CENTER FOR
PARALLEL OPTIMIZATION

A THREE-PHASE ALGORITHM FOR
BLOCK-STRUCTURED OPTIMIZATION

by

Gary L. Schultz and Robert R. Meyer

Computer Sciences Technical Report #932

May 1990

A THREE-PHASE ALGORITHM FOR BLOCK-STRUCTURED
OPTIMIZATION

GARY L. SCHULTZ AND ROBERT R. MEYER

Work supported in part by NSF grant CCR-8709952 and AFOSR grant 89-0410.

Abstract. We develop a decomposition method, based on barrier functions, for solving block
angular linear programs. The convergence properties of the method are briefly described. We then
present promising computational results for one of the largest classes of linear programming models
occurring in the literature, a set of multicommodity flow problems with up to 100,000 constraints and

300,000 variables.

1. Block Angular Linear Programs. The block angular linear programming
problem is: Find z* which minimizes ¢"z subject to the constraints

Al == b]_

A2 Ty = bz
: T2 : :
1 . . .
() Ax : = b
TK
| D | s\d

and the bounds 0 < 2 < u. The dimension of the kth block of A is M(k) x N(k) and
we define M := 37, M (k) and N := Y, N(k). The dimension of D is J x N.
The algorithm begins by finding z° as the solution of the relaxed problem

(2) minimmizecT:v subject to Az =band 0 <z < u.

A two-phase barrier method, described in the next two sections, starts with z° and
produces a solution that is optimal within a specified tolerance.
We make the assumption that solving a set of subproblems of the form

(3) minﬂicinize&,::ck subject to Agzy = b and 7 < zp < @iy, fork=1,..., K

is easy relative to solving the entire original problem (1). (Note that the relaxed prob-
lem (2) decomposes into subproblems of this form.) This is quite reasonable for many
reasons. I'irst of all, the block structure of A allows us to solve a set of problems of the
form (3) as K independent subproblems. If K is the order of 10 to 100, then this is an
ideal task for today’s MIMD machines. Secondly, it may be possible to utilize special
structure in the Ay that would be more difficult to exploit if the coupling constraints
(Dz < d) were kept. One important example is the case in which (1) is a multicommod-
ity flow problem and each Aj is a node-arc-incidence matrix. And third, the difficulty
of solving most linear programs in practice increases as a quadratic or cubic function
with the size of the problem.

2. The Shifted Barrier Scheme. In this section we outline a scheme that allows
us to deal with the block constraints explicitly and consider the effect of the coupling
constraints implicitly. Define the feasible set of the block constraints as

B:={z|Az =band 0 <z <u},
and the feasible set of the coupling constraints as
C:= {z|Dz < d}.

Suppose z' € B is given. At each iteration, we approximate the original problem
by the barrier problem

J
(4) minimize f(z,7,0) := ¢'z—71)Y In(0; — D;z) subject to z € B
j=1

where 0 < 7 € R and 0 < 0 € IR’ are parameters. Note that f(z,,0) is convex
in # with domain dom f(-,7,0) = {z|Dz < 0}. Allowing 0 # d has the property of
“shifting” the barrier. For this reason we call the nonlinear portion of f a shifted
logarithmic barrier function.

After finding z° as the solution of (2) the parameters 0° and 7° are specified by
taking 79 > 0 and

. (lj if D]'LEO < dj
(5) 0 =

DjCBO + Q) if DjCL‘O Z Clj

where © > 0. This will have the effect of making 2z, € B an interior point of
dom f(-,7°,0°). We then compute z**! by doing one step of a multi-dimensional search

on the barrier problem (4). If Dz™*' < d, we have produced a feasible point. If not,
then we modify @ by taking

. CZ]' if Dj(l)i+1 < dj
(6) 057 = , . .
)\ngmz—H -+ (1 —)\9)0; if DjiL‘z"H > d;

where Ap € (0,1) is a constant, while maintaining 7*t! = 7¢, Then set 7 « ¢ + 1 and do
the process again.

We have shown [SM90] that if a point z € B NintC exists, then such a point may
be generated in a finite number of iterations. In order to do this, however, the barrier
problems (4) must be solved accurately enough, e.g., the objective function value is
within some constant of being optimal (f(z**!,7%,0%) < f*(7,0%) + B where f*(r%,6%)
is the optimal value function of (4), and J is constant).

