200 to big M, and big M in our implementation is 9,999,999.

4.2 MAGEN (Massive Generator)

The test problems in groups 1 through 4 are generated randomly with MA-
GEN, a generator similar to GTGEN [Chang and Engquist 1986]. The generator
has the feature that the user may specify, roughly, the number of quasi-trees in
the optimal basis. This is accomplished with a technique discussed in [Chang
and Engquist 1986]. A processor first selects a source node and, in two steps,
generates all of the arcs incident to that node. In the first step, the processor
generates all of the arcs that will begin at that node and end at one of the sink
nodes. As these arcs are generated, the divergences at the source and sink nodes
of the arcs are adjusted so that a feasible flow exists. In the second step, the
processor determines whether or not a generalized root arc will be generated
for the source node. To do this, it checks a randomly generated number, and
if this number is smaller than a user specified parameter a < 1, two things are
done. First, a generalized root arc for the source node is generated. Second, the
divergence at the node is adjusted so that it equals the sum of the capacities of
the outgoing arcs. This tends to force the generalized root arc into the optimal
basis, creating a quasi-tree. The number of quasi-trees in the optimal basis will
be roughly « - (num_sources). By adjusting a, one can specify, approximately,
the number of quasi-trees in the optimal basis. The random seed used for all
runs is 0731246890, and the remaining input data for the Group 1 problems
is given in Table 4.1. The row labeled “Arcs per node” gives a range for the
number of arcs that will eminate from a given source node. The input data

for groups 2 through 4 is the same, but the number of arcs per source node

66

for Group 2 is 39-45, and for Group 3 is 80-86. The input data for Group 4 is
given in Table 4.2. The input parameter zfrac roughly indicates the percent
of arcs that will have flow at upper bound in an optimal solution. The optimal

objective function values for groups 1 through 4 are given in Appendix 3.

Problems

Character. 1.00 1.01 1.03 1.05 1.10 1.50

Nodes | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000
Sources 5,000 5,000 5,000 5,000 5,000 5,000

Sinks 5,000 5,000 5,000 5,000 5,000 5,000

Arcs per node 18-24 18-24 18-24 18-24 18-24 18-24
Cost range 1-100 1-100 1-100 1-100 1-100 1-100
Mult Range | .90-.98 | .90-.98 | .90-.98 | .90-.98 | .90-.98 | .90-.98
Cap max 1,000 1,000 1,000 1,000 1,000 1,000
zfrac 0.50 0.50 0.50 0.50 0.50 0.50

e 0.00 0.01 0.03 0.05 0.10 0.50

Table 4.1 Input data for Group 1

Problems

Character. 4.00 4.01 4.03 4.05 4.10 4.50

Nodes | 30,000 | 30,000 | 30,000 | 30,000 | 30,000 | 30,000
Sources | 15,000 | 15,000 | 15,000 | 15,000 | 15,000 | 15,000

Sinks | 15,000 | 15,000 | 15,000 | 15,000 | 15,000 | 15,000

Arcs per node 18-24 18-24 18-24 18-24 18-24 18-24
Cost range 1-100 1-100 1-100 1-100 1-100 1-100
Mult Range | .90-.98 | .90-.98 | .90-.98 | .90-.98 | .90-.98 | .90-.98
Cap max 1,000 1,000 1,000 1,000 1,000 1,000
zfrac 0.50 0.50 0.50 0.50 0.50 0.50

e 0.00 0.01 0.03 0.05 0.10 0.50

Table 4.2 Input data for Group 4

67
4.3 Definition of Speedup and the Target Computer

The parallelism of the algorithms discussed here is measured by calculating

the speedup for various problems. For a given parallel code, the speedup for P

processors is defined in the following way:

CPU time required by GRNET2
CPU time required by P processors

speedup =

The parallel results below are taken from a Sequent Symmetry S81, a shared
memory multiprocessor. The machine used in this research is configured with 20
Intel 80386 processors, each with a Weitek 1167 floating-point accelerator. It has
a 40 Mbyte physical memory, and each processor has a 16 kbyte cache. The time
sharing system allows the user to request up to 19 processors for the execution
of a program. Sequent provides a parallel programming library that includes
commands for forking processes, locking shared variables and killing processes.
The DYNIX operating system on the Sequent Symmetry S81 provides the user
time and the system time used in the execution of a program. The system time
reported can depend on the number of users on the system. For this reason, we

report only the user time as the CPU time.
4.4 Problem Organization and Problem Sizes

The MAGEN [Clark and Meyer 89] problems are divided into four groups.
Groups 1 through 3 have 10,000 nodes. The problems in Group 1 have about
100,000 arcs, the problems in Group 2 have about 200,000 arcs, and the problems
in Group 3 have about 400,000 arcs. The problems in Group 4 have 30,000 nodes
and more than 300,000 arcs. All problems were solved by both PGRNET and

68

TPGRNET, and each group contains problems with varying numbers (ranging
from 1 to 7376) of quasi-trees in the optimal basis. The NETGEN test problems
consist of three groups. The Group 5 problems are bipartite and non-bipartite
problems taken from the (new) standard problem set. These problems have
5,000 nodes and about 25,000 arcs. Group 6 is a group of bipartite problems
with 50,000 nodes and 250,000 arcs. The problems in groups 5 and 6 are solved
by TPGRNET, and speedups range from 3.4 to 8.8 on 15 processors. Group
7 is taken from the standard set [Kingman, et al, 74] of test problems. These
bipartite and non-bipartite problems are solved by a number of different codes.
The GNETGEN problems consist of three groups. Group 8 is a set of relatively
small test problems, and serial results for three codes are given for this group.
Group 9 has three sets of problems, and each problem within a set has a different
percent of capacitation. All of the problems in Group 9 have roughly the same
ratio of nodes to arcs. Group 10 has two sets of problems, again with varying
percentages of capacitated arcs. The results of Group 10 are intended to indi-
cate the efficiency of an algorithm as the ratio of nodes to arcs changes. The
GNETGEN problems are solved by TPGRNET, and speedups range from 2.6 to
5.9 on 15 processors. The final group of test problems, Group 11, was generated
by MAGEN. These problems have 30,00 nodes and more than 1 million arcs.
Speedups for PGRNET for these problems are as high as 11.0.

69

4.5 MAGEN Test Problems

Figure 4.3 shows a collection of speedup graphs for the Group 1 problems
listed in Table 4.3. All problems have 10,000 nodes and more than 100,000 arcs.
Each column in the table corresponds to a different problem, and the problem
number is given at the top of the column. The last two digits of the problem
number are a x 100, where « is the quasi-tree parameter for the generator
described above. Since « is different for each of these problems, each problem
has a different number of quasi-trees in its optimal basis. The graphs show
speedup as a function of the number of processors for the algorithm PGRNET.
According to the table, problem 1.50 is the one with the greatest number of
quasi-trees in this group of problems, and both the table and the graph show
that this is the problem for which PGRNET yields the best speedup (even
though the serial time for this problem is the smallest of the group). The great
number of pivots and CPU time required to solve problem 1.00 and the fact
that PGRNET yields a maximum speedup of only 3.2 for this problem indicate
the need to develop an alternate algorithm (like TPGRNET) for large grained
problems. However, the speedups for all other problems are greater than 5.3 (on
19 processors). This means that PGRNET yields a very substantial reduction in
wall clock time for a fairly wide range of problems. Also notice that, except for
problem 1.00, the graphs in Figure 4.3 have a slope indicating that the speedup
has not reached its maximum at 19 processors. This means that the wall clock

time might be reduced further by increasing the number of processors beyond

19.