Once the method has 6* = d so that z* € B NintC, we maintain §* = d and begin
to relax the effect of the barrier terms in f. This is done by letting 7* | 0. Questions of
convergence become important at this point. Classical convergence results for barrier
functions [FM68] state that minimizers of (4) converge to minimizers of (1) as 7 | 0.
We use a sequence {7¢} generated by the recurrence
i+1

- 1nax{)\7'ri, Tinf }

where 7°,7in¢ > 0 and A; € [0,1). The following result (see page 102 of [FM68] or
page 341 of [McC83], for example) is then used to choose an appropriate Tins:

THEOREM 2.1. Let z* be an optimal solution of (1), and say T is a minimizer
of (4) withT >0 and 0 =d. Thenc'z>c'z*>c 3 —7J. (Recall that J is the number
of rows of D.)

So if the user chooses 7in = ¢/J then solving the barrier problem (4) in the limit
produces limit points Z € B NintC such that [c'z — ¢Tz*| < e.

In summary, this method is a three phase process. The first phase may be called the
relazed phase. 1t consists of solving (2). If this problem is infeasible, so is the original
problem. The second phase may be called the feasibility phase. During this phase we
are seeking ' € B NintC by trying to force § = d. If the feasibility phase succeeds,
we move on to the third and final phase. This phase seeks to approximate a minimizer
of (1) by reducing the effects of the barrier term, i.e. by reducing 7.

3. Solving Barrier Problems. In the previous section we described a method
that is based on the barrier problem (4). Suppose we are given a current point 2* € B.
We use a two-stage generalization of the Frank-Wolfe method to obtain the next iterate
¢!, In the first stage, we linearize (4) and add a trust region R(z*) giving the following
problem:

(7) mingmizevxf(:ci, 7,0)é6x subject to z' + 6z € BN R(z%).

This is of the form (3) with & = V,f(a%,7,0), b = 0 and R(z') consisting of simple
bounds. Denote a solution of (7) by éz'.

The purpose of the trust region is to prevent the linearization from ignoring the
poles of the barrier function. We suggest the following choice for the trust region:

R(SEZ) = {.’1: == :IIi + (S$|_Dj]m6$kn S max {’Yinf,’)’(aj - D]:Dz)} V_], k,n}

where 7inr,7 > 0 are constants. Since the boundary of the trust region is always a
distance of minjiy, |Vint/Djkn| > 0 from the current point, the standard convergence
proof of the Frank-Wolfe method may be easily accommodated.

In the second stage, we solve the coordination problem, which is a multi-dimensional
analog of the familiar line search technique. Let Y be the N x K matrix

¥ 0 .- 0

. 0 ézp --- 0O
Y=

0 o . 0

0 0 ... 6%

so that the kth column of Y* corresponds to the kth block of the update §zf. The
coordination problem is that of finding w' that approzimately solves

(8) miniumizef(wi + Y'w, 7,0) subject to 0 < ' 4+ Yiw < u.
We will then choose z'+! = z 4+ Y'w' for our next iterate. One may see that the block
structure of ¥' means that (8) is a /' dimensional optimization problem with simple
bound constraints. Note that z*** € B if 2! € B. Also, since a search procedure is used
in the coordination (8), it is easy to enforce z'*! € intC if ' € intC. Details of how

approximate solutions of (8) are computed may be found in [SM90]. For a theoretical
discussion of load balancing alternatives for this type of method, see [SMS89].

4. Numerical Results for the PDS Problems. This section presents some
preliminary computational experience for a set of large multicommodity network flow
problems. The test set is the set of Patient Distribution System problems developed
at the Military Airlift Command at Scott Air Force Base. Some of the smaller test
problems in this set have been seen in the literature before. For example, in [CHK*89]
the KORBX system was used to solve problems as large as PDS-20 in approximately
18 hours. The sizes of PDS problems in this report are given in table 1.

Table 2 shows the cumulative time at the end of each of the three phases of the
method (starting after the problem data was read in). We do a maximum of 50 iterations
before stopping the code. Comparison with a colleague [De 90] shows that the objective
functions match the optimal objective functions in at least five digits for PDS-5, PDS-
10 and PDS-20. We do not have accurate lower bounds for the remaining problems.
The sequence {#'} was specified by setting © = 1 and Ay = 0.9. Smaller values of Ag
typically led to doing more iterations in the feasibility phase. The sequence {7%} was
specified by setting 7° = 10, A, = 0.5 and 7n¢ = 1078/J. In our computations, the
costs are normalized so that |lc|| = 1. Thus 7° = 10 is ten times the maximum cost
coeflicient, and at the beginning the barrier is much more important than the objective
function. With this setting of 7i,r we had 7% > 7. The trust region was specified by

| Problem || K | maxy M(k) [max; N(k) [J [M +J (vows) | N (cols) |

PDS-05 11 686 2,149 553 8,099 23,639

PDS-10 11 1,399 4,433 1,169 16,558 48,763

PDS-20 11 2,857 10,116 2,447 33,874 105,728

PDS-40 || 11 5,652 20,698 | 4,672 66,844 212,859

PDS-60 11 8,423 31,474 6,778 99,431 329,643
TABLE 1

Sizes of the PDS problems in this report.

using v = 0.7 and vinr = 1078, Interestingly, the smaller 4o > 0 was, the better the
empirical convergence rate was.