70

Using 19 processors, PGRNET required more pivots than GRNET? to solve
each of the problems in Group 1. This may be due to the fact that some of the
best pivot arcs from candidate lists are rejected, since an arc is removed from
a candidate list in PGRNET whenever it is found to have an end in a locked
quasi-tree. This conjecture is supported by the fact that the difference in pivots
required diminishes as the number of quasi-trees increases, and by the diminished
number of pivots required by TPGRNET, to be discussed below. The result is

that PGRNET makes poorer choices for pivot arcs.

yCcommun

19 -

18 A
17
164
15 4
14 -
13 -
12 -
11 -
10 -
o 4
] -
7
6 4
5
4
3
2 h -
1 - ¥ linear speedup * problem number
0 ——— e e —— yoy 3
01 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19
NUMBER OF PROCESSORS
Figure 4.3 Speedups for PGRNET
Problem # 1.00 1.01 1.03 1.05 1.10 1.50
4 qtrees 1 43 147 258 494 | 2,467
nodes 10,000 10,000 10,000 10,000 10,000 10,000
arcs 107,290 | 107,333 | 107,437 | 107,548 | 107,784 | 109,757
pivots seq 101,630 | 108,359 | 101,717 97,875 92,407 75,458
pivots 19 pr 111,843 | 115,680 | 106,496 | 103,064 96,075 76,367
CPU secs. seq 2,796 1,974 1,076 833 638 404
CPU secs. 19 pr 864 372 145 105 67 37
Speedup 19 procs 3.2 5.3 7.4 7.9 9.5 10.9
Table 4.3 Results for PGRNET for Group 1

72

Figure 4.4 and Table 4.4 give results for TPGRNET for the Group 1 prob-
lems. Note that TPGRNET solves all problems with fewer pivots than both
GRNET?2 and PGRNET, and uses substantially fewer pivots to solve the large
grained problems. Profiles of TPGRNET and GRNET2 have indicated that
TPGRNET uses up to 68% of its CPU time doing pricing (i.e. computing re-
duced costs), while GRNET2 spends only 12% of its CPU time on pricing. The
heavy emphasis that TPGRNET puts on pricing apparently results in better
choices for pivot arcs and ultimately results in a smaller number of pivots needed
for solution. PGRNET also does a great deal of pricing relative to GRNET2.
PGRNET can spend up to 59% of its CPU time doing pricing, but this is a
smaller percentage than for TPGRNET. Note that GRNET2 solves problem
1.00 in 2796 seconds and problem 1.50 in 404 seconds. This means that the
solution time for problem 1.00 is about 6 times greater than the solution time
for problem 1.50. However, the number of pivots needed for problem 1.00 is
only about 4/3 times the number of pivots needed for problem 1.50. The differ-
ence in CPU time relative to the number of pivots is explained by the fact that
the quasi-trees developed during the solution of problem 1.00 are larger than
the quasi-trees for 1.50. Therefore, the pivots used to solve problem 1.00 are,
on average, much more expensive than the pivots used to solve problem 1.50.
Looking at the speedup graphs for these problems, one sees that the behavior of
TPGRNET is fairly uniform for these problems. The speedup on 19 processors
for TPGRNET ranges from a minimum of 3.5 to a maximum of 6.2, while the
speedup for PGRNET rar;ges from a minimum of 3.2 to a maximum of 10.9.

The shape of the speedup graphs for the problems in this group indicates that

73

the maximum speedup for TPGRNET was reached when TPGRNET was run

on about 15 processors.

wogmmuw

19 -
18 +
17 4
16
15 4
14 4
13 S
12 ~
11 4
10 +
9 4
]
v
6 -
5 4
4
3
2
1+ ;22? linear speedup * problem number
0 e B S e L B S M S m e s e s
0 2 3 4 5 6 7 8 9 1011121314 151617 18 19
NUMBER OF PROCESSORS
Figure 4.4 Speedups for TPGRNET
Problem # 1.00 1.01 1.03 1.05 1.10 1.50
qtrees 1 43 147 258 494 2,467
nodes 10,000 | 10,000 10,000 | 10,000 10,000 10,000
arcs 107,290 | 107,333 | 107,437 | 107,548 | 107,784 | 109,757
pivots seq 101,630 | 108,359 | 101,717 | 97,875 | 92,407 | 75,458
pivots 19 pr 88,144 | 95,798 | 92,026 | 90,292 | 86,534 | 73,775
CPU secs. seq 2,796 1,974 1,076 833 638 404
CPU secs. 19 pr 595 551 284 208 143 65
Speedup 19 procs 4.6 3.5 3.7 4.0 4.4 6.2

Table 4.4

Results for TPGRNET for Group 1

75

Figures 4.5 - 4.6 and tables 4.5 - 4.6 present results for PGRNET and
TPGRNET for Group 2, a set of problems having 10,000 nodes and more than
200,000 arcs and for Group 3, where the number of arcs is increased to more
than 400,000. The speedup for PGRNET and TPGRNET improves slightly
when the number of arcs is increased, but otherwise the results are similar to
those of Group 1, except that for TPGRNET for Group 3 the maximum speedup
doesn’t seem to have been reached when 19 processors are used. This is due to
the fact that the Group 3 problems have many more arcs than the problems
in Groups 1 and 2, relative to the number of nodes. So more processors are
“needed” to do pricing. (We note that each pricing processor in TPGRNET
can each compute reduced costs for only about 9 arcs between pivots at the
beginning of the run. This happens because the quasi-trees in the starting
basis consist of just one node and one generalized root-arc, and therefore pivots
are executed by the pivoting processor very quickly. Assuming that there are
17 pricing processors, the total number of arcs priced out between pivots in
TPGRNET is initially only about 153, regardless of the number of arcs in the
problem. This represents a very small fraction of all of the arcs, especially for
the problems in Group 3. For small grained problems the pricing processors
can compute only about 10 reduced costs between pivots at the end of the run.
For the large grained problems, the pricing processors can each compute more
reduced costs between pivots, but only rarely are 17 processors able to price out

as many as 10% of all the arcs between pivots.)

wlelviuluk 1]

QCommn

12 -
11 4 _-+ 2.50
10 J PGRNET T
S /,»” __--* 2.0
8 vt
7 e e + 2.05
S 4 /,;,f:"/,/’ e + 2.03
s J B L + 2.01
4 1 w L T
3 4 /;,’:’:’::‘:’—'—" --77 e T o -+ 2.00
2 - S CCLIID U et
1 PP
o
T -
e mmm + 2.50
S - TPGRNET ===
P e —= 2.10
> e ammem o ~ 293
4 - T :;;;/j':ff?:.f: A —mm e s e — s 2.03
3 ”,;;‘*:::’—;’::_‘:_::4- ~~~~~~~ 2.01
1 - :;E?”
0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
NUMBER OF PROCESSORS
Figure 4.5 Speedups for PGRNET and TPGRNET
Problem # 2.00 2.01 2.03 2.05 2.10 2.50
qtrees 1 46 133 233 508 2,490
nodes 10,000 10,000 10,000 10,000 10,000 10,000
arcs 212,627 | 212,673 | 212,760 | 212,860 | 213,135 | 215,117
pivots seq 185,105 | 195,430 | 184,746 | 180,115 | 166,392 | 138,635
pivs PGRNET 205,149 | 212,594 | 199,859 | 190,724 | 174,818 | 140,260
pivs TPGRNET | 156,885 | 169,054 | 165,166 | 160,899 | 153,504 | 134,183
CPU secs. seq 5,003 3,470 2,007 1,703 1,201 765
CPU PGRNET 1,700 652 336 230 127 69
CPU TPGRNET 1,118 909 512 371 227 115
Spdp PGRNET 2.9 5.3 5.9 7.4 9.4 11.0
Spdp TPGRNET 4.4 3.8 3.9 4.5 5.2 6.6

Table 4.5

Results for PGRNET and TPGRNET for Group 2

etv]ulok /)]

belvlulold/]

77

12 -
11 4 .-* 3.50
10 PGRNET e
- _-* 3.10
= et P
8 - I .-
T
7 - LT T _--"* 3.05
6 - ol LT emrI .- 303
L - s
S AT =T -
e eIl e + 3.01
a4 LIl el -
I AP L e e
3 I LGP L i b *ommTm T + 3.00
2 - pprEn AT
1 4 #2=T
o r
79 —~+ 3.50
S 4 TPGRNET T —~ 3.10
> e T Foz===-=7T 3999
4 e IEEET T mmm R =TS - +~ 301
2 /:"*‘-:;'—“‘”—'*-—
o
2 - ‘,—4","’4’
,:i«‘
1 - 35;‘
o :