The runs were done on two machines: a DECstation 3100 and a 20 processor
Sequent Symmetry machine. All computations were done in double precision. The
portion of the code that solves the subproblems is a network simplex code written in
FORTRAN (a modification of the RNET code of [GH79]). The balance of the code was
written in C. More than 80% of the computation time is spent solving subproblems.
All times are wall clock time.

We parallelized the subproblem solution. The speedup S(P) on P processors of the
Sequent Symmetry is measured as a ratio of wall clock times. Actual speedups observed
for PDS-05 on the Sequent Symmetry were S(2) = 1.67, S(3) = 2.25, S(4) = 2.69,
S(6) = 3.42 and S(11) = 4.61. Where we have done profiles, the parallelized portions of
the code account for between 80% and 90% of the total computational work. Assuming
80% of the work is done in parallel, it is reasonable to expect S (11) to be bounded
by 11/3 = 3.67. If 90% of the work is done in parallel, the same estimate gives the a
bound of 11/2 = 5.5. In light of all this, the speedup results obtained look reasonable.
Possibilities of overlapping subproblem solution with coordination and using additional
combinations of updates ¥* are discussed in [SM89)].

REFERENCES

[CHK*89] Major William J. Carolan, Major James E. Hill, Jeffery L. Kennington, Second Lieu-
tenant Sandra Niemi, and Captain Stephen J. Wichmann. An empirical evaluation of
the KORBX algorithms for military airlift applications. Technical Report 89-OR-06,
Southern Methodist University, May 1989.

[De 90] Renato De Leone. Personal Communication, 1990.

[FM68] Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming: Sequential Un-
constrained Minimization Techniques. John Wiley and Sons, 1968.

IGHT79] Michael D. Grigoriadis and Tau Hsu. RNET, The Rutgers Minimum Cost Network Flow

Subroutines, Users Documentation. Department of Computer Science, Hill Center
for the Mathematical Sciences, Rutgers University—Busch Campus, New Brunswick,
New Jersey 08903, 3.6 edition, October 1979.

[McC83] Garth P. McCormick. Nonlinear Programming, Theory, Algorithms, and Applications.
John Wiley and Sons, 1983,

[SM89] Gary L. Schultz and Robert R. Meyer. A flexible parallel algorithm for block-constrained
optimization problems. In Ramesh Sharda, et al, editors, Impacts of Recent Computer
Advances on Operatlions Research, New York, 1989. North Holland.

[SM90] Gary L. Schultz and Robert R. Meyer. Forthcoming technical report, 1990.

PDS-05

| phase H relaxed | feasible [final l
total iterations 0 15 50
objective x1071Y || 2.78244 2.81280 2.805406
DECstation 14sec 4min 14min
Sequent(1) 31sec 9min26sec 36min
Sequent(2) 16sec dmin24sec 22min
Sequent(3) 11sec Jdmin49sec 16min
Sequent(4) 8sec dmindsec | 13min32sec
Sequent(6) Bsec 2minl8sec | 10min38sec
Sequent(8) Gsec 2minl2sec | 10minl5sec
Sequent(11) 4sec Imin32sec Smin
| PDS-10 |
] phase H relaxed | feasible] final]
total iterations 0 16 50
objective x1071% || 2.63334 2.68523 2.672724
DECstation 32sec 9min 32min
Sequent(11) 9sec 4min 17min30sec
[PDS-20 |
I phase H relaxed f feasible l final]
total iterations 0 15 50
objective x1071% || 2.33420 2.40617 2.382209
DECstation || 2minllsec 35min 2hr17min
Sequent(11) 48sec 11min23sec lhr
[PDS-40 |
| phase I[relaxed | feasible ! final]
total iterations 0 12 50
objective x1071% || 1.71878 1.94745 1.887724
DECstation 9min 2hr12min | 10hr36min
Sequent(11) | 4min30sec 35min 3hr50min
[PDS-60 |
| phase]] relaxed | feasible] final l
total iterations 0 12 50
objective x10719 || 1.21595 1.52171 1.436928
DECstation 19min Shr 25hr
Sequent(11) Tmin 1hr29min 9hr
TABLE 2

Timing results for solution of selected Patient Distribution System problems.