4 S5 6 7 8 9 1011 12 13 14 15 16 17 18 19
NUMBER OF PROCESSORS

Figure 4.6 Speedups for PGRNET and TPGRNET
Problem # 3.00 3.01 3.03 3.05 3.10 3.50
qtrees 1 41 142 235 487 2,560
nodes 10,000 10,000 10,000 10,000 10,000 10,000
arcs 417,397 | 417,438 | 417,539 | 417,632 | 417,884 | 419,957
pivots seq 340,153 | 373,375 | 347,419 | 333,389 | 312,852 | 260,266
pivs PGRNET | 378,806 | 415,128 | 379,045 | 362,048 | 330,367 | 264,381
pivs TPGRNET | 283,695 | 314,301 | 304,675 | 295,536 | 284,233 | 250,043
CPU secs. seq 9,124 7,814 4,337 3,444 2,578 1,531
CPU PGRNET 2,877 1,649 682 488 270 138
CPU TPGRNET 1,867 1,966 989 700 450 225
Spdp PGRNET 3.1 7.7 6.3 7.0 9.5 11.0
Spdp TPGRNET 4.8 3.9 4.3 4.9 5.7 6.8

Table 4.6

Results for PGRNET and TPGRNET for Group 3

78
Figure 4.7 and Table 4.7 present results for the two parallel algorithms for
Group 4, a set of problems with 30,000 nodes and about 320,000 arcs. The
ratio of the number of arcs to the number of nodes is roughly the same as for
Group 1, but the speedups for Group 4 are generally higher. This is probably
due to the greater number of quasi-trees in the optimal bases of the Group
4 problems. PGRNET gives a speedup of more than 6 for most problems.
PGRNET outperforms TPGRNET in terms of CPU time for all but problem
4.00. Both PGRNET and TPGRNET do pricing in parallel, but only PGRNET
does pivoting in parallel. This parallel pivoting aspect of PGRNET must be
giving it the superior timing results, because TPGRNET does fewer pivots than
PGRNET for all problems. PGRNET yields an impressive speedup of 11.1 over
GRNET?2 for 4.50, because the quasi-trees are numerous in the optimal basis
(and in the intermediate bases). This speedup might improve even further if
problem 4.50 were made larger. For problem 4.00, TPGRNET gives a speedup
of 4.8 on 19 processors. Since the speedup for PGRNET for 4.00 is only 3.8,
this suggests that TPGRNET solves extremely large-grained problems more
efficiently than PGRNET.

i Telvlufule 17!

felvlulukeld]

12 -
11 _.* 4.50
10 PGRNET _.zl-7" 40
9 b ,f”,’/’
8 e _.--™ 4.05
-] i a0
& > .‘.-_c’;’:,’ B er ’:_ o= + 4.01
5 - ,-;”:”:v:'*;:‘,:—”"’r
4 - L 2'?:?:"/: _________ e + 4.00
3 JIPTES SoE P
2 ’ﬁa‘f’j’,’,_ .
] 2=
o v . r
7 1 e 298
6 A TPGRNET ,.,—~::::::=’*:=’='~ “-
5 -zIIETTT - ——— - + 4-19
7 I T &
3 4 P s e
2 P ec
1 4 e
o ey
o 3 4 5 6 7 8 © 1011 12 13 14 15 16 17 18 19
NUMBER OF PROCESSORS
Figure 4.7 Speedups for PGRNET and TPGRNET
Problem # 4.00 4.01 4.03 4.05 4.10 4.50
qtrees 1 139 459 776 | 1,490 | 7,376
nodes 30,000 | 30,000 30,000 30,000 30,000 30,000
arcs 322,289 | 322,428 | 322,748 | 323,065 | 323,779 | 329,665
pivots seq 328,711 | 347,420 | 320,937 | 308,284 | 288,856 | 228,819
pivs PGRNET 365,633 | 383,483 | 345,325 | 326,323 | 300,496 | 231,507
pivs TPGRNET | 265,774 | 305,979 | 288,279 | 272,322 | 263,411 221,544
CPU secs. seq 22,434 9,679 4,525 3,096 2,340 1,388
CPU PGRNET 5,829 1,527 589 364 223 124
CPU TPGRNET 3,390 2,571 1,177 721 470 211
Spdp PGRNET 3.8 6.3 7.6 5.2 10.4 11
Spdp TPGRNET 6.6 3.7 3.8 4.2 4.9 6.5

Table 4.7

Results for PGRNET and TPGRNET for Group 4

80

Figure 4.8 and Table 4.8 give results for the hybrid algorithm HYGRNET
for Group 4. HYGRNET has been tuned to make the most of the two com-
ponent algorithms PGRNET and TPGRNET for the MAGEN problems. Since
PGRNET gives better performance than TPGRNET for problems 4.03 through
4.50, TPGRNET is never invoked during the solution of these problems. The re-
sults given in Table 4.8 for these problems are slightly superior to the results for
the corresponding problems in Table 4.7. This is explained by a slightly improved
pricing strategy that was added to the PGRNET component of HYGRNET,
which puts an upperbound (of 8,000) on the number of arcs that may be priced
in the process of creating a candidate list. Problems 4.00 and 4.01 are the only
problems for which TPGRNET is invoked, and fewer than 2% of all pivots for
these problems are executed by TPGRNET. The speedup graph for problem 4.01
shows a loss in efficiency at 15 processors (relative to 11 and 19 processors). This
is caused by HYGRNET changing its strategy from PGRNET to TPGRNET
too early, and it shows a need for more experimentation with the threshold
mechanism. The speedups (for HYGRNET on 19 processors) for problems 4.00
and 4.01 are 6.1 and 7.6, which is a considerable improvement over the results
for PGRNET for these problems. The results show that invoking TPGRNET at

the end of the solution process can make a substantial improvement in runtime.

wCUomw

81

20 -
18 -
16 - 7
14 - i
_.*4.50
12 ~ ///, ,’//
7 -7 _.-*4.10
//, ,':::"”
109 o et __--*4.05
8 - st __+4.03
o et -7 #*a.01
6 - //, /,/’//'::’,/,-o-"”__:---""‘""“;7’:’”“""'4.00
L //,’// //:,-P‘"— e
e ’é*//’/,:::"’ P e ,,./
4 4 e T
/// ,::::/;;//;V -7
2 b //,/ ’:’:/::/:/,/
7 o T linear speedup
-~
0 L]] | 4 1§ 1 L] L] * L] L]
0 2 4 6 8 10 12 14 16 18 20
NUMBER OF PROCESSORS
Figure 4.8 Speedups for HYGRNET
Problem # 4.00 4.01 4.03 4.05 4.10 4.50
qtrees 1 139 459 776 1,490 7,376
nodes 30,000 | 30,000 | 30,000 | 30,000 30,000 | 30,000
arcs 322,280 | 322,428 | 322,748 | 323,065 | 323,779 | 329,665
pivots seq 329,745 | 351,614 | 320,739 | 307,838 | 288,610 | 234,935
pivots 19 pr | 315,644 | 356,240 | 333,642 | 319,365 | 296,009 | 232,063
CPU secs. seq 21,966 8,694 3,859 2,867 2,144 1,322
CPU secs. 19 pr 3,566 1,134 479 294 187 100
Speedup 19 procs 6.1 7.6 8.0 9.7 11.4 13.2
Table 4.8 Results for HYGRNET for Group 4

4.6 Results for NETGEN problems

Pure network problems are a class of problems in GN. For these problems,
the multipliers are equal to -1 for all arcs, and algorithms for GN can be ap-
plied. Though HYGRNET can solve pure networks, computational experience
has shown that TPGRNET is faster. This suggests that the heavier empha-
sis that TPGRNET puts on pricing (relative to PGRNET) is important for
this class of problems. Table 4.9 gives the NETGEN input data for problems
101-103 and 121-123 of the (new) standard problem set. They are listed as
N101-N103 and N121-N123 to indicate that they correspond to NETGEN prob-
lems. Problems N101-N103 are bipartite problems, and problems N121-N123 are
transshipment problems. The random seeds for these problems and the optimal

objective function values are given in Appendix 3.

Problems
Character. N101 N102 N103 N121 N122 N123

Nodes 5,000 5,000 5,000 5,000 5,000 5,000
Arcs | 25,000 | 25,000 | 25,000 | 25,000 | 25,000 | 25,000

Sources 2,500 2,500 2,500 50 250 500
Sinks 2,500 2,500 2,500 50 250 500
% Cap 100 100 100 100 100 100

Cost Range 1-100 1-100 1-100 1-100 1-100 1-100
Bnd Range 1-1k 1-1k 1-1k 1-1k 1-1k 1-1k
Supply 250k | 2,500k | 6,250k 250k 250k 250k

Table 4.9 NETGEN Input Data for Group 5

The data in Table 4.10 shows that TPGRNET (on 15 processors) yields a
speedup over GRNET?2 of at least 5.1 for the bipartite problems, and a speedup

of at least 3.8 for the transshipment problems. The dashed line on the curve for

83

problem N121 indicates that the leftmost data point is extrapolated from other
data (the correct left data point has been ommitted, and would otherwise be
plotted at (1,674.3) CPU seconds). As with the MAGEN problems, TPGRNET

gets much of its speed by solving problems with fewer pivots than GRNET2.

wogzZzonmwn Ccwn

350 +

300 -

N

9

(o
1

N

e

(o]
1

—

W

<o
L

100 ~

50 +

84

N121*
N103

N102
N122
N123

N101

* problem number

4 5 6 7 8 9 10 11 12 13 14 15
NUMBER OF PROCESSORS

Figure 4.10 TPGRNET CPU times for NETGEN Group 5
Problem # N101| N102| N103| N121| N122| N123
qtrees 166 1 1 1 1 1
nodes 5,000 | 5,000 | 5,000 5,000| 5,000} 5,000
arcs 25,336 | 25,387 | 25,355 | 25,000 | 25,000 | 25,000
pivots seq 12,589 | 16,698 | 20,634 | 35,792 | 15,623 | 13,528
pivots 19 pr 9,838 | 13,898 | 17,562 | 19,475 | 12,386 | 11,602
CPU secs. seq 190 249 313 674 227 164
CPU secs. 19 pr 34 47 57 76 44 43
Speedup 15 procs 5.5 5.2 5.4 8.8 5.1 3.8

Table 4.10

TPGRNET results for NETGEN Group 5

85

The problems whose characteristics are given in Table 4.11 are used as test
problems for NETPAR in [Peters 88b]. These are enlarged versions of N101,

N102 and N103. The random seeds and optimal objective function values are

given in Appendix 3.

Problems

Character. N201 N202 N203
Nodes 50,000 50,000 50,000
Arcs 250,000 250,000 250,000
Sources 25,000 25,000 25,000
Sinks 25,000 25,000 25,000
% Cap 100 100 100
Cost Range 1-100 1-100 1-100
Random Seed | 13502460 | 04281922 | 44820113
Supply 250k 2500k 6250k
Bnd Range 1-1k 1-1k 1-1k

Table 4.11 NETGEN Input Data for Group 6

Figure 4.12 and Table 4.12 give results for problems N201, N202 and N203.
Speedups range from 3.4 to 4.7, and overall execution times are competitive with

or slightly worse than those of NETPAR [Peters 88b].

nwgzonmn CcuvnN TC wiZrwcOrA

86

+
\
\
\
\
\
\
\
\
v
\
A
\
"t\ \
\ \
\ \
\ \
\ \
N AY
\ v
\ \
N \
\ \
Al A
A \
A \
A \
\
\ \\
v \
* N \
~ \\ \
~
~ N \\
~ \
N N
~ K
~ N
~ \ \\
S & \
~
AN NN
~ N ~
~ ~ N
~ S N
~
~
11.\\ \‘!\~\
N B
\\\ e ~ e _
~ -
~ - —~
e R
N et e PSR + N203
~——— T E T e +
e N202
A Rouiaiai —~+ N201

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15
NUMBER OF PROCESSORS

Figure 4.12 Results for TPGRNET
Problem # N201 | N202 | N203
qtrees 6 6 5
nodes 50,000 { 50,000 | 50,000
arcs 253,537 | 253,388 | 253,364
pivots seq 143,229 | 140,985 | 144,888
pivots 19 pr 113,027 | 114,041 | 118,919
CPU secs. seq 3,497.2 | 5,376.2 | 6,718.7
CPU secs. 19 pr 1,017.7 | 1,289.3 | 1,419.0
Speedup 15 procs 3.4 4.1 4.7

Table 4.12

TPGRNET results for NETGEN Group 6

87

The following NETGEN problems help to establish that the serial general-

ized network code GENFLO [Muthukrishnan 88] is a state-of-the-art generalized

network code by making a direct comparison between GENFLO and GENNET

[Brown and McBride 84]. In Section 4.7, a direct comparison will be made

between GRNET2 and GENFLO will be given that will provide an indirect
comparison between GRNET2 and GENNET.

Table 4.13 gives results for Group 7, a collection of problems generated
by NETGEN. As with the problems N201 through N203, the problem numbers
have the prefix “N”, to indicate that they were generated by NETGEN. The nu-
merical suffix indicates the standard NETGEN problem number. All times are
in seconds, and all runs were made on an IBM 3081-D24. Although the number
of pivots executed by MPSX (the IBM proprietary mathematical programming
system) is roughly equal to the number of pivots executed by NETFLO [Ken-
nington and Helgason 80], NETFLO is roughly 68 times faster than MPSX due
to the fact that it utilizes the tree structure of bases and uses integer arithmetic.
GENNET uses a good pricing strategy that reduces the number of pivots by a
factor of three, compared to MPSX. Overall, GENNET timings are about 54
times faster than MPSX. The timings and the number of pivots for GENFLO
are similar to those of GENNET. GENFLO solves these problems with fewer
pivots than GENNET, but CPU times are about 25% slower, possibly due to
the fact that more floating point arithmetic is done in pricing, the ratio test,
and the flow update. This means that modifying GENNET to derive GENFLO

caused a loss in efficiency of about 25%.

88

Size MPSX GENFLO GENNET NETGEN
Problem | nodes arcs | pivots time | pivots time | pivots time | pivots time
N15 400 | 4,500 2,818 30.60 1,288 1.41 1,307 1.19 2,073 0.47
N18 400 | 1,306 2,077 12.00 593 0.49 578 0.39 1,079 0.24
N19 400 | 2,443 4,229 29.40 688 0.711 765 0.53 1,305 0.23
N22 400 | 1,416 3,052 18.00 613 0.52 504 0.33 1,284 0.29
N23 400 | 2,836 7,073 57.60 492 0.47 604 0.45 1,156 0.22
N26 400 | 1,382 4,286 24.60 511 0.42 500 0.27 917 0.14
N27 400 | 2,676 | 11,829 95.40 628 0.55 826 0.46 1,730 0.28
N28 | 1,000 | 2,900 3,313 38.40 1,487 1.39 1,732 1.24 3,524 0.93
N29 | 1,000 | 3,400 3,744 43.80 1,889 1.59 1,996 1.18 4,570 1.12
N30 | 1,000 | 4,400 4,954 60.00 1,947 1.87 1,969 1.31 4,346 1.04
N31 | 1,000 | 4,800 6,232 81.00 2,171 2.13 2,347 1.47 4,798 1.13
N33 | 1,500 | 4,385 5,836 | 103.20 2,645 2.83 2,521 2.01 6,113 2.16
N34 | 1,500 | 5,107 6,503 | 110.40 2,498 2.50 2,943 2.10 7,640 2.37
N35 | 1,500 | 5,730 7,026 | 115.80 3,017 3.35 3,310 2.82 7,384 2.30
Total 72,972 | 820.20 | 47,919 | 12.92 | 21,902 | 15.75 | 20,467 | 20.23
Table 4.13 Serial results for NETGEN problems (IBM 3081-D24)

89

4.7 Results for GNETGEN Problems

NETGEN has been modified by F. Glover to generate generalized network
flow problems. The modified generator is called GNETGEN. Table 3.14 gives
the GNETGEN input data (except for the random seed) for the small test
problems G1 through G7 (Group 8). The random seed for all of these problems is
13502460. The prefix “G” for these problems indicates that they were generated
by GNETGEN. The numerical suffix corresponds to the problem numbers in

Table 2.2 in [Muthukrishnan 88].

Problem G1 G2 G3 G4 G5 G6 G7

Nodes 200 200 200 300 400 400 | 1,000
Arcs | 1,500 | 4,000 6,000 | 4,000 | 5,000 | 7,000 | 6,000
Sources 100 5 15 135 20 30 20
Sinks 100 195 50 165 100 50 100

Cost Range | 1-100 | 1-100 1-100 | 1-100 | 1-100 | 1-100 | 1-100
Gain Range | .5-1.5 | .5-1.5 | .25-.95 | .5-1.5 | .3-1.7 | 5-1.5 | 4-14
Supply | 100k | 100k | 100k | 100k | 100k | 100k | 200k
% Cap 0 100 100 0 0 100 100
Bnd Range - 1-2k 1-2k - - 1-2k 4-6k

Table 4.14 Input data for GNETGEN Group 8

Table 4.15 gives results for MPSX, GENNET and GENFLO for problems
G1 through G7. For these problems, GENNET is about 12 times faster than
MPSX and GENFLO about 11 times faster. GENFLO solves these problems

with about 40% fewer pivots than MPSX.

90

Size MPSX GENNET GENFLO

Pr | nds arcs | pivots time | pivots time | pivots | time
G1 | 200 | 1,500 1,151 7.80 590 0.62 533 0.95
G2 | 200 | 4,000 550 3.00 443 0.22 358 0.23
G3 | 200 | 6,000 2,058 18.60 1,448 2.07 954 1.53
G4 | 300 | 4,000 4,112 47.40 2,703 3.50 | 2,106 4.23
G5 | 400 | 5,000 1,870 26.20 1,229 2.06 897 2.23
G6 | 400 | 7,000 1,408 16.80 1,591 1.59 1,171 1.68
G7 1k | 6,000 2,811 40.20 3,160 3.30 2,352 3.60

Total 13,960 | 160.00 | 11,164 | 13.36 | 8,371 | 14.45

Table 4.15 Serial results for GNETGEN Group 8 (IBM 3081-D24)

Tables 4.16 through 4.18 give the input data for the GNETGEN problems

G8 through G22 (Groups 9 and 10). These problems are generated with the same

input data as problems 1 through 15 in Table 4.1a and 4.1b in [Muthukrishnan

88]. The generator also requires the following data: # transshipment sources: 0,

transshipment sinks: 0, % skeleton arcs with maximum cost: 35, cost range:

1-100, supply: 100k, bound range: 1k-2k, multiplier range: 0.5-1.5.

Problems

Character. G8 G9 G10 G11 G12 G13
Nodes 2,000 2,000 2,000 4,000 4,000 4,000
Arcs | 13,000 | 13,000 | 13,000 | 26,000 | 26,000 | 26,000
Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600
% Cap 100 50 0 100 50 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100
Bnd Range 1k-2k 1k-2k 1k-2k 1k-2k 1k-2k 1k-2k
Mult Range 0.5-1.5 | 0.5-1.5 | 0.5-1.5| 0.5-1.5| 0.5-1.5| 0.5-1.5

Table 4.16 Input data for problems G8-G13

91

Problems
Character. G14 G15 G16

Nodes 6,000 6,000 6,000

Arcs | 39,000 | 39,000 | 39,000

Sources 150 150 150

Sinks 600 600 600

% Cap 100 50 0

Cost Range 1-100 1-100 1-100

Bnd Range 1k-2k 1k-2k 1k-2k

Mult Range | 0.5-1.5 | 0.5-1.5 | 0.5-1.5

Table 4.17 Input data for problems G14-G16
Problems
Character. G17 G18 G19 G20 G21 G22
Nodes 2,000 2,000 2,000 2,000 2,000 2,000
Arcs | 25,000 | 25,000 | 25,000 | 50,000 | 50,000 | 50,000
Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600
% Cap 100 50 0 100 50 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100
Bnd Range 1k-2k 1k-2k 1k-2k 1k-2k 1k-2k 1k-2k
Mult Range | 0.5-1.5 | 0.5-1.5 | 0.5-1.5 | 0.5-1.5 | 0.5-1.5 | 0.5-1.5
Table 4.18 Input data for problems G17-G22

Table 4.19 gives a comparison of GENFLO and GRNET?2 for problems G1

through G22. The two programs give nearly the same performance for these test

problems, despite the fact that the two codes have different pricing strategies.

Size GENFLO GRNET2
Problem | nodes arcs pivots time | pivots time
G8 2,000 | 13,000 4,634 50.2 3,808 48.5
G9 2,000 | 13,000 4,454 44.2 3,998 46.8
G10 2,000 | 13,000 5,108 60.5 3,892 51.9
G11 4,000 | 26,000 9,145 99.3 7,375 105.2
G12 4,000 | 26,000 9,815 123.6 7,460 115.1
G13 4,000 | 26,000 9,897 125.0 7,690 121.9
G14 6,000 | 39,000 13,653 141.0 10,456 152.0
G15 6,000 | 39,000 12,900 126.3 10,059 158.9
G16 6,000 | 39,000 13,262 145.4 10,245 142.2
G17 2,000 | 25,000 6,629 119.2 5,440 81.3
G18 2,000 | 25,000 6,596 93.4 5,260 78.4
G19 2,000 | 25,000 6,186 89.2 6,369 98.0
G20 2,000 | 50,000 8,500 174.2 7,913 133.8
G21 2,000 | 50,000 9,208 204.5 10,343 194.9
G22 2,000 | 50,000 8,601 198.4 9,608 194.8
Total 128,588 | 1,794.4 | 109,916 | 1,723.7

Table 4.19 Results for GNETGEN Groups 9,10 (Sequent: 1 proc)

To give a further comparison of GENFLO and GRNET?2, results for the

Group 4 problems are given in Table 4.20. The serial version of GENFLO

outperforms GRNET?2 on problem 4.50 in terms of CPU time, but GRNET2

generally outperforms GENFLO for the more difficult problems in terms of both

CPU time and the number of pivots. The results of tables 4.19. and 4.20 indicate

that GRNET?2 is competative with GENFLO, and the results of Table 4.13

indicate that GENFLO is competative with GENNET. This makes it reasonable

to claim that GRNET2 is a state-of-the-art generalized network flow code.

93

Problem # 4.00 4.01 4.03 4.05 4.10 4.50

qtrees 1 139 459 776 1,490 7,376
nodes 30,000 | 30,000 | 30,000 | 30,000 | 30,000 | 30,000
arcs 322,289 | 322,428 | 322,748 | 323,065 | 323,779 | 329,665

pivs GENFLO ook 411,720 | 337,907 | 313,982 | 289,937 | 244,635
pivs GRNET?2 | 328,711 | 347,420 | 320,937 | 308,284 | 288,856 | 228,819
CPU GENFLO ok 36,523 10,524 5,121 2,436 1,038
CPU GRNET2 22,434 9,679 4,525 3,096 2,340 1,388

***% N)id not finish after 14 hours.

Table 4.20 Results for MAGEN Group 4 (Sequent: 1 proc)

Table 4.21 gives CPU times for TPGRNET (run on various numbers of
processors) for problems G8 through G22. TPGRNET is faster than the parallel
versions of GENFLO for these test problems, and it is more robust in the sense
that CPU times usually decrease monotonically as the number of processors is
increased. The serial times reported in the table are taken from GRNET?2 if
they have the “T” prefix, and they are taken from GENFLO if they have the
“0O” prefix. The serial time is always taken from the faster of the two codes.

The totals from the bottom of Table 4.21 are graphed in Figure 4.21.

Table 4.22 gives speedup results for problems G8 through G22, and the
results are graphed for problems G14 through G16 and problems G20 through
G22. Problems G14 through G16 have the smallest ratio of arcs to nodes, and
TPGRNET yields the smallest speedup for these problems. TPGRNET gives an
average speedup of 5.4 on 15 processors for problems G20 through G22. These
are the problems for which the arcs/nodes ratio is the largest. Since TPGRNET

gets most of its parallelism from pricing out arcs in parallel and gets only limited

94

parallelism from parallel pivoting, the dependence of the efficiency of TPGRNET

on the arcs/nodes ratio is understandable.

o e e e e e e e

C = N W H UL O N4 0

[T TR NN W TR DA N B
4

wgzonmu cun M0 wUMEUZCT
0

O = N W H UL O N ®
i
!
'
]
]
+
!
]
i
1
i
4

L) T T 3 T ¥ Ll ¥ L L] L] ¥ L} ¥]

O 1 2 3 4 S5 (] 7 8 o 10 11 12 13 14 15
NUMBER OF PROCESSORS

Figure 4.21 Composite results for TPGRNET

95

Number of Processors

Prb ndsxarcs cap 1 5 7 9 11 13 15
G8 2kx13k | 100 T51.9 | 29.3 | 19.8 | 16.2 | 163 | 16.9 | 15.8
G9 2k x 13k 50 044.2 | 24.6 | 16.7 | 14.0 | 12.6 | 13.1 | 13.8
G10 2k x 13k 0 T48.5 | 25.2 | 17.5 | 14.2 | 129 | 13.2 | 13.3
G11 4kx26k | 100 | T121.9 | 58.3 | 43.8 | 34.3 | 35.6 | 33.8 | 3L.8
G12 4k x 26k 50 | T115.1 | 61.2 | 41.1 | 36.4 | 33.5 | 31.6 | 31.4
G13 4k x 26k 0 099.3 | 56.8 | 38.7 | 34.0 | 29.0 | 29.9 | 29.6
Gl14 6kx39k | 100 | T142.2 | 87.5 | 584 | 50.3 | 44.3 | 45.1 | 43.8
G15 6k x39k 50 | 0126.3 | 87.0 | 65.5 | 51.6 | 48.1 | 46.5 | 47.0
G16 6k x 39k 0 | O141.0 | 89.5 | 61.3 | 51.3 | 45.8 | 40.8 | 40.8
G17 2kx 25k | 100 089.2 | 39.0 | 25.2 | 20.2 | 19.2 | 18.1 | 16.8
G18 2k x 25k 50 T78.4 | 41.3 | 29.8 | 22.5 | 22,5 | 21.2 | 19.0
G19 2k x 25k 0 T81.3 | 41.8 | 25.7 | 21.9 | 184 | 18.1 | 18.2
G20 2kx50k | 100 | T194.8 | 77.5 | 49.3 | 44.3 | 35.0 | 34.8 | 33.0
G21 2k x 50k 50 | T194.9 | 83.4 | 50.8 | 42.2 | 36.5 | 31.7 | 33.5
G22 2k x50k 0 | T133.8 | 644 | 44.5 | 37.9 | 32.1 | 32.0 | 27.9
Totals 1723 866 588 491 441 426 415

Table 4.21 TPGRNET results for GNETGEN Groups 9,10 (Sequent)

wCoUmmun

7 8

o

10 11 12 13

NUMBER OF PROCESSORS

Figure 4.22

Speedups for TPGRNET

14

15

96

G 15

Number of Processors

Prb ndsxarcs cap qtree) 7 9 11 13 15
G8 2kx13k | 100 4 | 1.7 {26 |32 (31|30 32
G9 2k x 13k 50 1 |17 26 |31 |35 (33|32
G10 2k x 13k 0 2 119 (27 |34 |37 |36 |36
G11 4kx26k | 100 3 120 (27 |35]34 |36 |38
G12 4k x 26k 50 1 {18 |28 |31]34 |36 |36
G13 4k x 26k 0 3 |17 |25 (29 |34]33 |33
G14 6kx39k | 100 5116 |24 (28 |32 |31 |32
G15 6k x 39k 50 7T 114 |19 |24 |26 |27 |26
G16 6k x 39k 0 2 115 123 (27 |30 |34 |34
G17 2kx25k | 100 9 |22 |35 [44 | 46 | 49 | 5.3
G18 2k x 25k 50 3 118 |26 |34 |34 |36 |41
G19 2k x 25k 0 3 119 (31 |37 |44 |44 |44
G20 2kx 50k | 100 2 125 |39 |43 |55 |55 |59
G21 2k x50k 50 3 123 |38 |46 |53 |61 |58
G22 2k x50k 0 1 120 {30 |35 |41 |41 |47
Average Speedup 1.9 [29 |35 | 3.8 | 40 | 4.1

Table 4.22 TPGRNET speedups for GNETGEN Groups 9,10 (Sequent)

98

4.8 Other Measures of Performance

Figure 4.23 and Table 4.23 further help to explain the behavior of PGRNET.
A “collision” occurs when a processor tries to lock a quasi-tree that has already
been locked by another processor. Table 4.23 gives the number of pivots that
PGRNET uses to solve the problemsin MAGEN Group 1, along with the number
of collisions that occur during the solution of each problem. The 19 processor
version of PGRNET had 1,044,340 collisions for problem 1.00 and it solved this
problem with 111,843 pivots. This means that there were more than 9 collisions
per pivot for this problem, and this can explain the poor speedup results from
PGRNET for this problem. The 3 processor version had only about 1/10th
as many collisions, because there were fewer processors to compete with each
other. For problems 1.03, 1.05 and 1.50, PGRNET had fewer collisions than
pivots, and the number of collisions decreased as the granularity of the problem
and the number of processors were decreased. The ratios of collisions to pivots

for these problems are listed in table 4.23 and graphed in Figure 4.23.

One way to measure the effectiveness of the TPGRNET algorithm is to
count the number of times that pivot arcs are chosen from best_cand and the
number of times that pivot arcs are chosen from the candidate lists. This gives
a measure of the effectiveness of the TPGRNET pricing scheme, which overlaps
pricing and pivoting, and dedicates all but two processors to pricing. Table 4.24
gives this data for the 3 and 19 processor versions of TPGRNET solving the
problems in MAGEN Group 1. Figure 4.24 gives the percent of pivot arcs that

are taken from best_cand (the variable in shared memory in which the pivoting

99
processor attempts to find its pivot arcs). The 3 processor version takes a slight
majority of its pivot arcs from best_cand. The 19 processor version takes a vast
majority of pivots from best.cand. This is because more pricing can be done by
the 17 pricing processors, and there is thus a high probability that the pivoting
processor will find a pivot-eligible arc in best.cand almost every time that it

looks there.

O~-pR

100

Figure 4.23

5 6 7 8 9 1011 12 13 14 15 16 17 18 19
NUMBER OF PROCESSORS

Ratio of collisions to # pivots for PGRNET

Problem #

1.00 1.01 1.03 1.05 1.50

collisions 19 procs
pivots 19 procs

1,044,340 | 296,144 | 70,768 | 40,072 615
111,843 | 115,680 | 106,496 | 103,064 | 76,367

ratio 19 procs 9.3 2.5 0.6 0.3 0.0
collisions 3 procs 94,875 56,714 15,084 5,964 31
pivots 3 procs 117,075 | 126,604 | 116,083 | 109,244 | 76,847
ratio 3 procs 0.8 0.4 0.1 0.0 0.0

Table 4.23

Collisions, pivots and collision/pivot ratio

HZmORmo

101

100 -
_________ === 1.00
YT 1.01
95 + T e +------Z1z:z:% 1.03
7T emIITlIlCozz#ss=sEEEEERS 1.05
LT ermTITIEEEETT T oees + 1.10
¥ //:_:::’/’)V" _______ -7 1.50
/,/,/:’/,"y"‘
,‘;::/,/////,/
//+///////
7 ’?/
3 7 11 15 19
NUMBER OF PROCESSORS
Figure 4.24 TPGRNET pivot arcs taken from best_cand
Problem # 1.00| 1.01| 1.03| 1.05| 1.10| 1.50

best_cand 19 procs| 86,252 | 91,282 | 87,131 | 85,275 | 81,567 | 68,530
cand lists 19 procs| 1,877 4,512 4,879 4,989 4,944 5,194
STAGE 2 pivots 19 procs 15 4 16 28 23 51

best_cand 3 procs| 81,862 | 82,767 | 75,812 | 70,810 | 64,388 | 46,884
cand lists 3 procs| 38,837 | 55,267 | 57,028 | 56,174 | 53,876 | 38,131
STAGE 2 pivots 3 procs 9 7 9 2 0 2

Table 4.24 # pivot arcs taken from best_cand and cand lists

4.9 Results for Massive Problems

Figure 4.25 and tables 4.25 and 4.26 show results for two problems with
more than a million variables. The MAGEN input data for these problems
is given in Appendix 3, along with the optimal objective function value. The
problem reported in table 4.25 was generated with zfrac = 0.50 (the same as
zfrac for the problems in groups 1 through 4), and the problem in table 4.26
has zfrac = 0.01. Problem 4.99.heavy is heavily capacitated in the sense that
roughly half of all arcs have their flow at upper bound in an optimal solution,
and problem 4.99.light is lightly capacitated in the sense that only about 1/100th
of all arcs have their flow at upper bound in an optimal solution. Both of these
problems are small grained, so they can be solved quite efficiently by PGRNET.
All of the CPU times given in the table are CPU seconds. Due to the large
number of quasi-trees in the optimal bases of these problems, one would expect
the speedups on 19 processors to be somewhat higher than they are, 11.0 for
the heavily capacitated problem and 7.0 for the lightly capacitated problem.
One possible factor is that the system time for the major page faults might be
included, to some extent, in the user time for these problems. The results given
in Table 4.25 and Table 4.26 may also be affected somewhat by the presence of

other users on the system at the time that the runs were made.

mcgmmon

103

20 -~
18
16
14 -
12
10 + heavy cap
8 4
6 - light cap
4 4 aeT
2 - /27
— linear speedup
O L) L] L] L) ¥ 3 L L] L]
0 2 4 6 8 10 12 i4 16 18 20
NUMBER OF PROCESSORS
Figure 4.25 Speedups for PGRNET (Sequent)
program # arcs| # nodes| # qtrees| time| pivots| maj page swap
serial | 1,267,185 30,000 14,859| 8,415| 706,776 914,478
19 procs | 1,267,185 30,000 14,8591 760| 716,218 100,614
Table 4.25 PGRNET Results for Problem 4.99.heavy (Sequent)
program # arcs| # nodes| # qtrees| time| pivots| maj page swap
serial | 1,267,185 30,000 14,859 3,305| 184,379 363,755
19 procs | 1,267,185 30,000 14,859 470 185,522 51,146
Table 4.26 PGRNET Results for Problem 4.99.light (Sequent)

104

V Directions for Future Research

A generalization of the parallel pricing approach that we wish to study is
the utilization of some of the processing power for the simplex “ratio tests”.
That is, given a sufficiently large number of processors (say, more than 15 in the
case of generalized networks), it may be more advantageous to utilize some of
the additional processors to do ratio tests for pivot-eligible columns rather than
to allocate them to do additional pricing. Further into the future, we would like
to develop a heuristic for PGRNET that would allocate arcs to processors using
information from a solved problem. The optimal basis of the solved problem (the
warm start) might resemble the optimal basis of a problem with similar data.
If so, then the warm start would indicate how to allocate groups of arcs to pro-
cessors in such a way that processors would rarely collide with each other when
selecting pivot arcs. Finally, we would like to test variants of the TPGRNET
strategy on general linear programs. The TPGRNET algorithm clearly extends
in a straightforward way to general linear programs, but implementation details

will play an important role in determining efficiency.

105

A.1 Appendix 1 Derivation of Dual to GN/

Let G have no columns with more than two non-zero entries. Standard
techniques can be used to show that all of the following problem formulations

are equivalent:

min cz

s.t. Gr=5b
OS:I"ZJSLLZ] if 1#£7
0=z

min ¢{2] +c9T9
s.t. Gl.’b‘1 + GQLL'Q =5
0<z9<u
0<

(where zq is the vector of root arcs and z9 is the vector of arcs having different

“from” and “to” nodes and c and G are partitioned accordingly)

min c1z7 + 99
s.t. Gll‘l + GQZIJZ =b
-9 2 —u
z1,29 20

max by — uw
s.t. uGy <
pGo —w < co
w >0
[unres.

Since u > 0, the dual objective function is maximized as a function of w (subject
to the constraints on w) by setting w = (uGg — ¢)T = (co — uGo)~. This

yields the following equivalent formulation:

108
Substituting 'rr/]c = (w’k —) + Tk,
br! —u(p—7'G)”
= Zb ; +bp(7rk-1rk) Z uij(cij——vri-mijﬂ’j)_
(t.g)el

/
+ Z ukj(ﬂk“‘ﬂ'k)“i“ Z uk]'(ckj—-—ﬂ'k—mkj'rr]‘)
(k.j)EFUF}, (k.j)EFUF,

= Zbiﬂi - Z uZ](CZ] - = mijﬂ'j)”
: (ng)el
!
+(m E— Wk)(bk - Z uk]) + Z U‘kj((’k] - T — mk]ﬂ'])
(kj)eFUF, (k,j)EFUF},
The next expression splits the last sum by separating the positive and negative

terms.
b7r’-—-u(p —x'g)”

= D obmi— Y il —m —mymy)”
5

(1,5)el
' =T bE = Y ugg)
(k,j)eFu’F_k
+ Z uk](ck] — M])+ Z ukj(ckj"wk“mkjﬂ'j)
(k.j)er (k,j)EF,
= me‘- Y wijlegy —m—mijmy)”
z (s.g)el
+(7F/k—-7rk)(bk- Z uk])
(k,j)EFU—F_k

= D upjlepj —mp —mpgm) T+ D wk(ey = Tk~ M)
(kg) (k,j)eF},

109
b/ —u(p — ' G)”
= Zbiﬂ'i— Z uZ](CZ] —Trl'-——mz'jﬂ‘j)—
: (4,5)
ol =) be = Y ug) Y upglegj — Tk — mpgm).
(kJ)EFUFy (k)T

By the same technique used in the proof of Lemma 1, the remaining steps of

the proof relate the dual objective function to the primal objective function

(evaluated at f). Since

fit + Zt]' ftj + Z]t mjtfjtv if node t has an attached root arc, or
t =)
Zt]’ ftj + Z]t m;jtfi¢, otherwise,

bre! —u(p — W/Q)"
= D fum+ Y fijmit > mijfij
1€R (¢,9) (¢,5)
- uij(cij “'Wi_mijﬂ—j)—
(4,9)
Hrlp =) = D0 g DL uglegj = — i)
(k,j)EFUFk (k,j)E_F_k
= Y fumit D fijeii — 2 fijleij — w5 —mym;)

1eR (4,7) (4.9)
- Z uZ](cz] - — mZ]W])—
(¢,7)

+(7rlk“‘"7rk)(bk_ Z uk])+ Z uk.j(ck]'—ﬂk—mkjﬂ‘j).
(k.j)eFUF}, (k.j)eFy

By splitting the sum Z(z',j) fZ](CZ] — T — My 7r]') into its negative and positive

110

terms, the dual objective becomes:

br’ —u(p — 7'G)”

= Y fumt+) fie

1€ER (4,7)

+ Y fijleg; —m—mijmi)T — > fijlegj —m _mijﬂ'j)+
(4,4) (2,7)

- Z uij(cij -y = mzj’frj)_
(¢.7)

+(7T/k——7rk)(bk~— Z uk])+ Z ukj(ckjmﬂkwmkjﬂ'j)
(k‘,j)EFUFk (k,])E_Fk
= Y fumi+ Y figeij— O fijlesj —m —mijm) T
el (¢.7) (4.7)
- L fZ] (CZ] T - 7nij7rj)~
(2.3
+(n! k””k)(bk"' Z ukj)+ Z “kj(ckj“”k‘mkjﬂj)'
(k,j)EFUF}, (k.j)eF},
By assumption, either 7, = ¢;;, or f;; =0 V 1 € R, so
Y fumi =) fiicii
1ER 1€ER
Making this final substitution relates the value of the dual objective function
for P! to the value of the primal objective function, given by ZiGR fiicis +
L) fiscig-
b —u(p —7'G)”

= Z fiimi + }_, f2]cz] G(f,m)

tER (4,7)

+ }_4 ukj(ckj—ﬂ'k~mkj7rj)+(7rlk~7rk)(bk— Z uk])
(k,j)EF, (k,j)eFUFy,

111
By the last hypothesis of Lemma 2, the dual objective value of P! is strictly
greater than the the objective value of the primal feasible point f of P. This
means that arc (k, k) must have a non-zero flow in any optimal solution of P,

because the above analysis shows that removing the arc perturbs the optimal

primal objective value of P. QED.

A.3

112

Appendix 3 Optimal Objective Values and (some) Random Seeds
Problem # 1.00 1.01 1.03

opt objective 770349279.42 793465562.21 847770723.41
Problem # 1.05 1.10 1.50

opt objective | 906991800.97 | 1034729102.47 | 2083300638.99
Problem # 2.00 2.01 2.03

opt objective | 1450349860.39 | 1498665913.44 1590072949.22
Problem # 2.05 2.10 2.50

opt objective | 1695140388.56 | 1984306496.03 | 4076079297.43
Problem # 3.00 3.01 3.03

opt objective | 2779725783.30 | 2863255942.83 | 3073159640.91
Problem # 3.05 3.10 3.50

opt objective | 3269288033.85 | 3793989055.26 | 8120663463.16
Problem # 4.00 4.01 4.03

opt objective | 2321940170.63 | 2394779386.82 | 2565668031.38
Problem # 4.05 4.10 4.50

opt objective | 2735574013.80 | 3115868092.04 | 6249240332.12

Table A3.1 MAGEN Groups 1-4
Problem # N101 N102 N103
random seed | 13502460 | 04281922 44820113
opt objective 6191726 | 72337144 | 218947553
Problem # | N121 N122 N123
random seed | 72707401 | 93040771 70220611
opt objective | 66366360 | 30997529 23388777
Problem # N201 N202 N203
random seed | 13502460 | 04281922 44820113
opt objective 5806427 | 61017205 | 158441376

Table A3.2 NETGEN Problems

Problem #

G8 G9

G10

opt objective

5903491.31

5512197.01

5408206.14

Problem #

G11

G12

G13

opt objective

6972287.27

7085296.58

6696965.30

Problem #

G14

G15

G16

opt objective

7107475.96

7646706.48

7467458.24

Problem #

G18

G19

G20

opt objective

3317323.00

3204520.69

3270061.77

Problem #

G21

G22

G23

opt objective

1727745.98

2085960.94

1847498.51

Table A3.3

GNETGEN Problems

Problems
Character. 4.99.heavy 4.99 . light
Nodes 30,000 30,000
Sources 15,000 15,000
Sinks 15,000 15,000
Arcs per node 80-86 80-86
Cost range 1-100 1-100
Mult Range .90-.98 .90-.98
Cap max 1k-2k 1k-2k
« 0.99 0.99
zfrac 0.50 0.01
Random Seed 0731246890 | 0731246890
Optimal Objective | 8198100113.87 | 15830266.87

Table A3.4

Input Data MAGEN Million Variable Problems

113

114

A.4 Appendix 4 The Management of Candidate Lists

Candidate lists are managed in the same way by PGRNET and GRNET2.
A candidate list is created by sweeping through a segment of the arc list and
adding pivot-eligible arcs to the corresponding candidate list as they are found.
When the sweep is completed or the list has listsize entries, the processor can
choose a pivot arc from the list. The arc that is chosen is the pivot-eligible
arc that has the largest reduced cost in absolute value. Any arcs in the list
that are found to have zero reduced cost are left in the list. After locating the
“best” arc, the processor executes the pivot, removes the arc from the list and
looks for another pivot arc. In the case of GRNET2, the processor looks for
the next pivot-eligible arc in the next candidate list. GRNET?2 cycles through
its collection of num_pricers lists and chooses a pivot arc from a different list
each time. In the case of PGRNET, the processor always returns to the same
candidate list when chosing pivot arcs. (In fact, the PGRNET candidate lists are
not stored in the shared memory, so processors only have access to one candidate
list). If a processor attempts to find a pivot-eligible arc in a candidate list and
there are no pivot-eligible arcs, or the list has list_threshold or fewer entries
(where list_threshold =(listsize/2)), then a new list is made. If, in the process of
making a new candidate list, only list_threshold or fewer pivot-eligible arcs can
be found, then the penalty on the artificial arcs is checked. If the penalty on
the artificial arcs is smaller than big M, then the penalty is increased, and duals

are recomputed, and this generally causes enough arcs to become pivot-eligible

115

so that full new candidate lists can be created. If the penalty on the artificial

arcs is equal to big M, then Stage 2 is begun.

116

References

Adolphson, D. and Heum, L. [1981]:
“Computational experiments on a threaded index generalized network

code”, Presented at the ORSA/TIMS National Meeting in Houston, Texas.

Adolphson, D. [1982]:
“Design of primal simplex generalized network codes using a preorder thread
index”, Working Paper, School of Management, Brigham Young University,
Provo.

Ali, 1., Charnes, A. and Song, T. [1986]:
“Design and implementation of data structures for generalized networks”,
Journal of Information and Optimization Sciences 7, 81-104.

Barr, R., Glover, F. and Klingman, D. [1979]:
“Enhancements of spanning tree labeling procedures for network optimiza-

tion”, INFOR 17, 16-34.

Brown, G.G. and McBride, R.D. [1984):
“Solving generalized networks”, Management Science, 30, 1497-1523.

Chang, M., Cheng, M. and Chen, C. [1988]:
“Implementation of new labeling procedures for generalized networks”,
Technical Report, Department of CS/OR, North Dakota State University,
Fargo, North Dakota.

Chang, M., Engquist, M., Finkel, R. and Meyer, R. [1987]:
“A parallel algorithm for generalized networks”, Annals of Operations

Research, 14(1988) 125-145.
Chang, M. and Engquist, M. [1986]:

“On the number of quasi-trees in an optimal generalized network basis”.

COAL Newsletter 14, 5-9.
Clark, R. and Meyer, R. [1987]:

“Multiprocessor algorithms for generalized network flows”, Technical Re-

port #739, Department of Computer Sciences, The University of Wisconsin-
Madison.

117

Clark, R. and Meyer, R. [1989]:
“Parallel arc-allocation algorithms for optimizing generalized networks”,
Technical Report #862, Department of Computer Sciences, The University
of Wisconsin-Madison.

Clark, R., Kennington, J., Meyer, R. and Muthukrishnan, R. [1989]:
“Parallel algorithms for generalized networks: computational experience.”,
to appear in 1989.

DeWitt, D., Finkel, R. and Solomon, M. [1984]:
“The CRYSTAL multicomputer: design and implementation experience”
Technical Report #553, Department of Computer Sciences, The University
of Wisconsin-Madison.

Elam, J., Glover, F. and Klingman, D. [1979]:
“A strongly convergent primal simplex algorithm for generalized networks”,
Mathematics of Operations Research 4, 39-59.

Engquist, M. and Chang, M. [1985]:
“New labeling procedures for the basis graph in generalized networks”,
Operations Research Letters, Vol. 4, No. 4, 151-155.

Glover, F., Hultz, J., Klingman, D. and Stutz, J. [1978]:
“Generalized networks: A fundamental computer based planning tool”,
Management Science 24, 1209-1220.

Glover, F., Klingman, D. and Stutz, J. [1974]:
“The augmented threaded index method for network optimization”, INFOR
12, 293-298.

Glover, F., Klingman, D. and Stutz, J. [1973]:
“Extension of the augmented predecessor index method to generalized net-
work problems”, Transportation Science 7, 377-384.

Grigoriadis, M. [1984]:
“An efficient implementation of the network simplex method”,
Mathematical Programming Study 26, 83-111.

Jensen, P. and Barnes, J. W. [1980]:
Network Flow Programming, John Wiley and Sons, New York.

Kennington, J. and Helgason, R. [1980]:

Algorithms for Network Flow Programming, John Wiley and Sons, New
York.

118

Klingman, D., Napier, A. and Stutz J. [1974]:
“NETGEN: A program for generating large scale capacitated assignment,
transportation, and minimum cost flow problems,” Management Science

20, 814-821.
Langley, W. [1973]:

“Continuous and integer generalized flow problems”, PhD thesis, Depart-
ment of Industrial and Systems Engineering, Georgia Institute of Technol-
ogy, Atlanta, Georgia.

Mulvey, J. and Zenios S. [1985]:
“Solving large scale generalized networks”, Journal of Information and
Optimazation Sciences 6, 95-112.

Murtagh, B. and Saunders, M. [1978]:
“Large-scale linearly constrained optimization”, Mathematical
Programmang 14, 41-72.

Muthukrishnan, R. [1988]:
“Parallel algorithms for generalized networks”, PhD thesis, M.S.O.R.,
Southern Methodist University, Dallas, Texas.

Nulty, W. and Trick M. [1988]:
“GNO/PC Generalized network optimization system”, Operations Research

Letters 7, 101-102.

Peters, J. [1988a}:
“A parallel algorithm for minimal cost network flow problems”, Techni-
cal Report # 762, Department of Computer Sciences, The University of
Wisconsin-Madison.

Peters, J. [1988b}:

“The network simplex method on a multi-processor”, June 1988, to appear
in Networks.

Tomlin, J. [1984]:
“Solving generalized network models in a general purpose mathematical

programming system”, Presented at the Joint National Meeting of ORSA/
TIMS in Dallas.

Zenios, S. [1986]:
“Sequential and parallel algorithms for convex generalized network prob-
lems and related applications”, PhD thesis, Civil Engineering Department,
Princetion University, Princeton, N. Jersey.

119

Zenios, S. and Mulvey J. [1985]:
“A distributed algorithm for convex network optimization problems”, Re-
port EES-85-10, Engineering-Management Systems, Civil Engineering De-
partment, Princeton University, Princeton, N. Jersey.

